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Abstract	

Background	

Early simulations indicated that whole-genome sequence data (WGS) could improve 16 

prediction accuracy and its persistence across generations and breeds. However, 17 

results in real datasets have been ambiguous so far. Large data sets that capture most 18 

of the genome diversity in a population must be assembled so that allele substitution 19 

effects are estimated with higher accuracy. The objectives of this study were to use a 20 

large pig dataset to assess the benefits of using WGS for genomic prediction 21 

compared to using commercial marker arrays, to identify scenarios in which WGS 22 

provides the largest advantage, and to identify potential pitfalls for its effective 23 

implementation. 24 

Methods	

We sequenced 6,931 individuals from seven commercial pig lines with different 25 

numerical size. Genotypes of 32.8 million variants were imputed for 396,100 26 

individuals (17,224 to 104,661 per line). We used BayesR to perform genomic 27 

prediction for 8 real traits and 9 simulated traits with different genetic architectures. 28 

Genomic predictions were performed using either data from a marker array or variants 29 

preselected from WGS based on linkage disequilibrium, functional annotation, or 30 

association tests. Both single and multi-line training sets were explored. 31 

Results	

Using WGS improved prediction accuracy relative to the marker array, provided that 32 

training sets were sufficiently large, especially for traits with high heritability and low 33 

number of quantitative trait nucleotides. The performance of each set of predictor 34 

variants was not robust across traits and lines. The most robust results were obtained 35 
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when preselected variants with statistically significant associations were added to the 36 

marker array. Under this method, average improvements of prediction accuracy of 2.5 37 

and 4.2 percentage points were observed in within-line and multi-line scenarios, 38 

respectively, with training sets of around 80k individuals. 39 

Conclusions	

Our results evidenced the potential for WGS to improve genomic prediction accuracy 40 

in intensely selected pig lines. Although the prediction accuracy improvements 41 

achieved so far were modest at best, we would expect that more robust improvements 42 

could be attained with a combination of larger training sets and optimised pipelines. 43 

  44 
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Introduction	

Whole-genome sequence data (WGS) has the potential to empower the 45 

identification of causal variants that underlie quantitative traits or diseases [1–4], 46 

increase the precision and scope of population genetic studies [5,6], and enhance 47 

livestock breeding. Genomic prediction has been successfully implemented in the 48 

main livestock species and it has increased the rate of genetic gain [7]. Genomic 49 

prediction has provided many benefits such as greater accuracies of genetic 50 

evaluations and the reduction of the generational interval in dairy cattle. However, 51 

since its early implementations, genomic prediction is typically performed using 52 

marker arrays that capture the effects of the (usually unknown) causal variants via 53 

linkage disequilibrium. Alternatively, WGS are assumed to contain the causal variants 54 

themselves. For this reason, it was hypothesized that such data could further improve 55 

prediction accuracy and its persistence across generations and breeds. Early 56 

simulations indicated that causal mutations from WGS could increase prediction 57 

accuracy [8–13]. One simulation study indicated that the magnitude of prediction 58 

accuracy improvement relative to dense marker arrays ranged from 2.5 to 3.7%, with 59 

a persistence of over 10 generations [11]. Another one reached improvements of 30% 60 

if causal variants with low minor allele frequency could be captured by the WGS [9]. 61 

However, benefits could be on the lower end of that range in standard livestock 62 

populations due to small effective population sizes and long-term negative selection 63 

[10]. 64 

During the last few years, there have been several attempts at improving the 65 

accuracy of genomic prediction with the use of WGS in the main livestock species. 66 

Results have been ambiguous so far. When predicting genomic breeding values within 67 

breed or line, some studies found no relevant improvement of prediction accuracy for 68 
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WGS compared to marker arrays [14–18]. Other studies found small, and often 69 

unstable, improvements (e.g., from 1 to 5% or no improvement depending on 70 

prediction method [19–21], or trait-dependent results [21,22]). When predicting 71 

genomic breeding values across populations, the identification of causal variants from 72 

WGS can improve prediction accuracy [23–26], especially for small populations 73 

where initial prediction accuracy was low or that were not included in the training 74 

population [23,25–28]. 75 

One of the most successful strategies to exploit WGS consists in augmenting 76 

available marker arrays with preselected variants from WGS based on their 77 

association with the trait of interest [29–32]. In some cases, this strategy improved 78 

prediction accuracy by up to 9% [31] and 11% [32]. However, it did not improve 79 

prediction accuracies in other within-line scenarios [16]. Nevertheless, this shows 80 

how identifying causal variants could enhance genomic prediction with WGS. Whole-81 

genome sequence data has already been applied in genome-wide association studies 82 

(GWAS) to identify variants associated to a variety of traits in livestock [2,33–35], 83 

including pigs [36,37]. However, the fine-mapping of causal variants remains 84 

challenging due to the pervasive long-range linkage disequilibrium across extremely 85 

dense variation. 86 

High accuracy in estimating allele substitution effects and, ideally, the 87 

identification of causal variants amongst millions of other variants are important for 88 

the usefulness of WGS in research and breeding. This requires large data sets able to 89 

capture most of the genome diversity in a population. Despite that low-cost 90 

sequencing strategies have been developed, which typically involve sequencing a 91 

subset of the individuals in a population at low coverage and then imputing WGS for 92 

the remaining individuals [38–40], the cost of generating accurate WGS at this scale, 93 
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as well as the large computational requirements for the analyses of such datasets, have 94 

limited the population sizes or number of populations tested in some of the previous 95 

studies. This hinders the interpretation of results across studies, which are very 96 

diverse in population structures, sequencing strategies and prediction methodologies 97 

used. The largest studies on the use of WGS for genomic prediction to date have been 98 

performed in cattle, for which large multi-breed reference panels are available from 99 

the 1000 Bull Genomes Project [2,19,33]. This has enabled the imputation of WGS 100 

for cattle populations. The lack of such available reference panels has been cited as an 101 

important limiting factor for performing similar studies in other species, such as pigs 102 

[36]. 103 

We have previously described our approach to impute WGS in large pedigreed 104 

populations without the need for haplotype phased reference panels [41]. Following 105 

that strategy, we generated WGS for 396,100 pigs from seven intensely selected lines 106 

with diverse genetic backgrounds and numerical size. The objectives of this study 107 

were to use this large pig dataset to assess the benefits of using WGS for genomic 108 

prediction compared to using commercial marker arrays, to identify scenarios in 109 

which WGS provides the largest advantage, and to identify potential pitfalls for its 110 

effective implementation. 111 

 112 

Materials	and	Methods	

Populations	and	sequencing	strategy	

We performed whole-genome re-sequencing of 6,931 individuals from seven 113 

commercial pig lines (Genus PIC, Hendersonville, TN) with a total coverage of 114 

approximately 27,243x. Sequencing effort in each of the seven lines was proportional 115 

to population size. Approximately 1.5% (0.9 to 2.1% in each line) of the pigs in each 116 
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line were sequenced. Most pigs were sequenced at low coverage, with target coverage 117 

of 1 or 2x, but a subset of pigs were sequenced at higher coverage of 5, 15, or 30x. 118 

Thus, the average individual coverage was 3.9x, but the median coverage was 1.5x. 119 

The number of pigs sequenced and at which coverage for each line is summarized in 120 

Table 1. 121 

The sequenced pigs and their coverage were selected following a three-part 122 

sequencing strategy developed to represent the haplotype diversity in each line. First 123 

(1), sires and dams with the highest number of genotyped progeny were sequenced at 124 

2x and 1x, respectively. Sires were sequenced at a greater coverage because they 125 

contributed with more progeny than dams. Then (2), the individuals with the greatest 126 

genetic footprint on the population (i.e., those that carry more of the most common 127 

haplotypes) and their immediate ancestors were sequenced at a coverage between 1x 128 

and 30x (AlphaSeqOpt part 1; [42]). The sequencing coverage was allocated with an 129 

algorithm that maximises the expected phasing accuracy of the common haplotypes 130 

from the cumulated family information. Finally (3), pigs that carried haplotypes with 131 

low cumulated coverage (below 10x) were sequenced at 1x (AlphaSeqOpt part 2; 132 

[43]). Sets (2) and (3) were based on haplotypes inferred from marker array genotypes 133 

(GGP-Porcine HD BeadChip; GeneSeek, Lincoln, NE), which were phased and 134 

imputed using AlphaPhase [44] and AlphaImpute [45]. 135 

Most sequenced pigs and their relatives were also genotyped either at low 136 

density (15k markers) using the GGP-Porcine LD BeadChip (GeneSeek) or at high 137 

density (80k markers) using the GGP-Porcine HD BeadChip (GeneSeek). Quality 138 

control of the marker array data was based on the individuals genotyped at high 139 

density. Markers with minor allele frequency below 0.01, call rate below 0.80, or that 140 
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failed the Hardy-Weinberg equilibrium test were removed. After quality control, 141 

38,634 to 43,966 markers remained in each line. 142 

 143 

Sequencing	and	data	processing	

Tissue samples were collected from ear punches or tail clippings. Genomic 144 

DNA was extracted using Qiagen DNeasy 96 Blood & Tissue kits (Qiagen Ltd., 145 

Mississauga, ON, Canada). Paired-end library preparation was conducted using the 146 

TruSeq DNA PCR-free protocol (Illumina, San Diego, CA). Libraries for 147 

resequencing at low coverage (1 to 5x) were produced with an average insert size of 148 

350 bp and sequenced on a HiSeq 4000 instrument (Illumina). Libraries for 149 

resequencing at high coverage (15 or 30x) were produced with an average insert size 150 

of 550 bp and sequenced on a HiSeq X instrument (Illumina). All libraries were 151 

sequenced at Edinburgh Genomics (Edinburgh Genomics, University of Edinburgh, 152 

Edinburgh, UK).  153 

DNA sequence reads were pre-processed using Trimmomatic [46] to remove 154 

adapter sequences from the reads. The reads were then aligned to the reference 155 

genome Sscrofa11.1 (GenBank accession: GCA_000003025.6) using the BWA-MEM 156 

algorithm [47]. Duplicates were marked with Picard 157 

(http://broadinstitute.github.io/picard). Single nucleotide polymorphisms (SNPs) and 158 

short insertions and deletions (indels) were identified with the variant caller GATK 159 

HaplotypeCaller (GATK 3.8.0) [48,49] using default settings. Variant discovery with 160 

GATK HaplotypeCaller was performed separately for each individual and then a joint 161 

variant set for all the individuals in each population was obtained by extracting the 162 

variant positions from all the individuals. 163 
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We extracted the read counts supporting each allele directly from the aligned 164 

reads stored in the BAM files using a pile-up function to avoid biases towards the 165 

reference allele introduced by GATK when applied on low-coverage WGS [50]. That 166 

pipeline uses the tool pysam (version 0.13.0; https://github.com/pysam-167 

developers/pysam), which is a wrapper around htslib and the samtools package [51]. 168 

We extracted the read counts for all biallelic variant positions, after filtering variants 169 

in potential repetitive regions (defined as variants that had mean depth values 3 times 170 

greater than the average realized coverage) with VCFtools [52]. This amounted to a 171 

total of 55.6 million SNP (19.6 to 31.1 million within each line) and 10.2 million 172 

indels (4.1 to 5.6 million within each line). A more complete description of the 173 

variation across the lines is provided in [53]. 174 

 175 

Genotype	imputation	

Genotypes were jointly called, phased and imputed for a total of 483,353 176 

pedigree-related individuals using the ‘hybrid peeling’ method implemented in 177 

AlphaPeel [54,55]. This method used all the available marker array and WGS. 178 

Imputation was performed separately for each line using complete multi-generational 179 

pedigrees, which encompassed from 21,129 to 122,753 individuals each (Table 1). 180 

We have previously published reports on the accuracy of imputation in the same 181 

populations using this method [41]. The estimated average individual-wise dosage 182 

correlation was 0.94 (median: 0.97). Individuals with low predicted imputation 183 

accuracy were removed before further analyses. An individual was predicted to have 184 

low imputation accuracy if itself or all of its grandparents were not genotyped with a 185 

marker array or if it had a low degree of connectedness to the rest of the population. 186 

These criteria were based on the analysis of simulated and real data on imputation 187 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 5, 2022. ; https://doi.org/10.1101/2022.02.02.478838doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.02.478838
http://creativecommons.org/licenses/by-nc-nd/4.0/


accuracy [41]. A total of 396,100 individuals remained, with each line comprising 188 

between 17,224 and 104,661 individuals (Table 1). The expected average individual-189 

wise dosage correlation of the remaining individuals was 0.97 (median: 0.98) 190 

according to our previous estimates. We also excluded from the analyses variants with 191 

a minor allele frequency lower than 0.023, as their estimated variant-wise dosage 192 

correlations was lower than 0.90 [41]. After imputation, 32.8 million variants (14.5 to 193 

19.9 million within each line) remained for downstream analyses, out of which 9.9 194 

million segregated across all seven lines. 195 

 196 

Traits	

We analysed data of 8 traits that are commonly included in selection 197 

objectives of pig breeding programmes: average daily gain (ADG, g), backfat 198 

thickness (BFT, mm), loin depth (LD, mm), average daily feed intake (ADFI, kg), 199 

feed conversion ratio (FCR), total number of piglets born (TNB), litter weight at 200 

weaning (LWW, kg), and return to oestrus 7 days after weaning (RET, binary trait). 201 

Most pigs with records were born during the 2008–2020 period. Breeding values were 202 

estimated by line with a linear mixed model that included polygenic and non-genetic 203 

(as relevant for each trait) effects. Deregressed breeding values (dEBV) were obtained 204 

following the method by VanRaden and Wiggans [56]. Only individuals in which the 205 

trait was directly measured were retained for further analyses. The number of records 206 

for each trait used in the analyses of each line is detailed in Table 2. 207 

 208 

Simulated traits 209 

To assist in the interpretation of results, we also created 9 simulated traits with 210 

different numbers of quantitative trait nucleotides (QTN; 100, 1,000 or 10,000 QTN) 211 
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and heritability levels (h2; 0.10, 0.25 or 0.50). Positions of the QTN were sampled 212 

randomly amongst all variants called across all lines. Because QTN were sampled 213 

from all variants, some QTN were fixed in some of the lines while segregating in 214 

others. There were only negligible differences in the number of segregating QTN per 215 

line (53 to 61, 531 to 583, or 5375 to 6058, respectively). Marker effects of the QTN 216 

were sampled from a gamma distribution with shape=2 and scale=5. After a polygenic 217 

term was calculated for each individual using these marker effects, residual terms 218 

were sampled from a normal distribution with a variance parameter adjusted to 219 

produce the desired heritability level. The number of records for the simulated traits is 220 

detailed in Table 2. In these simulations, we used the imputed genotypes as real 221 

genotypes and, therefore, implicitly cancelled any errors that might arise from the 222 

processing of the sequencing reads and genotype imputation.  223 

 224 

Training	and	testing	sets	

We split the individuals in each population into training and testing sets. The 225 

testing sets were defined as those individuals from full-sib families from the last 226 

generation of the pedigree (i.e., individuals that did not have any progeny of their 227 

own). Only families with a minimum of 5 full-sibs were considered. The training set 228 

was defined as all those individuals that had a pedigree coefficient of relationship 229 

lower than 0.5 with any individual of the testing set. This design was chosen to mimic 230 

a realistic situation in which breeding companies evaluate the selection candidates 231 

available in the selection nucleus at any given time. 232 

 233 
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Genome-wide	association	study	

To assess whether variants from the WGS could provide a finer mapping of 234 

causal variants than marker array data, and to provide an association-based criterion 235 

to preselect variants for the genomic prediction tests, we performed a GWAS for each 236 

trait and line. This step included only the individuals in the training set. We fitted a 237 

univariate linear mixed model that accounted for the genomic relationship matrix as: 238 

𝐲 = 𝐱!β! + 𝐮+ 𝐞, 239 

where 𝐲 is the vector of dEBV, 𝐱! is the vector of genotypes for the 𝑖th SNP coded as 240 

0 and 2 if homozygous for either allele or 1 if heterozygous, β! is the additive effect 241 

of the 𝑖th SNP on the trait, 𝐮~𝑁(0,σ!!𝐊) is the vector of polygenic effects with the 242 

covariance matrix equal to the product of the polygenic additive variance σ!!  and a 243 

genomic relationship matrix 𝐊, and 𝐞 is a vector of uncorrelated residuals. Due to 244 

computational limitations, the genomic relationship matrix 𝐊 was calculated using 245 

only imputed SNP genotypes in the marker array regardless of whether the association 246 

study involves the SNPs in the marker array or the variants in WGS. We used the 247 

FastLMM software [57,58] to fit the model. 248 

We used the same p-value threshold (p<10-6) for both marker array and for 249 

sequence associations, because while the WGS contains many more variants, they are 250 

also expected to be in higher linkage disequilibrium. This threshold was based on 251 

Bonferroni’s multiple test correction assuming that the markers from the marker array 252 

were independent. For the simulated traits, we defined genomic regions that contained 253 

significant associations and assessed whether or not they contained a QTN. These 254 

regions were defined by overlapping 500-kb segments centered on the significant 255 

markers. 256 
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 257 

Genomic	prediction	in	within-line	scenarios	

To test whether variants from the WGS could provide greater prediction 258 

accuracy than the marker array, we tested genomic prediction using variants from the 259 

marker array, from the WGS, or combining them. The marker array data (referred to 260 

as ‘Chip’) was set as the benchmark for prediction accuracy. It contained all ~40k 261 

variants in the marker array. For the sequence-based predictors, we preselected sets of 262 

variants because currently available methods for genomic prediction are not yet 263 

capable of handling datasets as large as the complete WGS. We tested different 264 

alternative strategies for preselecting the predictor variants: 265 

• LDTags. Tag variants retained after pruning based on linkage disequilibrium. 266 

Variants were removed so that no pairs of SNPs with r2>0.1 remained in any 10-267 

Mb window (windows slid by 2,000 variants) using Plink 1.9 [59]. The number 268 

of predictor variants preselected by this method was on average of 30k variants 269 

(range: 5k to 80k). 270 

• Top40k. Variants preselected based on GWAS analyses. To mimic the number of 271 

variants in Chip, we preselected the variants with the lowest p-value (not 272 

necessarily below the significance threshold) in each of consecutive non-273 

overlapping 55-kb windows along the genome. In addition, to test the impact of 274 

variant density on prediction accuracy, we preselected 10k, 25k, 75k, or 100k 275 

predictor variants following the same criterion. 276 

• ChipPlusSign. Variants preselected based on GWAS analyses as in Top40k, but 277 

only significant variants (p≤10-6) were preselected and merged with those in 278 

Chip. When a 55-kb window contained more than one significant variant, only 279 

that with the lowest p-value was selected as a proxy, in order to reduce the 280 
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preselection of multiple significant SNPs tagging the same causal variant. On 281 

average, 309 significant variants were identified per trait and line (range: 23 to 282 

1083; Table 3). These significant variants were merged with those in Chip. 283 

• Functional. Variants that were annotated as loss-of-function or missense 284 

according to Ensembl Variant Effect Predictor (Ensembl VEP; version 97, July 285 

2019) [60]. The most severe predicted consequence type for each variant was 286 

retrieved. The number of predictor variants preselected by this method was on 287 

average of 35k variants (range: 27k to 40k). 288 

• Rand40k. The same number of predictor variants as in Chip, chosen randomly. 289 

Genomic prediction was performed by fitting a univariate model with BayesR 290 

[61,62], with a mixture of normal distributions as the prior for variant effects, 291 

including one distribution that sets the variant effects to zero. The model was: 292 

𝐲 = 𝟏µ+ 𝐗𝛃+ 𝐞, 

where 𝐲 is the vector of dEBV, 1 is a vector of ones, µ is the general mean, X is a 293 

matrix of genotypes, β is a vector of variant effects, and e is a vector of uncorrelated 294 

residuals. The prior variance of the variant effects in β had four components with 295 

variances σ!! = 0, σ!! = 0.0001σ!! , σ!! = 0.001σ!! , or σ!! = 0.01σ!! , where σ!!  is the 296 

total genetic variance. We used a uniform and almost uninformative prior for the 297 

mixture distribution. We used a publicly available implementation of BayesR 298 

(https://github.com/syntheke/bayesR; accessed on 30 April 2021), with default 299 

settings. Prediction accuracy was calculated in the testing set as the correlation 300 

between the genomic estimated breeding value and the dEBV. Bias of the prediction 301 

accuracy was calculated as the regression coefficient of the dEBV on the genomic 302 

estimated breeding values. 303 
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It has been noted that using the same reference individuals for preselecting 304 

variants through GWAS and for training the predictive equation can reduce prediction 305 

accuracy and bias the predicted breeding values [16,63]. To account for that, we 306 

reanalysed some of the scenarios after splitting the training set into two exclusive 307 

subsets, one for GWAS to preselect the predictor variants and one for training the 308 

predictive equation. The GWAS subset was defined by randomly selecting either 10% 309 

or 50% of the individuals in the original training set. Those individuals were excluded 310 

from the subset used for training the predictive equation afterwards. 311 

 312 

Genomic	prediction	in	multi-line	scenarios		

We considered multi-line scenarios in which the training set consisted of 313 

merging the training sets that had been defined for each line. All analyses were 314 

performed as for the within-line scenarios but with a line effect. In the multi-line 315 

scenarios, all SNPs from the marker array that passed quality control and were 316 

imputed for at least one line were included in the baseline (referred to as ‘ML-Chip’). 317 

For ease of computation, the strategies for preselection of predictor variants from 318 

WGS were applied only to the subset of 9.9 million variants that had been called and 319 

imputed in all seven lines. Thus, we defined the predictor sets ‘ML-Top40k’ and 320 

‘ML-ChipPlusSign’ by preselecting variants following the same criteria as in within-321 

line scenarios, but using a multi-line GWAS analyses with line effect instead. For 322 

ML-ChipPlusSign, 60 to 7247 significant variants were identified per trait (Table 3) 323 

and merged with those in ML-Chip. For comparison purposes, prediction accuracy 324 

was calculated for the testing set of each individual line. 325 

 326 
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Results	

Prediction	accuracy	within	line	

Whole-genome sequence data can improve prediction accuracy of marker 327 

array data when there is a sufficiently large training set and if an appropriate set of 328 

predictor variants is preselected. Figure 1 shows the prediction accuracy for the case 329 

with the largest training set using different sets of predictor variants. In this case, all 330 

tested sets of variants from the WGS, except for LDTags, yielded increases of 331 

prediction accuracy that ranged from +2.0% to +9.2%. Using WGS also reduced bias 332 

relative to Chip in some scenarios. However, the performance across predictor 333 

variants set was not robust for the most part, and differed for each trait and line 334 

(Additional File 1), often leading to no improvements of prediction accuracy or even 335 

reduced prediction accuracy relative to Chip. One stable feature of the results was 336 

LDTags showing a noticeable decrease in prediction accuracy in most traits and lines. 337 

The size of the training set was one of the main factors that determined the 338 

capacity of predictor variants from the WGS to improve the baseline prediction 339 

accuracy of Chip. Figures 2 and 3 show the difference in prediction accuracy of 340 

Top40k and ChipPlusSign with respect to the baseline of Chip against the number of 341 

phenotypic records available in the training set. We observed large variability for the 342 

difference in prediction accuracy, especially when the training set was small. This 343 

variability was larger in Top40k than in ChipPlusSign, in a way that shrinkage of 344 

variation as the training set was larger was more noticeable in ChipPlusSign. Gains in 345 

prediction accuracy were low-to-moderate in the most favourable cases. In the most 346 

unfavourable ones we observed large losses in prediction accuracy for Top40k but 347 

more restrained losses for ChipPlusSign with moderate training set sizes. For both 348 

sets of predictor variants, there was a positive trend that supported the need for large 349 
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training sets. This trend was clearer in ChipPlusSign than in Top40k, because of the 350 

apparent lower robustness of the latter. Results for the other sets of predictor variants 351 

are provided in Additional File 2. 352 

The genetic architecture of the traits was also related to the success of WGS 353 

for improving prediction accuracy. As the true genetic architecture of real complex 354 

traits is mostly unknown, we used simulated traits to show that traits with high 355 

heritability and low number of QTN were more likely to show larger improvements in 356 

predictive performances. With Top40k (Figure 4), heritability seemed to be the main 357 

factor that affected the expected improvement with large training sets (from null 358 

improvements when h2=0.1 to improvements of approximately 0.05 when h2=0.5, 359 

regardless of number of QTN, with a training set of 92k individuals). With 360 

ChipPlusSign (Figure 5), the expected improvements with the same training set (92k 361 

individuals) were not only greater in magnitude but depended on both heritability and 362 

number of QTN (from null improvements when h2=0.1 to improvements of 363 

approximately 0.03 to 0.10 when h2=0.5 with a number of 100 to 10k QTN, 364 

respectively). Results confirmed the trends observed for the real traits (Figures 4 and 365 

5); for instance, the higher robustness of ChipPlusSign compared to Top40k. 366 

We observed diminishing returns when we increased the density of the 367 

predictor variants. Increasing the number of predictor variants from the 40k in 368 

Top40k to 75k selected in the same way yielded small improvements in prediction 369 

accuracy compared to Top40k, but increases up to 100k variants provided smaller or 370 

null additional gains (Additional File 3). 371 

Splitting the original training set into two exclusive subsets, one for the 372 

GWAS-based preselection of the variants and one for the training of the predictive 373 

equation did not improve the prediction accuracy (Additional File 4). For 374 
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ChipPlusSign, this strategy reduced the bias but prediction accuracy decreased too, 375 

probably because of the smaller subset available for training the predictive equation. 376 

 377 

Prediction	accuracy	in	multi-line	scenarios	

The performance of genomic predictors trained with multi-line datasets was 378 

systematically lower than in the within-line scenarios (Additional File 5). 379 

Nonetheless, the ML-ChipPlusSign predictor variants in general increased prediction 380 

accuracy relative to ML-Chip (Figure 6). The increase in genomic prediction accuracy 381 

for each line was largely dependent on the number of individuals of each line in the 382 

training set. Therefore, the greatest improvements were achieved for the largest lines. 383 

However, in the multi-line scenarios we observed increases of prediction accuracy for 384 

some traits and lines for which no improvements were observed in the within-line 385 

scenarios (Figure 7). In contrast, results for ML-Top40k were not robust (Additional 386 

File 6). 387 

 388 

Association	tests		

First, we assessed the performance of GWAS using the simulated traits. Table 389 

4 shows the number of regions with significant associations that were detected using 390 

either Chip or WGS, and whether they contained zero, one or multiple true QTN. The 391 

WGS allowed the detection of a much larger proportion of true QTN than the Chip, 392 

especially for the traits with high heritability and with large population sizes. The 393 

most favourable scenarios for identifying regions that contained unequivocally a 394 

single QTN with WGS were those in which the trait was controlled by a low number 395 

of true QTN. However, even though the genetic architecture was very simple and 396 

consisted of additive effects alone, the regions with significant associations only 397 
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captured a small fraction of the QTN that segregated within each line. Moreover, 398 

using WGS also increased the number of regions with significant associations that 399 

contained no QTN, which could therefore be considered as false positives. Some of 400 

the selected regions contained multiple QTN, which could indicate either a ‘hit by 401 

chance’ or an inability to disentangle multiple causal variants. While false positives 402 

also occur with Chip, their incidence was more severe with the WGS, especially for 403 

traits with a large number of QTN. Large population sizes further aggravated the 404 

inflation of genome-wide p-values. 405 

Despite this, with the real traits we found that GWAS using WGS can 406 

contribute to a better understanding of the genetic mechanisms that underlie the traits 407 

of interest. To illustrate this, we examined the GWAS results for BFT in line A, for 408 

which a large number of phenotypic records were available. Figure 8 shows the 409 

results for chromosome 1 as an example, while Additional File 7 shows the results for 410 

six genomic regions of interest. The main genomic regions and candidate genes 411 

associated to BFT detected with Chip in the same genetic lines studied here were 412 

reported elsewhere [64]. We will use the candidate genes reported there to refer to the 413 

genomic regions with significant associations. Using Chip, we identified 6 genomic 414 

regions (p<10-6). Using WGS (with a more stringent significance threshold of p<10-9 415 

to focus on the most significant associations), we confirmed 3 of these genomic 416 

regions that co-located to candidate genes MC4R, DOLK, and DGKI or PTN. 417 

However, the most associated variants in each of these genomic regions located 418 

outside the coding region of these putative causal genes. These signals sometimes had 419 

very strong evidence of association for some variants that were relatively distant from 420 

our candidate functional gene, which could cast doubts about the fine-mapping of the 421 

causal mutation. The region at SSC18, 9–13 Mb, contained two candidate genes 422 
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DGKI and PTN, but the WGS revealed significantly associated variants within DGKI 423 

and none within PTN, despite that the strongest associations were away from both 424 

genes at 10.5-11 Mb. Using the WGS we also detected 24 additional genomic regions 425 

that contained candidate genes such as CYB5R4, IGF2, and LEPR. These genes were 426 

previously detected in other lines using the Chip but not in this one [64], sometimes 427 

because there were no markers for the associated region in Chip (SSC2, 0–4 Mb). The 428 

region at SSC1, 52.5–53.5 Mb, showed many significant variants that encompassed 429 

not only the previously identified candidate gene CYB5R4, but also MRAP2 430 

(annotated with functions on feeding behavior and energy homeostasis). In contrast, 431 

candidate gene LEPR was located within the region at SSC6, 146.5–147.0 Mb, where 432 

many significant variants were located, although the most significant variants were 433 

not in the coding regions of the gene. Using the WGS we also identified additional 434 

candidate genes that had not been previously detected in any of the lines, such as 435 

CYP24A1 (annotated with functions on fatty acid omega-oxidation and vitamin D 436 

metabolism; not shown). For many of the other genomic regions, it was difficult to 437 

pinpoint a candidate gene with the available information or there were no annotated 438 

genes. 439 

 440 

Discussion	

Our results evidenced the potential for WGS to improve genomic prediction 441 

accuracy in intensely selected pig lines, provided that the training sets are large 442 

enough. Improvements achieved so far were modest at best. On one hand, these 443 

modest improvements indicated that the strategies that we tested were likely 444 

suboptimal. On the other hand, the positive trend for the largest training sets indicated 445 

that we might have not reached the critical mass of data that is needed to leverage the 446 
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potential of WGS, especially in scenarios where genomic prediction with marker 447 

arrays is already yielding high accuracy. The results from several traits and lines with 448 

different training set sizes and the use of simulated phenotypes allowed us to identify 449 

the most favourable scenarios for genomic prediction with WGS. We will discuss (1) 450 

the prediction accuracy that we achieved with WGS compared to commercial marker 451 

array data and the scenarios in which WGS may become beneficial, and (2) the 452 

potential pitfalls for its effective implementation and the need for an optimised 453 

strategy. 454 

 455 

Prediction	accuracy	with	whole-genome	sequence	data	

We compared the genomic prediction accuracy of the current marker array 456 

(Chip) with sets of preselected sequence variants in a way that the number of variants 457 

remained similar across sets. Improvements of prediction accuracy can be limited if 458 

current marker arrays are already sufficiently dense to capture a large proportion of 459 

the genetic variance in intensely selected livestock populations. These populations 460 

typically have small effective population size [10,19]. Nevertheless, modest 461 

improvements have been achieved under certain scenarios. In our study, the most 462 

robust results were obtained for the ChipPlusSign set, where variants that showed 463 

statistically significant associations to the trait were preselected and added to the 464 

information from the marker array. This is consistent with previous reports that 465 

showed an improvement of prediction accuracy under similar approaches [29–32]. 466 

We added 23 to 1083 significant variants to those in Chip in different scenarios. In the 467 

most successful ones, at least around 200 significant variants were added and average 468 

improvements of prediction accuracy of 2.5 percentage points were observed with 469 

training sets of around 80k individuals. In other instances, however, additions of a 470 
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larger number of variants have been proposed. The addition of 1623 variants 471 

(preselected as the combination of 3-5 variants for each of the top QTL per trait and 472 

breed) to a 50k array increased prediction reliability (accuracy squared) by up to 5 473 

percentage points in Nordic cattle [29]. Adding the 16k SNPs with largest estimated 474 

effects to a 60k array increased prediction reliability on average by 2.7 (up to 4.8) 475 

percentage points in Holstein cattle [30]. For the custom 50k array for Hanwoo cattle, 476 

it has been reported that adding at least around 12k SNPs (3k for each of four traits) 477 

improved prediction accuracy by up to ~6 percentage points [32]. The addition of 478 

~400 variants preselected by GWAS with regional heritability mapping to a 50k array 479 

increased prediction accuracy by 9 percentage points in sheep [31]. In other cases in 480 

Nordic cattle, however, the addition of ~1500 variants preselected by GWAS to a 54k 481 

panel produced negligible improvements in the prediction of traits with low 482 

heritability [65]. 483 

Preselecting an entirely new set of predictor variants from WGS, as in 484 

Top40k, proved more challenging than ChipPlusSign. In Top40k, we preselected the 485 

variants with the lowest p-value in each of consecutive non-overlapping 55-kb 486 

windows along the genome. This strategy did not perform much differently from just 487 

taking random variants from these windows, as in Rand40k. One possible reason for 488 

these results is that at this variant density, random variants effectively tag the same 489 

associations as Top40k thanks to linkage disequilibrium. Denser sets of predictor 490 

variants provided only small further improvements of prediction accuracy with 491 

diminishing returns. 492 

The modest performance of ChipPlusSign and Top40k could also be a 493 

consequence of the difficulty for fine-mapping causal variants through GWAS with 494 

WGS. Theoretically, the identification of all causal variants associated with a trait 495 
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should enable the improvement of prediction accuracy [12]. Even though WGS allows 496 

the detection of a very large number of associations, problems such as false positives 497 

or p-value inflation also become more severe in a way that added noise might offset 498 

the detected signal. For instance, results in cattle showed that GWAS with WGS did 499 

not detect clearer associated regions relative to marker arrays and failed to capture 500 

QTL for genomic prediction [14], as the effect of potential QTL were spread across 501 

multiple variants. Therefore, WGS performed better with simple genetic architectures 502 

(i.e., traits with low number of QTN). This is consistent with expectations and 503 

simulation results [8] that indicated that the benefit of using WGS for genomic 504 

prediction would be limited by the number and size of QTN. When there are many 505 

QTN with small effects it becomes much more difficult to properly estimate their 506 

effects accurately. Therefore, for largely polygenic traits (as most traits of interest in 507 

livestock production), training sets need to be very large before WGS can increase 508 

prediction accuracy [8]. 509 

The advantage of using WGS might be limited by the current training set 510 

sizes, especially in scenarios where marker arrays are already yielding high prediction 511 

accuracy [14,20]. Multi-line training sets could be particularly beneficial with the use 512 

of WGS because they allow a larger training set with low pairwise relationship degree 513 

among individuals. Previous simulations suggested that WGS might be the most 514 

beneficial with multi-breed reference panels [66], especially for numerically small 515 

populations. Our results with a multi-line training set indicated that WGS can improve 516 

prediction accuracy in scenarios that are less optimised than within-line genomic 517 

prediction. The average improvements of prediction accuracy of 4.2 percentage points 518 

were observed for the populations that contributed around 80k individuals to the 519 

training set. However, in general those predictions were still less accurate than using 520 
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variants preselected under within-line training sets. In our multi-line scenarios we 521 

only used variation that segregated across all seven lines. We observed that 522 

population-specific variation accounted only for small fractions of genetic variance 523 

[53] and it seems unlikely that they would contribute much to prediction accuracy 524 

across breeds. Another possible obstacle is the differences in the allele substitution 525 

effects of the causal mutations across breeds. This can be caused by differences in 526 

allele frequency, contributions of non-additive effects and different genetic 527 

backgrounds, or even gene-by-environment interactions among others [24,67].  528 

We observed low robustness of genomic prediction with WGS across traits 529 

and lines, and drops in prediction accuracy in those scenarios where genomic 530 

prediction with WGS failed. Regarding bias, we did not observe a systematic increase 531 

for ChipPlusSign despite using the same individuals for variant preselection and for 532 

training the predictors [16,63]. When we split the training set into two subsets, one for 533 

GWAS-based variant preselection and the other for training of the predictive 534 

equations, we did not observe any improvement in accuracy or bias. One hypothesis is 535 

that both subsets belong to the same population and therefore retained similar inter-536 

relationship degrees (i.e., they are not strictly independent sets of individuals). 537 

Moreover, the reduction in individuals available for training the predictors negatively 538 

affected prediction accuracy. 539 

We did not directly test persistence of prediction accuracy, but previous 540 

studies with real data found no higher persistence of prediction accuracy for WGS, 541 

not even with low degree of relationship between training and testing sets [14]. We 542 

would expect such obstacles to persistence of accuracy until causal variants can be 543 

successfully identified. 544 

 545 
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Suboptimal	strategy	and	pitfalls	

The use of WGS for genomic prediction can only be reached after many other 546 

steps are completed to produce the genotypes at whole-genome level. Each of these 547 

steps has its pitfalls. It is unavoidable that the success of using of WGS is sensitive 548 

not only to the prediction methodology itself but also to the strategy followed until 549 

genotyping. This strategy includes the choice of which individuals to sequence, the 550 

bioinformatics pipeline to call variants, the imputation of the WGS and choice of 551 

variant filters. When combined with the multiplicity of prediction methods and the 552 

preselection of predictor variants (which is unavoidable with current datasets, 553 

predictive methodologies and computational capacities), there are many options and 554 

variables in the whole process that can affect the final result and that are not yet well 555 

understood. Therefore, a much greater effort for optimising such strategies is required. 556 

Here we tested relatively simple approaches to see how they performed with large 557 

WGS datasets. We have discussed what in our opinion are the main pitfalls of our 558 

approach for selection of the individuals to sequence [55] and the biases that may 559 

appear during processing of sequencing reads [50] elsewhere, and therefore here we 560 

will focus on imputation of WGS and its use for genomic prediction.  561 

 562 

Imputation accuracy 563 

It is widely recognized that imputation from marker arrays to WGS from very 564 

few sequenced individuals can introduce genotyping errors and that genotype 565 

uncertainty can be high [17,21,68,69]. The accuracy of the imputed WGS is one of the 566 

main factors that may limit its performance for genomic prediction. In a simulation 567 

study, van den Berg et al. [17] quantified the impact of imputation errors on 568 
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prediction accuracy and showed that prediction accuracy decreases as errors 569 

accumulate, especially in the testing set. 570 

Imputation of WGS is particularly challenging because typically we have to 571 

impute a very large number of variants for a very large number of individuals from 572 

very few sequenced individuals. We assessed the imputation accuracy of our approach 573 

elsewhere [41,55] and recommended that ~2% of the population should be sequenced. 574 

In our study, line D was the line where prediction accuracy with Top40k performed 575 

the worst, mostly performing below Chip predictors. In this line, only 0.9% of the 576 

individuals in the population had been sequenced and therefore lower imputation 577 

accuracy could be expected. Although there was not enough evidence for establishing 578 

a link between these two features (sequencing effort and prediction accuracy), we 579 

recommend cautious design of a sequencing strategy that is suited to the intended 580 

imputation method [55]. 581 

Prediction accuracy could be improved by accounting for genotype uncertainty 582 

of the imputed WGS. For that, it could be advantageous to use allele dosages rather 583 

than best-guess genotypes [69], although most current implementations cannot handle 584 

such information. 585 

 586 

Preselection of predictor variants 587 

Simply using WGS to increase the number of markers does not improve 588 

prediction accuracy [18,21,24]. Due to the large dimensionality of WGS, there is a 589 

need to remove uninformative variants [24,31,66,68,70]. Predictor variants must be 590 

causal or at least informative of the causal variants, which depends on the distance 591 

between the markers and the causal variants [13]. For this reason, variants that are in 592 

weak linkage disequilibrium with causal mutations have a ‘dilution’ effect, i.e., they 593 
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add noise and limit prediction accuracy [24,31,70]. However, if too stringent filters 594 

are applied during preselection of predictor variants, there is a risk of removing true 595 

causal variants, and that would debilitate persistence of accuracy across generations 596 

and across populations [66,71]. For instance, the impact of removing predictor 597 

variants with low minor allele frequency can vary depending on the minor allele 598 

frequency of the causal variants as well as the distance between predictor and causal 599 

variants [13]. Losing causal or informative variants would negatively affect multi-line 600 

or multi-breed prediction. 601 

A popular strategy to preselect the predictor variants is based on association 602 

tests. Genome-wide association studies on WGS are expected to confirm associations 603 

that were already detected with marker arrays and identify novel associations (e.g., 604 

[36,72]). However, preliminary inspection of our GWAS results for the real traits 605 

showed that the added noise could easily offset the added information and fine-606 

mapping remains challenging. Multi-breed GWAS [4] and meta-analyses [73] are 607 

suitable alternatives for GWAS to accommodate much larger population sizes and for 608 

combining results of populations with diverse genetic backgrounds. Multi-breed 609 

GWAS can be more efficient to identify informative variants than single-breed 610 

GWAS, which may benefit even prediction within lines [74]. Because the signal of 611 

some variants may go undetected for some traits but not for other correlated traits, 612 

combining GWAS information of several traits can also help identifying weak or 613 

moderate associations [25]. We did not test whether combining the significant 614 

markers from the different single-trait GWAS yielded greater improvements in 615 

prediction accuracy [29,32]. Multi-trait GWAS models could be more suited for that 616 

purpose [72,75]. To improve fine-mapping, other GWAS models that incorporate 617 
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biological information have been proposed (e.g., functional annotation [76] or 618 

metabolomics [77]). 619 

There have been other suggested methods that may improve variant 620 

preselection for genomic prediction. VanRaden et al. [30] suggested that preselecting 621 

variants based on the genetic variance that they contribute rather than the significance 622 

of the association could be more advantageous, as the former would indirectly 623 

preselect variance with higher minor allele frequency. Other authors proposed 624 

preselection of variants using statistics that do not depend on GWAS, such as the 625 

fixation index (FST) score between groups of individuals with high and low phenotype 626 

values [70], as an alternative to avoid the negative impact of spurious associations. 627 

Preselecting predictor variants based on functional annotation was not useful, 628 

as it reduced prediction accuracy in several traits and lines. Previous studies showed 629 

that subsets of variants based on functionality either did not improve or reduced 630 

prediction accuracy [20] and that adding preselected variants from coding regions to 631 

marker arrays produced lower prediction accuracy than just adding the same number 632 

of variants without considering functional classification [32]. A plausible explanation 633 

is that functional variants are enriched for lower minor allele frequency, which can be 634 

less informative for prediction [13]. Furthermore, functional annotation does not 635 

necessarily capture true effects, and the method we used is biased towards protein-636 

coding variants, which may lead to an underrepresentation of functional non-coding 637 

variants that may explain a large fraction of quantitative trait variance. Xiang et al. 638 

[78] found that expression QTL and non-coding variants explained more variation in 639 

quantitative traits in cattle than protein-coding functional variants. When functional 640 

annotation is not considered, intergenic variants are more likely to be preselected by 641 

chance. Such variants tend to be more common and widespread across populations, 642 
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and therefore can act as tag variants and capture much larger fractions of trait variance 643 

[53]. 644 

Another popular strategy to reduce the number of variants is to prune variants 645 

based on linkage disequilibrium (LDTags). This strategy performed very poorly in our 646 

populations. Other studies reported different outcomes, where pruning for r2>0.9 647 

provided positive results [18,21]. It is possible that this was in part due to the stringent 648 

threshold (r2>0.1) that we used in order to retain only a small number of variants. 649 

 650 

New models and methods 651 

It is also likely that models, methods, and their implementations need to be 652 

improved to handle the complexity of WGS and to efficiently estimate marker effects 653 

of so many variants with high accuracy, among other features. This is a very active 654 

area of research and multiple novel methodologies have been proposed over the last 655 

years. Some examples are a combination of subsampling and Gibbs sampling [79], 656 

and a model that simultaneously fits a GBLUP term for a polygenic effect and a 657 

BayesC term for variants with large effects selected by the model (BayesGC) [26]. 658 

Testing alternative models and methods for genomic prediction was out of the scope 659 

of this report. However, together with refinements in the preselection of predictor 660 

variants, it remains an interesting avenue for further optimisation of the analysis 661 

pipeline. 662 

Some of the most promising methods are designed to incorporate prior 663 

biological information into the models. One of such methods is BayesRC [23], which 664 

extends BayesR by assigning flatter prior distributions to classes of variants that are 665 

more likely to be causal [19,22]. Similarly, GFBLUP [80] could be used to 666 

incorporate prior biological information from either QTL databases or GWAS as 667 
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genomic features [21,35,68]. The model MBMG [27], which fits two genomic 668 

relationship matrices according to prior biological information, has also been 669 

proposed for multi-breed scenarios to improve genomic prediction in small 670 

populations. Haplotype-based prediction methods could provide greater prediction 671 

accuracy with WGS than SNP-based methods in pigs [81] and cattle [82]. These 672 

methods reduce the number of model dimensions. However, the uptake of such 673 

methods has been limited so far due to their greater complexity, for example, to define 674 

haplotype blocks. 675 

 676 

Conclusion	

Our results evidenced the potential for WGS to improve genomic prediction 677 

accuracy in intensely selected pig lines. The performance of each set of predictor 678 

variants was not robust across traits and lines and the improvements that we achieved 679 

so far were modest at best. The most robust results were obtained when variants that 680 

showed statistically significant associations to the trait were preselected and added to 681 

the marker array. With this method, average improvements of prediction accuracy of 682 

2.5 and 4.2 percentage points were observed in within-line and multi-line scenarios, 683 

respectively, with training sets of around 80k individuals. We would expect that a 684 

combination of larger training sets and improved pipelines could help achieve greater 685 

improvements of prediction accuracy. The robustness of the whole strategy for 686 

generating WGS at the population level must be carefully stress-tested and further 687 

optimised. 688 

 689 
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Figures	

 960 

961 
Figure 1. Prediction accuracy for each set of predictor variants for trait ADG in line 962 

A. Left: Correlation (left). Dashed line at value of Chip as a reference. Values indicate 963 

relative difference to Chip. Right: Bias. Dashed line at the ideal value. 964 
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966 
Figure 2. Genomic prediction accuracy with the Top40k predictor variants for the 967 

real traits. The difference of prediction accuracy between Top40k and Chip is shown, 968 

for all traits and lines (left) or by trait (right). Red dashed line at ‘no difference’. 969 
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 972 

Figure 3. Genomic prediction accuracy with the ChipPlusSign predictor variants for 973 

the real traits. The difference of prediction accuracy between ChipPlusSign and Chip 974 

is shown, for all traits and lines (left) or by trait (right). Red dashed line at ‘no 975 

difference’. 976 
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979 
Figure 4. Genomic prediction accuracy with the Top40k predictor variants for the 980 

simulated traits. The difference of prediction accuracy between Top40k and Chip is 981 

shown by heritability (h2) and number of quantitative trait nucleotides (nQTN) of the 982 

simulated traits. Red dashed line at ‘no difference’. 983 
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986 
Figure 5. Genomic prediction accuracy with the ChipPlusSign predictor variants for 987 

the simulated traits. The difference of prediction accuracy between ChipPlusSign and 988 

Chip is shown by heritability (h2) and number of quantitative trait nucleotides (nQTN) 989 

of the simulated traits. Red dashed line at ‘no difference’. 990 

 991 

  992 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 5, 2022. ; https://doi.org/10.1101/2022.02.02.478838doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.02.478838
http://creativecommons.org/licenses/by-nc-nd/4.0/


993 
Figure 6. Genomic prediction accuracy with the ML-ChipPlusSign predictor variants 994 

for the real traits. The difference of prediction accuracy between ML-ChipPlusSign 995 

and ML-Chip is shown, for all traits and lines (left) or by trait (right). Red dashed line 996 

at ‘no difference’. 997 
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1000 
Figure 7. Comparison of the difference in genomic prediction accuracy in the multi-1001 

line scenarios (between ML-ChipPlusSign and ML-Chip) and in the within-line 1002 

scenarios (between ChipPlusSign and Chip). Red dashed line at ‘no difference’. Blue 1003 

dashed line is the bisector. 1004 
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1007 
Figure 8. Genome-wide association study results for trait BFT in line A. Only 1008 

chromosome 1 is displayed as an example. In red, results for the variants in the 1009 

marker array (Chip); in black, results for the whole-genome sequence data (WGS). 1010 

The blue dashed line indicates significance threshold with Bonferroni’s multiple test 1011 

correction assuming that the markers from the marker arrays were independent (p-1012 

value ≤ 10-6). 1013 
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Tables	

Table 1. Number of sequenced pigs and pigs with imputed data. 1015 

L
Line Individuals 

sequenced 

Individuals sequenced by 
coverage 

 Individuals used in 
analyses 

1x 2x 5x 15–30x  Pedigree Imputed 
A 1,856 1,044 649 73 90  122,753 104,661 
B 1,366 685 545 44 92  88,964 76,230 
C 1,491 628 728 54 81  84,420 66,608 
D 731 362 311 16 42  79,981 60,474 
E 760 394 274 27 65  50,797 41,573 
F 381 193 137 16 35  35,309 29,330 
G 445 217 176 15 37  21,129 17,224 
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Table 2. Number of phenotypic records per trait and line. 1017 

Trait A B C D E F G 
ADG 88,342 64,285 56,173 51,061 35,423 26,335 15,452 
BFT 80,146 62,027 55,233 47,509 34,527 23,872 15,268 
LD 85,233 64,141 56,026 48,509 35,495 26,453 15,274 

ADFI 21,960 9,525 9,062 12,256 12,444 4,105* 4,851 
FCR 21,200 9,217 8,654 12,044 12,316 4,016* 4,754 
TNB 13,581 10,721 9,626 7,729* 6,506* - 3,230* 
LWW - 9,112 7,251 - - - 2,813* 
RET - 6,978 6,327 - - - 1,669* 

Simulated 104,661 76,230 66,608 60,474 41,573 29,330 17,224 
ADG average daily gain, BFT backfat thickness, LD loin depth, ADFI average daily 1018 

feed intake, FCR feed conversion ratio, TNB total number of piglets born, LWW litter 1019 

weight at weaning, RET return to oestrus 7 days after weaning. 1020 

*Included in multi-line scenarios, but excluded in within-line scenarios because of the 1021 

limited size of the testing set. 1022 

 1023 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 5, 2022. ; https://doi.org/10.1101/2022.02.02.478838doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.02.478838
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3. Number of significant variants from the whole-genome sequence data that 1024 

were added to the marker array in ChipPlusSign. 1025 

Trait A B C D E F G Multi-line 
ADG 646 581 424 498 279 219 143 4731 
BFT 1083 758 664 518 1030 218 237 6149 
LD 633 579 458 518 222 215 43 7247 

ADFI 145 224 169 23 183 - 119 767 
FCR 198 224 162 95 56 - 134 1369 
TNB 71 117 161 - - - - 248 
LWW - 32 73 - - - - 480 
RET - 184 31 - - - - 60 

ADG average daily gain, BFT backfat thickness, LD loin depth, ADFI average daily 1026 

feed intake, FCR feed conversion ratio, TNB total number of piglets born, LWW litter 1027 

weight at weaning, RET return to oestrus 7 days after weaning. 1028 

 1029 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 5, 2022. ; https://doi.org/10.1101/2022.02.02.478838doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.02.478838
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 4. Number of significantly associated genomic regions in the genome-wide 1030 

association study for the simulated phenotypes that contained 0, 1 or 2 or more 1031 

quantitative trait nucleotides (QTN). 1032 

h2 nQTN Line 
size 

Chip  Whole-genome sequence 
0 QTN 1 QTN  0 QTN 1 QTN ≥2 QTN 

0.10 100 27k 4 1  8 6 0 
  56k 11 3  19 19 0 
  92k 10 7  44 19 0 
 1k 27k 1 0  4 0 1 
  56k 1 0  16 3 1 
  92k 1 0  283 9 0 
 10k 27k 1 0  1 0 0 
  56k 0 0  16 2 1 
  92k 2 0  186 17 12 

0.25 100 27k 11 6  26 15 1 
  56k 22 8  44 28 3 
  92k 20 7  90 34 1 
 1k 27k 0 0  8 1 3 
  56k 3 0  34 15 6 
  92k 6 0  692 49 16 
 10k 27k 0 0  2 0 0 
  56k 0 0  90 9 22 
  92k 4 0  564 56 164 

0.50 100 27k 18 9  24 24 1 
  56k 30 13  116 41 3 
  92k 17 9  425 44 1 
 1k 27k 6 0  22 9 6 
  56k 5 1  238 59 32 
  92k 11 1  903 169 120 
 10k 27k 0 0  4 0 0 
  56k 0 0  360 77 172 
  92k 10 0  379 116 508 

 1033 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 5, 2022. ; https://doi.org/10.1101/2022.02.02.478838doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.02.478838
http://creativecommons.org/licenses/by-nc-nd/4.0/

