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Abstract

Establishing accurate as well as interpretable models of networks activity is an open challenge in

systems neuroscience. Here we infer an energy-based model of the ARTR, a circuit that controls

zebrafish swimming statistics, using functional recordings of the spontaneous activity of hundreds of

neurons. Although our model is trained to reproduce the low-order statistics of the network activity

at short time-scales, its simulated dynamics quantitatively captures the slowly alternating activity of

the ARTR. It further reproduces the modulation of this persistent dynamics by the bath temperature

and visual stimulation. Mathematical analysis of the model unveils a low-dimensional landscape-based

representation of the ARTR activity, where the slow network dynamics reflects Arrhenius-like barriers

crossings between metastable states. Our work thus shows how data-driven models built from large

neural populations recordings can be reduced to low-dimensional functional models in order to reveal

the fundamental mechanisms controlling the collective neuronal dynamics.

Keywords: Calcium Imaging, Neuronal Network, Zebrafish, Neural Persistence, Data-Driven Ising

Model, Mean Field

1 Introduction

Understanding how collective computations emerge at the neuronal population level and how they

are supported by appropriate circuitry is a central goal of neuroscience. In this context, modeling

efforts have long been based on top-down approaches, in which mathematical models are designed to

capture the key mechanisms underlying function. While being very fruitful from a conceptual point5

of view, these models show a limited capability to accurately reproduce activity measurements, which
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hinders their validation. Recently, progress in large-scale recording and simulation techniques have

led to the development of bottom-up approaches, in which machine-learning-based models fit recorded

data with high precision, and allow for decoding or prediction of activity and behavior (Glaser et al.,

2020; Pandarinath et al., 2018). Unfortunately, the blackbox nature of these powerful data-driven10

models make their biological interpretation, such as the identification of relevant neural assemblies and

of the computational processes they support often difficult (Butts, 2019). It is therefore important

to develop quantitative, yet interpretable approaches to tackle the functions carried out by large

neural populations. The present work is an attempt to do so in the specific context of the anterior

rhombencephalic turning region (ARTR), a circuit in the zebrafish larva that shows slow (∼ 10 sec)15

endogenous alternations between left and right active states driving the gaze orientation and chaining

of leftward/rightward swim bouts (Ahrens et al., 2013; Dunn et al., 2016; Wolf et al., 2017; Ramirez

& Aksay, 2021; Leyden et al., 2021).

The ARTR was chosen as it constitutes an experimentally accessible persistent circuit whose func-

tional role is well identified. Persistent circuits endow the brain with the capacity to store information20

for finite periods of time, a feature that is essential to action selection, as it allows for the accumulation

of sensory data until a consequential decision is made (Wang, 2008). It is also required for motor con-

trol, e.g. to hold the eyes at a given orientation (Seung, 1996; Seung et al., 2000). Short-term memory

storage engages dedicated circuits that can maintain persistent patterns of activity in response to tran-

sient inputs (Zaksas & Pasternak, 2006; Guo et al., 2017). Different patterns may represent discrete or25

graded stored variables, associated with physical parameters such as head or eyes direction, or abstract

percepts. As isolated neurons generally display short relaxation times, neural persistence is thought

to be an emergent property of recurrent circuit architectures (Zylberberg & Strowbridge, 2017). Since

the 1970s, numerous mechanistic network models have been proposed that display persistent activity.

They are designed such as to possess attractor states, i.e. stable activity patterns towards which the30

network spontaneously converges.

Although attractor models are conceptually appealing, assessing their relevance in biological cir-

cuits remain challenging. To this aim, recent advances in machine learning combined with large-scale

methods of neural recordings may offer a promising avenue. We hereafter focus on energy-based

network models, trained to replicate low-order data statistics, such as the mean activity and pairwise35

correlation, through the maximum entropy principle (Jaynes, 1957). In neuroscience, such models have

been successfully used to explain correlation structures in many areas, including the retina (Schneid-

man et al., 2006; Cocco et al., 2009; Tkačik et al., 2015), the cortex (Tavoni et al., 2016, 2017; Nghiem

et al., 2018), and the hippocampus (Meshulam et al., 2017; Posani et al., 2017) of vertebrates, and the

nervous system of C. elegans (Chen et al., 2019). These models are generative, i.e. they can be used to40

produce synthetic activity on short time scales, but whether they can reproduce long-time dynamical
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features of the biological networks remains an open question.

Here, we first report on spontaneous activity recordings of the ARTR network using light-sheet

based functional imaging at various temperatures. These data demonstrate that the bath temperature

controls the persistence time-scale of the ARTR network, and that this modulation is in quantita-45

tive agreement with the thermal dependence of the swimming statistics (Le Goc et al., 2021). We

then infer energy-based models from the calcium activity recordings, and show how these data-driven

models not only capture the characteristics and probabilities of occurrence of activity patterns, but

also reproduces the observed thermal-dependence of the persistent timescale. We further derive a

mathematically tractable version of our energy-based model, called mean-field approximation, whose50

resolution provides a physical interpretation of the energy landscape, the dynamical paths there in,

and their changes with temperature. We finally extend the model to incorporate visual stimulation

and correctly reproduce the previously reported visually-driven ARTR dynamics (Wolf et al., 2017).

This work establishes the capacity of data-driven network inference to numerically emulate persistent

dynamics and to unveil fundamental network features controlling such dynamics.55

2 Results

2.1 Temperature enables manipulating behavioral and neuronal persis-

tence time-scales in zebrafish larvae

In this first section, we report on functional recordings of the ARTR dynamics performed at various

temperature (18 to 33°C). We characterize how the bath temperature impacts the distribution of activ-60

ity patterns as well as the time-scale of activity alternation that characterizes the ARTR’s endogenous

dynamics. As the ARTR functional role in zebrafish navigation is well established, we compare this

thermal modulation of the ARTR neural activity with the associated change in swimming statistics

measured in freely swimming assays.

2.1.1 Temperature-dependence of the orientational persistence time-scale in zebrafish65

larvae

We first characterize from a behavioral viewpoint how the water temperature can be used to

modulate the time scale of orientational persistence in an ethological manner. Zebrafish navigation is

comprised of discrete swim bouts lasting for 100-200 ms interspersed by 1-2 s-long periods of inactivity.

The bouts can be categorized into two main types: forward scouts that propel the animal forward,70

and turn bouts, which further induce heading reorientation (Figure 1A). Orientational persistence

manifests itself as the preferred chaining of similarly orientated turn bouts (Chen & Engert, 2014;

Dunn et al., 2016; Karpenko et al., 2020): a leftward (respectively, rightward) turn is more likely
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to be observed when the previous turn was oriented to the left (respectively, to the right). This

motor-memory mechanism, which lasts over 5 bouts, has important consequences for the long-term75

exploratory dynamics (Karpenko et al., 2020).

Zebrafish is a cold-blooded (pöıkilotherm) animal, whose internal temperature is set by the water

bath. In their natural habitat, zebrafish can experience (and survive) temperatures ranging from 15

to 35◦C (Engeszer et al., 2007). To study how the temperature of the bath modulates the kinematic

parameters controlling the fish spontaneous navigation (Le Goc et al., 2021), we video-monitored 5-780

days old zebrafish larvae as they freely swim in a rectangular bath at constant and uniform temperature

in the range 18-33◦C (Figure 1A). We found that higher bath temperature increases the fraction of

turn bouts, induces larger reorientation angles, shortens interbout-intervals, and increases forward

displacement.

In the scope of the present study, we focus on the impact of temperature on orientational persistence.85

To quantify the time scale of this mechanism, we hypothesized the existence of an underlying two-state

continuous process governing the selection of leftward vs rightward turn bouts. We assigned a discrete

value to each turn bout, −1 for a right turn, +1 for a left turn, while forward scouts are ignored. The

orientational state signal is then defined, at each time step, by the value of the last turn bout (Figure

1B). The power spectra of the resulting binary signals, shown in Figure 1C for various temperatures,90

are Lorentzian as expected for a single-time telegraph process (see Methods). The corresponding fits

(Methods, Eq. 5) allow us to extract, for each experiment, a frequency kflip defined as the probability

of switching state per unit of time. As shown in Figure 1D, this rate systematically increases with the

temperature, from 0.1 to 0.6 s−1. Increasing temperature thus leads to a progressive reduction of the

orientational persistence time. Notice that at the highest tested temperature (33◦C), the persistence95

time becomes comparable to the interbout interval, such that the chaining of left and right turn

becomes essentially memory-less.

2.1.2 ARTR right/left alternation dynamics is thermally modulated in line with behav-

ior

The ARTR is a bilaterally distributed neural population located in the anterior hindbrain, which has100

been identified as the main selection hub for turn bouts orientation during spontaneous and visually-

driven exploration (Dunn et al., 2016; Wolf et al., 2017). Leftward or rightward bouts preferentially

occur when the ipsilateral subcircuit is active while the contralateral subcircuit is inactive.

Based on these prior observations, we sought to examine whether the temperature dependence

of the orientational persistence observed in freely swimming assays was reflected in the endogenous105

dynamics of the ARTR in tethered animals. We used light-sheet functional imaging to record the

brain activity at single cell resolution in zebrafish larvae expressing a calcium reporter pan-neuronally

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.02.478841doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.02.478841


(Tg(elavl3:GCaMP6)). The larvae were embedded in a small cylinder of agarose gel later introduced

in a water bath whose temperature was controlled in the same range (18–33◦C, see Figure 1E). From

these volumetric recordings, the ARTR neurons were identified using a combination of morphological110

and functional criteria, as detailed in Wolf et al. (2017). The spatial organization of the selected

neuronal population is displayed in Figure 1F, for all recorded animals after morphological registration

on a unique reference brain (145 ± 65 left neurons, 165 ± 69 right neurons, mean ± s.d. across 13

different fish, see Suppl. Table S1). For each individual neuron, an approximate spike train s(t) was

inferred from the fluorescence signal using Bayesian deconvolution (Tubiana et al., 2020). A typical115

raster plot of the ARTR is shown in Figure 1G (recorded at 26◦C), together with the mean signals of

the left and right subcircuits, mL,R(t) = 1
NL,R

∑
i∈L,R si(t).

To allow for a direct comparison between the dynamics of the ARTR and of the orientational

signal extracted from behavioral assays, we defined a binarized ARTR signal monitoring which of the

two regions is more active at any given time, see Eq. 6 in Methods. This signal is shown in Figure120

1H for three different temperatures for the same fish. Increasing the bath temperature results in a

decrease of the mean persistence time τ in either state. In order to quantify this effect, we performed a

similar analysis as for the behavioral orientational state signal. We computed the power spectra of the

binarized ARTR signals (3 to 8 animals for each temperature, see Suppl. Table S1), for the five tested

temperatures and used a Lorentzian fit to extract the alternation frequency ν = 1/τ for each animal125

(Figure 1I). As shown in Figure 1J, the extracted frequency increases with temperature in line with

our behavioral findings. Although ν could significantly vary across specimen at a given temperature,

we found that, for a given animal, increasing the temperature induced an increase in the frequency

in 87.5% of our recordings (28 out of 32 pairs of recordings). The inset plot further establishes that

the left/right alternation rate extracted from behavioral and neuronal recordings are consistent (slope130

= 0.81, R = 0.99).

2.1.3 ARTR activity maps are modulated by the temperature

We then investigated the effect of the bath temperature on the ARTR activity patterns. At each

time step, we characterized the ARTR activation state by the mean activity of the left and right

sub-populations, mL and mR. The probability map in the (mL,mR) plane is shown in Figure 2A,135

for three different temperatures. This map shows that, concurrent with the change in the circuit

dynamics (Figure 2B), temperature also impacts the distribution of activities. At high temperature,

the ARTR activity map is mostly confined within a L-shaped region around (mL = 0,mR = 0) and

the circuit is essentially inactive for a significant fraction of the time. Conversely, lower temperature

tends to increase the duration of high ARTR activity periods, leaving shorter time intervals during140

which both regions are inactive. To quantify the change in the activity distribution we computed the
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log-probability of the activity of either region of the ARTR at various temperatures (Figure 2C). The

occupation rate of the inactive state (mL,R ∼ 0) increases with temperature, with a corresponding

steeper decay of the probability distribution of the activity. Consistently, we found that the mean

activities mL and mR decreased with temperature (Figure 2D).145

Our analysis thus indicates that the bath temperature modulates both the internal dynamics and

the activity distribution of the ARTR. However, we observe for both aspects a large variability be-

tween animals at a given temperature. This variability in the endogenous neuronal dynamics is not

unexpected, as it parallels the intra- and inter-individual variability in the fish exploratory kinematics

reported in Le Goc et al. (2021). We thus asked whether the circuit persistence time scale and activity150

distribution consistently varied between animals and trials for a given temperature. We plotted, for all

datasets, the mean persistence time as a function of the mean activity of both populations (see Figure

2E and Methods). We found a quasi-linear dependence between both quantities (R = 0.91), showing

the strong correlation between these two characteristics of the circuit internal dynamics.

2.2 A data-driven energy-based model reproduces the statistical and dy-155

namical properties of ARTR neural activity

2.2.1 Inference of an Ising model from low-order statistics of neural activity of the

ARTR.

We used the recordings of the ARTR spontaneous activity to infer of an energy-based network

model. Our approach, going from raw fluorescence data to the model, is summarized in Figure 3A. We160

first reconstructed the spike trains of each ARTR neuron using a deconvolution algorithm (Tubiana

et al., 2020), and obtained a raster plot of the neural activity for each recording (n = 13 fish, N = 100

to 300 cells, see Suppl. Table S1). We divided the recording window Trec (of the order of 1200 s for

each session) in time bins of length adjusted to the imaging framerate (from 100 to 300 ms). Each

data set thus consisted of a series of snapshots sk = (sk1 , . . . , s
k
n) of the neural population activity in165

the bins k, with k = 1, . . . , trec/Dt; here, ski = 1 if cell i is active or ski = 0 if it is silent in time bin k.

We extracted from those data the mean activities, 〈si〉data, and the pairwise correlations, 〈sisj〉data,

as the averages of, respectively, ski and ski s
k
j over all time bins k.

We then inferred the least constrained model, according to the maximum entropy principle (Jaynes,

1957), that reproduced the mean activities 〈si〉data and the pairwise correlations 〈sisj〉data. This

model, known as the Ising model in statistical mechanics (Ma, 1985) and probabilistic graphical model

in statistical inference (Koller & Friedmann, 2009), describes the probability distribution over all 2N

6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.02.478841doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.02.478841


possible activity configurations s,

P (s) =
1

Z
exp

∑
i

hi si +
∑
i<j

Jij sisj

 , (1)

where Z is a normalization constant. The bias hi controls the intrinsic activity of neuron i, while the

coupling parameters Jij account for the effect of the other neurons j activity on neuron i (Methods).170

The set of parameters {hi, Jij} were inferred using the Adaptative Cluster Expansion and the

Boltzmann machine algorithms (Cocco & Monasson, 2011; Barton & Cocco, 2013; Barton et al.,

2016), to best reproduce the observed mean activities and pairwise correlations (Suppl. Fig. S1B-D).

In addition, the Ising model captures higher-order statistical properties of the activity such as the

probability that K cells are active in a time bin (Suppl. Fig. S1E) (Schneidman et al., 2006).175

Figure 3A reveals the spatial (left/right) organization of pairwise correlations: we observe strong

positive correlations between ipsilateral cells, and weak negative or positive correlations between con-

tralateral cells, yielding an overall bimodal distribution (left/right). Consistent with these experimen-

tal observations, the coupling matrices Jij in the model also show a left/right organization (ttest,

pvalue < 10−5), with the distribution of couplings between ipsilateral cells centered around a positive180

value (std = 0.12, mean = 0.062 over n = 13 fish, 32 recordings) and the one between contralateral

cells centered around a null value (std = 0.10, mean = -0.001), see Figure 3B-C and Suppl. Fig. S1I.

The ipsilateral couplings Jij decay, on average, exponentially with the distance between neurons i and

j (Suppl. Fig. S1A and J), in agreement with findings in other neural systems (Posani et al., 2018).

Spatial structure is also present in contralateral couplings (Suppl. Fig. S1K). Biases display a wide185

distribution ranging from -8 to 0 (std = 1.1, mean = -4.1, Figure 3D and Suppl. Fig. S1F-H).

2.2.2 Monte Carlo sampling of Ising model reproduces temperature-dependent neural

persistence.

Once inferred, the Ising model can be used to generate synthetic activity configurations s of the

network. In practice we use a Metropolis Monte Carlo (MC) algorithm to sample the probability190

distribution P (s) in Eq. 1. Figure 4A shows the activity maps obtained through MC sampling of the

Ising models trained on the three same datasets as in Figure 2A. The time evolution of the mean

activities of the left and right sub-populations are shown in Figure 4B. For these synthetic signals, we

use MC rounds, i.e. the number of MC steps divided by the total number of neurons (Methods) as a

proxy for time. Remarkably, although the Ising model is trained to reproduce the low-order statistics195

of the neuronal activity within a time bin only, and is therefore blind to the circuit dynamics, the

generated signals still capture the main characteristics of the ARTR dynamics, i.e. a slow alternation

between the left and right sub-populations associated with long persistence times.
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To quantitatively assess how the activity distribution and persistence time are reproduced, we first

compared the activity maps extracted from the data and from the Ising model using the Kullback-200

Leibler (KL) divergence, a classical metrics of the dissimilarity between two probability distributions.

The distribution of the KL divergence computed between experimental datasets and corresponding

Ising models is shown in green in 4C. These values are found to be systematically smaller than those

obtained between any combination of datasets and Ising models trained on different datasets (red

distribution). This result establishes that the Ising model can accurately reproduce the ARTR activity205

distribution associated to each specimen and temperature.

We also computed from each synthetic signal a mean persistence time, using the same procedure as

for the experimental data. We found that the persistence times extracted from the data and from the

MC simulations of the inferred models are strongly correlated (Figure 4D, R = 0.84). In particular,

the persistence time of the MC dynamics capture the temperature dependence and inter-individual210

variability of the neural persistence time.

2.3 Mean-field study of the inferred model unveils the energy landscape

underlying the ARTR dynamics

2.3.1 Mean-field approximation to the data-driven graphical model.

While our data-driven Ising model reproduces the decrease in persistence time and the associated215

changes in the states occupation with temperature, why it does so remains unclear. To understand

what features of the coupling and local bias parameters are responsible for these collective properties

we turn to mean-field theory, a powerful and mathematically tractable approximation scheme used

in statistical physics to study systems with many strongly interacting components (Ma, 1985). Mean

field, as its name suggests, amounts to determine self-consistent equations for the mean activities mL220

and mR of neurons in, respectively, the left (L) and right (R) regions of the ARTR (Methods).

Within mean-field theory, each neuron i is subject to

(i) a local bias H;

(ii) a strong excitatory coupling J > 0 from the neurons in the ipsilateral region and a weak coupling

I from the neurons in the contralateral side.225

Point (i) approximates the distribution of the inferred biases hi (Figure 3D and Suppl. Fig. S1F-

H) with their average value H. Point (ii) merely expresses the presence of recurrent excitation within

each region of the weak reciprocal interaction between left and right sides (Figure 3C and Suppl. Fig.

S1I). As for the biases, the inferred ipsilateral and contralateral interactions Jij are replaced with their

mean values, respectively, J and I. In addition, we introduce an effective size K of each region to230

take into account the fact that mean-field theory overestimates interactions by replacing them with
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their mean value. This effective number of neurons is, in practice, fitted to best match the results of

the mean-field approach to the full Ising model predictions (see Methods), and is substantially smaller

than the number N of recorded neurons.

The selection method used to delineate the ARTR populations may yield different number of235

neurons in the L and R regions (see Suppl. Table S1). This asymmetry is accounted for by allowing

the parameters H, J and K defined above to take different values for the left and right sides. As

a consequence, mean–field theory allows us to simplify the data-driven Ising model, whose definition

requires 1
2 (NL+NR)(NL+NR+1) parameters {hi, Jij}, into a model depending on seven parameters

(HL, HR, JL, JR,KL,KR, I) only (Figure 5A), whose values vary with the animal and the experimental240

conditions e.g. temperature (Suppl. Table S2).

2.3.2 Free energy and Langevin dynamics.

The main outcome of the analytical treatment of the model is the derivation of the so-called free

energy F (mL,mR) as a function of the average activities mL and mR of neurons in the left and right

areas, see Eq. 17 in Methods. The free energy is a fundamental quantity as it controls the density of

probability to observe an activation pattern (mL,mR) through

P (mL,mR) ∝ e−F (mL,mR) (2)

Consequently, the lower the free energy F , the higher the probability of the corresponding state

(mL,mR). In particular, the minima of the free energy correspond to persistent states of activity in

which the network can be transiently trapped.245

The free energy landscape can be used to simulate dynamical trajectories in the activity space

(mL,mR). To do so, we consider a Langevin dynamics in which the two activities mL(t),mR(t) evolve

in time according to the stochastic differential equations,

τ
dmL

dt
(t) = − ∂F

∂mL

(
mL(t),mR(t)

)
+ εL(t) , τ

dmR

dt
(t) = − ∂F

∂mR

(
mL(t),mR(t)

)
+ εR(t) (3)

where τ is a microscopic time scale, and εL(t), εR(t) are white noise ‘forces’, 〈εL(t)〉 = 〈εR(t)〉 = 0,

independent and delta-correlated in time: 〈εL(t)εR(t′)〉 = 0, 〈εL(t)εL(t′)〉 = 〈εR(t)εR(t′)〉 = 2 δ(t− t′).

This Langevin dynamical process ensures that all activity configurations (mL,mR) will be sampled in

the course of time, with the expected probability as given by Eq. 2. In the following, we will refer to

a high (resp. low) level of activity as mhigh (mlow, respectively).250

Figure 5B shows the mean-field simulated dynamics of the left and right activities, mL and mR,

with the parameters corresponding to three Ising models at three different temperatures, see Figure 4A.

These time traces are qualitatively similar to the ones obtained with the full inferred Ising model and in

the data (see Figures 4B and 2B), comprising transient periods of self-sustained activity of either sub-

circuit in particular at low and intermediate temperatures. At low temperature, the asymmetric states255
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(mhigh,mlow) and (mlow,mhigh) are dynamically stable for some time, see time trace 1 in Figure 5B.

At high temperature, high activity in either (left or right) area can be reached only transiently, see

traces 2 and 3 in Figure 5B. These results indicate that our mean-field model is able to retain essential

features of the dynamical behavior of the ARTR neural activity observed in experiments.

2.3.3 Barriers in the free-energy landscape and dynamical paths between states.260

We show in Figure 5C the free-energy landscape in the (mL,mR) plane for the same three condi-

tions as in Figure 5B. The minimization conditions ∂F
∂mL

= ∂F
∂mR

= 0 provide two implicit equations

over the activities m∗L,m
∗
R corresponding to the preferred states. For most data sets we found four local

minima: the low-activity minimum (m∗L,m
∗
R) = (mlow,mlow), two asymmetric minima, (mhigh,mlow)

and (mlow,mhigh), in which only one subregion is strongly active, and a state in which both regions265

are active, (mhigh,mhigh). The low-activity minimum (mlow,mlow) is the state with lowest free en-

ergy, hence with largest probability, while the high-activity state (mhigh,mhigh) has much higher free

energy and much lower probability. The free energies of the asymmetric minima (mhigh,mlow) and

(mlow,mhigh) lie in between, and their values strongly vary with the temperature. The difference in

free energy between the asymmetrical states and the low-activity state is an increasing function of270

temperature (Figure 5D-E). As a result the asymmetrical states have low probabilities compared to

the low-activity state at high temperature, but are often visited at low temperature. These results

are in qualitative agreement with the Langevin trajectories in Figure 5B, and with the experimental

description of the ARTR states reported in Figures 2B and Figure 4B.

The Langevin dynamics defines, in addition, the most likely paths (see Methods) in the activity

plane joining one preferred state to another, e.g. from (mhigh,mlow) to (mlow,mhigh) as shown in Fig-

ure 5C. Along these optimal paths the free energy F varies with the reaction coordinate, conveniently

chosen as mL − mR, and defines barriers (Figure 5D), which have to be overcome in order for the

network to dynamically switchover. The theory of activated processes tells us that the average time

to cross a barrier depends exponentially on its height ∆F :

t(∆F ) ∼ τ × e∆F , (4)

up to proportionality factors of the order of unity (Langer, 1969). Thus, the barrier ∆F
(
(mhigh,mlow)→275

(mlow,mlow)
)

shown in dark green in Figure 5E controls the time needed for the ARTR to escape the

state in which the left region is active while the right region is mostly silent, and to reach the all-low

state. The barrier ∆F
(
(mlow,mlow)→ (mlow,mhigh)

)
shown in purple in Figure 5E is related to the

rising time from the low-low activity state to the state where the right region is very active, and the

left one is silent. The height and position of the barriers can be easily computed within our mean-field280

model, giving access to precise information about the dynamical trajectories followed by the activity.
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We therefore estimated the dependence in temperature of the barriers height (Figure 5E and Suppl.

Fig. S2D) and the associated persistence time (Figure 5F). While substantial variations from animal

to animal were observed, we found that barriers for escaping the all-low state and switching to either

L,R region increase with temperature, as found in recordings (Figure 2E) and in Ising simulated ac-285

tivity (Figure 4D). Conversely, low temperatures produce free-energy landscapes with deeper minima

in (mhigh,mlow). This yields lower rates for the switching events from (mlow,mhigh) to (mlow,mlow)

and back, or, in other words, longer fixation times in the states in which one of the two regions is

highly active.

2.4 Ising and mean-field models with modified biases capture the ARTR290

visually-driven dynamics

While the analysis above focused on the spontaneous dynamics of the ARTR, our data-driven

approach is also capable of explaining activity changes induced by external and time-varying inputs.

In order to illustrate this capacity, we decided to re-analyze a series of experiments, reported in Wolf

et al. (2017), in which we alternatively illuminated the left and right eye of the larva, for periods of 15295

to 30 s, while monitoring the activity of the ARTR (Figure 6A) with a 2-photon light-sheet microscope.

During and after each stimulation protocol, 855 s of spontaneous activity was recorded on n = 6 fish.

We found that the ARTR activity could be driven by this alternating unilateral visual stimulation: the

right side of the ARTR tended to activate when the right eye was stimulated and vice-versa (Figure

6B).300

To analyze these datasets we first follow the approach described in Figure 3, and inferred, for each

fish, the sets of biases hi and interactions Jij using the spontaneous activity recording only (Suppl.

Fig. S3C-D). In a second step, we exploited recordings of the visually-driven activity to infer additional

biases δhi to the neurons, while keeping the interactions Jij fixed (Figure 6C); in practice we defined

two sets of additional biases, δh←i and δh→i , corresponding, respectively, to leftward and rightward305

illuminations. The underlying intuition is that biases encode inputs due to the stimulation, while the

interactions between neurons can be considered as fixed on the experimental time scale.

The inferred values of the additional biases, averaged over the entire sub-population (right or left),

are shown in Figure 6D for the ipsilateral, e.g. δh←i with i in the L subregion, and contralateral

stimulations, e.g. δh←i with i in the R subregion. The results show that light stimulation produces a310

strong increase of excitability for the ipsilateral neurons and a smaller one for contralateral neurons.

We then simulated the visual stimulation protocol by sampling the Ising model while alternating

the model parameters, from {hi + δh→i , Jij} to {hi + δh←i , Jij}, and back. The simulated dynamics of

the model (Figure 6E) qualitatively reproduces the experimental traces of the ARTR activity (Figure

6B). In particular, the model captures the stabilizing effect of unilateral visual stimuli, which results in315
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a large activation of the ipsilateral population, which in turn silences the contralateral subcircuit due

to the negative I coupling between both. This yields the anti-correlation between the left and right

side that is clearly visible in both the experimental and simulated traces, and much stronger than for

spontaneous activity (Suppl. Fig. S3A-B-E-F).

To better understand the Ising dynamics under visual stimulation we resort, as in the spontaneous320

activity case studied previously, to mean-field theory. For asymmetric stimulation our mean-field model

includes, during the periods of stimulation, extra biases ∆HL and ∆HR over neurons in, respectively,

the left and right areas (Figure 6F), while the couplings J and I remain unchanged. We show in Figure

6G the free-energy F as a function of mL,mR for an example fish. Due to the presence of the extra

bias the landscape is tilted with respect to its no-stimulation counterpart (Figure 6G), entailing that325

the left- or right-active states are much more likely, and the barrier separating them from the low-low

state is much lower (Figure 6H). As a consequence, the time necessary for reaching the high-activity

state is considerably reduced with respect to the no-stimulation case, see Eq. 4. These results agree

with the large probability of the high-activity states and the fast rise to reach these states in the Ising

traces in Figure 6E, compare with Figure 4B. The presence of high-activity states is seen in the traces330

generated from the mean-field Langevin dynamics defined by Eq. 3, alternating the bias parameter of

the model, from H + ∆HL to H + ∆HR, see Figure 6I.

3 Discussion

Modelling high-dimensional data, such as extensive neural recordings, imposes a trade-off between

accuracy and interpretability. Although highly sophisticated machine-learning methods may offer335

quantitative and detailed predictions, they might in turn prove inadequate to elucidate fundamental

neurobiological mechanisms. Here we introduced a data-driven network model, whose biologically-

grounded architecture and relative simplicity make it both quantitatively accurate and amenable to

detailed mathematical analysis. We implemented this approach on functional recordings performed at

various temperature of a key population of neurons in the zebrafish larvae brain, called ARTR, that340

drives the orientation of tail bouts and gaze (Dunn et al., 2016; Wolf et al., 2017; Ramirez & Aksay,

2021; Leyden et al., 2021).

First, we demonstrate that the persistent timescale of the ARTR endogenous dynamics decreases

with the temperature, mirroring the thermal modulation of orientational persistence in freely-swimming

behavioral assays. We then demonstrate that our energy-based model not only captures the statistics345

of the different activity patterns, but also numerically reproduces the endogenous pseudo-oscillatory

network dynamics, and their thermal dependence. The inferred Ising model is then analyzed within

the so-called mean-field formulation, in which the coupling and bias parameters are replaced by their
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values averaged over the left and right subpopulations. It yields a two-dimensional representation of

the network energy landscape where the preferred states and associated activation barriers can be350

easily evaluated. We show how this combined data-driven and theoretical approach can be applied

to analyze the ARTR response to transient visual stimulation. The latter tilts the energy landscape,

strongly favoring some states over others.

3.1 Ising model is not trained to reproduce short-term temporal correla-

tions, but is able to predict long-term dynamics355

The graphical model we introduced in this work was trained to capture the low-order statistics of

snapshots of activity. Because graphical models are blind to the dynamical nature of the population

activity, it is generally believed that they cannot reproduce any dynamical feature. Nevertheless, here

we demonstrate that our model can quantitatively replicate aspects of the network long-term dynamics

such as the slow alternation between the two preferred states. To better understand this apparent360

paradox, it is necessary to distinguish short and long time scales. At short time scale, defined here as

the duration of a time bin (of the order of a few 100 ms), the model cannot capture any meaningful

dynamics. The Monte Carlo algorithm we used to generate activity is an abstract and arbitrary

process, and the correlations it produces between successive time bins can not reproduce the ones in

the recording data. Capturing the short-term dynamics would require a biologically-grounded model365

of the cell-cell interactions, or, at the very least, to introduce parameters capturing the experimental

temporal correlations over this short time scale (Marre et al., 2009; Mézard & Sakellariou, 2011).

Yet, the inability of the Ising model to reproduce short time dynamical correlations does not hinder

its capacity to predict long-time behavior. The separation between individual neuronal processes

(taking place over time scales smaller than 100 ms) and network-scale activity modulation, which370

happens on time scales ranging from 1 to 20 s is here essential. The weak dependence of macroscopic

processes on microscopic details is in fact well known in many fields outside neuroscience. A classical

example is provided by chemical reactions, whose kinetics are often controlled by a slow step due to the

formation of the activated complex and to the crossing of the associated energy barrier ∆E, requiring

a time proportional to e∆E/(kT ). All fast processes, whose modelling can be very complex, contribute375

an effective microscopic time scale τ in Arrhenius’ expression for the reaction time, see Eq. 4. In this

respect, what really matters to predict long time dynamical properties is a good estimate of ∆E, or,

equivalently, of the effective energy landscape felt by the system. This is precisely what the Ising

model is capable of doing. This explains why, even if temporal information are not explicitly included

in the training process, our model may still be endowed with a predictive power over the long-term380

network dynamics.
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3.2 Energy-landscape-based mechanism for persistence

In a preceding article (Wolf et al., 2017), we developed a mathematical model of the ARTR in

which the left and right ARTR population were represented by a single unit. To account for the

ARTR persistent dynamics, an intrinsic adaptation time-scale had to be introduced in an ad-hoc385

fashion. While the mean-field version of the inferred Ising model shows some formal mathematical

similarity with this two-unit model, it differs in a fundamental aspect. Here, the slow dynamics reflects

the itinerant exploration of a two-dimensional energy landscape (Figure 5C), for which the barriers

separating metastable states scale linearly with the system size. The time to cross these barriers in

turn grows exponentially with the system size, as prescribed by Arrhenius law, and can be orders of390

magnitude larger than any single-neuron relaxation time. Persistence is therefore an emerging property

of the neural network.

3.3 Mean-field approximation and beyond

The mean-field approach, through a drastic simplification of the Ising model, allows us to unveil the

fundamental network features controlling its coarse-grained dynamics. within this approximation, the395

distributions of couplings and of biases are replaced by their average values. The large heterogeneity

that characterizes the Ising model parameters (Suppl. Fig. S1F-I), and is ignored in the mean–field

approach, may however play an important role in the network dynamics.

In the Ising model, the ipsilateral couplings are found to be broadly distributed such as to possess

both negative and positive values. This leads to the presence of so-called frustrated loops, that is, chains400

of neurons along which the product of the pairwise couplings is negative. The states of activities of

the neurons along such loops cannot be set in a way that satisfies all the excitatory and inhibitory

connections, hence giving rise to dynamical instabilities in the states of the neurons. The absence of

frustrated loops in the network (Figure 5A) stabilizes and boosts the activity, an artifact we had to

correct for in our analytical treatment by introducing an effective number of neurons K, much smaller405

than the total numbers of neurons Ns. Neglecting the variability of the contralateral couplings also

constitutes a drastic approximation of the mean field approach. This is all the more true that the

average contralateral coupling I happens to be small compared to its standard deviation.

Couplings are not only broadly distributed but also spatially organized. Ipsilateral couplings Jij

decay with the distance between neurons i and j (Suppl. Fig. S1J). Similarly, contralateral couplings410

show strong correlations for short distances between the contralateral neurons (Suppl. Fig. S1K).

The existence of a local spatial organization in the couplings is not unheard of in computational

neuroscience, and can have important functional consequences. it is for instance at the basis of ring-like

attractor models and their extensions to 2 or 3 dimensions (Tsodyks & Sejnowski, 1995). Combined
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with the presence of variable biases hi, short-range interactions can lead to complex propagation415

phenomena, intensively studied in statistical physics in the context of the Random Field Ising Model.

(Schneider & Pytte, 1977; Kaufman et al., 1986). As the most excitable neurons (with the largest

biases) fire they excite their neighbors, who in turn become active, triggering the activation of other

neurons in their neighborhood. Such an avalanche mechanism could explain the fast rise of activity in

the left or right region, from low- to high-activity state.420

3.4 Interpretation of the functional connectivity

The inferred functional couplings Jij ’s are not expected to directly reflect the corresponding struc-

tural (synaptic) connectivity. However, their spatial distribution appears to be in line with the known

ARTR organization (Dunn et al., 2016; Kinkhabwala et al., 2011) characterized by large positive (ex-

citatory) interactions within the left and right population, and by the presence of negative (inhibitory)425

contralateral interactions. Although the contralateral couplings are found to be, on average, almost

null, compared to the ipsilateral excitatory counterparts, they drive a subtle interplay between the left

and right regions of the ARTR.

As shown in Suppl. Table S2 the inferred parameters largely vary across datasets. This variability is

partially due to the difficulty to separately infer the interactions Jij and the biases hi, a phenomenon430

not specific to graphical model but also found with other neural e.g. Integrate-and-Fire network

models (Monasson & Cocco, 2011). This issue can be easily understood within mean-field theory. For

simplicity let us neglect the weak contralateral coupling I. The mean activity m of a neuron then

depends on the total ‘input’ J m + H it receives, which is the sum of the bias H and of the mean

ipsilateral activity m, weighted by the recurrent coupling J . Hence, the combination J m+H is more435

robustly inferred than H and J taken separately, see Suppl. Fig. S2E-F.

Our neural recordings demonstrate a systematic modulation of the ARTR dynamics with the bath

temperature, in quantitative agreement with the thermal-dependance of the exploratory behavior in

freely-swimming assays. The model correctly captures this thermal modulation of the ARTR activity,

and in particular the decay of the persistence time with the temperature. This owes to a progressive440

change in the values of both the couplings and the biases, which together deform the energy landscape

and modulate the energy barriers between metastable states. Temperature can have direct effects

on cellular and synaptic processes, which may explain these observed changes in the functional cou-

plings. Another possibility is that these changes would result from a temperature-dependent release

of neuromodulatory signals throughout the brain.445

The capacity to quantitatively capture subtle differences in the spontaneous activity induced by

external cues is an important asset of our model. Recent studies have shown that spontaneous behavior

in zebrafish larvae is not time-invariant but exhibits transitions between different regimes, lasting
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over minutes and associated with specific brain-states. These transitions can have no apparent cause

(Le Goc et al. (2021)) or be induced by external (e.g. stimuli, Andalman et al. (2019)) or internal cues450

(e.g. hunger states, Marques et al. (2019)). Although they engage brain-wide changes in the pattern

of spontaneous neural dynamics, they are often triggered by the activation of neuromodulatory centers

such as the habenula-dorsal raphe nucleus circuit (Corradi & Filosa, 2021). Training Ising models

in various conditions may help decipher how such neuromodulation impacts the network functional

couplings leading to distinct dynamical regimes of spontaneous activity.455

3.5 Data-driven modelling and metastability

With its slow alternating activity and relatively simple architecture, the ARTR offers an ideally

suited circuit to test the capacity of Ising models to capture network-driven dynamics. The possibility

to experimentally modulate the ARTR persistence time-scale further enabled us to evaluate the model

ability to quantitatively represent this slow process. The ARTR is part of a widely distributed hind-460

brain network that controls the eye horizontal saccadic movements, and which includes several other

neuronal populations whose activity is tuned to the eye velocity or position (Joshua & Lisberger, 2015;

Wolf et al., 2017). A possible extension of the model would consist in incorporating these nuclei in

order to obtain a more complete representation of the oculomotor circuit. Beyond this particular func-

tional network, a similar data-driven approach could be implemented to capture the slow concerted465

dynamics that characterize numerous neural assemblies in the zebrafish brain (van der Plas et al.,

2021).

The importance of metastable states in cortical activity in mammals has been emphasized in

previous studies as a possible basis for sequence-based computation (Harvey et al., 2012; Brinkman

et al., 2021). Our model suggests that these metastable states are shaped by the connectivity of470

the network, and are naturally explored during ongoing spontaneous activity. In this respect, the

modification of the landscape resulting from visual stimulation, leading to a sharp decrease in the

barrier separating the states is reminiscent of the acceleration of sensory coding reported in Mazzucato

et al. (2019). Our principled data-driven modeling could be useful to assess the generality of such

metastable-state-based computations and of their modulation by sensory inputs in other organisms.475
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7 STAR Methods490

7.1 Zebrafish lines and maintenance

All animals subjects were zebrafish (Danio rerio), aged 5 to 7 days post-fertilization (dpf). Larvae

were reared in Petri dishes in embryo medium (E3) on a 14/10h light/dark cycle at 28◦C, and were

fed powdered nursery food (GM75) every day from 6dpf.

Calcium imaging experiments were conducted on nacre mutants that were expressing either the495

calcium indicator GCaMP6f (12 fish) or GCaMP6s (1 fish) in the nucleus under the control of the

nearly pan-neuronal promoter Tg(elavl3:H2B-GCaMP6). Both lines were provided by Misha Ahrens

and published in Vladimirov et al. (2014) (H2B-GCaMP6s) and Quirin et al. (2016) (H2B-GCaMP6f).

All experiments were approved by Le Comité d’Éthique pour l’Expérimentation Animale Charles

Darwin (02601.01).500

7.2 Behavioral assays

The behavioral experiments and pre-processing have been described in details elsewhere (Le Goc

et al., 2021). Shortly, it consists in a metallic pool regulated in temperature with two Peltier elements,

recorded in uniform white light from above at 25Hz. Batch of 10 animals experienced 30min in water

at either 18, 22, 26, 30 or 33◦C (10 batches of 10 fish, involving 170 different individuals, were used).505

Movies were tracked with FastTrack (Gallois & Candelier, 2021), and MATLAB (The Mathworks) is
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used to detect discrete swim bouts from which the differences of orientation between two consecutive

events are computed, referred to as turn or reorientation angles δθ.

Turn angles distributions could be fitted as the sum of two distributions (Gaussian and Gamma),

whose intersection was used to define an angular threshold to categorize events into forward (F), left510

turn (L) or right turn (R, Figure 1A). This threshold was found to be close to 10 degrees for all tested

temperatures.

Then we ternarized δθ values, based on F, L or R classification (Figure 1B) and computed the

power spectrum of the binary signals defined from symbols L and R only, with the periodogram

MATLAB function and averaged by temperature (Figure 1C). The outcome was fitted to the Lorentzian

expression corresponding to a memory-less equiprobable two-state process (Odde & Buettner, 1998):

S (f) ∝ 2kflip

4k2
flip + (2πf)

2 , (5)

where kflip is the rate of transition from one state to another. The inverse of the fitted flipping rate

kflip represents the typical time spent in the same orientational state, i.e. the typical time taken to

switch turning direction.515

7.3 Light-sheet functional imaging of spontaneous activity

Volumetric functional recordings were carried out using custom-made one-photon light-sheet mi-

croscopes whose optical characteristics have been detailed elsewhere (Panier et al., 2013). Larvae were

mounted in a 1mm diameter cylinder of low melting point agarose at 2% concentration.

Imaged volume corresponded to 122 ± 46 µm in thickness, split into 16 ± 4 slices (mean ± s.d.).520

Recordings were of length 1392 ± 256 seconds with a brain volume imaging frequency of 6 ± 2 Hz

(mean ± s.d.).

Image pre-processing, neurons segmentation and calcium transient (∆F/F ) extraction were per-

formed offline using MATLAB, according to the workflow previously reported (Panier et al., 2013;

Wolf et al., 2017; Migault et al., 2018).525

A Peltier module is attached to the lower part of the pool (made of tin) with thermal tape (3M). A

type T thermocouple (Omega) is placed near the fish head (< 5mm) to record the fish surrounding tem-

perature. The signal from a thermocouple amplifier (Adafruit) is used in a PID loop implemented on an

Arduino board, which mitigate the Peltier power to achieve the predefined temperature target, stable

at ±0.5◦C. The temperature regulation softwares and electronics design are available on Gitlab under530

a GNU GPLv3 licence (https://gitlab.com/GuillaumeLeGoc/arduino-temperature-control).

The ARTR neurons were selected using a method described elsewhere (Wolf et al., 2017). First,

a group of neurons was manually selected on a given slice based on a morphological criterion such

that the ARTR structure (ipsilateral correlations and contralateral anticorrelation) is revealed. Then,
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neurons showing Pearson’s correlation (anti-correlation) higher than 0.2 (less than -0.15, respectively)535

are selected, manually filtering them on a morphological criterion. Those neurons are then added to

the previous ones, whose signals are used to find neurons from the next slice and so on until all slices

are treated.

For fish that were recorded at different temperature, to ensure that the same neurons are selected,

we used the Computational Morphometry Toolkit (CMTK, https://www.nitrc.org/projects/cmtk/)540

to align following recordings onto the first one corresponding to the same individual. Resulting transfor-

mations are then applied to convert neurons coordinates in a consistent manner through all recordings

involving the same fish.

7.4 Time constants definitions

For the flipping rates (Figure 1J), we defined the time-dependent signed activity of the ARTR

(Figure 1H) through

σ(t) = sign
(
mL(t)−mR(t)

)
, (6)

where mL,R(t) = 1
NL,R

∑
i∈L,R si(t) are the average activities in the L,R regions. A power spectrum545

density is estimated for each signal with the Thomson’s multitaper method through the pmtm MATLAB

function (time-halfbandwidth product set to 4). The power spectrum densities were then fitted with

a Lorentzian spectrum, see Eq. 5.

ARTR left and right persistence times (Figure 2E) are defined as the time mL and mR signals

spend consecutively above an arbitrary threshold set at 0.1. Left and right signals are treated alto-550

gether. Changing the threshold does induce a global offset but does not change the observed effect of

temperature, the relation with mL and mR mean signals, nor the relation with the persistence times

of the synthetic signals. The latter are computed according to the same procedure.

7.5 Visually-driven recordings

Volumetric functional recordings under visual stimulation were carried using our two-photon light-555

sheet microscope described in Wolf et al. (2015). The stimulation protocol was previously explained

in Wolf et al. (2017): two LEDs were positioned symmetrically outside of the chamber at 45° and 4.5

cm from the fish eyes, delivering a visual intensity of 20 µW/cm2. We alternately illuminated 17 times

each eye for 10s, 15s, 20s, 25s and 30s while performing two-photon light-sheet brain-wide functional

imaging. Synchronization between the microscope and the stimulation set-up was done using a D/A560

card (NI USB-6259 NCS, National Instruments) and a LabVIEW program. Brain volume image

frequency was of 1Hz on the 7 recorded fish. Recordings last for 4500s, 856s of wich is spontaneous

activity. We extracted the ARTR neurons following the same procedure described above, yielding 89

± 54 neurons (mean ± s.d.).
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7.6 Inference of Ising model from neural activity565

7.6.1 From spontaneous activity to spiking data, to biases and connectivity

For each recording (animal and/or temperature) the binarized spike trains were inferred from the

fluorescence activity signal using the Blind Sparse Deconvolution algorithm (Tubiana et al., 2020).

The binarized activity of the N recorded neurons was then described for each time bin t, into a N -bit

binary configuration st, with , si (t) = 1 if neuron i is active in bin t, 0 otherwise.570

The functional connectivity matrix Jij and the biases hi defining the Ising probability distri-

bution over neural configurations, see Eq. 1, were determined such that the pairwise correlations

and average activities computed from the model match their experimental counterparts. In prac-

tice, we approximately solved this hard inverse problem using the Adaptative Cluster Expansion

and the Monte-Carlo learning algorithms described in Cocco & Monasson (2011) and in Barton &575

Cocco (2013). The full code of the algorithms can be downloaded from the GitHub repository :

https://github.com/johnbarton/ACE/.

7.6.2 Inference of additional biases from visually-driven activity recordings

For the visually-driven activity recordings, we infer the additional biases δh←i from the recordings

of the ARTR activity during, for example, the leftward light stimulations as follows. Let
←−
B the number

of time bins t = 1, 2, ...,
←−
B in the recording, and st the corresponding binarized activity configurations.

We define, for each neuron i,

ρi(δh) =

←−
B∑
t=1

exp
(
hi +

∑
j Jij sj(t) + δh

)
1 + exp

(
hi +

∑
j Jij sj(t) + δh

) . (7)

ρi(δh) represents the mean activity of neuron i, when subject to a global bias summing hi, the other

neurons activities sj(t) weighted by the couplings Jij , and an additional bias δh, averaged over all the580

frames t corresponding to left-sided light stimulation. It is a monotonously increasing function of δh,

which matches the experimental average activity
1
←−
B

←−
B∑
t=1

si(t) for a unique value of its argument. This

value defines δh←i .

The same procedure was followed to infer the additional biases δh→i associated to rightward visual

stimulations.585

7.6.3 Real data and Ising models comparison

To quantify the quality of the log-probability landscapes reproduction by the Ising models (Figure

4C), we used the Kullback-Leibler divergence between (1) a dataset i and the synthetic signals gen-

erated with the model trained on that dataset i (green) and (2) the dataset i with synthetic signals

generated with every other models (red). With ci the count in the two-dimensional bin i (10×10
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bins used) and α a pseudocount (set to 1), the probability in bin i is defined as Pi = ci+α∑
j(cj+α) . The

Kullback-Leibler divergence between a data/model pair is then defined as

DKL =
∑
i

Pdata,i log10

(
Pdata,i
Pmodel,i

)
(8)

7.7 Mean-field theory for the ARTR activity

7.7.1 Derivation of the free energy

We consider an Ising model with NL and NR neurons in, respectively, the left and right regions.

Each neuron activity variable can take two values, σi = 0, 1, corresponding to silent and active states

(within a time window). The “energy” of the system reads

E(s1, . . . , sNL
, sNL+1, . . . , sNL+NR

) = −H̃L

NL∑
i=1

si − H̃R

NL+NR∑
i=NL+1

si −
1

2

∑
i 6=j

J̃ij si sj , (9)

where H̃L, H̃R are biases acting on the neurons, and the coupling matrix is defined through

J̃ij =


J̃L if 1 ≤ i, j ≤ NL ,

J̃R if NL + 1 ≤ i, j ≤ NL +NR ,

Ĩ otherwise .

(10)

We now introduce the left and right average activities:

mL =
1

NL

NL∑
i=1

si , mR =
1

NR

NL+NR∑
i=NL+1

si . (11)

The energy E of a neural activity configuration in Eq. 9 can be expressed in terms of these average

activities:590

E(mL,mR) = −NL

(
H̃L −

J̃L
2

)
mL −NR

(
H̃R −

J̃R
2

)
mR

− (NL)2

2
J̃Lm

2
L −

(NR)2

2
J̃Rm

2
R − Ĩ NLNRmLmR . (12)

We may now compute the partition function normalizing the probability of configurations, see

Eq. 1,

Z =
∑

{si=0,1}

e−E(s1,...,sNL+NR
) =

∑
mL,mR

ML(mL)MR(mR) e−E(mL,mR) , (13)

where the sums runs over fractional values of the average left and right activities, from 0 to 1 with

steps equal to, respectively, 2/NL and 2/NR, and the multiplicitiesML andMR measure the numbers

of neural configurations with prescribed average activities. We approximate these multiplicities with

the standard entropy-based expressions, which are exact in the limit of large sizes KL, KR:

ML(mL) ' eNL S(mL) , MR(mR) ' eNR S(mR) , (14)
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where

S(m) = −m lnm− (1−m) ln(1−m) (15)

is the entropy of a 0− 1 variable with mean m. As a consequence the activity-dependent free energy

F (mL,mR) is given by

F (mL,mR) = E(mL,mR)−NL S(mL)−NR S(mR) (16)

= −NL JL
2

mL
2 − NR JR

2
mR

2 − I
√
NLNRmLmR −NLHLmL −NRHRmR

+ NL (mL lnmL + (1−mL) ln(1−mL)) +NR (mR lnmR + (1−mR) ln(1−mR))

where the bias and coupling parameters are, respectively, HL = H̃L− J̃L
2 , HR = H̃R− J̃R

2 , JL = NL J̃L,

JR = NR J̃R, I =
√
NLNR Ĩ.

The sizes NL, NR enter formula (16) for the free energy in two ways:595

• implicitly, through the biases HL, HR and the couplings JL, JR, I. These parameters are equal to,

respectively, the average bias and the total ipsilateral and contralateral couplings acting on each

neuron in the L and R regions. They are effective parameters defining the mean-field theory;

• explicitly, as multiplicative factors to the free energy contributions coming from the left and right

regions. The sizes then merely act as effective inverse ”temperatures”, in the Boltzmann factor600

e−F (mL,mR) associated to the probability of the L,R activities.

Mean-field theory generally overestimates the collective effects of interactions; a well-known illus-

tration of this artifact is the prediction of the existence of a phase transition in the uni-dimensional

ferromagnetic Ising model with short range interactions, while such a transition is rigorously known

not to take place (Ma, 1985). We expect these effects to be strong here, due to the wide distribution605

of inferred Ising couplings (Figure 3C and Suppl. Fig. S1I). Many pairs of neurons carry close to zero

couplings, and the interaction neighborhood of a neuron is effectively much smaller than NL and NR.

To compensate for the overestimation of interaction effects we thus propose to keep Eq. 16 for the free

energy, but with effective sizes KL,KR replacing the numbers NL, NR of recorded neurons, see Eq. 2,

leading to the expression of the free energy:610

F (mL,mR) = −KL JL
2

mL
2 − KR JR

2
mR

2 − I
√
KLKRmLmR −KLHLmL −KRHRmR (17)

+ KL (mL lnmL + (1−mL) ln(1−mL)) +KR (mR lnmR + (1−mR) ln(1−mR))

These effective sizes KL,KR are expected to be smaller than NL, NR, i.e. the associated ”temper-

atures” (inverse sizes) are expected to be higher. Their values are fixed through the comparison of the

Langevin dynamical traces with the traces coming from the data, see below.
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7.7.2 Langevin dynamical equations

The dynamical Langevin equations (3) read615

τ
dmL

dt
= KL

(
JLmL +HL

)
+ I
√
KLKRmR −KL log

(
mL

1−mL

)
+ εL(t) , (18)

τ
dmR

dt
= KR

(
JRmR +HR

)
+ I
√
KLKRmL −KR log

(
mR

1−mR

)
+ εR(t) , (19)

where εL, εR denote white-noise processes, see main text.

7.7.3 Fit of the effective sizes KL and KR

The effective sizes KL = NL/A and KL = NR/A were fitted generating Langevin trajectories of

the activities (mL,mR) for a large set of values of A (i.e. KL and KR), and with fixed parameters

(HL,HR, JL,JR,τ). For each value of KL and KR we compute the Kullback-Leibler (KL) divergence620

between the experimental and the Langevin distributions of (mL,mR) (see Suppl. Fig. S2A-C). The

effective sizes KL and KR are the ones that minimize the value of the KL divergence. For low values

of A the KL divergence can be noisy and creates artifacts. To avoid these artifacts we assume that

A > 2.
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Figure 1: Temperature-dependence of orientational persistence and ARTR dynamics.

A, Swimming patterns in zebrafish larvae. Swim bouts are categorized into forward and turn bouts, based on the

amplitude of the heading reorientation. Example trajectory: each dot corresponds to a swim bout; the color encodes the

reorientation angle. B, The bouts are discretized as left/forward/right bouts. The continuous binary signal represents

the putative orientational state governing the chaining of the turn bouts. C, Power spectra of the discretized turn

signal averaged over all animals for each temperature (dots). Each spectrum is fitted by a Lorentzian function (solid

lines) from which we extract the switching rate kflip. D, Temperature dependence of kflip. E, Light-sheet based

volumetric recording of neuronal activity. The fish bath is controlled in temperature using a Peltier device and a

thermocouple probe. F, Morphological organization of the ARTR. G, Raster plot of the ARTR spontaneous dynamics

showing antiphasic right/left alternation. The top and bottom traces are the ARTR average signal of the left and right

subcircuits. H, Example ARTR (mL − mR) binarized signals measured at 3 different temperatures (same larva). I,

Averaged power spectrum of the ARTR signals, for the 5 tested temperatures. The dotted vertical lines indicate the

signal switching frequencies ν as extracted from the Lorentzian fit (solid lines). J, Temperature-dependence of ν. The

lines join data points obtained with the same larva. Inset: relationship between kflip (behavioral) and ν (neuronal)

switching frequencies. The dashed line is the linear fit.
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Figure 2: Temperature-dependence of ARTR state occupancy.

A, Probability densities P (mL,mR), see Eq. 2, of the activity state of the circuit, in logarithmic scale; Color encodes

z-axis (common colorbar in the middle panel). Left: 22°C; Middle: 26°C; Right: 30°C; Three different fish. B, Corre-

sponding 10 min long time-signals of the mean activities of the left (red) and right (blue) subregions of the ARTR. C,

Pdf of activities of both sides of the ARTR. Color encodes temperature. D, Temperature-averaged mean activity from

both sides of the ARTR. Error bars are standard error of the mean. E, Duration of sustained activity of both sides of

the ARTR (persistence time) vs. mean activity. Each dot is the mean persistence time from one fish at one temperature,

colors encode temperature.
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Figure 3: Ising model inference from the recordings of ARTR activity.

A, Processing pipeline for the inference of the Ising model. We first extract from the recorded calcium activity, approx-

imate spike trains using a Bayesian deconvolution algorithm (BSD). The activity of each neuron is then ”0” or ”1”. We

then compute the mean activity and the pairwise covariance of the data, from which we infer the parameters hi and

Jij of the ising model. Finally, we can generate synthetic data using Monte-Carlo sampling. B, Functional connectivity

matrix. The white lines separate the left/right part of the ARTR and defines 4 blocks associated with ipsilateral or

contralateral couplings. C, Box plot across animals of the average value of the ipsilateral and contralateral couplings.

D, Bias parameter distribution for an example fish.

26

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.02.478841doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.02.478841


0

1

ac
tiv

ity
 (

a.
u.

)

mL

mR

pd
f (

lo
g)

mR

mL

pdf (log)

10-3

100

pd
f (

lo
g)

T = 26°C, Fish 11

mL

mR

0

1

ac
tiv

ity
 (

a.
u.

)

T = 30°C, Fish 5

0

1

ac
tiv

ity
 (

a.
u.

)

pd
f

0
K.L. divergence

A

B

C D

data persistence time (s)

Is
in

g 
pe

rs
is

te
nc

e 
tim

e 
(a

.u
.)

0 5 10 15
0

80

160

T = 22°C, Fish 2

1
0

6

12

DKL(Datai || Isingi)

DKL(Datai || Isingj≠i)

temperature (°C)
18
22
26
30
33

R = 0.84

mR
mL

mR

mL
mR

mL

100

5000 M.C. rounds 5000 M.C. rounds

100

pd
f (

lo
g)

100

5000 M.C. rounds

20

Figure 4: Ising models reproduce characteristic features of the recorded activity.

A-B, Three example activity maps and corresponding ARTR signals from simulations trained on the same datasets

as in figure 2A-B. A Probability distribution of finding the network in the (mL,mR) state, in logarithmic scale, color

encodes z-axis (common colorbar in the middle panel). B, synthetic (MC) signals of the Ising model dynamics, showing

persistent activity. The red and blue traces correspond to the mean activity of the left and right subpopulations,

respectively. The time is measured in MC rounds. C, Distribution of the Kullback-Leibler divergences between datasets

and their corresponding Ising models (green) and between datasets and Ising models trained on a different datasets

(red). D, Average persistence times in simulations vs. experiments. Each dot refers to one fish at one temperature,

colors encode temperature.
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Figure 5: Mean-field approximation of the inferred Ising model.

A, Schematic view of the mean-field Ising model. B, Examples of simulated mL and mR signals of the mean-field

dynamical equations for three sets of parameters corresponding to three bath temperatures. C, Free-energy landscapes

computed with the mean-field model, in the (mL,mR) plane for three different parameter sets corresponding to the

points 1-3 in panel B. Colored circles denote metastable states, and the line of black arrows represent the optimal path

between (mlow,mlow) and (mlow,mhigh) states. D, Schematic free energy profiles along an optimal path, as a function

of mR −mL. The arrows denotes the energy barriers ∆F associated with the various transitions. The dark green arrow

denotes ∆F
(
(mhigh,mlow)→ (mlow,mlow)

)
, purple denotes ∆F

(
(mlow,mlow)→ (mhigh,mlow)

)
. E, Values of the

free-energy barriers as a function of temperature. Error bars are standard error of the mean. F, Persistence time of the

mean-field ARTR model for all fish and runs at different experimental temperatures. Each dot refers to one fish at one

temperature, colors encode temperature.
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Figure 6: Modified Ising model captures the behavior of ARTR under visual stimulation.

A Scheme of the stimulation protocol. The left and right eyes are stimulated alternatively for periods of 15 to 30s,

after which a period of spontaneous (unstimulated) activity is acquired. B, Example of ARTR activity signals under

alternated left-right visual stimulation. The small arrows indicate the direction of the stimulus. C, Sketch of the

modified Ising model, with additional biases δhi to account for the local visual inputs. D, Values of the additional biases

averaged over the ipsilateral and contralateral (with respect to the stimulated eye) neural populations. E, Monte Carlo

activity traces generated with the modified Ising model. F, Sketch of the modified mean-field approach in the presence of

visual stimulation. G, Free-energy landscapes computed with the mean-field theory during spontaneous (left panel) and

stimulated (right panel) activity for an axample fish. H, Free-energy along the optimal path as a function of mL −mR

during spontaneous (black) and stimulated (green) activity corresponding to panel G. I, Example of simulated mL and

mR signals of the mean-field dynamical Langevin equation, Eq. 3 under alternating left and right visual stimulation.
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Figure S1: Inference of the ARTR Ising model.

A, Schematic view of a zebrafish larva brain. B-C, To assess the quality of the inference, we compare the mean activity

(B) and the pairwise covariance (C) computed on the experimental and on the synthetic (model-generated) data (32

recordings, n = 13 fish). D, Mean activity of either side of the ARTR in simulations vs. experiments. Each dot refers

to one fish at one temperature, colors encode temperature. E, Probability that K of the N neurons in the ARTR are

active simultaneously in the data (black dots) and in the model (yellow line). To obtain these probabilities, we pool

together all states where any K neurons are active together while the rest of the neurons are silent. F, Probability density

function of the biases among the left (left panel) and right (right panel) subpopulations. Each thin line correspond to one

experiment. The bold line corresponds to all the pooled data. G, Box plot across experiments of the average value of the

biases for the left/right neurons of the ARTR. H, Box plot across animals of the standard deviation of the biases for the

left/right neurons of the ARTR. I, Probability density function of the functional connectivity for the ipsilateral (purple

line) and the contralateral (gold line) couplings. Plain line corresponds to the pdf across all animals. J, Functional

connectivity as a function of the distance between neurons. K, Correlation between the couplings Jki and Jkj , between

one neuron k and two contralaterally located neurons i, j as a function of their distance dij .
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Figure S2: Mean-field model of the ARTR.

A-B, Kullback-Leibler divergence between the experimental and the Langevin distributions as a function of A (see

Methods) for two data sets. C, Probability density function of KR (blue line) and KL (red line) across all recordings.

D, Free-energy difference between stationary sates of the landscape as a function of the temperature. E, Phase diagram

of the mean field model for I = 0 in the (H, J) plane. Each point corresponds to one experimental session and to one

subregion (left or right). Same color code for the bath temperature as in the main figures. Below the dash-dotted line

the unique stationary point of the free energy is mlow; above the mhigh state is also present. The solid black line defines

the first order transition of our model, where the free energies of the mlow and mhigh states coincide. The dotted line

corresponds to the best linear fit between J and H, with slope −M = −0.87. F, Average values (for all experiments

and regions) of K(H + J M) as a function of the temperature of the bath. Error bars are standard error of the mean.
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Figure S3: A modified Ising model explains visually-driven properties of the ARTR.

A, Scatter plot of the correlation between contralateral pairs of neurons under visual stimulation versus under sponta-

neous activity on n= 6 fish. B, Scatter plot of the correlation between ipsilateral pairs of neurons under visual stimulation

versus under spontaneous activity. C-D, To assess the quality of the model of the ARTR of these visually-driven exper-

iments, we compare the mean activity (C) and the pairwise covariance (D) computed on real data (spontaneous part of

the recordings) to those computed on the synthetic data. E, Average Pearson correlation in the experimental recordings

between contralateral and ipsilateral pairs of cells during stimulated or spontaneous activity (n = 6 fish). F, Average

Pearson correlation in the simulated activity of the ARTR between contralateral and ipsilateral pairs of cells during

stimulated or spontaneous activity (n = 6 fish).
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Temperature (°C) ID Line Age (dpf) NL NR Acquisition rate (Hz) Duration (s)

18 12 NucFast 6 146 180 5 1200

18 13 NucFast 7 37 96 8 1200

18 14 NucFast 6 179 174 8 1200

22 2 Nuc slow 7 177 212 3 1106

22 3 NucFast 5 152 85 3 1812

22 5 NucFast 5 158 123 5 1500

22 6 NucFast 5 98 134 5 1500

22 7 NucFast 6 122 221 5 1500

22 11 NucFast 6 295 320 5 1200

22 13 NucFast 7 37 96 8 1200

22 14 NucFast 6 179 174 8 1200

26 2 Nuc slow 7 177 212 3 1812

26 3 NucFast 5 152 85 3 1812

26 4 NucFast 5 110 76 3 1812

26 5 NucFast 5 158 123 5 1500

26 6 NucFast 5 98 134 5 1500

26 7 NucFast 6 122 221 5 1500

26 11 NucFast 6 295 320 5 1200

26 13 NucFast 7 37 96 8 1200

26 14 NucFast 6 179 174 8 1200

30 2 Nuc slow 7 177 212 3 1812

30 4 NucFast 5 110 76 3 1812

30 5 NucFast 5 158 123 5 1500

30 6 NucFast 5 98 134 5 1500

30 7 NucFast 6 122 221 5 1500

30 13 NucFast 7 37 96 8 1200

30 14 NucFast 6 179 174 8 1200

30 15 NucFast 7 202 252 8 1200

33 14 NucFast 6 179 174 8 1200

33 15 NucFast 7 202 252 8 1200

33 16 NucFast 6 127 123 7 1200

33 17 NucFast 5 62 170 10 1200

Table S1: Datasets properties.
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Temperature (°C) ID JL JR I HL HR KL KR

18 12 7.06 7.23 -0.6 -3.66 -3.63 6.51 8.03

18 13 6.2 7.84 0.6 -3.53 -4.34 3.18 8.27

18 14 7.27 7.24 0.31 -3.88 -3.99 11.04 10.74

22 2 8.2 8.28 0.12 -4.24 -4.23 6.65 7.96

22 3 8.18 7.14 0.55 -4.26 -4.13 9.38 5.24

22 5 7.59 7.01 0.4 -4.03 -3.8 5.56 4.33

22 6 7.13 8.69 1.1 -4.49 -4.64 5.21 7.12

22 7 7.09 7.46 0.43 -3.73 -3.95 6.28 11.39

22 11 7.82 7.59 -0.1 -4.07 -3.91 8.28 8.98

22 13 6.54 7.82 1.45 -4.29 -4.5 7.11 18.46

22 14 7.41 8.03 0.47 -4.28 -4.43 10.91 10.6

26 2 8.37 8.22 -0.49 -4.47 -4.31 9.72 11.64

26 3 8.42 7.49 0.53 -4.56 -4.62 8.26 4.61

26 4 8.63 6.44 0.85 -4.83 -4.79 10.37 7.16

26 5 7.29 7.59 0.48 -3.92 -4.14 9.08 7.06

26 6 7.43 7.86 0.41 -3.99 -4.1 8.59 11.75

26 7 7.55 7.96 0.32 -4.08 -4.22 4.45 8.06

26 11 7.27 7.45 0.37 -3.89 -3.92 10.31 11.18

26 13 6.99 7.3 0.6 -3.99 -3.94 6.37 16.55

26 14 7.91 7.35 0.5 -4.34 -4.16 11.32 11.01

30 2 7.54 7.96 -0.12 -4.54 -4.56 7.02 8.41

30 4 8.36 7.73 0.11 -4.52 -4.18 9.64 6.66

30 5 6.77 6.42 0.66 -3.8 -3.87 9.18 7.15

30 6 7.35 7.38 0.45 -3.91 -3.97 7.53 10.3

30 7 7.43 8.07 0.42 -3.93 -4.38 7.09 12.84

30 13 6.91 7.41 0.73 -4.13 -4.03 5.78 15

30 14 7.51 7.45 0.11 -3.87 -3.89 9.42 9.15

30 15 8.01 8.33 0.58 -4.45 -4.46 13.83 17.26

33 14 6.74 7.02 0.76 -3.8 -3.97 9.32 9.06

33 15 6.99 7.47 -0.02 -3.68 -3.91 14.85 18.52

33 16 7.53 8.25 -0.11 -4.16 -4.43 14.43 13.97

33 17 6.66 7.36 0.45 -3.69 -3.89 11.92 32.69

Table S2: Parameters of mean-field models.
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ID JL JR I HL HR KL KR

1 7,54 7,35 -0,67 -3,75 -3,44 5,60 3,43

2 7,10 7,42 0,64 -3,69 -4,02 7,91 12,82

3 7,51 7,92 -0,28 -3,96 -4,08 4,98 3,90

4 8,38 6,25 -0,04 -3,68 -3,18 13,33 4,44

5 8,73 8,24 0,01 -4,38 -4,13 6,11 6,89

6 7,87 7,71 0,51 -4,17 -4,09 16,19 15,52

Table S3: Parameters of the mean-field model for two-photon light-sheet data sets from (Wolf et al., 2017)
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