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Abstract Establishing accurate as well as interpretable models of network activity is an open9

challenge in systems neuroscience. Here we infer an energy-based model of the ARTR, a circuit10

that controls zebrafish swimming statistics, using functional recordings of the spontaneous11

activity of hundreds of neurons. Although our model is trained to reproduce the low-order12

statistics of the network activity at short time-scales, its simulated dynamics quantitatively13

captures the slowly alternating activity of the ARTR. It further reproduces the modulation of this14

persistent dynamics by the water temperature and visual stimulation. Mathematical analysis of15

the model unveils a low-dimensional landscape-based representation of the ARTR activity, where16

the slow network dynamics reflects Arrhenius-like barriers crossings between metastable states.17

Our work thus shows how data-driven models built from large neural populations recordings can18

be reduced to low-dimensional functional models in order to reveal the fundamental19

mechanisms controlling the collective neuronal dynamics.20

21

Introduction22

How computational capacities emerge from the collective neural dynamics within large circuits23

is a prominent question in neuroscience. Modeling efforts have long been based on top-down24

approaches, in which mathematical models are designed to replicate basic functions. Although25

they might be very fruitful from a conceptual viewpoint, these models are unable to accurately re-26

produce actual data and thus remain speculative. Recently, progress in large-scale recording and27

simulation techniques have led to the development of bottom-up approaches. Machine-learning28

models, trained on recorded activity, allow for the decoding or the prediction of neuronal activity29

and behavior (Glaser et al., 2020; Pandarinath et al., 2018). Unfortunately, the blackbox nature30

of these data-driven models often obscures their biological interpretation, e.g. the identification31

of the relevant computational units (Butts, 2019). This calls for quantitative, yet interpretable ap-32

proaches to illuminate the functions carried out by large neural populations and their neuronal33

substrate.34

The present work is an attempt to do so in the specific context of the anterior rhombencephalic35

turning region (ARTR), a circuit in the zebrafish larva that drives the saccadic dynamics and orches-36

trates the chaining of leftward/rightward swim bouts (Ahrens et al., 2013; Dunn et al., 2016; Wolf37

et al., 2017; Ramirez and Aksay, 2021; Leyden et al., 2021). The ARTR spontaneous activity exhibits38

temporal persistence, i.e. the maintenance of activity patterns over long (∼ 10 sec) time-scales.39

This functional feature is ubiquitous in the vertebrate brain. It plays an essential role in motor con-40

trol, as best exemplified by the velocity position neural integrator, a circuit that integrates neural41

inputs and allows for a maintenance of the eye position after an ocular saccade (Seung, 1996; Se-42
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ung et al., 2000; Miri et al., 2011). Temporal persistence is also central to action selection (Wang,43

2008) and short-term memory storage (Zaksas and Pasternak, 2006; Guo et al., 2017). As isolated44

neurons generally display short relaxation times, neural persistence is thought to be an emergent45

property of recurrent circuit architectures (Zylberberg and Strowbridge, 2017). Since the 1970s,46

numerous mechanistic network models have been proposed that display persistent activity. They47

are designed such as to possess attractor states, i.e. stable activity patterns towards which the48

network spontaneously converges.49

Although attractor models are conceptually appealing, assessing their relevance in biological50

circuits remains challenging. To this aim, recent advances in machine learning combined with51

large-scale methods of neural recordings may offer a promising avenue. We hereafter focus on52

energy-based network models, trained to replicate low-order data statistics, such as the mean53

activities and pairwise correlations, through the maximum entropy principle (Jaynes, 1957). In54

neuroscience, such models have been successfully used to explain correlation structures in many55

areas, including the retina (Schneidman et al., 2006; Cocco et al., 2009; Tkačik et al., 2015), the56

cortex (Tavoni et al., 2016, 2017; Nghiem et al., 2018), and the hippocampus (Meshulam et al.,57

2017; Posani et al., 2017) of vertebrates, and the nervous system of C. elegans (Chen et al., 2019).58

These models are generative, i.e. they can be used to produce synthetic activity on short time59

scales, but whether they can reproduce long-time dynamical features of the biological networks60

remains an open question.61

Here, we first report on spontaneous activity recordings of the ARTR network using light-sheet62

functional imaging at various yet ethologically relevant temperatures. These data demonstrate63

that the water temperature controls the persistence time scale of the ARTR network, and that this64

modulation is in quantitative agreement with the thermal dependence of the swimming statistics.65

We then infer energy-based models from the calcium activity recordings, and show how these66

data-driven models not only capture the characteristics and probabilities of occurrence of activity67

patterns, but also reproduce the observed thermal dependence of the persistent time scale. We68

further derive a mathematically tractable version of our energy-based model, called mean-field69

approximation, whose resolution provides a physical interpretation of the energy landscape, of70

the dynamical paths there in, and of their changes with temperature. We finally extend the model71

to incorporate visual stimulation and correctly reproduce the previously reported visually-driven72

ARTR dynamics (Wolf et al., 2017). This work establishes the capacity of data-driven network in-73

ference to numerically emulate persistent dynamics and to unveil fundamental network features74

controlling such dynamics.75

Results76

The water temperature controls behavioral and neuronal persistence time-scales77

in zebrafish larvae78

In this first section, we report on functional recordings of the ARTR dynamics performed at various79

temperatures (18 to 33°C). We show that the persistent time-scale that characterizes the ARTR’s80

endogenous dynamics is thermallymodulated. This dependence is reflected in the change in swim-81

ming statistics observed in freely swimming assays. We further characterize how the water tem-82

perature impacts the distribution of activity patterns83

ARTR endogeneous dynamics is thermally modulated84

We used light-sheet functional imaging to record the ARTR activity in zebrafish larvae expressing85

a calcium reporter pan-neuronally (Tg(elavl3:GCaMP6)). The larvae, embedded in agarose, were86

placed in a water tank whose temperature was controlled in the range 18–33°C (see Appendix 287

Figure 1A). ARTR neurons were identified using a combination of morphological and functional88

criteria, as detailed in Wolf et al. (2017). Their spatial organization is displayed in Figure 1A, for89

all recorded animals after morphological registration on a unique reference brain (145 ± 65 left90
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neurons, 165 ± 69 right neurons, mean ± s.d. across 13 different fish, see Appendix 2 Table 1).91

For each neuron, an approximate spike train 𝑠(𝑡) was inferred from the fluorescence signal us-92

ing Bayesian deconvolution (Tubiana et al., 2020). A typical raster plot of the ARTR is shown in93

Appendix 2 Figure 1B (recorded at 26°C), together with the mean signals of the left and right sub-94

circuits, 𝑚𝐿,𝑅(𝑡) =
1

𝑁𝐿,𝑅

∑

𝑖∈𝐿,𝑅 𝑠𝑖(𝑡).95

To analyse the thermal dependence of the ARTR dynamics, we extracted from these recordings96

a binarized ARTR signal, sign(𝑚𝐿(𝑡) − 𝑚𝑅(𝑡)
), see Figure 1B and Appendix 2 Figure 1C for example97

signals from the same fish at different temperatures. The average power spectra of these signals98

for the five tested temperatures (average of 3 to 8 animals for each temperature, see Appendix99

2 Table 1), are shown in Figure 1C. We used a Lorentzian fit to further extract the alternation fre-100

quency 𝜈 for each dataset (Figure 1C, solid lines). This frequency was found to increase with the101

temperature (Figure 1D). Although 𝜈 could significantly vary across specimen at a given tempera-102

ture, for a given animal, increasing the temperature induced an increase in the frequency in 87.5%103

of our recordings (28 out of 32 pairs of recordings).104

In this analysis, we used the binarized ARTR activity to facilitate the comparison between be-105

havioral and neural data, as described in the next section. However, the observed temperature-106

dependence of the left-right alternation time-scale was preserved when the spectra were com-107

puted from the ARTR activity, 𝑚𝐿(𝑡) − 𝑚𝑅(𝑡) (see Appendix 2 Figure 1D).108

Impact of the water temperature on the turn direction persistence109

in freely swimming larvae110

It has previously been shown that the ARTR governs the selection of swim bout orientations:111

turn bouts are preferentially executed in the direction of the most active (right or left) ARTR sub-112

circuit (Dunn et al., 2016; Wolf et al., 2017), such that sign(𝑚𝐿(𝑡) − 𝑚𝑅(𝑡)
) constitutes a robust pre-113

dictor of the turning direction of the animal, see figure 5 - figure supplement 2E in Dunn et al.114

(2016). Therefore, the temporal persistence of the ARTR dynamics is reflected in a turn direction115

persistence in the animal’s swimming pattern, i.e. the preferred chaining of similarly orientated116

turn bouts.117

We thus sought to examine whether the thermal dependence of the ARTR endogenous dynam-118

ics couldmanifest itself in the animal navigational statistics. In order to do so, we used the results of119

a recent study (Le Goc et al., 2021), in which 5 to 7 days old zebrafish larvae were video-monitored120

as they swam freely at constant and uniform temperature in the same thermal range (Figure 1E).121

We quantified the time scale of the turn direction persistence by assigning a discrete value to each122

turn bout: −1 for a right turn, +1 for a left turn (forward scouts were ignored). We then computed123

an orientational state signal continuously defined by the value of the last turn bout (Figure 1F). The124

power spectra of the resulting binary signals are shown in Figure 1G for various temperatures. We125

used a Lorentzian fit (Methods, Eq. 6) to extract, for each experiment, a frequency 𝑘𝑓𝑙𝑖𝑝. This rate,126

which defines the probability of switching orientation per unit of time, systematically increaseswith127

the temperature, from 0.1 to 0.6 s−1 (Figure 1H). Increasing the temperature thus leads to a progres-128

sive reduction of the turn direction persistence time. The inset plot in Figure 1H establishes that129

the left/right alternation rates extracted from behavioral and neuronal recordings are consistent130

across the entire temperature range (slope = 0.81, 𝑅 = 0.99).131

ARTR activity maps are modulated by the temperature132

We then investigated how the water temperature impacts the statistics of the ARTR activity defined133

by the mean activity of the left and right sub-populations, 𝑚𝐿 and 𝑚𝑅. The probability maps in134

the (𝑚𝐿, 𝑚𝑅) plane are shown in Figure 2A for two different temperatures, with the corresponding135

raster plots and time signals of the two subcircuits. At high temperature, the ARTR activity map is136

confined within a L-shaped region around (𝑚𝐿 = 0, 𝑚𝑅 = 0) and the circuit remains inactive for a137

large fraction of the time. Conversely, at lower temperature, the ARTR activity is characterized by138

long periods during which both circuits are active and shorter periods of inactivity. We quantified139
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this thermal dependence of the activity distribution by computing the log-probability of the activity140

of either region of the ARTR at various temperatures (Appendix 2 Figure 2A). The occupation rate141

of the inactive state (𝑚𝐿,𝑅 ∼ 0) increases with temperature, with a corresponding steeper decay of142

the probability distribution of the activity. Consistently, we found that the mean activities 𝑚𝐿 and143

𝑚𝑅 decreased with temperature (Appendix 2 Figure 2B). Such a dependence might reflect varying144

levels of temporal coherence in the activity of the ARTR with the temperature. In order to test this,145

we computed the Pearson correlation at various temperature but we saw no clear dependency of146

the average correlation across ipsilateral or contralateral pairs of neurons (Appendix 2 Figure 2C).147

Our analysis thus indicates that the water temperature modulates both the endogenous dy-148

namics and the activity distribution of the ARTR. For both aspects, we noticed a large variability149

between animals at a given temperature. This is not unexpected, as it parallels the intra- and150

inter-individual variability in the fish exploratory kinematics reported in Le Goc et al. (2021). Nev-151

ertheless, we observed a strong positive correlation between the persistence time and the mean152

activity across animals and trials for a given temperature (Appendix 2 Figure 2D and Methods),153

indicating that both features of the ARTR may have a common drive.154

A data-driven energy-based model reproduces the statistics of the ARTR dynamics155

Our aim was to reproduce the ARTR spontaneous activity using an energy-based data-driven net-156

workmodel. The inference pipeline, going from rawfluorescence data to themodel, is summarized157

in Figure 2B. We first reconstructed an estimated spike train for each ARTR neuron using a decon-158

volution algorithm (Tubiana et al., 2020). We divided the recording window (𝑇𝑟𝑒𝑐 ∼ 1200 𝑠 for each159

session) in time bins whose width was set by the imaging frame-rate (𝑑𝑡 = 100 − 300𝑚𝑠). Each160

dataset thus consisted of a series of snapshots 𝐬𝐤 = (𝑠𝑘1 ,… , 𝑠𝑘𝑁 ) of the ARTR activity at times 𝑘, with161

𝑘 = 1,… , 𝑇𝑟𝑒𝑐∕𝑑𝑡; here, 𝑠𝑘𝑖 = 1 if cell 𝑖 is active or 𝑠𝑘𝑖 = 0 if it is silent in time bin 𝑘.162

We then computed the mean activities, ⟨𝑠𝑖⟩data, and the pairwise correlations, ⟨𝑠𝑖𝑠𝑗⟩data, as the163

averages of, respectively, 𝑠𝑘𝑖 and 𝑠𝑘𝑖 𝑠
𝑘
𝑗 over all time bins 𝑘. We next inferred the least constrained164

model, according to the maximum entropy principle (Jaynes, 1957), that reproduced these quan-165

tities. This model, known as the Ising model in statistical mechanics (Ma, 1985) and probabilistic166

graphical model in statistical inference (Koller and Friedmann, 2009), describes the probability dis-167

tribution over all 2𝑁 possible activity configurations 𝐬,168

𝑃 (𝐬) = 1
𝑍

exp

(

∑

𝑖
ℎ𝑖 𝑠𝑖 +

∑

𝑖<𝑗
𝐽𝑖𝑗 𝑠𝑖𝑠𝑗

)

, (1)
where𝑍 is a normalization constant. The bias ℎ𝑖 controls the intrinsic activity of neuron 𝑖, while the169

coupling parameters 𝐽𝑖𝑗 account for the effect of the other neurons 𝑗 activity on neuron 𝑖 (Meth-170

ods). The set of parameters {ℎ𝑖, 𝐽𝑖𝑗} were inferred using the Adaptative Cluster Expansion and the171

Boltzmannmachine algorithms (Cocco andMonasson, 2011; Barton and Cocco, 2013; Barton et al.,172

2016). Notice that in Eq. 1, the energy term in the parenthesis is not scaled by a thermal energy173

as in the Maxwell–Boltzmann statistics. We thus implicitly fix the model temperature to unity; of174

course, this model temperature has no relation with the water temperature 𝑇 . Although themodel175

was trained to reproduce the mean activities and pairwise correlations (see Appendix 2 Figure 3A-176

C and Methods for 4-fold cross-validation), it further captured higher-order statistical properties177

of the activity such as the probability that 𝐾 cells are active in a time bin (Appendix 2 Figure 3D)178

(Schneidman et al., 2006).179

Once inferred, the Ising model can be used to generate synthetic activity configurations 𝐬. Here180

we used aMonte Carlo (MC) algorithm to sample the probability distribution 𝑃 (𝐬) in Eq. 1. The algo-181

rithm starts from a random configuration of activity, then picks up uniformly at random a neuron182

index, say, 𝑖. The activity 𝑠𝑖 of neuron 𝑖 is then stochastically updated to 0 or to 1, with probabilities183

that depend on the current states 𝑠𝑗 of the other neurons (see Eq. 8 in Methods, and code pro-184

vided). The sampling procedure is iterated, ensuring convergence towards the distribution 𝑃 in Eq.185
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1. This in silico MC dynamics is not supposed to reproduce any realistic neural dynamics, except186

for the locality in the activity configuration 𝐬 space.187

Figure 2C shows the synthetic activity maps and temporal traces of Ising models trained on the188

two same datasets as in Figure 2A. For these synthetic signals, we use MC rounds, i.e. the number189

of MC steps divided by the total number of neurons (Methods), as a proxy for time. Remarkably,190

although the Ising model is trained to reproduce the low-order statistics of the neuronal activity191

within a time bin only, the generated signals exhibit the main characteristics of the ARTR dynamics,192

i.e. a slow alternation between the left and right sub-populations associated with long persistence193

times, see raster plots in Figure 2C.194

Comparison of experimental and synthetic ARTR dynamics across recordings195

We repeated the inference procedure described above for all our 32 recordings (carried out with196

𝑛 = 13 fish and 5 different water temperatures, see Appendix 2 Table 2) and obtained the same197

number of sets of biases and couplings. We first compared the distributions of the left-right mean198

activity 𝑚𝐿 = 1
𝑁𝐿

∑

𝑖∈𝐿 𝑠𝑖 and 𝑚𝑅 = 1
𝑁𝑅

∑

𝑖∈𝑅 𝑠𝑖 extracted from the data and from the Ising model.199

In order to do so, we used the Kullback-Leibler (KL) divergence, a classical metrics of the dissimi-200

larity between two probability distributions. The distribution of the KL divergences between the201

experimental test datasets (see Methods) and their associated Ising models is shown in green in202

Figure 3A. The KL values were found to be much smaller than those obtained between experimen-203

tal test datasets and Ising models trained from different recordings (red distribution). This result204

establishes that the Isingmodel quantitatively reproduces the ARTR activity distribution associated205

to each specimen and temperature.206

This agreement crucially relies on the presence of inter-neuronal couplings in order to repro-207

duce the pairwise correlations in the activity: a model with no connection (i.e. the independent208

model, see Methods) fitted to reproduce the neural firing rates, offers a very poor description of209

the data, see Figure 3A (dark blue distribution) and Appendix 2 Figure 3E-G.210

Finally, we examined to what extent the synthetic data could capture the neural persistence211

characteristics of the ARTR. The persistence times extracted from the data and from the MC simu-212

lations of the inferred models were found to be strongly correlated (Figure 3B, 𝑅 = 0.84). The MC213

dynamics thus captures the inter-individual variability and temperature dependence of the ARTR214

persistent dynamics.215

Spatial organization and temperature dependence of the Ising inferred parameters216

In all recordings, inferred ipsilateral couplings are found to be centered around a positive value (std217

= 0.12, mean = 0.062), while contralateral couplings are distributed around 0 (mean = -0.001, std218

= 0.10), see Appendix 2 Figure 4A-C. Still, a significant fraction of these contralateral couplings are219

strongly negative. We illustrated this point by computing the fraction of neuronal pairs (𝑖, 𝑗) that are220

contralateral for each value of the coupling 𝐽𝑖𝑗 or the Pearson correlation (Appendix 2 Figure 4D-E).221

Large negative values of couplings or correlations systematically correspond to contralateral pairs222

of neurons, whereas large positive values correspond to ipsilateral pairs of neurons.223

In addition, we found that the ipsilateral couplings 𝐽𝑖𝑗 decay, on average, exponentially with224

the distance between neurons 𝑖 and 𝑗 (Appendix 2 Figure 4F), in agreement with findings in other225

neural systems (Posani et al., 2018). Spatial structure is also present in contralateral couplings226

(Appendix 2 Figure 4G). Biases display a wide distribution ranging from -8 to 0 (std = 1.1, mean =227

-4.1, Appendix 2 Figure 5A-C), with no apparent spatial structure.228

We next examined the dependency of the Ising model parameters on the water temperature.229

To do so, for each fish, we selected two different water temperatures, and the corresponding sets230

of inferred biases and couplings, {ℎ𝑖, 𝐽𝑖𝑗}. We then computed the Pearson correlation coefficient𝑅2231

of the biases and of the couplingmatrices at these two temperatures (inset of Appendix 2 Figure 6).232

We sawno clear correlation between themodel parameters at different temperatures, as shownby233

the distribution of 𝑅2 computed across fish and across every temperatures (Appendix 2 Figure 6).234
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Mean-field study of the inferred model unveils the energy landscape underlying235

the ARTR dynamics236

Mean-field approximation to the data-driven graphical model237

While our data-driven Ising model reproduces the dependence of the persistence time-scale and238

activity distribution on thewater temperature, why it does so remains unclear. To understandwhat239

features of the coupling and local bias parameters govern these network functional properties, we240

turn to mean-field theory. This powerful and mathematically tractable approximation scheme is241

commonly used in statistical physics to study systems with many strongly interacting components242

(Ma, 1985). In the present case, it amounts to deriving self-consistent equations for the mean243

activities 𝑚𝐿 and 𝑚𝑅 of the left and right ARTR subpopulations (Figure 4A and Appendix 1).244

Within mean-field theory, each neuron 𝑖 is subject to (i) a local bias𝐻 , (ii) an excitatory coupling245

𝐽 > 0 from the neurons in the ipsilateral region and, (iii) a weak coupling 𝐼 from the neurons in246

the contralateral side. These three parameters were set as the mean values of, respectively, the247

inferred biases ℎ𝑖 and the inferred ipsilateral and contralateral interactions 𝐽𝑖𝑗 . In addition, we248

introduce an effective size 𝐾 of each region to take into account the fact that mean-field theory249

overestimates interactions by replacing them with their mean value. This effective number of neu-250

rons was chosen, in practice, to best match the results of the mean-field approach to the full Ising251

model predictions (see Appendix 1, Appendix 2 Table 2 and Appendix 2 Figure 7A-C). It was substan-252

tially smaller than the number𝑁 of recorded neurons. The selectionmethod used to delineate the253

ARTR populations may yield different number of neurons in the 𝐿 and 𝑅 regions (see Appendix 2254

Table 1). This asymmetry was accounted for by allowing the parameters𝐻 , 𝐽 and𝐾 defined above255

to take different values for the left and right sides.256

Mean-field theory thus allowed us to reduce the data-driven Ising model, whose definition re-257

quires 1
2
(𝑁𝐿 +𝑁𝑅)(𝑁𝐿 +𝑁𝑅 + 1) parameters {ℎ𝑖, 𝐽𝑖𝑗}, to a model depending on seven parameters258

(𝐻𝐿,𝐻𝑅, 𝐽𝐿, 𝐽𝑅, 𝐾𝐿, 𝐾𝑅, 𝐼 ) only (Figure 4A), whose values vary with the animal and the experimental259

conditions e.g. temperature (Appendix 2 Table 2).260

Free energy and Langevin dynamics261

The main outcome of the analytical treatment of the model is the derivation of the so-called free262

energy  (𝑚𝐿, 𝑚𝑅) as a function of the average activities 𝑚𝐿 and 𝑚𝑅, see Appendix 1. The free energy263

is a fundamental quantity as it controls the density of probability to observe an activation pattern264

(𝑚𝐿, 𝑚𝑅) through265

𝑃 (𝑚𝐿, 𝑚𝑅) ∝ 𝑒− (𝑚𝐿 ,𝑚𝑅) (2)
Consequently, the lower the free energy  , the higher the probability of the corresponding state266

(𝑚𝐿, 𝑚𝑅). In particular, the minima of the free energy define persistent states of activity in which267

the network can be transiently trapped.268

The free energy landscape can be used to simulate dynamical trajectories in the activity space269

(𝑚𝐿, 𝑚𝑅). To do so, we consider a Langevin dynamics in which the two activities 𝑚𝐿(𝑡), 𝑚𝑅(𝑡) evolve270

in time according to the stochastic differential equations,271

𝜏
𝑑𝑚𝐿

𝑑𝑡
(𝑡) = − 𝜕

𝜕𝑚𝐿

(

𝑚𝐿(𝑡), 𝑚𝑅(𝑡)
)

+ 𝜖𝐿(𝑡) , (3)

𝜏
𝑑𝑚𝑅

𝑑𝑡
(𝑡) = − 𝜕

𝜕𝑚𝑅

(

𝑚𝐿(𝑡), 𝑚𝑅(𝑡)
)

+ 𝜖𝑅(𝑡) , (4)
where 𝜏 is a microscopic time scale, and 𝜖𝐿(𝑡), 𝜖𝑅(𝑡) are white noise ‘forces’, ⟨𝜖𝐿(𝑡)⟩ = ⟨𝜖𝑅(𝑡)⟩ = 0,272

independent and delta-correlated in time: ⟨𝜖𝐿(𝑡)𝜖𝑅(𝑡′)⟩ = 0, ⟨𝜖𝐿(𝑡)𝜖𝐿(𝑡′)⟩ = ⟨𝜖𝑅(𝑡)𝜖𝑅(𝑡′)⟩ = 2 𝛿(𝑡 − 𝑡′).273

This Langevin dynamical process ensures that all activity configurations (𝑚𝐿, 𝑚𝑅)will be sampled in274

the course of time, with the expected probability as given by Eq. 2.275

Figure 4B shows the mean-field simulated dynamics of the left and right activities, 𝑚𝐿 and 𝑚𝑅,276

with the parameters corresponding to two Ising models at two different temperatures in Figure277
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2C. We observe, at low temperatures, transient periods of self-sustained activity (denoted by 𝑚ℎ𝑖𝑔ℎ)278

of one subcircuit, while the other has low activity (𝑚𝑙𝑜𝑤), see time trace 1 in Figure 4B. At high279

temperature, high activity in either (left or right) area can be reached only transiently, see trace 2280

in Figure 4B. These time traces are qualitatively similar to the ones obtained with the full inferred281

Ising model and in the data (Figures 2C and 2A, bottom).282

Barriers in the free-energy landscape and dynamical paths between states283

We show in Figure 4C the free-energy landscape in the (𝑚𝐿, 𝑚𝑅) plane for the same two conditions284

as in Figure 4B. The minimization conditions 𝜕
𝜕𝑚𝐿

= 𝜕
𝜕𝑚𝑅

= 0 provide two implicit equations over285

the activities 𝑚∗
𝐿, 𝑚

∗
𝑅 corresponding to the preferred states. For most datasets we found four local286

minima: the low-activity minimum (𝑚∗
𝐿, 𝑚

∗
𝑅) = (𝑚𝑙𝑜𝑤, 𝑚𝑙𝑜𝑤), two asymmetric minima, (𝑚ℎ𝑖𝑔ℎ, 𝑚𝑙𝑜𝑤) and287

(𝑚𝑙𝑜𝑤, 𝑚ℎ𝑖𝑔ℎ), in which only one subregion is strongly active, and a state in which both regions are288

active, (𝑚ℎ𝑖𝑔ℎ, 𝑚ℎ𝑖𝑔ℎ). The low-activity minimum (𝑚𝑙𝑜𝑤, 𝑚𝑙𝑜𝑤) is the state of lowest free energy, hence289

with largest probability, while the high-activity state (𝑚ℎ𝑖𝑔ℎ, 𝑚ℎ𝑖𝑔ℎ) has amuch higher free energy and290

much lower probability. The free energies of the asymmetric minima (𝑚ℎ𝑖𝑔ℎ, 𝑚𝑙𝑜𝑤) and (𝑚𝑙𝑜𝑤, 𝑚ℎ𝑖𝑔ℎ)291

lie in between, and their values strongly vary with the temperature.292

The Langevin dynamics defines the most likely paths (see Methods) in the activity plane joining293

one preferred state to another, e.g. from (𝑚ℎ𝑖𝑔ℎ, 𝑚𝑙𝑜𝑤) to (𝑚𝑙𝑜𝑤, 𝑚ℎ𝑖𝑔ℎ) as shown in Figure 4C. Along294

these optimal paths the free energy  reaches local maxima, defining barriers to be overcome in295

order for the network to dynamically switchover (purple and green arrows in Figure 4C). The theory296

of activated processes stipulates that the average time to cross a barrier depends exponentially297

on its height Δ :298

𝑡(Δ ) ∼ 𝜏 × 𝑒Δ , (5)
up to proportionality factors of the order of unity (Langer, 1969). Thus, the barrierΔ(

(𝑚ℎ𝑖𝑔ℎ, 𝑚𝑙𝑜𝑤) →299

(𝑚𝑙𝑜𝑤, 𝑚𝑙𝑜𝑤)
) shown in dark green in Figure 4D controls the time needed for the ARTR to escape the300

state in which the left region is active while the right region is mostly silent, and to reach the all-low301

state. The barrier Δ (

(𝑚𝑙𝑜𝑤, 𝑚𝑙𝑜𝑤) → (𝑚ℎ𝑖𝑔ℎ, 𝑚𝑙𝑜𝑤)
) shown in purple is related to the rising time from302

the low-low activity state to the state where the right region is active, and the left one is silent.303

Withinmean-field theory, we estimated thedependence in temperature of these barriers height304

(Figure 4E and Appendix 2 Figure 7D) and of the associated persistence times (Figure 4F). While sub-305

stantial variations from animal to animal were observed, we found that barriers for escaping the306

all-low state and switching to either 𝐿,𝑅 region increase with the water temperature. As a conse-307

quence, at high temperature, only the low-low activity state is accessible in practice to the system,308

and the mean activity remains low, see Appendix 2 Figure 2D, with fluctuations within the low-low309

state. Conversely, at low water temperatures, barriers separating the low-low and the active high-310

low or low-high states are weaker, so the latter become accessible. As a first consequence, the311

mean activity is higher at low temperature (Appendix 2 Figure 2D). Furthermore, the system re-312

mains trapped for some time in such an active state before switching to the other side, e.g. from313

high-low to low-high. This is the origin of the longer persistence time observed at low temperature.314

Ising andmean-fieldmodels withmodified biases capture the ARTR visually-driven315

dynamics316

While the analysis above focused on the spontaneous dynamics of the ARTR, our data-driven ap-317

proach is also capable of explaining activity changes induced by external and time-varying inputs.318

In order to illustrate this capacity, we decided to re-analyze a series of experiments, reported in319

Wolf et al. (2017), in whichwe alternatively illuminated the left and right eye of the larva, for periods320

of 15 to 30 s, while monitoring the activity of the ARTR (Figure 5A) with a 2-photon light-sheet mi-321

croscope. During and after each stimulation protocol, 855 s of spontaneous activity was recorded322

on 𝑛 = 6 fish. We found that the ARTR activity could be driven by this alternating unilateral visual323

stimulation: the right side of the ARTR tended to activate when the right eye was stimulated and324

vice-versa (Figure 5B).325
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To analyze these datasets we first followed the approach described in Figure 2B, and inferred,326

for each fish, the sets of biases ℎ𝑖 and interactions 𝐽𝑖𝑗 using the spontaneous activity recording only.327

In a second step, we exploited recordings of the visually-driven activity to infer additional biases 𝛿ℎ𝑖328

to the neurons, while keeping the interactions 𝐽𝑖𝑗 fixed (Figure 5C); in practicewedefined two sets of329

additional biases, 𝛿⃖⃖ℎ𝑖 and 𝛿 ⃖⃗ℎ𝑖, corresponding, respectively, to leftward and rightward illuminations.330

The underlying intuition is that biases encode inputs due to the stimulation, while the interactions331

between neurons can be considered as fixed over the experimental time scale. This simplified332

model reproduces the low order statistics of the data under stimulation (Appendix 2 Figure 8A-B).333

The inferred values of the additional biases, averaged over the entire sub-population (right or334

left), are shown in Figure 5D for both ipsiversive or contraversive stimulation. The results show335

that light stimulation produces a strong increase of excitability for the ipsilateral neurons and a336

smaller one for contralateral neurons.337

We then simulated the visual stimulation protocol by sampling the Isingmodel while alternating338

the model parameters, from {ℎ𝑖 + 𝛿 ⃖⃗ℎ𝑖, 𝐽𝑖𝑗} to {ℎ𝑖 + 𝛿⃖⃖ℎ𝑖}, 𝐽𝑖𝑗}, and back. The simulated dynamics of339

the model (Figure 5E) qualitatively reproduces the experimental traces of the ARTR activity (Figure340

5B). In particular, the model captures the stabilizing effect of unilateral visual stimuli, which results341

in a large activation of the ipsilateral population, which in turn silences the contralateral subcircuit342

due to the negative 𝐼 coupling between both. This yields the anti-correlation between the left and343

right sides clearly visible in both the experimental and simulated traces, and much stronger in the344

case of spontaneous activity (Appendix 2 Figure 8C to F).345

To better understand the Ising dynamics under visual stimulation we resort, as previously, to346

mean-field theory. For asymmetric stimulation our mean-field model includes, during the periods347

of stimulation, extra biases Δ𝐻𝐿 and Δ𝐻𝑅 over neurons in, respectively, the left and right areas348

(Figure 5C), while the couplings 𝐽 and 𝐼 remain unchanged. We show in Figure 5F the free-energy349

 as a function of𝑚𝐿, 𝑚𝑅 for an example fish. Due to the presence of the extra bias the landscape is350

tiltedwith respect to its no-stimulation counterpart (Figure 5G), entailing that the left- or right-active351

states are muchmore likely, and the barrier separating them from the low-low state is much lower.352

As a consequence, the time necessary for reaching the high-activity state is considerably reduced353

with respect to the no-stimulation case, see Eq. 5. These results agree with the large probability354

of the high-activity states and the fast rise to reach these states in the Ising traces in Figure 5E,355

compare with Figure 2C.356

Discussion357

Modelling high-dimensional data, such as extensive neural recordings, imposes a trade-off be-358

tween accuracy and interpretability. Although highly sophisticatedmachine-learningmethodsmay359

offer quantitative and detailed predictions, they might in turn prove inadequate to elucidate fun-360

damental neurobiological mechanisms. Here we introduced a data-driven network model, whose361

biologically-grounded architecture and relative simplicity make it both quantitatively accurate and362

amenable to detailed mathematical analysis. We implemented this approach on functional record-363

ings performed at various temperature of a key population of neurons in the zebrafish larvae brain,364

called ARTR, that drives the orientation of tail bouts and gaze (Dunn et al., 2016; Wolf et al., 2017;365

Ramirez and Aksay, 2021; Leyden et al., 2021).366

First, we demonstrate that the persistent time-scale of the ARTR endogenous dynamics de-367

creases with the temperature, mirroring the thermal modulation of turn direction persistence in368

freely-swimming behavioral assays. We then demonstrate that our energy-based model not only369

captures the statistics of the different activity patterns, but also numerically reproduces the en-370

dogenous pseudo-oscillatory network dynamics, and their thermal dependence. The inferred Ising371

model is then analyzed within the so-called mean-field formulation, in which the coupling and bias372

parameters are replaced by their values averaged over the left and right subpopulations. It yields a373

two-dimensional representation of the network energy landscape where the preferred states and374

associated activation barriers can be easily evaluated. We show how this combined data-driven375
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and theoretical approach can be applied to analyze the ARTR response to transient visual stimula-376

tion. The latter tilts the energy landscape, strongly favoring some states over others.377

Origin and functional significance of the temperature dependence of the ARTR dy-378

namics379

The brains of cold-blooded animals need to operate within the range of temperature that they ex-380

perience in their natural habitat, e.g. 18–33°C for zebrafish (Gau et al., 2013). This is a peculiarly381

stringent requirement since most biophysical processes are dependent on the temperature. In382

some rare instances, regulation mechanisms might stabilize the circuit dynamics in order to pre-383

serve its function, as best exemplified by the pyloric rhythm of the crab whose characteristic phase384

relationship is maintained over an extended temperature range (Tang et al., 2010). Yet in general,385

an increase in temperature tends to increase the frequency of oscillatory processes (Robertson and386

Money, 2012). The observed acceleration of the ARTR left/right alternation with increasing temper-387

ature, could thus directly result from temperature-dependent cellular mechanisms. Furthermore,388

one cannot rule out the possibility that the ARTR dynamics could also be indirectly modulated by389

temperature via thermal-dependent descending neuromodulatory inputs.390

As a result of this thermal modulation of the neuronal dynamics, many cold-blooded animals391

also exhibit temperature-dependence of their behavior (Long and Fee, 2008; Neumeister et al.,392

2000; Stevenson and Josephson, 1990). Here we were able to quantitatively relate the two pro-393

cesses (neuronal and motor) by demonstrating that an increase in temperature consistently alters394

the pattern of spontaneous navigation by increasing the left/right alternation frequency. Interpret-395

ing the functional relevance of thismodification of the swimming pattern is tricky, sincemany other396

features of the animal’s navigation are concurrently impacted by a change in temperature, such397

as the bout frequency, turning rate, turn amplitude, etc. Nevertheless, we were able to show in a398

recent study that this thermal dependence of the swimming kinematic endows the larva with basic399

thermophobic capacity, thus efficiently protecting them from exposure to the hottest regions of400

their environment (Le Goc et al., 2021).401

Ising model is not trained to reproduce short-term temporal correlations, but is402

able to predict long-term dynamics403

The graphical model we introduced in this work was trained to capture the low-order statistics of404

snapshots of activity. Because graphical models are blind to the dynamical nature of the popu-405

lation activity, it is generally believed that they cannot reproduce any dynamical feature. Never-406

theless, here we demonstrate that our model can quantitatively replicate aspects of the network407

long-term dynamics such as the slow alternation between the two preferred states. To better un-408

derstand this apparent paradox, it is necessary to distinguish short and long time scales. At short409

time scale, defined here as the duration of a time bin (of the order of a few 100 ms), the model410

cannot capture any meaningful dynamics. The Monte Carlo algorithm we used to generate activity411

is an abstract and arbitrary process, and the correlations it produces between successive time bins412

can not reproduce the ones in the recording data. Capturing the short-term dynamics would re-413

quire a biologically-grounded model of the cell-cell interactions, or, at the very least, to introduce414

parameters capturing the experimental temporal correlations over this short time scale (Marre415

et al., 2009;Mézard and Sakellariou, 2011).416

Yet, the inability of the Ising model to reproduce short time dynamical correlations does not417

hinder its capacity to predict long-time behavior. The separation between individual neuronal pro-418

cesses (taking place over time scales smaller than 100 ms) and network-scale activity modulation,419

which happens on time scales ranging from 1 to 20 s is here essential. The weak dependence of420

macroscopic processes on microscopic details is in fact well known in many fields outside neuro-421

science. A classical example is provided by chemical reactions, whose kinetics are often controlled422

by a slow step due to the formation of the activated complex and to the crossing of the associated423

energy barrier Δ𝐸, requiring a time proportional to 𝑒Δ𝐸∕(𝑘𝑇 ). All fast processes, whose modelling424
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can be very complex, contribute an effective microscopic time scale 𝜏 in Arrhenius’ expression for425

the reaction time, see Eq. 5. In this respect, what really matters to predict long time dynamical426

properties is a good estimate of Δ𝐸, or, equivalently, of the effective energy landscape felt by the427

system. This is precisely what the Isingmodel is capable of doing. This explains why, even if tempo-428

ral information are not explicitly included in the training process, our model may still be endowed429

with a predictive power over the long-term network dynamics.430

Energy-landscape-based mechanism for persistence431

In a preceding article (Wolf et al., 2017), we developed a mathematical model of the ARTR in which432

the left and right ARTR population were represented by a single unit. To account for the ARTR433

persistent dynamics, an intrinsic adaptation time-scale had to be introduced in an ad-hoc fashion.434

While the mean-field version of the inferred Ising model shows some formal mathematical similar-435

ity with this two-unit model, it differs in a fundamental aspect. Here, the slow dynamics reflects436

the itinerant exploration of a two-dimensional energy landscape (Figure 4C), for which the barriers437

separating metastable states scale linearly with the system size. The time to cross these barriers in438

turn grows exponentially with the system size, as prescribed by Arrhenius law, and can be orders439

of magnitude larger than any single-neuron relaxation time. Persistence is therefore an emerging440

property of the neural network.441

Mean-field approximation and beyond442

The mean-field approach, through a drastic simplification of the Ising model, allows us to unveil443

the fundamental network features controlling its coarse-grained dynamics. Within this approxima-444

tion, the distributions of couplings and of biases are replaced by their average values. The hetero-445

geneities characterizing the Ising model parameters (Appendix 2 Figure 4 and Appendix 2 Figure446

5), and ignored in the mean-field approach, may however play an important role in the network447

dynamics.448

In the Ising model, the ipsilateral couplings are found to be broadly distributed such as to pos-449

sess both negative and positive values. This leads to the presence of so-called frustrated loops,450

that is, chains of neurons along which the product of the pairwise couplings is negative. The states451

of activities of the neurons along such loops cannot be set in a way that satisfies all the excitatory452

and inhibitory connections, hence giving rise to dynamical instabilities in the states of the neurons.453

The absence of frustrated loops in the network (Figure 4A) stabilizes and boosts the activity, an454

artifact we had to correct for in our analytical treatment by introducing an effective number of455

neurons 𝐾 , much smaller than the total numbers of neurons 𝑁s. Neglecting the variability of the456

contralateral couplings also constitutes a drastic approximation of the mean field approach. This457

is all the more true that the average contralateral coupling 𝐼 happens to be small compared to its458

standard deviation.459

Couplings are not only broadly distributed but also spatially organized. Ipsilateral couplings 𝐽𝑖𝑗460

decaywith the distance betweenneurons 𝑖 and 𝑗 (Appendix 2 Figure 4F). Similarly, contralateral cou-461

plings show strong correlations for short distances between the contralateral neurons (Appendix462

2 Figure 4G). The existence of a local spatial organization in the couplings is not unheard of in463

computational neuroscience, and can have important functional consequences. it is for instance464

at the basis of ring-like attractor models and their extensions to 2 or 3 dimensions (Tsodyks and465

Sejnowski, 1995). Combined with the presence of variable biases ℎ𝑖, short-range interactions can466

lead to complex propagation phenomena, intensively studied in statistical physics in the context of467

the Random Field Ising Model. (Schneider and Pytte, 1977; Kaufman et al., 1986). As the most ex-468

citable neurons (with the largest biases) fire they excite their neighbors, who in turn become active,469

triggering the activation of other neurons in their neighborhood. Such an avalanche mechanism470

could explain the fast rise of activity in the left or right region, from low- to high-activity state.471
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Interpretation of the functional connectivity472

The inferred functional couplings 𝐽𝑖𝑗 ’s are not expected to directly reflect the corresponding struc-473

tural (synaptic) connectivity. However, their spatial distribution appears to be in linewith the known474

ARTR organization (Dunn et al., 2016; Kinkhabwala et al., 2011) characterized by large positive (exci-475

tatory) interactions within the left and right population, and by the presence of negative (inhibitory)476

contralateral interactions. Although the contralateral couplings are found to be, on average, almost477

null, compared to the ipsilateral excitatory counterparts, they drive a subtle interplay between the478

left and right regions of the ARTR.479

Our neural recordings demonstrate a systematic modulation of the ARTR dynamics with the480

water temperature, in quantitative agreement with the thermal-dependance of the exploratory481

behavior in freely-swimming assays. The model correctly captures this thermal modulation of the482

ARTR activity, and in particular the decay of the persistence time with the temperature. This owes483

to a progressive change in the values of both the couplings and the biases, which together de-484

form the energy landscape andmodulate the energy barriers betweenmetastable states. The fact485

that the inferred functional connectivity between neurons does not display simple temperature-486

dependence is not unexpected as different membrane currents can have different temperature487

dependence (Partridge and Connor, 1978).488

In addition, as shown inAppendix 2 Table 2, the inferredparameters largely vary across datasets.489

This variability is partially due to the difficulty to separately infer the interactions 𝐽𝑖𝑗 and the biases490

ℎ𝑖, a phenomenon not specific to graphical model but also found with other neural e.g. Integrate-491

and-Fire network models (Monasson and Cocco, 2011). This issue can be easily understood within492

mean-field theory. For simplicity let us neglect the weak contralateral coupling 𝐼 . The mean ac-493

tivity 𝑚 of a neuron then depends on the total ‘input’ 𝐽 𝑚 + 𝐻 it receives, which is the sum of the494

bias 𝐻 and of the mean ipsilateral activity 𝑚, weighted by the recurrent coupling 𝐽 . Hence, the495

combination 𝐽 𝑚 +𝐻 is more robustly inferred than 𝐻 and 𝐽 taken separately (Appendix 2 Figure496

7E).497

The capacity to quantitatively capture subtle differences in the spontaneous activity induced by498

external cues is an important asset of our model. Recent studies have shown that spontaneous be-499

havior in zebrafish larvae is not time-invariant but exhibits transitions between different regimes,500

lasting over minutes and associated with specific brain-states. These transitions can have no ap-501

parent cause (Le Goc et al., 2021) or be induced by external (e.g. stimuli(Andalman et al., 2019)) or502

internal cues (e.g. hunger states (Marques et al., 2019)). Although they engage brain-wide changes503

in the pattern of spontaneous neural dynamics, they are often triggered by the activation of neuro-504

modulatory centers such as the habenula-dorsal raphe nucleus circuit (Corradi and Filosa, 2021).505

Training Isingmodels in various conditionsmay help decipher how such neuromodulation impacts506

the network functional couplings leading to distinct dynamical regimes of spontaneous activity.507

Data-driven modelling and metastability508

With its slow alternating activity and relatively simple architecture, the ARTR offers an ideally suited509

circuit to test the capacity of Isingmodels to capture network-driven dynamics. The possibility to ex-510

perimentally modulate the ARTR persistence time-scale further enabled us to evaluate the model511

ability to quantitatively represent this slow process. The ARTR is part of a widely distributed hind-512

brain network that controls the eye horizontal saccadic movements, and which includes several513

other neuronal populations whose activity is tuned to the eye velocity or position (Joshua and Lis-514

berger, 2015; Wolf et al., 2017). A possible extension of the model would consist in incorporating515

these nuclei in order to obtain a more complete representation of the oculomotor circuit. Beyond516

this particular functional network, a similar data-driven approach could be implemented to cap-517

ture the slow concerted dynamics that characterize numerous neural assemblies in the zebrafish518

brain (van der Plas et al., 2021).519

The importance of metastable states in cortical activity in mammals has been emphasized in520

previous studies as a possible basis for sequence-based computation (Harvey et al., 2012;Brinkman521
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et al., 2022). Our model suggests that these metastable states are shaped by the connectivity of522

the network, and are naturally explored during ongoing spontaneous activity. In this respect, the523

modification of the landscape resulting from visual stimulation, leading to a sharp decrease in the524

barrier separating the states is reminiscent of the acceleration of sensory coding reported inMaz-525

zucato et al. (2019). Our principled data-driven modeling could be useful to assess the generality526

of such metastable-state-based computations and of their modulation by sensory inputs in other527

organisms.528

Methods and Materials529

All data and new codes necessary to reproduce the results reported in this work can be accessed530

from (https://hub.bio.ens.psl.eu/index.php/s/aMD6e7PsiRZ2pdM).531

Key Ressources table532

ACE

Reagent type 
(species) or
resource

Designation Source or 
reference

Identifiers Additional 
information

Tg(elavl3:H2B-
GCaMP6s)

Vladimirov et al.
(2014) 

Tg(elavl3:H2B-
GCaMP6f)

Quirin et al.
(2016)

BSDSoftware, algorithm Blind Sparse 
Deconvolution

Tubiana,Wolf,
Panier,Debre
geas (2020)

CMTKSoftware, algorithm Computational 
Morphometry 
Toolkit

https://www.nitrc.org
/projects/cmtk/

Software, algorithm Adaptive 
Cluster 
Expansion

strain, strain background 
(Danio rerio)

Barton, 
Cocco, 2013

strain, strain background 
(Danio rerio)

533

Zebrafish lines and maintenance534

All animals subjects were Zebrafish (Danio rerio), aged 5 to 7 days post-fertilization (dpf). Larvae535

were reared in Petri dishes in embryo medium (E3) on a 14/10h light/dark cycle at 28°C, and were536

fed powdered nursery food (GM75) every day from 6dpf.537

Calcium imaging experiments were conducted on nacre mutants that were expressing either538

the calcium indicator GCaMP6f (12 fish) or GCaMP6s (1 fish) in the nucleus under the control of the539

nearly pan-neuronal promoter Tg(elavl3:H2B-GCaMP6). Both lines were provided by Misha Ahrens540

and published in Vladimirov et al. (2014) (H2B-GCaMP6s) and Quirin et al. (2016) (H2B-GCaMP6f).541

All experiments were approved by Le Comité d’Éthique pour l’Expérimentation Animale Charles542

Darwin (02601.01).543

Behavioral assays544

The behavioral experiments and pre-processing have been described in details elsewhere (Le Goc545

et al., 2021). Shortly, it consists in a metallic pool regulated in temperature with two Peltier el-546

ements, recorded in uniform white light from above at 25Hz. Batch of 10 animals experienced547

30min in water at either 18, 22, 26, 30 or 33°C (10 batches of 10 fish, involving 170 different individ-548

uals, were used). Movies were tracked with FastTrack (Gallois and Candelier, 2021), and MATLAB549

(The Mathworks) is used to detect discrete swim bouts from which the differences of orientation550

between two consecutive events are computed, referred to as turn or reorientation angles 𝛿𝜃.551

Turn angles distributions could be fitted as the sumof two distributions (Gaussian andGamma),552

whose intersection was used to define an angular threshold to categorize events into forward (F),553

left turn (L) or right turn (R, Figure 1E). This threshold was found to be close to 10 degrees for all554

tested temperatures.555
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Then we ternarized 𝛿𝜃 values, based on F, L or R classification (Figure 1F) and computed the556

power spectrum of the binary signals defined from symbols L and R only, with the periodogram557

MATLAB function andaveragedby temperature (Figure 1G). The outcomewas fitted to the Lorentzian558

expression corresponding to a memory-less equiprobable two-state process (Odde and Buettner,559

1998):560

𝑆 (𝑓 ) ∝
2𝑘𝑓𝑙𝑖𝑝

4𝑘2
𝑓𝑙𝑖𝑝 + (2𝜋𝑓 )2

, (6)
where 𝑘𝑓𝑙𝑖𝑝 is the rate of transition from one state to another. The inverse of the fitted flipping rate561

𝑘𝑓𝑙𝑖𝑝 represents the typical time spent in the same orientational state, i.e. the typical time taken to562

switch turning direction.563

Light-sheet functional imaging of spontaneous activity564

Volumetric functional recordings were carried out using custom-made one-photon light-sheet mi-565

croscopes whose optical characteristics have been detailed elsewhere (Panier et al., 2013). Larvae566

were mounted in a 1mm diameter cylinder of low melting point agarose at 2% concentration.567

Imaged volume corresponded to 122 ± 46 𝜇m in thickness, split into 16 ± 4 slices (mean ± s.d.).568

Recordings were of length 1392 ± 256 seconds with a brain volume imaging frequency of 6 ± 2 Hz569

(mean ± s.d.).570

Image pre-processing, neurons segmentation and calcium transient (Δ𝐹∕𝐹 ) extraction were571

performed offline using MATLAB, according to the workflow previously reported (Panier et al.,572

2013;Wolf et al., 2017;Migault et al., 2018).573

A Peltier module is attached to the lower part of the pool (made of tin) with thermal tape574

(3M). A type T thermocouple (Omega) is placed near the fish head (< 5mm) to record the fish575

surrounding temperature. The signal from a thermocouple amplifier (Adafruit) is used in a PID576

loop implemented on an Arduino board, which mitigate the Peltier power to achieve the prede-577

fined temperature target, stable at ±0.5°𝐶 . The temperature regulation softwares and electron-578

ics design are available on Gitlab under a GNU GPLv3 licence (https://gitlab.com/GuillaumeLeGoc/579

arduino-temperature-control).580

The ARTR neurons were selected using a method described elsewhere (Wolf et al., 2017). First,581

a group of neurons wasmanually selected on a given slice based on amorphological criterion such582

that the ARTR structure (ipsilateral correlations and contralateral anticorrelation) is revealed. Then,583

neurons showing Pearson’s correlation (anti-correlation) higher than 0.2 (less than -0.15, respec-584

tively) are selected, manually filtering them on a morphological criterion. Those neurons are then585

added to the previous ones, whose signals are used to find neurons from the next slice and so on586

until all slices are treated.587

For fish that were recorded at different temperature, to ensure that the same neurons are588

selected, we used the Computational Morphometry Toolkit (CMTK, https://www.nitrc.org/projects/589

cmtk/) to align following recordings onto the first one corresponding to the same individual. Re-590

sulting transformations are then applied to convert neurons coordinates in a consistent manner591

through all recordings involving the same fish.592

Visually-driven recordings593

Volumetric functional recordings under visual stimulation were carried using our two-photon light-594

sheetmicroscopedescribed inWolf et al. (2015). The stimulation protocolwas previously explained595

in Wolf et al. (2017): two LEDs were positioned symmetrically outside of the chamber at 45° and596

4.5 cm from the fish eyes, delivering a visual intensity of 20 𝜇W/cm2. We alternately illuminated 17597

times each eye for 10s, 15s, 20s, 25s and 30s while performing two-photon light-sheet brain-wide598

functional imaging. Synchronization between themicroscope and the stimulation set-up was done599

using a D/A card (NI USB-6259 NCS, National Instruments) and a LabVIEW program. Brain volume600

image frequency was of 1Hz on the 6 recorded fish. Recordings last for 4500s, 856s of wich is601
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spontaneous activity. We extracted the ARTR neurons following the same procedure described602

above, yielding 89 ± 54 neurons (mean ± s.d.).603

Time constants definitions604

For the flipping rates (Figure 1D), we defined the time-dependent signed activity of the ARTR (Figure605

1B) through606

𝜎(𝑡) = sign(𝑚𝐿(𝑡) − 𝑚𝑅(𝑡)
)

, (7)
where 𝑚𝐿,𝑅(𝑡) = 1

𝑁𝐿,𝑅

∑

𝑖∈𝐿,𝑅 𝑠𝑖(𝑡) are the average activities in the L,R regions. A power spectrum607

density is estimated for each signal with the Thomson’s multitaper method through the pmtm608

MATLAB function (time-halfbandwidth product set to 4). The power spectrum densities were then609

fitted with a Lorentzian spectrum, see Eq. 6 and Figure 1G.610

ARTR left and right persistence times (Figure 3B) are defined as the time𝑚𝐿 and𝑚𝑅 signals spend611

consecutively above an arbitrary threshold set at 0.1. Left and right signals are treated altogether.612

Changing the threshold does induce a global offset but does not change the observed effect of613

temperature, the relation with 𝑚𝐿 and 𝑚𝑅 mean signals, nor the relation with the persistence times614

of the synthetic signals. The persistence times of the synthetic signals, generated with the Ising615

models, are computedusing the sameprocedure: we compute the time𝑚𝐿 and𝑚𝑅 synthetic signals616

spend consecutively above an arbitrary threshold set at 0.1, we then normalize these durations by617

the corresponding experimental frame rate in order to compare the different recordings (Figure618

3B). For the mean-field simulated dynamics of the left and right activities, we also follow the same619

strategy in order to compute the persistence times displayed in Figure 4F.620

Inference of Ising model from neural activity621

From spontaneous activity to spiking data, to biases and connectivity622

For each recording (animal and/or temperature) approximate spike trains were inferred from the623

fluorescence activity signal using the Blind Sparse Deconvolution algorithm (Tubiana et al., 2020).624

This algorithm features automatic (fully unsupervised) estimation of the hyperparameters, such as625

spike amplitude, noise level and rise and decay time constants, but also an automatic thresholding626

for binarizing spikes such as to maximize the precision-recall performance. The binarized activity627

of the𝑁 recorded neurons was then described for each time bin 𝑡, into a𝑁-bit binary configuration628

𝐬𝑡, with , 𝑠𝑖 (𝑡) = 1 if neuron 𝑖 is active in bin 𝑡, 0 otherwise.629

The functional connectivity matrix 𝐽ij and the biases ℎ𝑖 defining the Ising probability distribution630

over neural configurations, see Eq. 1, were determined such that the pairwise correlations and631

average activities computed from the model match their experimental counterparts. In practice,632

we approximately solved this hard inverse problem using the Adaptative Cluster Expansion and633

the Monte-Carlo learning algorithms described in Cocco and Monasson (2011) and in Barton and634

Cocco (2013). The full code of the algorithms can be downloaded from the GitHub repository: https:635

//github.com/johnbarton/ACE/.636

Monte Carlo sampling637

In order to generate synthetic activity, we resorted to Gibbs sampling, a class of Monte Carlo638

Markov Chain method, also known as Glauber dynamics. At each time step 𝑘, a neuron, say, 𝑖,639

is picked up uniformly at random, and the value of its activity is updated from 𝑠𝑘𝑖 to 𝑠𝑘+1𝑖 = 0, 1640

according to the probability641

𝑃
(

𝑠𝑘+1𝑖 ∣ 𝑠𝑘𝑗≠𝑖
)

=
exp

(

𝑠𝑘+1𝑖 (ℎ𝑖 +
∑

𝑗 𝐽𝑖𝑗 𝑠𝑘𝑗 )
)

1 + exp
(

ℎ𝑖 +
∑

𝑗 𝐽𝑖𝑗 𝑠
𝑘
𝑗

) (8)

which depends on the current activities of the other neurons. As this updating fulfills detailed642

balance the probability distribution of 𝐬𝐤 eventually converges to 𝑃 in Eq. 1. A Monte Carlo round643

is defined as the number of Monte Carlo steps divided by the total number of neurons, 𝑁 . The644
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code used can be accessed from the link provided at the beginning of the Materials and Methods645

section.646

Cross-validation and independent model647

We cross-validated the Ising models (see Appendix Figure 3) dividing the data sets in two parts: for648

each experiment, 75% of each data set is used as a training set and the remaining 25% is used as649

a test set. Each training set is used to infer an Ising model. We then compare the mean activity650

and covariance of the test set with the one computed from the simulated data generated by the651

models (Appendix 2 Figure 3A-B). We also show the relative variation of the models’ log likelihood652

computed on the training data and the test data (Appendix 2 Figure 3C).653

In addition, as a null hypothesis, we decided to compare the Ising models fitted on the data with654

the independent model. The independent model depends on the mean activities ⟨𝑠𝑖⟩data only, and655

reads656

𝑃 (𝐬) = 1
𝑍

exp

(

∑

𝑖
ℎ𝑖 𝑠𝑖

)

, (9)
We demonstrate in Appendix 2 Figure 3E-F the inefficiency of the independent models, comparing657

the mean activity and covariance of the test set with the one computed from the simulated data658

generated by the independent models. We also show the relative variation, between the Ising and659

the independent models, of the log likelihood computed on the training data and the test data660

(Appendix 2 Figure 3G).661

Real data and models comparison662

To quantify the quality of the log-probability landscapes reproduction by the Ising models (Figure663

3A), we used the Kullback-Leibler divergence between (1) a dataset 𝑖 and the synthetic signals gen-664

erated with the model trained on that dataset 𝑖 (green) and (2) the dataset 𝑖 with synthetic signals665

generated with every other models (red). With 𝑐𝑖 the count in the two-dimensional bin 𝑖 (10×10666

bins used) and 𝛼 a pseudocount (set to 1), the probability in bin 𝑖 is defined as 𝑃𝑖 =
𝑐𝑖+𝛼

∑

𝑗 (𝑐𝑗+𝛼)
. The667

Kullback-Leibler divergence between a data/model pair is then defined as668

𝐷𝐾𝐿 =
∑

𝑖
𝑃𝑑𝑎𝑡𝑎,𝑖 log10

( 𝑃𝑑𝑎𝑡𝑎,𝑖

𝑃𝑚𝑜𝑑𝑒𝑙,𝑖

)

. (10)
We follow the exact same procedure in order to compare the independent model and their cor-669

responding datasets (Figure 3A in blue). In this case we use synthetic signals generated with the670

independent model to define 𝑃𝑚𝑜𝑑𝑒𝑙,𝑖.671

Inference of additional biases from visually-driven activity recordings672

For the visually-driven activity recordings, we infer the additional biases 𝛿⃖⃖ℎ𝑖 from the recordings of673

the ARTR activity (Figure 5D) during, for example, the leftward light stimulations as follows. Let ⃖⃖𝐵⃖674

the number of time bins 𝑡 = 1, 2, ..., ⃖⃖𝐵 in the recording, and 𝐬𝑡 the corresponding binarized activity675

configurations. We define, for each neuron 𝑖,676

𝜌𝑖(𝛿ℎ) =
⃖⃖𝐵
∑

𝑡=1

exp
(

ℎ𝑖 +
∑

𝑗 𝐽𝑖𝑗 𝑠𝑗(𝑡) + 𝛿ℎ
)

1 + exp
(

ℎ𝑖 +
∑

𝑗 𝐽𝑖𝑗 𝑠𝑗(𝑡) + 𝛿ℎ
) . (11)

𝜌𝑖(𝛿ℎ) represents the mean activity of neuron 𝑖, when subject to a global bias summing ℎ𝑖, the677

other neurons activities 𝑠𝑗(𝑡) weighted by the couplings 𝐽𝑖𝑗 , and an additional bias 𝛿ℎ, averaged678

over all the frames 𝑡 corresponding to left-sided light stimulation. It is a monotonously increasing679

function of 𝛿ℎ, which matches the experimental average activity 1
⃖⃖𝐵

⃖⃖𝐵
∑

𝑡=1
𝑠𝑖(𝑡) for a unique value of its680

argument. This value defines 𝛿⃖⃖ℎ𝑖. The same procedure was followed to infer the additional biases681

𝛿 ⃖⃗ℎ𝑖 associated to rightward visual stimulations.682
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Figure 1. Temperature-dependence of ARTR dynamics and turn direction persistence.
A, Morphological organization of the ARTR showing all identified neurons from 13 fish recorded with lighsheet calcium imaging. B, Example ofARTR binarized signal sign(𝑚𝐿 − 𝑚𝑅) (gray) along with the left (𝑚𝐿, red) and right (𝑚𝑅, blue) mean activities. C, Averaged power spectra of theARTR binarized signals, for the 5 tested temperatures. The dotted vertical lines indicate the signal switching frequencies 𝜈 as extracted from theLorentzian fit (solid lines). D, Temperature-dependence of 𝜈. The lines join data points obtained with the same larva. E, Swimming patterns inzebrafish larvae. Swim bouts are categorized into forward and turn bouts, based on the amplitude of the heading reorientation. Exampletrajectory: each dot corresponds to a swim bout; the color encodes the reorientation angle. F, The bouts are discretized as left/forward/rightbouts. The continuous binary signal represents the putative orientational state governing the chaining of the turn bouts. G, Power spectra of thediscretized orientational signal averaged over all animals for each temperature (dots). Each spectrum is fitted by a Lorentzian function (solidlines) from which we extract the switching rate 𝑘𝑓𝑙𝑖𝑝. H, Temperature dependence of 𝑘𝑓𝑙𝑖𝑝. Inset: relationship between 𝑘𝑓𝑙𝑖𝑝 (behavioral) and 𝜈(neuronal) switching frequencies. Bar sizes represent s.e.m. and the dashed line is the linear fit.
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Figure 2. Ising models reproduce characteristic features of the recorded activity.
A, (Top) Probability densities 𝑃 (𝑚𝐿, 𝑚𝑅), see Eq. 2, of the activity state of the circuit (obtained from the spiking inference of the calcium data), inlogarithmic scale and for two different fish and water temperatures 𝑇 = 22 and 𝑇 = 30◦C; Color encodes z-axis (same color bar for both). (Middle)10-min long raster plots of the activities of the left (red) and right (blue) subregions of the ARTR. (Bottom) Corresponding time traces of themean activities 𝑚𝐿 and 𝑚𝑅. B, Processing pipeline for the inference of the Ising model. We first extract from the recorded fluorescence signalsapproximate spike trains using a Bayesian deconvolution algorithm (BSD). The activity of each neuron is then "0" or "1". We then compute themean activity and the pairwise covariance of the data, from which we infer the parameters ℎ𝑖 and 𝐽𝑖𝑗 of the Ising model. Finally, we can generateraster plot of activity using Monte-Carlo sampling. C, Same as A for the two corresponding inferred Ising models. The raster plots correspond toMonte-Carlo-sampled activity, showing slow alternance between periods of high activity in the L/R regions. Here we show only two examples of aqualitative experimental vs synthetic signals comparison. We provide in the supplementary materials the same comparison for every recording.
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Figure 3. Comparison of model distributions and persistence times across fish and water temperatures.
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Figure 4. Mean-field approximation of the inferred Ising model.
A, Schematic view of the mean-field Ising model. B, Examples of simulated 𝑚𝐿 and 𝑚𝑅 signals of the mean-field dynamical equations for two setsof parameters that correspond to fish ID 5 at two water temperatures (22°C and 30°C), see Table 1. C, Free-energy landscapes in the (𝑚𝐿,𝑚𝑅)plane computed with the mean-field model. These data correspond to the same sets of parameters as in panel B. Colored circles denotemetastable states, and the line of black arrows indicates the optimal path between (𝑚𝑙𝑜𝑤, 𝑚𝑙𝑜𝑤) and (𝑚𝑙𝑜𝑤,𝑚ℎ𝑖𝑔ℎ) states. D Schematic view of thefree-energy along the 𝑚𝑅 axes. The arrows denote the energy barriers Δ associated with the various transitions. The dark green arrow denotes
Δ

(

(𝑚ℎ𝑖𝑔ℎ, 𝑚𝑙𝑜𝑤) → (𝑚𝑙𝑜𝑤, 𝑚𝑙𝑜𝑤)
); the purple arrow denotes Δ (

(𝑚𝑙𝑜𝑤, 𝑚𝑙𝑜𝑤) → (𝑚ℎ𝑖𝑔ℎ, 𝑚𝑙𝑜𝑤)
). E, Values of the free-energy barriers as a function oftemperature. Error bars are standard error of the mean. F, Persistence time of the mean-field ARTR model for all fish and runs at differentexperimental temperatures. Each dot refers to one fish at one temperature, colors encode temperature.
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Appendix 1825

Mean-field theory for the ARTR activity826

Derivation of the free energy827

We consider an Ising model with 𝑁𝐿 and 𝑁𝑅 neurons in, respectively, the left and right
regions. Each neuron activity variable can take two values, 𝑖 = 0, 1, corresponding to silent
and active states (within a time window). The “energy” of the system reads

𝐸(𝑠1,… , 𝑠𝑁𝐿
, 𝑠𝑁𝐿+1,… , 𝑠𝑁𝐿+𝑁𝑅

) = −𝐻̃𝐿

𝑁𝐿
∑

𝑖=1
𝑠𝑖 − 𝐻̃𝑅

𝑁𝐿+𝑁𝑅
∑

𝑖=𝑁𝐿+1
𝑠𝑖 −

1
2
∑

𝑖≠𝑗
𝐽𝑖𝑗 𝑠𝑖 𝑠𝑗 , (12)

where 𝐻̃𝐿, 𝐻̃𝑅 are biases acting on the neurons, and the coupling matrix is defined through

𝐽𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝐽𝐿 if 1 ≤ 𝑖, 𝑗 ≤ 𝑁𝐿 ,
𝐽𝑅 if 𝑁𝐿 + 1 ≤ 𝑖, 𝑗 ≤ 𝑁𝐿 +𝑁𝑅 ,
𝐼 otherwise .

(13)

We now introduce the left and right average activities:
𝑚𝐿 = 1

𝑁𝐿

𝑁𝐿
∑

𝑖=1
𝑠𝑖 , 𝑚𝑅 = 1

𝑁𝑅

𝑁𝐿+𝑁𝑅
∑

𝑖=𝑁𝐿+1
𝑠𝑖 . (14)

The energy 𝐸 of a neural activity configuration in Eq. 12 can be expressed in terms of these
average activities:

𝐸(𝑚𝐿, 𝑚𝑅) = −𝑁𝐿

(

𝐻̃𝐿 −
𝐽𝐿
2

)

𝑚𝐿 −𝑁𝑅

(

𝐻̃𝑅 −
𝐽𝑅
2

)

𝑚𝑅

−
(𝑁𝐿)2

2
𝐽𝐿 𝑚

2
𝐿 −

(𝑁𝑅)2

2
𝐽𝑅 𝑚2

𝑅 − 𝐼 𝑁𝐿 𝑁𝑅 𝑚𝐿 𝑚𝑅 . (15)

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

We may now compute the partition function normalizing the probability of configura-
tions,

𝑍 =
∑

{𝑠𝑖=0,1}
𝑒−𝐸(𝑠1 ,…,𝑠𝑁𝐿+𝑁𝑅 ) =

∑

𝑚𝐿 ,𝑚𝑅

𝐿(𝑚𝐿) 𝑅(𝑚𝑅) 𝑒−𝐸(𝑚𝐿 ,𝑚𝑅) , (16)
where the sums runs over fractional values of the average left and right activities, from0 to 1
with steps equal to, respectively, 2∕𝑁𝐿 and 2∕𝑁𝑅, and themultiplicities𝐿 and𝑅 measure
the numbers of neural configurations with prescribed average activities. We approximate
these multiplicities with the standard entropy-based expressions, which are exact in the
limit of large sizes 𝐾𝐿, 𝐾𝑅:

𝐿(𝑚𝐿) ≃ 𝑒𝑁𝐿 𝑆(𝑚𝐿) , 𝑅(𝑚𝑅) ≃ 𝑒𝑁𝑅 𝑆(𝑚𝑅) , (17)
where

𝑆(𝑚) = −𝑚 ln𝑚 − (1 − 𝑚) ln(1 − 𝑚) (18)
is the entropy of a 0−1 variable with mean 𝑚. As a consequence the activity-dependent free
energy is given by

 (𝑚𝐿, 𝑚𝑅) = 𝐸(𝑚𝐿, 𝑚𝑅) −𝑁𝐿 𝑆(𝑚𝐿) −𝑁𝑅 𝑆(𝑚𝑅) (19)
= −

𝑁𝐿 𝐽𝐿
2

𝑚𝐿
2 −

𝑁𝑅 𝐽𝑅
2

𝑚𝑅
2 − 𝐼

√

𝑁𝐿 𝑁𝑅 𝑚𝐿 𝑚𝑅 −𝑁𝐿 𝐻𝐿 𝑚𝐿 −𝑁𝑅 𝐻𝑅 𝑚𝑅

+ 𝑁𝐿
(

𝑚𝐿 ln𝑚𝐿 + (1 − 𝑚𝐿) ln(1 − 𝑚𝐿)
)

+𝑁𝑅
(

𝑚𝑅 ln𝑚𝑅 + (1 − 𝑚𝑅) ln(1 − 𝑚𝑅)
)
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where the bias and coupling parameters are, respectively, 𝐻𝐿 = 𝐻̃𝐿 − 𝐽𝐿
2
, 𝐻𝑅 = 𝐻̃𝑅 − 𝐽𝑅

2
,

𝐽𝐿 = 𝑁𝐿 𝐽𝐿, 𝐽𝑅 = 𝑁𝑅 𝐽𝑅, 𝐼 =
√

𝑁𝐿 𝑁𝑅 𝐼 .

848

849

850

851
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855
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865
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867

868

869

870

871

The sizes 𝑁𝐿, 𝑁𝑅 enter formula (19) for the free energy in two ways:872

• implicitly, through the biases 𝐻𝐿,𝐻𝑅 and the couplings 𝐽𝐿, 𝐽𝑅, 𝐼 . These parameters
are equal to, respectively, the average bias and the total ipsilateral and contralateral
couplings acting on each neuron in the𝐿 and𝑅 regions. They are effective parameters
defining the mean-field theory;

873

874

875

876

• explicitly, as multiplicative factors to the free energy contributions coming from the
left and right regions. The sizes then merely act as effective inverse "temperatures",
in the Boltzmann factor 𝑒−𝐹 (𝑚𝐿 ,𝑚𝑅) associated to the probability of the 𝐿,𝑅 activities.

877

878

879

Mean-field theory generally overestimates the collective effects of interactions; a well-
known illustration of this artifact is the prediction of the existence of a phase transition in
the uni-dimensional ferromagnetic Ising model with short range interactions, while such a
transition is rigorously known not to take place (Ma, 1985). We expect these effects to be
strong here, due to the wide distribution of inferred Ising couplings (Appendix 2 Figure 4A).
Many pairs of neurons carry close to zero couplings, and the interaction neighborhood of a
neuron is effectively much smaller than𝑁𝐿 and𝑁𝑅. To compensate for the overestimation
of interaction effects we thus propose to keep Eq. 19 for the free energy, but with effective
sizes 𝐾𝐿, 𝐾𝑅 replacing the numbers 𝑁𝐿, 𝑁𝑅 of recorded neurons, see Eq. 2, leading to the
expression of the free energy:

880

881

882

883

884

885

886

887

888

889


(

𝑚𝐿, 𝑚𝑅
)

= −
𝐾𝐿 𝐽𝐿

2
𝑚𝐿

2 −
𝐾𝑅 𝐽𝑅

2
𝑚𝑅

2 − 𝐼
√

𝐾𝐿 𝐾𝑅 𝑚𝐿 𝑚𝑅 −𝐾𝐿 𝐻𝐿 𝑚𝐿 −𝐾𝑅 𝐻𝑅 𝑚𝑅 (20)
+ 𝐾𝐿

(

𝑚𝐿 ln𝑚𝐿 + (1 − 𝑚𝐿) ln(1 − 𝑚𝐿)
)

+𝐾𝑅
(

𝑚𝑅 ln𝑚𝑅 + (1 − 𝑚𝑅) ln(1 − 𝑚𝑅)
)

890

891

892

893

These effective sizes 𝐾𝐿, 𝐾𝑅 are expected to be smaller than 𝑁𝐿, 𝑁𝑅. Their values arefixed through the comparison of the Langevin dynamical traces with the traces coming from
the data, see below.

894

895

896

Langevin dynamical equations897

The dynamical Langevin equations read
𝜏
𝑑𝑚𝐿

𝑑𝑡
= 𝐾𝐿

(

𝐽𝐿 𝑚𝐿 +𝐻𝐿
)

+ 𝐼
√

𝐾𝐿 𝐾𝑅𝑚𝑅 −𝐾𝐿 log
(

𝑚𝐿

1 − 𝑚𝐿

)

+ 𝜖𝐿(𝑡) , (21)
𝜏
𝑑𝑚𝑅

𝑑𝑡
= 𝐾𝑅

(

𝐽𝑅 𝑚𝑅 +𝐻𝑅
)

+ 𝐼
√

𝐾𝐿 𝐾𝑅𝑚𝐿 −𝐾𝑅 log
(

𝑚𝑅

1 − 𝑚𝑅

)

+ 𝜖𝑅(𝑡) , (22)
where 𝜖𝐿, 𝜖𝑅 denote white-noise processes, see main text.

898

899

900
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Fit of the effective sizes 𝐾𝐿 and 𝐾𝑅903

The effective sizes 𝐾𝐿 = 𝑁𝐿∕𝐴 and 𝐾𝑅 = 𝑁𝑅∕𝐴 were fitted generating Langevin trajectories
of the activities (𝑚𝐿,𝑚𝑅) for a large set of values of 𝐴 (i.e. 𝐾𝐿 and 𝐾𝑅), and with fixed pa-
rameters (𝐻𝐿,𝐻𝑅, 𝐽𝐿,𝐽𝑅,𝜏). For each value of 𝐾𝐿 and 𝐾𝑅 we computed the Kullback-Leibler
(KL) divergence between the experimental and the Langevin distributions of (𝑚𝐿,𝑚𝑅) (see Ap-pendix 2 Figure 7A-C). The effective sizes 𝐾𝐿 and 𝐾𝑅 are the ones that minimize the value of
the KL divergence. For low values of 𝐴 the KL divergence can be noisy and creates artifacts.
To avoid these artifacts we assume that 𝐴 > 2.
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Appendix 2 Figure 1. Temperature-dependence of the ARTR activity.914

A, Schematic of the experimental setup used to perform brain-wide calcium imaging of a zebrafishlarva at controlled water temperature. B, Raster plot of the ARTR spontaneous dynamics showingalternating right/left activation. The top and bottom traces are the ARTR average signal of the left andright subcircuits. C, Example ARTR sign(𝑚𝐿 − 𝑚𝑅) binarized signals measured at 3 differenttemperatures (same larva). D, Averaged power spectrum of the ARTR signals 𝑚𝑅 − 𝑚𝐿 for the 5 testedtemperatures. Lorentzian fits are shown as solid lines.
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Appendix 2 Figure 2. Effect of temperature on the ARTR time persistence and activity923

A, Pdf of activities of both sides of the ARTR. Color encodes temperature. B, Temperature-averagedmean activity of ARTR left and right neuronal subpopulations. Error bars are standard error of themean. C, Temperature-averaged Pearson correlation for left/right ispilateral pairs (yellow line) or forcontralateral pairs of neurons (purple line). Error bars are standard deviations. D, ARTR persistencetime vs. mean activity; note the quasi-linear dependence of these quantities (𝑅 = 0.91). Each dot is themean persistence time computed for one fish at one temperature, colors encode temperature.
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Appendix 2 Figure 3. Inference of the ARTR Ising model.932

A-B, Comparison between the mean activities (A) and pairwise correlations (B) computed fromexperimental test data and from synthetic (Ising model-generated) data (32 recordings, 𝑛 = 13 fish).Ising models were trained on a distinct subset of the experimental data. C, Relative variation of thelog–likelihoods of the Ising models between training and test data, showing the absence of overfitting.
D, Probability that 𝐾 of the 𝑁 neurons in the ARTR are simultaneously active in the data (black dots)and in the model (yellow line) configurations. E-F In order to demonstrate the need for effectiveconnections in our model, we generated synthetic data with independent models of the trainingdataset. Here we compare the mean activity (E) and the pairwise covariance (F) computed on theexperimental test dataset and using independent models. G Excess log likelihood of the Ising modelscompared to the independent model for training and test data set (see Methods).
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Appendix 2 Figure 4. Correlation structure within the ARTR and properties of the inferred
couplings.

945

946

A, Probability density function of the functional connectivity for the ipsilateral (gold line) and thecontralateral (purple line) couplings. These pdf were obtained by averaging across all animals. B,Probability density function of the functional Pearson correlation for the ipsilateral (gold line) and thecontralateral (purple line) couplings. C, Box plot across experiments of the average value of theipsilateral and contralateral couplings. D, Probability to have an ipsilateral (gold line) or a contralateral(purple line) pair of neuron given its effective connectivity. For a given range of the effectiveconnectivity, we compute the number of ipsilateral and contralateral pairs of neurons. E, Probabilityto have an ipsilateral (gold line) or a contralateral (purple line) pair of neuron given its Pearsoncorrelation. F, Functional connectivity 𝐽𝑖𝑗 as a function of the distance between neurons 𝑖, 𝑗. G,Correlation between the couplings 𝐽𝑖𝑗 and 𝐽𝑘𝑝, between one neuron 𝑖 and one neuron 𝑘 as a functionof their distance 𝑑𝑖𝑘 for every possible pair (𝑖, 𝑘).

947

948

949

950

951

952

953

954

955

956

957958

29 of 34

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 31, 2023. ; https://doi.org/10.1101/2022.02.02.478841doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.02.478841


<
h i

>

RIGHTLEFT

<
st

d 
h i

>

RIGHTLEFT

-4.5

-3.5

-4

1

1.5

0.5

h i

A B C

959

Appendix 2 Figure 5. Distribution of biases in the inferred ARTR Ising model.960

A, Bias parameter distribution for an example fish. B, Box plot across experiments of the averagevalue of the biases for the left and right subpopulations of the ARTR. C, Box plot across animals of thestandard deviation of the biases for the left and right subpopulations of the ARTR.
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Appendix 2 Figure 6. Correlation of Ising parameters at different temperatures966 For each fish (n=13), we extract from the scatter plots of the coupling 𝐽𝑖𝑗 and bias ℎ𝑖 inferred fromactivity recordings at two different temperatures, the Pearson correlation coefficients 𝑅𝑝𝑒𝑎𝑟𝑠𝑜𝑛. Thedistribution of 𝑅2
𝑝𝑒𝑎𝑟𝑠𝑜𝑛 values are shown for all fish and pairs of temperature. Inset: Example scatterplots of the inferred biases ℎ𝑖 (left) and effective couplings 𝐽𝑖𝑗 (right) for the same fish at two differenttemperature 𝑇 = 22 and 𝑇 = 30◦C.
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Appendix 2 Figure 7. Mean-field model of the ARTR.974

A-B, Kullback-Leibler divergence between the experimental and the Langevin distributions as afunction of 𝑁∕𝐾 where 𝑁 is the total number of neurons of the left or right subpopulation, and 𝐾 isthe effective extent of neuronal interaction (see Methods) for two data sets. C, Probability densityfunction of 𝐾𝑅 (blue line) and 𝐾𝐿 (red line) across all recordings. D, Free-energy difference betweenstationary sates of the landscape as a function of the temperature. E, Average values (for allexperiments and regions) of 𝐾(𝐻 + 𝐽 𝑀) as a function of the temperature of the water. Error bars arestandard error of the mean.
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Appendix 2 Figure 8. A modified Ising model explains visually-driven properties of the ARTR.984

A-B, To assess the performance of the model for visually-driven experiments, we compare the meanactivity (A) and the pairwise covariance (B) computed on the spontaneous part of the recordings tosynthetic data. C, Scatter plot of the correlation between contralateral pairs of neurons under visualstimulation vs. spontaneous activity on 𝑛 = 6 fish. D, Scatter plot of the correlation between ipsilateralpairs of neurons under visual stimulation vs. spontaneous activity. E, Average Pearson correlation inthe experimental recordings between contralateral (the pvalue of a paired sampled ttest is provided)and ipsilateral pairs of cells during stimulated and spontaneous activity (𝑛 = 6 fish). F, AveragePearson correlation in the simulated activity of the ARTR between contralateral and ipsilateral pairs ofcells during stimulated and spontaneous activity (𝑛 = 6 fish).
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Temperature (°C) ID Line Age (dpf) 𝑁𝐿 𝑁𝑅 Acquisition rate (Hz) Duration (s)
18 12 NucFast 6 146 180 5 1200
18 13 NucFast 7 37 96 8 1200
18 14 NucFast 6 179 174 8 1200
22 2 Nuc slow 7 177 212 3 1106
22 3 NucFast 5 152 85 3 1812
22 5 NucFast 5 158 123 5 1500
22 6 NucFast 5 98 134 5 1500
22 7 NucFast 6 122 221 5 1500
22 11 NucFast 6 295 320 5 1200
22 13 NucFast 7 37 96 8 1200
22 14 NucFast 6 179 174 8 1200
26 2 Nuc slow 7 177 212 3 1812
26 3 NucFast 5 152 85 3 1812
26 4 NucFast 5 110 76 3 1812
26 5 NucFast 5 158 123 5 1500
26 6 NucFast 5 98 134 5 1500
26 7 NucFast 6 122 221 5 1500
26 11 NucFast 6 295 320 5 1200
26 13 NucFast 7 37 96 8 1200
26 14 NucFast 6 179 174 8 1200
30 2 Nuc slow 7 177 212 3 1812
30 4 NucFast 5 110 76 3 1812
30 5 NucFast 5 158 123 5 1500
30 6 NucFast 5 98 134 5 1500
30 7 NucFast 6 122 221 5 1500
30 13 NucFast 7 37 96 8 1200
30 14 NucFast 6 179 174 8 1200
30 15 NucFast 7 202 252 8 1200
33 14 NucFast 6 179 174 8 1200
33 15 NucFast 7 202 252 8 1200
33 16 NucFast 6 127 123 7 1200
33 17 NucFast 5 62 170 10 1200

995

996

Appendix 2 Table 1. Datasets properties.997998
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Temperature (°C) ID 𝐽𝐿 𝐽𝑅 𝐼 𝐻𝐿 𝐻𝑅 𝐾𝐿 𝐾𝑅18 12 7.06 7.23 -0.6 -3.66 -3.63 6.51 8.03
18 13 6.2 7.84 0.6 -3.53 -4.34 3.18 8.27
18 14 7.27 7.24 0.31 -3.88 -3.99 11.04 10.74
22 2 8.2 8.28 0.12 -4.24 -4.23 6.65 7.96
22 3 8.18 7.14 0.55 -4.26 -4.13 9.38 5.24
22 5 7.59 7.01 0.4 -4.03 -3.8 5.56 4.33
22 6 7.13 8.69 1.1 -4.49 -4.64 5.21 7.12
22 7 7.09 7.46 0.43 -3.73 -3.95 6.28 11.39
22 11 7.82 7.59 -0.1 -4.07 -3.91 8.28 8.98
22 13 6.54 7.82 1.45 -4.29 -4.5 7.11 18.46
22 14 7.41 8.03 0.47 -4.28 -4.43 10.91 10.6
26 2 8.37 8.22 -0.49 -4.47 -4.31 9.72 11.64
26 3 8.42 7.49 0.53 -4.56 -4.62 8.26 4.61
26 4 8.63 6.44 0.85 -4.83 -4.79 10.37 7.16
26 5 7.29 7.59 0.48 -3.92 -4.14 9.08 7.06
26 6 7.43 7.86 0.41 -3.99 -4.1 8.59 11.75
26 7 7.55 7.96 0.32 -4.08 -4.22 4.45 8.06
26 11 7.27 7.45 0.37 -3.89 -3.92 10.31 11.18
26 13 6.99 7.3 0.6 -3.99 -3.94 6.37 16.55
26 14 7.91 7.35 0.5 -4.34 -4.16 11.32 11.01
30 2 7.54 7.96 -0.12 -4.54 -4.56 7.02 8.41
30 4 8.36 7.73 0.11 -4.52 -4.18 9.64 6.66
30 5 6.77 6.42 0.66 -3.8 -3.87 9.18 7.15
30 6 7.35 7.38 0.45 -3.91 -3.97 7.53 10.3
30 7 7.43 8.07 0.42 -3.93 -4.38 7.09 12.84
30 13 6.91 7.41 0.73 -4.13 -4.03 5.78 15
30 14 7.51 7.45 0.11 -3.87 -3.89 9.42 9.15
30 15 8.01 8.33 0.58 -4.45 -4.46 13.83 17.26
33 14 6.74 7.02 0.76 -3.8 -3.97 9.32 9.06
33 15 6.99 7.47 -0.02 -3.68 -3.91 14.85 18.52
33 16 7.53 8.25 -0.11 -4.16 -4.43 14.43 13.97
33 17 6.66 7.36 0.45 -3.69 -3.89 11.92 32.69

999

Appendix 2 Table 2. Parameters of mean-field models.10001001

ID 𝐽𝐿 𝐽𝑅 𝐼 𝐻𝐿 𝐻𝑅 𝐾𝐿 𝐾𝑅1 7,54 7,35 -0,67 -3,75 -3,44 5,60 3,43
2 7,10 7,42 0,64 -3,69 -4,02 7,91 12,82
3 7,51 7,92 -0,28 -3,96 -4,08 4,98 3,90
4 8,38 6,25 -0,04 -3,68 -3,18 13,33 4,44
5 8,73 8,24 0,01 -4,38 -4,13 6,11 6,89
6 7,87 7,71 0,51 -4,17 -4,09 16,19 15,52

1002

Appendix 2 Table 3. Parameters of the mean-field model for two-photon light-sheet data sets fromWolf et. al 2017.1003
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