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Abstract Establishing accurate as well as interpretable models of network activity is an open
challenge in systems neuroscience. Here we infer an energy-based model of the ARTR, a circuit
that controls zebrafish swimming statistics, using functional recordings of the spontaneous
activity of hundreds of neurons. Although our model is trained to reproduce the low-order
statistics of the network activity at short time-scales, its simulated dynamics quantitatively
captures the slowly alternating activity of the ARTR. It further reproduces the modulation of this
persistent dynamics by the water temperature and visual stimulation. Mathematical analysis of
the model unveils a low-dimensional landscape-based representation of the ARTR activity, where
the slow network dynamics reflects Arrhenius-like barriers crossings between metastable states.
Our work thus shows how data-driven models built from large neural populations recordings can
be reduced to low-dimensional functional models in order to reveal the fundamental
mechanisms controlling the collective neuronal dynamics.

Introduction

How computational capacities emerge from the collective neural dynamics within large circuits
is a prominent question in neuroscience. Modeling efforts have long been based on top-down
approaches, in which mathematical models are designed to replicate basic functions. Although
they might be very fruitful from a conceptual viewpoint, these models are unable to accurately re-
produce actual data and thus remain speculative. Recently, progress in large-scale recording and
simulation techniques have led to the development of bottom-up approaches. Machine-learning
models, trained on recorded activity, allow for the decoding or the prediction of neuronal activity
and behavior (Glaser et al., 2020; Pandarinath et al., 2018). Unfortunately, the blackbox nature
of these data-driven models often obscures their biological interpretation, e.g. the identification
of the relevant computational units (Butts, 2019). This calls for quantitative, yet interpretable ap-
proaches to illuminate the functions carried out by large neural populations and their neuronal
substrate.

The present work is an attempt to do so in the specific context of the anterior rhombencephalic
turning region (ARTR), a circuit in the zebrafish larva that drives the saccadic dynamics and orches-
trates the chaining of leftward/rightward swim bouts (Ahrens et al., 2013; Dunn et al., 2016; Wolf
etal., 2017, Ramirez and Aksay, 2021; Leyden et al., 2021). The ARTR spontaneous activity exhibits
temporal persistence, i.e. the maintenance of activity patterns over long (~ 10 sec) time-scales.
This functional feature is ubiquitous in the vertebrate brain. It plays an essential role in motor con-
trol, as best exemplified by the velocity position neural integrator, a circuit that integrates neural
inputs and allows for a maintenance of the eye position after an ocular saccade (Seung, 1996; Se-
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ung et al., 2000; Miri et al., 2011). Temporal persistence is also central to action selection (Wang,
2008) and short-term memory storage (Zaksas and Pasternak, 2006; Guo et al., 2017). As isolated
neurons generally display short relaxation times, neural persistence is thought to be an emergent
property of recurrent circuit architectures (Zylberberg and Strowbridge, 2017). Since the 1970s,
numerous mechanistic network models have been proposed that display persistent activity. They
are designed such as to possess attractor states, i.e. stable activity patterns towards which the
network spontaneously converges.

Although attractor models are conceptually appealing, assessing their relevance in biological
circuits remains challenging. To this aim, recent advances in machine learning combined with
large-scale methods of neural recordings may offer a promising avenue. We hereafter focus on
energy-based network models, trained to replicate low-order data statistics, such as the mean
activities and pairwise correlations, through the maximum entropy principle (Jaynes, 1957). In
neuroscience, such models have been successfully used to explain correlation structures in many
areas, including the retina (Schneidman et al., 2006; Cocco et al., 2009; Tkacik et al., 2015), the
cortex (Tavoni et al., 2016, 2017; Nghiem et al., 2018), and the hippocampus (Meshulam et al.,
2017; Posani et al., 2017) of vertebrates, and the nervous system of C. elegans (Chen et al., 2019).
These models are generative, i.e. they can be used to produce synthetic activity on short time
scales, but whether they can reproduce long-time dynamical features of the biological networks
remains an open question.

Here, we first report on spontaneous activity recordings of the ARTR network using light-sheet
functional imaging at various yet ethologically relevant temperatures. These data demonstrate
that the water temperature controls the persistence time scale of the ARTR network, and that this
modulation is in quantitative agreement with the thermal dependence of the swimming statistics.
We then infer energy-based models from the calcium activity recordings, and show how these
data-driven models not only capture the characteristics and probabilities of occurrence of activity
patterns, but also reproduce the observed thermal dependence of the persistent time scale. We
further derive a mathematically tractable version of our energy-based model, called mean-field
approximation, whose resolution provides a physical interpretation of the energy landscape, of
the dynamical paths there in, and of their changes with temperature. We finally extend the model
to incorporate visual stimulation and correctly reproduce the previously reported visually-driven
ARTR dynamics (Wolf et al., 2017). This work establishes the capacity of data-driven network in-
ference to numerically emulate persistent dynamics and to unveil fundamental network features
controlling such dynamics.

Results

The water temperature controls behavioral and neuronal persistence time-scales
in zebrafish larvae

In this first section, we report on functional recordings of the ARTR dynamics performed at various
temperatures (18 to 33°C). We show that the persistent time-scale that characterizes the ARTR's
endogenous dynamics is thermally modulated. This dependence is reflected in the change in swim-
ming statistics observed in freely swimming assays. We further characterize how the water tem-
perature impacts the distribution of activity patterns

ARTR endogeneous dynamics is thermally modulated

We used light-sheet functional imaging to record the ARTR activity in zebrafish larvae expressing
a calcium reporter pan-neuronally (Tg(elavi3:GCaMP6)). The larvae, embedded in agarose, were
placed in a water tank whose temperature was controlled in the range 18-33°C (see Appendix 2
Figure 1A). ARTR neurons were identified using a combination of morphological and functional
criteria, as detailed in Wolf et al. (2017). Their spatial organization is displayed in Figure 1A, for
all recorded animals after morphological registration on a unique reference brain (145 + 65 left
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neurons, 165 + 69 right neurons, mean + s.d. across 13 different fish, see Appendix 2 Table 1).
For each neuron, an approximate spike train s(r) was inferred from the fluorescence signal us-
ing Bayesian deconvolution (Tubiana et al., 2020). A typical raster plot of the ARTR is shown in
Appendix 2 Figure 1B (recorded at 26°C), together with the mean signals of the left and right sub-
circuits, my (1) = ﬁ Yierr Si(0).

To analyse the thermal dependence of the ARTR dynamics, we extracted from these recordings
a binarized ARTR signal, sign(m, (1) — m,(1)), see Figure 1B and Appendix 2 Figure 1C for example
signals from the same fish at different temperatures. The average power spectra of these signals
for the five tested temperatures (average of 3 to 8 animals for each temperature, see Appendix
2 Table 1), are shown in Figure 1C. We used a Lorentzian fit to further extract the alternation fre-
quency v for each dataset (Figure 1C, solid lines). This frequency was found to increase with the
temperature (Figure 1D). Although v could significantly vary across specimen at a given tempera-
ture, for a given animal, increasing the temperature induced an increase in the frequency in 87.5%
of our recordings (28 out of 32 pairs of recordings).

In this analysis, we used the binarized ARTR activity to facilitate the comparison between be-
havioral and neural data, as described in the next section. However, the observed temperature-
dependence of the left-right alternation time-scale was preserved when the spectra were com-
puted from the ARTR activity, m, (r) — my(¢) (see Appendix 2 Figure 1D).

Impact of the water temperature on the turn direction persistence
in freely swimming larvae

It has previously been shown that the ARTR governs the selection of swim bout orientations:
turn bouts are preferentially executed in the direction of the most active (right or left) ARTR sub-
circuit (Dunn et al., 2016; Wolf et al., 2017), such that sign(mL(t) - mR(I)) constitutes a robust pre-
dictor of the turning direction of the animal, see figure 5 - figure supplement 2E in Dunn et al.
(2016). Therefore, the temporal persistence of the ARTR dynamics is reflected in a turn direction
persistence in the animal's swimming pattern, i.e. the preferred chaining of similarly orientated
turn bouts.

We thus sought to examine whether the thermal dependence of the ARTR endogenous dynam-
ics could manifest itself in the animal navigational statistics. In order to do so, we used the results of
arecent study (Le Goc et al., 20217), in which 5 to 7 days old zebrafish larvae were video-monitored
as they swam freely at constant and uniform temperature in the same thermal range (Figure 1E).
We quantified the time scale of the turn direction persistence by assigning a discrete value to each
turn bout: —1 for a right turn, +1 for a left turn (forward scouts were ignored). We then computed
an orientational state signal continuously defined by the value of the last turn bout (Figure 1F). The
power spectra of the resulting binary signals are shown in Figure 1G for various temperatures. We
used a Lorentzian fit (Methods, Eq. 6) to extract, for each experiment, a frequency k. This rate,
which defines the probability of switching orientation per unit of time, systematically increases with
the temperature, from 0.1 to 0.6 s~! (Figure 1H). Increasing the temperature thus leads to a progres-
sive reduction of the turn direction persistence time. The inset plot in Figure TH establishes that
the left/right alternation rates extracted from behavioral and neuronal recordings are consistent
across the entire temperature range (slope = 0.81, R = 0.99).

ARTR activity maps are modulated by the temperature

We then investigated how the water temperature impacts the statistics of the ARTR activity defined
by the mean activity of the left and right sub-populations, m;, and m,. The probability maps in
the (m,, my) plane are shown in Figure 2A for two different temperatures, with the corresponding
raster plots and time signals of the two subcircuits. At high temperature, the ARTR activity map is
confined within a L-shaped region around (m, = 0,m, = 0) and the circuit remains inactive for a
large fraction of the time. Conversely, at lower temperature, the ARTR activity is characterized by
long periods during which both circuits are active and shorter periods of inactivity. We quantified
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this thermal dependence of the activity distribution by computing the log-probability of the activity
of either region of the ARTR at various temperatures (Appendix 2 Figure 2A). The occupation rate
of the inactive state (m, , ~ 0) increases with temperature, with a corresponding steeper decay of
the probability distribution of the activity. Consistently, we found that the mean activities m;, and
my decreased with temperature (Appendix 2 Figure 2B). Such a dependence might reflect varying
levels of temporal coherence in the activity of the ARTR with the temperature. In order to test this,
we computed the Pearson correlation at various temperature but we saw no clear dependency of
the average correlation across ipsilateral or contralateral pairs of neurons (Appendix 2 Figure 2C).

Our analysis thus indicates that the water temperature modulates both the endogenous dy-
namics and the activity distribution of the ARTR. For both aspects, we noticed a large variability
between animals at a given temperature. This is not unexpected, as it parallels the intra- and
inter-individual variability in the fish exploratory kinematics reported in Le Goc et al. (2027). Nev-
ertheless, we observed a strong positive correlation between the persistence time and the mean
activity across animals and trials for a given temperature (Appendix 2 Figure 2D and Methods),
indicating that both features of the ARTR may have a common drive.

A data-driven energy-based model reproduces the statistics of the ARTR dynamics
Our aim was to reproduce the ARTR spontaneous activity using an energy-based data-driven net-
work model. The inference pipeline, going from raw fluorescence data to the model, is summarized
in Figure 2B. We first reconstructed an estimated spike train for each ARTR neuron using a decon-
volution algorithm (Tubiana et al., 2020). We divided the recording window (7,,. ~ 1200 s for each
session) in time bins whose width was set by the imaging frame-rate (dr = 100 — 300ms). Each
dataset thus consisted of a series of snapshots s* = (st, ..., s%) of the ARTR activity at times k, with
k=1,...,T,/dt; here, sk = 1 if cell i is active or s¥ = 0 if it is silent in time bin k.

We then computed the mean activities, (s;)q4at,, and the pairwise correlations, (s;s;)gaas @s the
averages of, respectively, s} and sfs} over all time bins k. We next inferred the least constrained
model, according to the maximum entropy principle (Jaynes, 1957), that reproduced these quan-
tities. This model, known as the Ising model in statistical mechanics (Ma, 71985) and probabilistic
graphical model in statistical inference (Koller and Friedmann, 2009), describes the probability dis-
tribution over all 2V possible activity configurations s,

P(s):% exp<2hisi+2Jijs,.sj> , (WD)
i i<j
where Z is a normalization constant. The bias &, controls the intrinsic activity of neuron i, while the
coupling parameters J;; account for the effect of the other neurons ; activity on neuron i (Meth-
ods). The set of parameters {4, J;;} were inferred using the Adaptative Cluster Expansion and the
Boltzmann machine algorithms (Cocco and Monasson, 2011; Barton and Cocco, 2013; Barton et al.,
2016). Notice that in Eq. 1, the energy term in the parenthesis is not scaled by a thermal energy
as in the Maxwell-Boltzmann statistics. We thus implicitly fix the model temperature to unity; of
course, this model temperature has no relation with the water temperature T. Although the model
was trained to reproduce the mean activities and pairwise correlations (see Appendix 2 Figure 3A-
C and Methods for 4-fold cross-validation), it further captured higher-order statistical properties
of the activity such as the probability that K cells are active in a time bin (Appendix 2 Figure 3D)
(Schneidman et al., 2006).

Onceinferred, the Ising model can be used to generate synthetic activity configurations s. Here
we used a Monte Carlo (MC) algorithm to sample the probability distribution P(s) in Eq. 1. The algo-
rithm starts from a random configuration of activity, then picks up uniformly at random a neuron
index, say, i. The activity s; of neuron i is then stochastically updated to 0 or to 1, with probabilities
that depend on the current states s; of the other neurons (see Eq. 8 in Methods, and code pro-
vided). The sampling procedure is iterated, ensuring convergence towards the distribution P in Eq.
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1. This in silico MC dynamics is not supposed to reproduce any realistic neural dynamics, except
for the locality in the activity configuration s space.

Figure 2C shows the synthetic activity maps and temporal traces of Ising models trained on the
two same datasets as in Figure 2A. For these synthetic signals, we use MC rounds, i.e. the number
of MC steps divided by the total number of neurons (Methods), as a proxy for time. Remarkably,
although the Ising model is trained to reproduce the low-order statistics of the neuronal activity
within a time bin only, the generated signals exhibit the main characteristics of the ARTR dynamics,
i.e. a slow alternation between the left and right sub-populations associated with long persistence
times, see raster plots in Figure 2C.

Comparison of experimental and synthetic ARTR dynamics across recordings

We repeated the inference procedure described above for all our 32 recordings (carried out with
n = 13 fish and 5 different water temperatures, see Appendix 2 Table 2) and obtained the same
number of sets of biases and couplings. We first compared the distributions of the left-right mean
activity m, = NLL Yo s and my = NLR Y.cx 5; extracted from the data and from the Ising model.
In order to do so, we used the Kullback-Leibler (KL) divergence, a classical metrics of the dissimi-
larity between two probability distributions. The distribution of the KL divergences between the
experimental test datasets (see Methods) and their associated Ising models is shown in green in
Figure 3A. The KL values were found to be much smaller than those obtained between experimen-
tal test datasets and Ising models trained from different recordings (red distribution). This result
establishes that the Ising model quantitatively reproduces the ARTR activity distribution associated
to each specimen and temperature.

This agreement crucially relies on the presence of inter-neuronal couplings in order to repro-
duce the pairwise correlations in the activity: a model with no connection (i.e. the independent
model, see Methods) fitted to reproduce the neural firing rates, offers a very poor description of
the data, see Figure 3A (dark blue distribution) and Appendix 2 Figure 3E-G.

Finally, we examined to what extent the synthetic data could capture the neural persistence
characteristics of the ARTR. The persistence times extracted from the data and from the MC simu-
lations of the inferred models were found to be strongly correlated (Figure 3B, R = 0.84). The MC
dynamics thus captures the inter-individual variability and temperature dependence of the ARTR
persistent dynamics.

Spatial organization and temperature dependence of the Ising inferred parameters

In all recordings, inferred ipsilateral couplings are found to be centered around a positive value (std
= 0.12, mean = 0.062), while contralateral couplings are distributed around 0 (mean = -0.001, std
=0.10), see Appendix 2 Figure 4A-C. Still, a significant fraction of these contralateral couplings are
strongly negative. We illustrated this point by computing the fraction of neuronal pairs (i, j) that are
contralateral for each value of the coupling J;; or the Pearson correlation (Appendix 2 Figure 4D-E).
Large negative values of couplings or correlations systematically correspond to contralateral pairs
of neurons, whereas large positive values correspond to ipsilateral pairs of neurons.

In addition, we found that the ipsilateral couplings J;; decay, on average, exponentially with
the distance between neurons i and j (Appendix 2 Figure 4F), in agreement with findings in other
neural systems (Posani et al., 2018). Spatial structure is also present in contralateral couplings
(Appendix 2 Figure 4G). Biases display a wide distribution ranging from -8 to 0 (std = 1.1, mean =
-4.1, Appendix 2 Figure 5A-C), with no apparent spatial structure.

We next examined the dependency of the Ising model parameters on the water temperature.
To do so, for each fish, we selected two different water temperatures, and the corresponding sets
of inferred biases and couplings, {A;, J;;}. We then computed the Pearson correlation coefficient R*
of the biases and of the coupling matrices at these two temperatures (inset of Appendix 2 Figure 6).
We saw no clear correlation between the model parameters at different temperatures, as shown by
the distribution of R? computed across fish and across every temperatures (Appendix 2 Figure 6).
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Mean-field study of the inferred model unveils the energy landscape underlying
the ARTR dynamics

Mean-field approximation to the data-driven graphical model

While our data-driven Ising model reproduces the dependence of the persistence time-scale and
activity distribution on the water temperature, why it does so remains unclear. To understand what
features of the coupling and local bias parameters govern these network functional properties, we
turn to mean-field theory. This powerful and mathematically tractable approximation scheme is
commonly used in statistical physics to study systems with many strongly interacting components
(Ma, 1985). In the present case, it amounts to deriving self-consistent equations for the mean
activities m;, and m, of the left and right ARTR subpopulations (Figure 4A and Appendix 1).

Within mean-field theory, each neuron i is subject to (i) a local bias H, (ii) an excitatory coupling
J > 0 from the neurons in the ipsilateral region and, (iii) a weak coupling I from the neurons in
the contralateral side. These three parameters were set as the mean values of, respectively, the
inferred biases h; and the inferred ipsilateral and contralateral interactions J;;. In addition, we
introduce an effective size K of each region to take into account the fact that mean-field theory
overestimates interactions by replacing them with their mean value. This effective number of neu-
rons was chosen, in practice, to best match the results of the mean-field approach to the full Ising
model predictions (see Appendix 1, Appendix 2 Table 2 and Appendix 2 Figure 7A-C). It was substan-
tially smaller than the number N of recorded neurons. The selection method used to delineate the
ARTR populations may yield different number of neurons in the L and R regions (see Appendix 2
Table 1). This asymmetry was accounted for by allowing the parameters H, J and K defined above
to take different values for the left and right sides.

Mean-field theory thus allowed us to reduce the data-driven Ising model, whose definition re-
quires %(NL + NR)(Ny + Ny + 1) parameters {h,;, J,;}, to a model depending on seven parameters
(H,,Hg, J;,Jx K, , Ky, I) only (Figure 4A), whose values vary with the animal and the experimental
conditions e.g. temperature (Appendix 2 Table 2).

Free energy and Langevin dynamics

The main outcome of the analytical treatment of the model is the derivation of the so-called free
energy F(m;,mg) as a function of the average activities m; and my, see Appendix 1. The free energy
is a fundamental quantity as it controls the density of probability to observe an activation pattern
(m;, mg) through

P(my,mp) e~ T mLmR) (2)

Consequently, the lower the free energy F, the higher the probability of the corresponding state
(m;,mg). In particular, the minima of the free energy define persistent states of activity in which
the network can be transiently trapped.

The free energy landscape can be used to simulate dynamical trajectories in the activity space
(m;,mg). To do so, we consider a Langevin dynamics in which the two activities m, (t), mg(¢) evolve
in time according to the stochastic differential equations,

d oF
T ;"tL(t)z—a(mL(t),mR(t))+eL(z), (3)
e DRy Z 97 (0. ) + (D) @)
dt omp 7R RYS

where 7z is a microscopic time scale, and ¢, (7), ex(¢) are white noise ‘forces’, (e, (1)) = (ex(®)) = 0,
independent and delta-correlated in time: (e, ex()) = 0, (e, e, (")) = {exWer@)) = 261 — 1').
This Langevin dynamical process ensures that all activity configurations (m,, my) will be sampled in
the course of time, with the expected probability as given by Eq. 2.

Figure 4B shows the mean-field simulated dynamics of the left and right activities, m;, and my,
with the parameters corresponding to two Ising models at two different temperatures in Figure
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2C. We observe, at low temperatures, transient periods of self-sustained activity (denoted by m"¢")
of one subcircuit, while the other has low activity (m'**), see time trace 1 in Figure 4B. At high
temperature, high activity in either (left or right) area can be reached only transiently, see trace 2
in Figure 4B. These time traces are qualitatively similar to the ones obtained with the full inferred
Ising model and in the data (Figures 2C and 2A, bottom).

Barriers in the free-energy landscape and dynamical paths between states

We show in Figure 4C the free-energy landscape in the (m,, my) plane for the same two conditions
as in Figure 4B. The minimization conditions % = % = 0 provide two implicit equations over
the activities m} , m?, corresponding to the preferred states. For most datasets we found four local
minima: the low-activity minimum (m}, m%) = (m'**, m'**), two asymmetric minima, (m"¢", m'**) and
(m'ow, m"iehy, in which only one subregion is strongly active, and a state in which both regions are
active, (mhish mhish). The low-activity minimum (m'*?, m'**) is the state of lowest free energy, hence
with largest probability, while the high-activity state (m"¢", m"¢") has a much higher free energy and
much lower probability. The free energies of the asymmetric minima (m"¢", m'**) and (m'*, mhish)
lie in between, and their values strongly vary with the temperature.

The Langevin dynamics defines the most likely paths (see Methods) in the activity plane joining
one preferred state to another, e.g. from (m"" m'**) to (m'*, m"¢") as shown in Figure 4C. Along
these optimal paths the free energy F reaches local maxima, defining barriers to be overcome in
order for the network to dynamically switchover (purple and green arrows in Figure 4C). The theory
of activated processes stipulates that the average time to cross a barrier depends exponentially
on its height AF:

HAF) ~tx AT, (5)

up to proportionality factors of the order of unity (Langer, 1969). Thus, the barrier AF ((m"'", m'**) —
(m'**,m'**)) shown in dark green in Figure 4D controls the time needed for the ARTR to escape the
state in which the left region is active while the right region is mostly silent, and to reach the all-low
state. The barrier AF ((m'®, m'®*) — (m"'s", m'>*)) shown in purple is related to the rising time from
the low-low activity state to the state where the right region is active, and the left one is silent.
Within mean-field theory, we estimated the dependence in temperature of these barriers height
(Figure 4E and Appendix 2 Figure 7D) and of the associated persistence times (Figure 4F). While sub-
stantial variations from animal to animal were observed, we found that barriers for escaping the
all-low state and switching to either L, R region increase with the water temperature. As a conse-
quence, at high temperature, only the low-low activity state is accessible in practice to the system,
and the mean activity remains low, see Appendix 2 Figure 2D, with fluctuations within the low-low
state. Conversely, at low water temperatures, barriers separating the low-low and the active high-
low or low-high states are weaker, so the latter become accessible. As a first consequence, the
mean activity is higher at low temperature (Appendix 2 Figure 2D). Furthermore, the system re-
mains trapped for some time in such an active state before switching to the other side, e.g. from
high-low to low-high. This is the origin of the longer persistence time observed at low temperature.

Ising and mean-field models with modified biases capture the ARTR visually-driven
dynamics

While the analysis above focused on the spontaneous dynamics of the ARTR, our data-driven ap-
proach is also capable of explaining activity changes induced by external and time-varying inputs.
In order to illustrate this capacity, we decided to re-analyze a series of experiments, reported in
Wolf et al. (2017), in which we alternatively illuminated the left and right eye of the larva, for periods
of 15 to 30 s, while monitoring the activity of the ARTR (Figure 5A) with a 2-photon light-sheet mi-
croscope. During and after each stimulation protocol, 855 s of spontaneous activity was recorded
on n = 6 fish. We found that the ARTR activity could be driven by this alternating unilateral visual
stimulation: the right side of the ARTR tended to activate when the right eye was stimulated and
vice-versa (Figure 5B).
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To analyze these datasets we first followed the approach described in Figure 2B, and inferred,
for each fish, the sets of biases &, and interactions J;; using the spontaneous activity recording only.
In a second step, we exploited recordings of the visually-driven activity to infer additional biases éh;
to the neurons, while keeping the interactions J; fixed (Figure 5C); in practice we defined two sets of
additional biases, 6, and 6h,, corresponding, respectively, to leftward and rightward illuminations.
The underlying intuition is that biases encode inputs due to the stimulation, while the interactions
between neurons can be considered as fixed over the experimental time scale. This simplified
model reproduces the low order statistics of the data under stimulation (Appendix 2 Figure 8A-B).

The inferred values of the additional biases, averaged over the entire sub-population (right or
left), are shown in Figure 5D for both ipsiversive or contraversive stimulation. The results show
that light stimulation produces a strong increase of excitability for the ipsilateral neurons and a
smaller one for contralateral neurons.

We then simulated the visual stimulation protocol by sampling the Ising model while alternating
the model parameters, from {h, + 67, J;;} to {h, + 6h;}, J;;}, and back. The simulated dynamics of
the model (Figure 5E) qualitatively reproduces the experimental traces of the ARTR activity (Figure
5B). In particular, the model captures the stabilizing effect of unilateral visual stimuli, which results
in a large activation of the ipsilateral population, which in turn silences the contralateral subcircuit
due to the negative I coupling between both. This yields the anti-correlation between the left and
right sides clearly visible in both the experimental and simulated traces, and much stronger in the
case of spontaneous activity (Appendix 2 Figure 8C to F).

To better understand the Ising dynamics under visual stimulation we resort, as previously, to
mean-field theory. For asymmetric stimulation our mean-field model includes, during the periods
of stimulation, extra biases AH, and AH, over neurons in, respectively, the left and right areas
(Figure 5C), while the couplings J and I remain unchanged. We show in Figure 5F the free-energy
F as a function of m,, m, for an example fish. Due to the presence of the extra bias the landscape is
tilted with respect to its no-stimulation counterpart (Figure 5G), entailing that the left- or right-active
states are much more likely, and the barrier separating them from the low-low state is much lower.
As a consequence, the time necessary for reaching the high-activity state is considerably reduced
with respect to the no-stimulation case, see Eq. 5. These results agree with the large probability
of the high-activity states and the fast rise to reach these states in the Ising traces in Figure SE,
compare with Figure 2C.

Discussion

Modelling high-dimensional data, such as extensive neural recordings, imposes a trade-off be-
tween accuracy and interpretability. Although highly sophisticated machine-learning methods may
offer quantitative and detailed predictions, they might in turn prove inadequate to elucidate fun-
damental neurobiological mechanisms. Here we introduced a data-driven network model, whose
biologically-grounded architecture and relative simplicity make it both quantitatively accurate and
amenable to detailed mathematical analysis. We implemented this approach on functional record-
ings performed at various temperature of a key population of neurons in the zebrafish larvae brain,
called ARTR, that drives the orientation of tail bouts and gaze (Dunn et al., 2016; Wolf et al., 2017,
Ramirez and Aksay, 2021; Leyden et al., 2021).

First, we demonstrate that the persistent time-scale of the ARTR endogenous dynamics de-
creases with the temperature, mirroring the thermal modulation of turn direction persistence in
freely-swimming behavioral assays. We then demonstrate that our energy-based model not only
captures the statistics of the different activity patterns, but also numerically reproduces the en-
dogenous pseudo-oscillatory network dynamics, and their thermal dependence. The inferred Ising
model is then analyzed within the so-called mean-field formulation, in which the coupling and bias
parameters are replaced by their values averaged over the left and right subpopulations. It yields a
two-dimensional representation of the network energy landscape where the preferred states and
associated activation barriers can be easily evaluated. We show how this combined data-driven
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and theoretical approach can be applied to analyze the ARTR response to transient visual stimula-
tion. The latter tilts the energy landscape, strongly favoring some states over others.

Origin and functional significance of the temperature dependence of the ARTR dy-
namics

The brains of cold-blooded animals need to operate within the range of temperature that they ex-
perience in their natural habitat, e.g. 18-33°C for zebrafish (Gau et al., 2013). This is a peculiarly
stringent requirement since most biophysical processes are dependent on the temperature. In
some rare instances, regulation mechanisms might stabilize the circuit dynamics in order to pre-
serve its function, as best exemplified by the pyloric rhythm of the crab whose characteristic phase
relationship is maintained over an extended temperature range (Tang et al., 2010). Yet in general,
anincrease in temperature tends to increase the frequency of oscillatory processes (Robertson and
Money, 2012). The observed acceleration of the ARTR left/right alternation with increasing temper-
ature, could thus directly result from temperature-dependent cellular mechanisms. Furthermore,
one cannot rule out the possibility that the ARTR dynamics could also be indirectly modulated by
temperature via thermal-dependent descending neuromodulatory inputs.

As a result of this thermal modulation of the neuronal dynamics, many cold-blooded animals
also exhibit temperature-dependence of their behavior (Long and Fee, 2008; Neumeister et al.,
2000; Stevenson and Josephson, 1990). Here we were able to quantitatively relate the two pro-
cesses (neuronal and motor) by demonstrating that an increase in temperature consistently alters
the pattern of spontaneous navigation by increasing the left/right alternation frequency. Interpret-
ing the functional relevance of this modification of the swimming pattern is tricky, since many other
features of the animal’s navigation are concurrently impacted by a change in temperature, such
as the bout frequency, turning rate, turn amplitude, etc. Nevertheless, we were able to show in a
recent study that this thermal dependence of the swimming kinematic endows the larva with basic
thermophobic capacity, thus efficiently protecting them from exposure to the hottest regions of
their environment (Le Goc et al., 2021).

Ising model is not trained to reproduce short-term temporal correlations, but is
able to predict long-term dynamics

The graphical model we introduced in this work was trained to capture the low-order statistics of
snapshots of activity. Because graphical models are blind to the dynamical nature of the popu-
lation activity, it is generally believed that they cannot reproduce any dynamical feature. Never-
theless, here we demonstrate that our model can quantitatively replicate aspects of the network
long-term dynamics such as the slow alternation between the two preferred states. To better un-
derstand this apparent paradox, it is necessary to distinguish short and long time scales. At short
time scale, defined here as the duration of a time bin (of the order of a few 100 ms), the model
cannot capture any meaningful dynamics. The Monte Carlo algorithm we used to generate activity
is an abstract and arbitrary process, and the correlations it produces between successive time bins
can not reproduce the ones in the recording data. Capturing the short-term dynamics would re-
quire a biologically-grounded model of the cell-cell interactions, or, at the very least, to introduce
parameters capturing the experimental temporal correlations over this short time scale (Marre
et al., 2009; Mézard and Sakellariou, 2011).

Yet, the inability of the Ising model to reproduce short time dynamical correlations does not
hinder its capacity to predict long-time behavior. The separation between individual neuronal pro-
cesses (taking place over time scales smaller than 100 ms) and network-scale activity modulation,
which happens on time scales ranging from 1 to 20 s is here essential. The weak dependence of
macroscopic processes on microscopic details is in fact well known in many fields outside neuro-
science. A classical example is provided by chemical reactions, whose kinetics are often controlled
by a slow step due to the formation of the activated complex and to the crossing of the associated
energy barrier AE, requiring a time proportional to e2E/¢D, All fast processes, whose modelling
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can be very complex, contribute an effective microscopic time scale z in Arrhenius’ expression for
the reaction time, see Eq. 5. In this respect, what really matters to predict long time dynamical
properties is a good estimate of AE, or, equivalently, of the effective energy landscape felt by the
system. This is precisely what the Ising model is capable of doing. This explains why, even if tempo-
ral information are not explicitly included in the training process, our model may still be endowed
with a predictive power over the long-term network dynamics.

Energy-landscape-based mechanism for persistence

In a preceding article (Wolf et al., 2017), we developed a mathematical model of the ARTR in which
the left and right ARTR population were represented by a single unit. To account for the ARTR
persistent dynamics, an intrinsic adaptation time-scale had to be introduced in an ad-hoc fashion.
While the mean-field version of the inferred Ising model shows some formal mathematical similar-
ity with this two-unit model, it differs in a fundamental aspect. Here, the slow dynamics reflects
the itinerant exploration of a two-dimensional energy landscape (Figure 4C), for which the barriers
separating metastable states scale linearly with the system size. The time to cross these barriers in
turn grows exponentially with the system size, as prescribed by Arrhenius law, and can be orders
of magnitude larger than any single-neuron relaxation time. Persistence is therefore an emerging
property of the neural network.

Mean-field approximation and beyond

The mean-field approach, through a drastic simplification of the Ising model, allows us to unveil
the fundamental network features controlling its coarse-grained dynamics. Within this approxima-
tion, the distributions of couplings and of biases are replaced by their average values. The hetero-
geneities characterizing the Ising model parameters (Appendix 2 Figure 4 and Appendix 2 Figure
5), and ignored in the mean-field approach, may however play an important role in the network
dynamics.

In the Ising model, the ipsilateral couplings are found to be broadly distributed such as to pos-
sess both negative and positive values. This leads to the presence of so-called frustrated loops,
that s, chains of neurons along which the product of the pairwise couplings is negative. The states
of activities of the neurons along such loops cannot be set in a way that satisfies all the excitatory
and inhibitory connections, hence giving rise to dynamical instabilities in the states of the neurons.
The absence of frustrated loops in the network (Figure 4A) stabilizes and boosts the activity, an
artifact we had to correct for in our analytical treatment by introducing an effective number of
neurons K, much smaller than the total numbers of neurons Ns. Neglecting the variability of the
contralateral couplings also constitutes a drastic approximation of the mean field approach. This
is all the more true that the average contralateral coupling I happens to be small compared to its
standard deviation.

Couplings are not only broadly distributed but also spatially organized. Ipsilateral couplings J;;
decay with the distance between neuronsi and j (Appendix 2 Figure 4F). Similarly, contralateral cou-
plings show strong correlations for short distances between the contralateral neurons (Appendix
2 Figure 4G). The existence of a local spatial organization in the couplings is not unheard of in
computational neuroscience, and can have important functional consequences. it is for instance
at the basis of ring-like attractor models and their extensions to 2 or 3 dimensions (Tsodyks and
Sejnowski, 1995). Combined with the presence of variable biases h;, short-range interactions can
lead to complex propagation phenomena, intensively studied in statistical physics in the context of
the Random Field Ising Model. (Schneider and Pytte, 1977; Kaufman et al., 1986). As the most ex-
citable neurons (with the largest biases) fire they excite their neighbors, who in turn become active,
triggering the activation of other neurons in their neighborhood. Such an avalanche mechanism
could explain the fast rise of activity in the left or right region, from low- to high-activity state.
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Interpretation of the functional connectivity

The inferred functional couplings J;;'s are not expected to directly reflect the corresponding struc-
tural (synaptic) connectivity. However, their spatial distribution appears to be in line with the known
ARTR organization (Dunn et al., 2016; Kinkhabwala et al., 2071) characterized by large positive (exci-
tatory) interactions within the left and right population, and by the presence of negative (inhibitory)
contralateral interactions. Although the contralateral couplings are found to be, on average, almost
null, compared to the ipsilateral excitatory counterparts, they drive a subtle interplay between the
left and right regions of the ARTR.

Our neural recordings demonstrate a systematic modulation of the ARTR dynamics with the
water temperature, in quantitative agreement with the thermal-dependance of the exploratory
behavior in freely-swimming assays. The model correctly captures this thermal modulation of the
ARTR activity, and in particular the decay of the persistence time with the temperature. This owes
to a progressive change in the values of both the couplings and the biases, which together de-
form the energy landscape and modulate the energy barriers between metastable states. The fact
that the inferred functional connectivity between neurons does not display simple temperature-
dependence is not unexpected as different membrane currents can have different temperature
dependence (Partridge and Connor, 1978).

In addition, as shown in Appendix 2 Table 2, the inferred parameters largely vary across datasets.
This variability is partially due to the difficulty to separately infer the interactions J;; and the biases
h;, a phenomenon not specific to graphical model but also found with other neural e.g. Integrate-
and-Fire network models (Monasson and Cocco, 2071). This issue can be easily understood within
mean-field theory. For simplicity let us neglect the weak contralateral coupling I. The mean ac-
tivity m of a neuron then depends on the total ‘input’ J m + H it receives, which is the sum of the
bias H and of the mean ipsilateral activity m, weighted by the recurrent coupling J. Hence, the
combination J m+ H is more robustly inferred than H and J taken separately (Appendix 2 Figure
7E).

The capacity to quantitatively capture subtle differences in the spontaneous activity induced by
external cues is an important asset of our model. Recent studies have shown that spontaneous be-
havior in zebrafish larvae is not time-invariant but exhibits transitions between different regimes,
lasting over minutes and associated with specific brain-states. These transitions can have no ap-
parent cause (Le Goc et al., 2021) or be induced by external (e.g. stimuli(Andalman et al., 2019)) or
internal cues (e.g. hunger states (Marques et al., 2019)). Although they engage brain-wide changes
in the pattern of spontaneous neural dynamics, they are often triggered by the activation of neuro-
modulatory centers such as the habenula-dorsal raphe nucleus circuit (Corradi and Filosa, 2021).
Training Ising models in various conditions may help decipher how such neuromodulation impacts
the network functional couplings leading to distinct dynamical regimes of spontaneous activity.

Data-driven modelling and metastability
With its slow alternating activity and relatively simple architecture, the ARTR offers an ideally suited
circuit to test the capacity of Ising models to capture network-driven dynamics. The possibility to ex-
perimentally modulate the ARTR persistence time-scale further enabled us to evaluate the model
ability to quantitatively represent this slow process. The ARTR is part of a widely distributed hind-
brain network that controls the eye horizontal saccadic movements, and which includes several
other neuronal populations whose activity is tuned to the eye velocity or position (Joshua and Lis-
berger, 2015; Wolf et al., 2017). A possible extension of the model would consist in incorporating
these nuclei in order to obtain a more complete representation of the oculomotor circuit. Beyond
this particular functional network, a similar data-driven approach could be implemented to cap-
ture the slow concerted dynamics that characterize numerous neural assemblies in the zebrafish
brain (van der Plas et al., 2021).

The importance of metastable states in cortical activity in mammals has been emphasized in
previous studies as a possible basis for sequence-based computation (Harvey et al., 2012; Brinkman
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s22 et al., 2022). Our model suggests that these metastable states are shaped by the connectivity of
s23 the network, and are naturally explored during ongoing spontaneous activity. In this respect, the
s2a modification of the landscape resulting from visual stimulation, leading to a sharp decrease in the
s2s  barrier separating the states is reminiscent of the acceleration of sensory coding reported in Maz-
s26  zUcato et al. (2019). Our principled data-driven modeling could be useful to assess the generality
s27  Of such metastable-state-based computations and of their modulation by sensory inputs in other
s28  Organisms.

2 Methods and Materials
s30  All data and new codes necessary to reproduce the results reported in this work can be accessed
sa1 from (https://hub.bio.ens.psl.eu/index.php/s/aMD6e7PsiRZ2pdM).

s2 Key Ressources table

Reagent type Designation Source or Identifiers Additional
(species) or reference information
resource
strain, strain background Tg(elavi3:H2B- Vladimirov et al.

GCaMP6s) (2014)

(Danio rerio)

strain, strain background Tg(elavi3:H2B- Quirin et al.

(Danio rerio) GCaMPéf) (2016)

Software, algorithm Blind Sparse Tubiana,Wolf, BSD
Deconvolution Panier,Debre

geas (2020)

Software, algorithm Computational https://iwww.nitrc.org | CMTK
Morphometry /projects/cmtk/
Toolkit

Software, algorithm Adaptive Barton, ACE
Cluster Cocco, 2013
Expansion

533

ss« Zebrafish lines and maintenance

s3s  All animals subjects were Zebrafish (Danio rerio), aged 5 to 7 days post-fertilization (dpf). Larvae
s3s were reared in Petri dishes in embryo medium (E3) on a 14/10h light/dark cycle at 28°C, and were
s37 fed powdered nursery food (GM75) every day from 6dpf.

538 Calcium imaging experiments were conducted on nacre mutants that were expressing either
s3e  the calcium indicator GCaMP6f (12 fish) or GCaMP6s (1 fish) in the nucleus under the control of the
sa0  Nearly pan-neuronal promoter Tg(elavi3:H2B-GCaMP6). Both lines were provided by Misha Ahrens
sa1  and published in Vladimirov et al. (2014) (H2B-GCaMP6s) and Quirin et al. (2016) (H2B-GCaMP6f).
542 All experiments were approved by Le Comité d’Ethique pour I'Expérimentation Animale Charles
saz Darwin (02601.01).

s« Behavioral assays

sas The behavioral experiments and pre-processing have been described in details elsewhere (Le Goc
sas et al., 20217). Shortly, it consists in a metallic pool regulated in temperature with two Peltier el-
sa7  ements, recorded in uniform white light from above at 25Hz. Batch of 10 animals experienced
sas  30min in water at either 18, 22, 26, 30 or 33°C (10 batches of 10 fish, involving 170 different individ-
sa0 Uals, were used). Movies were tracked with FastTrack (Gallois and Candelier, 2021), and MATLAB
sso  (The Mathworks) is used to detect discrete swim bouts from which the differences of orientation
ss1  between two consecutive events are computed, referred to as turn or reorientation angles 56.

552 Turn angles distributions could be fitted as the sum of two distributions (Gaussian and Gamma),
ss3  Whose intersection was used to define an angular threshold to categorize events into forward (F),
ssa left turn (L) or right turn (R, Figure 1E). This threshold was found to be close to 10 degrees for all
sss  tested temperatures.
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Then we ternarized 56 values, based on F, L or R classification (Figure 1F) and computed the
power spectrum of the binary signals defined from symbols L and R only, with the periodogram
MATLAB function and averaged by temperature (Figure 1G). The outcome was fitted to the Lorentzian
expression corresponding to a memory-less equiprobable two-state process (Odde and Buettner,
1998): o

S e m : (6)

flip
where k ,, is the rate of transition from one state to another. The inverse of the fitted flipping rate
k;y;, represents the typical time spent in the same orientational state, i.e. the typical time taken to

switch turning direction.

Light-sheet functional imaging of spontaneous activity

Volumetric functional recordings were carried out using custom-made one-photon light-sheet mi-
croscopes whose optical characteristics have been detailed elsewhere (Panier et al., 2013). Larvae
were mounted in a Tmm diameter cylinder of low melting point agarose at 2% concentration.

Imaged volume corresponded to 122 + 46 um in thickness, split into 16 + 4 slices (mean + s.d.).
Recordings were of length 1392 + 256 seconds with a brain volume imaging frequency of 6 + 2 Hz
(mean +s.d.).

Image pre-processing, neurons segmentation and calcium transient (AF/F) extraction were
performed offline using MATLAB, according to the workflow previously reported (Panier et al.,
2013; Wolf et al., 2017; Migault et al., 2018).

A Peltier module is attached to the lower part of the pool (made of tin) with thermal tape
(3M). A type T thermocouple (Omega) is placed near the fish head (< 5mm) to record the fish
surrounding temperature. The signal from a thermocouple amplifier (Adafruit) is used in a PID
loop implemented on an Arduino board, which mitigate the Peltier power to achieve the prede-
fined temperature target, stable at +0.5°C. The temperature regulation softwares and electron-
ics design are available on Gitlab under a GNU GPLv3 licence (https://gitlab.com/GuillaumelLeGoc/
arduino-temperature-control).

The ARTR neurons were selected using a method described elsewhere (Wolf et al., 2017). First,
a group of neurons was manually selected on a given slice based on a morphological criterion such
that the ARTR structure (ipsilateral correlations and contralateral anticorrelation) is revealed. Then,
neurons showing Pearson'’s correlation (anti-correlation) higher than 0.2 (less than -0.15, respec-
tively) are selected, manually filtering them on a morphological criterion. Those neurons are then
added to the previous ones, whose signals are used to find neurons from the next slice and so on
until all slices are treated.

For fish that were recorded at different temperature, to ensure that the same neurons are
selected, we used the Computational Morphometry Toolkit (CMTK, https://www.nitrc.org/projects/
cmtk/) to align following recordings onto the first one corresponding to the same individual. Re-
sulting transformations are then applied to convert neurons coordinates in a consistent manner
through all recordings involving the same fish.

Visually-driven recordings

Volumetric functional recordings under visual stimulation were carried using our two-photon light-
sheet microscope described in Wolf et al. (2075). The stimulation protocol was previously explained
in Wolf et al. (2017): two LEDs were positioned symmetrically outside of the chamber at 45° and
4.5 cm from the fish eyes, delivering a visual intensity of 20 yW/cm?. We alternately illuminated 17
times each eye for 10s, 15s, 20s, 25s and 30s while performing two-photon light-sheet brain-wide
functional imaging. Synchronization between the microscope and the stimulation set-up was done
using a D/A card (NI USB-6259 NCS, National Instruments) and a LabVIEW program. Brain volume
image frequency was of 1Hz on the 6 recorded fish. Recordings last for 4500s, 856s of wich is
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spontaneous activity. We extracted the ARTR neurons following the same procedure described
above, yielding 89 + 54 neurons (mean =+ s.d.).

Time constants definitions
For the flipping rates (Figure 1D), we defined the time-dependent signed activity of the ARTR (Figure
1B) through

o(r) = sign(my (1) — mp(®)) , 7)
where m; x(t) = ﬁ Y.c.r Si(1) are the average activities in the L,R regions. A power spectrum
density is estimated for each signal with the Thomson’s multitaper method through the pmtm
MATLAB function (time-halfbandwidth product set to 4). The power spectrum densities were then
fitted with a Lorentzian spectrum, see Eq. 6 and Figure 1G.

ARTR leftand right persistence times (Figure 3B) are defined as the time m, and m, signals spend
consecutively above an arbitrary threshold set at 0.1. Left and right signals are treated altogether.
Changing the threshold does induce a global offset but does not change the observed effect of
temperature, the relation with m; and m, mean signals, nor the relation with the persistence times
of the synthetic signals. The persistence times of the synthetic signals, generated with the Ising
models, are computed using the same procedure: we compute the time m;, and m, synthetic signals
spend consecutively above an arbitrary threshold set at 0.1, we then normalize these durations by
the corresponding experimental frame rate in order to compare the different recordings (Figure
3B). For the mean-field simulated dynamics of the left and right activities, we also follow the same
strategy in order to compute the persistence times displayed in Figure 4F.

Inference of Ising model from neural activity

From spontaneous activity to spiking data, to biases and connectivity

For each recording (animal and/or temperature) approximate spike trains were inferred from the
fluorescence activity signal using the Blind Sparse Deconvolution algorithm (Tubiana et al., 2020).
This algorithm features automatic (fully unsupervised) estimation of the hyperparameters, such as
spike amplitude, noise level and rise and decay time constants, but also an automatic thresholding
for binarizing spikes such as to maximize the precision-recall performance. The binarized activity
of the N recorded neurons was then described for each time bin ¢, into a N-bit binary configuration
s,, With, s, (r) = 1 if neuron i is active in bin ¢, 0 otherwise.

The functional connectivity matrix J; and the biases 4, defining the Ising probability distribution
over neural configurations, see Eq. 1, were determined such that the pairwise correlations and
average activities computed from the model match their experimental counterparts. In practice,
we approximately solved this hard inverse problem using the Adaptative Cluster Expansion and
the Monte-Carlo learning algorithms described in Cocco and Monasson (2011) and in Barton and
Cocco (2013). The full code of the algorithms can be downloaded from the GitHub repository: https:
//github.com/johnbarton/ACE/.

Monte Carlo sampling

In order to generate synthetic activity, we resorted to Gibbs sampling, a class of Monte Carlo
Markov Chain method, also known as Glauber dynamics. At each time step k, a neuron, say, i,
is picked up uniformly at random, and the value of its activity is updated from s to s**!' = 0,1
according to the probability

k+1 k
[ exp (sl, (h+ X, J; sj)) .
(Si Sj;éi) - X ( )
1+exp<hi+ZjJ,.jsj>

which depends on the current activities of the other neurons. As this updating fulfills detailed
balance the probability distribution of sk eventually converges to P in Eq. 1. A Monte Carlo round
is defined as the number of Monte Carlo steps divided by the total number of neurons, N. The
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code used can be accessed from the link provided at the beginning of the Materials and Methods
section.

Cross-validation and independent model

We cross-validated the Ising models (see Appendix Figure 3) dividing the data sets in two parts: for
each experiment, 75% of each data set is used as a training set and the remaining 25% is used as
a test set. Each training set is used to infer an Ising model. We then compare the mean activity
and covariance of the test set with the one computed from the simulated data generated by the
models (Appendix 2 Figure 3A-B). We also show the relative variation of the models’ log likelihood
computed on the training data and the test data (Appendix 2 Figure 3C).

In addition, as a null hypothesis, we decided to compare the Ising models fitted on the data with
the independent model. The independent model depends on the mean activities (s;)gaa ONly, and

reads
P(s)= % exp (Z h; s,.> s 9)

We demonstrate in Appendix 2 Figure 3E-F the inefficiency of the independent models, comparing
the mean activity and covariance of the test set with the one computed from the simulated data
generated by the independent models. We also show the relative variation, between the Ising and
the independent models, of the log likelihood computed on the training data and the test data
(Appendix 2 Figure 3G).

Real data and models comparison

To quantify the quality of the log-probability landscapes reproduction by the Ising models (Figure
3A), we used the Kullback-Leibler divergence between (1) a dataset i and the synthetic signals gen-
erated with the model trained on that dataset i (green) and (2) the dataset i with synthetic signals
generated with every other models (red). With ¢, the count in the two-dimensional bin i (10x10

bins used) and a a pseudocount (set to 1), the probability in bin i is defined as P, = ZT{: -
jlcjta

Kullback-Leibler divergence between a data/model pair is then defined as

Paai
Dy, = 2 Parai 10210 (d—1> : (10)

model i

We follow the exact same procedure in order to compare the independent model and their cor-
responding datasets (Figure 3A in blue). In this case we use synthetic signals generated with the
independent model to define P,

Inference of additional biases from visually-driven activity recordings
For the visually-driven activity recordings, we infer the additional biases 6k, from the recordings of
the ARTR activity (Figure 5D) during, for example, the leftward light stimulations as follows. Let B
the number of time bins ¢ = 1,2,..., B in the recording, and s, the corresponding binarized activity
configurations. We define, for each neuron i,

B exp(h+ X, J,5,(1) + 8h)

(5h) = .
pi(oh) ;1+exp(h,—+z J,; s;(1) + 6h)

j Uit

(1n

p:(6h) represents the mean activity of neuron i, when subject to a global bias summing &;, the
other neurons activities s,(f) weighted by the couplings J;;, and an additional bias 64, averaged
over all the frames 7 corresponding to left-sided light stimulation. It is a monotonously increasing

-

B

function of 6k, which matches the experimental average activity é Z s,(1) for a unique value of its
B 5

argument. This value defines 6h,. The same procedure was followed to infer the additional biases

675. associated to rightward visual stimulations.
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Figure 1. Temperature-dependence of ARTR dynamics and turn direction persistence.

A, Morphological organization of the ARTR showing all identified neurons from 13 fish recorded with lighsheet calcium imaging. B, Example of
ARTR binarized signal sign(m; — mg) (gray) along with the left (m,, red) and right (mg, blue) mean activities. C, Averaged power spectra of the
ARTR binarized signals, for the 5 tested temperatures. The dotted vertical lines indicate the signal switching frequencies v as extracted from the
Lorentzian fit (solid lines). D, Temperature-dependence of v. The lines join data points obtained with the same larva. E, Swimming patterns in
zebrafish larvae. Swim bouts are categorized into forward and turn bouts, based on the amplitude of the heading reorientation. Example
trajectory: each dot corresponds to a swim bout; the color encodes the reorientation angle. F, The bouts are discretized as left/forward/right
bouts. The continuous binary signal represents the putative orientational state governing the chaining of the turn bouts. G, Power spectra of the
discretized orientational signal averaged over all animals for each temperature (dots). Each spectrum is fitted by a Lorentzian function (solid
lines) from which we extract the switching rate k;,. H, Temperature dependence of k ;. Inset: relationship between k;;, (behavioral) and v
(neuronal) switching frequencies. Bar sizes represent s.e.m. and the dashed line is the linear fit.
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Figure 2. Ising models reproduce characteristic features of the recorded activity.

A, (Top) Probability densities P(m;, mg), see Eq. 2, of the activity state of the circuit (obtained from the spiking inference of the calcium data), in
logarithmic scale and for two different fish and water temperatures T = 22 and T = 30°C; Color encodes z-axis (same color bar for both). (Middle)
10-min long raster plots of the activities of the left (red) and right (blue) subregions of the ARTR. (Bottom) Corresponding time traces of the
mean activities m; and mg. B, Processing pipeline for the inference of the Ising model. We first extract from the recorded fluorescence signals
approximate spike trains using a Bayesian deconvolution algorithm (BSD). The activity of each neuron is then "0" or "1". We then compute the
mean activity and the pairwise covariance of the data, from which we infer the parameters h; and J;; of the Ising model. Finally, we can generate
raster plot of activity using Monte-Carlo sampling. C, Same as A for the two corresponding inferred Ising models. The raster plots correspond to
Monte-Carlo-sampled activity, showing slow alternance between periods of high activity in the L/R regions. Here we show only two examples of a
qualitative experimental vs synthetic signals comparison. We provide in the supplementary materials the same comparison for every recording.
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Figure 3. Comparison of model distributions and persistence times across fish and water temperatures.

A, Distribution of the Kullback-Leibler divergences between test datasets and their corresponding Ising models (green), between test datasets
and Ising models trained on different datasets (red) and between test datasets and their corresponding independent models that assume no
connections between neurons (dark blue). Note that each dataset is divided in a training set corresponding to 75% of the time bins chosen
randomly and a test set comprising the remaining 25 %. B, Average persistence times in simulations vs. experiments. Each dot refers to one fish
at one water temperature, colors encode temperature.
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Figure 4. Mean-field approximation of the inferred Ising model.

A, Schematic view of the mean-field Ising model. B, Examples of simulated m; and my signals of the mean-field dynamical equations for two sets
of parameters that correspond to fish ID 5 at two water temperatures (22°C and 30°C), see Table 1. C, Free-energy landscapes in the (m;,mg)
plane computed with the mean-field model. These data correspond to the same sets of parameters as in panel B. Colored circles denote
metastable states, and the line of black arrows indicates the optimal path between (m/°%, m'**) and (m'*?,m"¢") states. D Schematic view of the
free-energy along the my axes. The arrows denote the energy barriers AF associated with the various transitions. The dark green arrow denotes
AF ((mhigh mlowy - (m'°w, mlow)); the purple arrow denotes AF ((m'*, m'°¥) — (mhigh m'ow)). E, Values of the free-energy barriers as a function of
temperature. Error bars are standard error of the mean. F, Persistence time of the mean-field ARTR model for all fish and runs at different
experimental temperatures. Each dot refers to one fish at one temperature, colors encode temperature.
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Figure 5. Modified Ising model captures the behavior of ARTR under visual stimulation.

A Scheme of the stimulation protocol. The left and right eyes are stimulated alternatively for periods of 15 to 30s, after which a period of
spontaneous (no stimulus) activity is acquired. B, Example of the ARTR activity signals under alternated left-right visual stimulation. The small
arrows indicate the direction of the stimulus. C, Sketch of the modified Ising model, with additional biases 6a; to account for the local visual
inputs. D, Values of the additional biases averaged over the ipsilateral and contralateral (with respect to the illuminated eye) neural populations.
E, Monte Carlo activity traces generated with the modified Ising model. F, Free-energy landscapes computed with the mean-field theory during
spontaneous (left panel) and stimulated (right panel) activity for an example fish. G, Free-energy along the optimal path as a function of m; —mp
during spontaneous (plain line) and stimulated (dotted line) activity. The model is the same as in panel F.
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s  Appendix 1

s26 Mean-field theory for the ARTR activity

827 Derivation of the free energy

We consider an Ising model with N, and N, neurons in, respectively, the left and right
regions. Each neuron activity variable can take two values, ; = 0, 1, corresponding to silent
and active states (within a time window). The “energy” of the system reads

820 _ Np . Np+Ng
o0 E(sys oo Sn,sSnyats s Snyeng) = —Hp ) s — Hy Z 8 __ZJ’J 58, (12)
i=1 i=Ny+l1 i#j

831

832 where H,, H, are biases acting on the neurons, and the coupling matrix is defined through
833

834 I if 1<i,j<N,,

o35 Ji =9 Jr if N, +1<i,j<N;+Ng, (13)

I otherwise.

837 We now introduce the left and right average activities:

838 1 L 1 NL+NR

830 L=—Z mp=—— 2 5. (14)
840 Ny i=1 R =N +1

The energy E of a neural activity configuration in Eq. 12 can be expressed in terms of these
average activities:

. T S
sa E(m,,mg) = -N, <HL — 7L> m; — Ng (HR — 7") my
845
(N, - (N )2
oae — 2L Jym} — 2" —IN,Nym,mp. (15)
847
We may now compute the partition function normalizing the probability of configura-
tions,
T = Z e_E(Sl’“'vSNL+NR) — Z ML(mL) MR(mR) e~ E(mp.mpg) , (16)
{5;=0,1} mp.mg

where the sums runs over fractional values of the average left and right activities, from 0 to 1
with steps equal to, respectively, 2/N; and 2/N,, and the multiplicities M; and M measure
the numbers of neural configurations with prescribed average activities. We approximate
these multiplicities with the standard entropy-based expressions, which are exact in the
limit of large sizes K, Kg:

My(my) =MD Mp(mg) ~ eNRSTR) (17)

where
S(m)=—mInm— (1 —m)In(l —m) (18)

is the entropy of a 0— 1 variable with mean m. As a consequence the activity-dependent free
energy is given by

F(mp,mg) = E(mp,mg)— Ny S(m;)— NpS(mpg) (19)
N, J, NgJ
= - LszLZ— RszRZ—I N, Ngm mg—N, H m, — Ng Hgmpg

+ Ny (myInm +(1=my)In(l —=m,)) + Ng (mg Inmg + (1 = mg) In(1 — my))
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867

868

869

870 where the bias and coupling parameters are, respectively, H, = H, — JTL H, = H, - JTR
871 J, =N, J,,Jg=NgJdg I=+/N, Ny I

872 The sizes N, , N, enter formula (19) for the free energy in two ways:

873 « implicitly, through the biases H,, H, and the couplings J,,J;,I. These parameters
874 are equal to, respectively, the average bias and the total ipsilateral and contralateral
875 couplings acting on each neuron inthe L and Rregions. They are effective parameters
876 defining the mean-field theory;

877 « explicitly, as multiplicative factors to the free energy contributions coming from the
878 left and right regions. The sizes then merely act as effective inverse "temperatures",
879 in the Boltzmann factor e~Fmr) associated to the probability of the L, R activities.
880 Mean-field theory generally overestimates the collective effects of interactions; a well-
881 known illustration of this artifact is the prediction of the existence of a phase transition in
882 the uni-dimensional ferromagnetic Ising model with short range interactions, while such a
883 transition is rigorously known not to take place (Ma, 1985). We expect these effects to be
8sa strong here, due to the wide distribution of inferred Ising couplings (Appendix 2 Figure 4A).
sss Many pairs of neurons carry close to zero couplings, and the interaction neighborhood of a
886 neuron is effectively much smaller than N, and N,. To compensate for the overestimation
887 of interaction effects we thus propose to keep Eq. 19 for the free energy, but with effective
ass sizes K, , Ky replacing the numbers N,, N, of recorded neurons, see Eq. 2, leading to the
889 expression of the free energy:

890

801 F(m,,mg) = K m,? — Kr T mp>—I\/K, Kgm,mg—K, H m, — Ky Hymp (20)

2
+ K, (myInmy,+(1=my) In(1 —my)) + K (mg Inmp + (1 — mg) In(1 — mp))

80a These effective sizes K;, K are expected to be smaller than N;, N;. Their values are
805 fixed through the comparison of the Langevin dynamical traces with the traces coming from
896 the data, see below.
807 Langevin dynamical equations

The dynamical Langevin equations read
a98 rdZL = K,(Jym,+H,)+I\VK, Kgmp—K; 1og<li"inL> +e,.(), (21)
899
900 r% = Kp(Jgmp+Hy) +IVK, Kym, — Ky log<1:n1:nk> +ex(0) (22)
901
002 where ¢, , ¢, denote white-noise processes, see main text.
903 Fit of the effective sizes K; and K
%04 The effective sizes K, = N, /A and K, = N,/A were fitted generating Langevin trajectories
005 of the activities (m,,my) for a large set of values of A (i.e. K, and Ky ), and with fixed pa-
906 rameters (H,,Hy, J,,J7). For each value of K, and K, we computed the Kullback-Leibler
007 (KL) divergence between the experimental and the Langevin distributions of (m,,my) (see Ap-
008 pendix 2 Figure 7A-C). The effective sizes K, and K, are the ones that minimize the value of
900 the KL divergence. For low values of A the KL divergence can be noisy and creates artifacts.
010 To avoid these artifacts we assume that A > 2.
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012 Supplementary figures and tables
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014 Appendix 2 Figure 1. Temperature-dependence of the ARTR activity.
015 A, Schematic of the experimental setup used to perform brain-wide calcium imaging of a zebrafish
916 larva at controlled water temperature. B, Raster plot of the ARTR spontaneous dynamics showing
017 alternating right/left activation. The top and bottom traces are the ARTR average signal of the left and
918 right subcircuits. C, Example ARTR sign(m; — mg) binarized signals measured at 3 different
919 temperatures (same larva). D, Averaged power spectrum of the ARTR signals mp — m; for the 5 tested
020 temperatures. Lorentzian fits are shown as solid lines.
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923 Appendix 2 Figure 2. Effect of temperature on the ARTR time persistence and activity
024 A, Pdf of activities of both sides of the ARTR. Color encodes temperature. B, Temperature-averaged
025 mean activity of ARTR left and right neuronal subpopulations. Error bars are standard error of the
026 mean. C, Temperature-averaged Pearson correlation for left/right ispilateral pairs (yellow line) or for
027 contralateral pairs of neurons (purple line). Error bars are standard deviations. D, ARTR persistence
028 time vs. mean activity; note the quasi-linear dependence of these quantities (R = 0.91). Each dot is the
030 mean persistence time computed for one fish at one temperature, colors encode temperature.
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931
032 Appendix 2 Figure 3. Inference of the ARTR Ising model.
033 A-B, Comparison between the mean activities (A) and pairwise correlations (B) computed from
034 experimental test data and from synthetic (Ising model-generated) data (32 recordings, n = 13 fish).
935 Ising models were trained on a distinct subset of the experimental data. C, Relative variation of the
936 log-likelihoods of the Ising models between training and test data, showing the absence of overfitting.
037 D, Probability that K of the N neurons in the ARTR are simultaneously active in the data (black dots)
o038 and in the model (yellow line) configurations. E-F In order to demonstrate the need for effective
039 connections in our model, we generated synthetic data with independent models of the training
040 dataset. Here we compare the mean activity (E) and the pairwise covariance (F) computed on the
941 experimental test dataset and using independent models. G Excess log likelihood of the Ising models
043 compared to the independent model for training and test data set (see Methods).
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Appendix 2 Figure 4. Correlation structure within the ARTR and properties of the inferred

couplings.

A, Probability density function of the functional connectivity for the ipsilateral (gold line) and the
contralateral (purple line) couplings. These pdf were obtained by averaging across all animals. B,
Probability density function of the functional Pearson correlation for the ipsilateral (gold line) and the
contralateral (purple line) couplings. C, Box plot across experiments of the average value of the
ipsilateral and contralateral couplings. D, Probability to have an ipsilateral (gold line) or a contralateral
(purple line) pair of neuron given its effective connectivity. For a given range of the effective
connectivity, we compute the number of ipsilateral and contralateral pairs of neurons. E, Probability
to have an ipsilateral (gold line) or a contralateral (purple line) pair of neuron given its Pearson
correlation. F, Functional connectivity J;; as a function of the distance between neurons i, j. G,
Correlation between the couplings J;; and J,, between one neuron i and one neuron k as a function
of their distance d,, for every possible pair (i, k).

29 of 34


https://doi.org/10.1101/2022.02.02.478841

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.02.478841; this version posted January 31, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

A B C
Left ARTR Right ARTR 8.5 _
A
A Y =
= < o
v @
-4.5 | v
100 100 200 300
#neuron LEFT RIGHT
959
960 Appendix 2 Figure 5. Distribution of biases in the inferred ARTR Ising model.
961 A, Bias parameter distribution for an example fish. B, Box plot across experiments of the average
962 value of the biases for the left and right subpopulations of the ARTR. C, Box plot across animals of the
962 standard deviation of the biases for the left and right subpopulations of the ARTR.
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966 Appendix 2 Figure 6. Correlation of Ising parameters at different temperatures
For each fish (n=13), we extract from the scatter plots of the coupling J;; and bias &; inferred from
888 activity recordings at two different temperatures, the Pearson correlation coefficients R,,,,,,- The
969 distribution of R .., values are shown for all fish and pairs of temperature. Inset: Example scatter
970 plots of the inferred biases 4; (left) and effective couplings J;; (right) for the same fish at two different
072 temperature T =22 and T = 30°C.
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o074 Appendix 2 Figure 7. Mean-field model of the ARTR.
975 A-B, Kullback-Leibler divergence between the experimental and the Langevin distributions as a
976 function of N/K where N is the total number of neurons of the left or right subpopulation, and K is
077 the effective extent of neuronal interaction (see Methods) for two data sets. C, Probability density
978 function of Ky (blue line) and K, (red line) across all recordings. D, Free-energy difference between
079 stationary sates of the landscape as a function of the temperature. E, Average values (for all
980 experiments and regions) of K(H + J M) as a function of the temperature of the water. Error bars are
082 standard error of the mean.
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o84 Appendix 2 Figure 8. A modified Ising model explains visually-driven properties of the ARTR.
085 A-B, To assess the performance of the model for visually-driven experiments, we compare the mean
086 activity (A) and the pairwise covariance (B) computed on the spontaneous part of the recordings to
087 synthetic data. C, Scatter plot of the correlation between contralateral pairs of neurons under visual
988 stimulation vs. spontaneous activity on n = 6 fish. D, Scatter plot of the correlation between ipsilateral
089 pairs of neurons under visual stimulation vs. spontaneous activity. E, Average Pearson correlation in
990 the experimental recordings between contralateral (the pvalue of a paired sampled ttest is provided)
901 and ipsilateral pairs of cells during stimulated and spontaneous activity (n = 6 fish). F, Average
902 Pearson correlation in the simulated activity of the ARTR between contralateral and ipsilateral pairs of
998 cells during stimulated and spontaneous activity (n = 6 fish).
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Temperature (°C) ID Line Age (dpf) N, N Acquisitionrate (Hz) Duration (s)
18 12 NucFast 6 146 180 5 1200
18 13 NucFast 7 37 96 8 1200
18 14 NucFast 6 179 174 8 1200
22 2 Nucslow 7 177 212 3 1106
22 3 NucFast 5 152 85 3 1812
22 5 NucFast 5 158 123 5 1500
22 6 NucFast 5 98 134 5 1500
22 7 NucFast 6 122 221 5 1500
22 11 NucFast 6 295 320 5 1200
22 13 NucFast 7 37 9% 8 1200
22 14 NucFast 6 179 174 8 1200
26 2 Nuc slow 7 177 212 3 1812
26 3 NucFast 5 152 85 3 1812
26 4 NucFast 5 110 76 3 1812
995 26 5 NucFast 5 158 123 5 1500
996 26 6 NucFast 5 98 134 5 1500
26 7 NucFast 6 122 221 5 1500
26 11 NucFast 6 295 320 5 1200
26 13 NucFast 7 37 9% 8 1200
26 14 NucFast 6 179 174 8 1200
30 2 Nucslow 7 177 212 3 1812
30 4 NucFast 5 110 76 3 1812
30 5 NucFast 5 158 123 5 1500
30 6 NucFast 5 98 134 5 1500
30 7 NucFast 6 122 221 5 1500
30 13 NucFast 7 37 % 8 1200
30 14 NucFast 6 179 174 8 1200
30 15 NucFast 7 202 252 8 1200
33 14 NucFast 6 179 174 8 1200
33 15 NucFast 7 202 252 8 1200
33 16 NucFast 6 127 123 7 1200
33 17 NucFast 5 62 170 10 1200
008 Appendix 2 Table 1. Datasets properties.
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1000

1002

1003

1008

Temperature (°C) ID J, I 1 H, H, K, Ky
18 12 7.06 723 -0.6 -3.66 -3.63 6.51 8.03
18 13 6.2 7.84 0.6 -3.53 -434 3.18 8.27
18 14 727 7.24 031 -388 -399 11.04 10.74
22 2 8.2 8.28 0.12 -424 -423 6.65 7.96
22 3 8.18 7.14 055 -426 -413 938 5.24
22 5 759 7.01 04 -4.03 -3.8 5.56 4.33
22 6 7.13 8.69 1.1 -4.49 -464 521 7.12
22 7 7.09 7.46 043 -373 -395 6.28 11.39
22 11 782 759 -0.1 -4.07 -391 8.28 8.98
22 13 654 7.82 145 -429 -45 7.1 18.46
22 14 741 803 047 -428 -443 1091 10.6
26 2 837 822 -049 -447 -431 09.72 11.64
26 3 842 7.49 053 -456 -4.62 8.26 4.61
26 4 8.63 6.44 0.85 -483 -479 1037 7.16
26 5 729 7.59 048 -3.92 -4.14 9.08 7.06
26 6 743 7.86 041 -399 -4.1 8.59 11.75
26 7 755 796 032 -408 -422 445 8.06
26 1M1 727 745 037 -3.89 -392 1031 11.18
26 13 699 73 0.6 -3.99 -394 6.37 16.55
26 14 791 735 0.5 -434 416 1132 11.01
30 2 754 796 -0.12 -454 -456 7.02 8.41
30 4 836 7.73 0.11 -452 -4.18 9.64 6.66
30 5 6.77 6.42 0.66 -3.8 -3.87 9.18 7.15
30 6 735 738 045 -391 -397 7.53 10.3
30 7 743 8.07 042 -393 -438 7.09 12.84
30 13 691 741 073 -413 -4.03 5.78 15
30 14 751 745 0.11 -3.87 -3.89 0942 9.15
30 15 8.01 833 058 -445 -446 1383 17.26
33 14 674 7.02 076 -3.8 -3.97 9.32 9.06
33 15 6.99 7.47 -0.02 -368 -391 1485 18.52
33 16 753 825 -0.11 -4.16 -4.43 1443 1397
33 17 6.66 736 045 -369 -3.89 1192 32.69
Appendix 2 Table 2. Parameters of mean-field models.

ID J, I 1 H, Hy K, Ky

1 754 735 -067 -3,75 -3,44 5,60 3,43

2 710 742 064 -3,69 -402 791 12,82

3 751 792 -028 -396 -408 4,98 3,90

4 838 6,25 -004 -368 -3,18 1333 444

5 873 824 001 -438 -413 6,11 6,89

6 787 771 051 -417 -409 16,19 15,52

Appendix 2 Table 3. Parameters of the mean-field model for two-photon light-sheet data sets from

Wolf et. al 2017.
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