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 Abstract 

 How  can  we  better  understand  the  underlying  neural  mechanisms  of  brain  dynamics?  Many 
 groups  have  examined  brain  states  as  a  means  of  identifying  recurring  patterns  of  activity  or 
 connectivity.  Although  there  is  an  abundance  of  methods  of  establishing  and  interpreting  brain 
 states,  hidden  Markov  models  are  becoming  an  increasingly  popular  choice  to  extract  recurring 
 patterns  of  intensity  or  connectivity  in  neuroimaging  data.  These  models  not  only  recognize 
 spatial  patterns  of  brain  states,  but  also  ascertain  their  temporal  progression.  An  assortment  of 
 hidden  Markov  model  instantiations  has  arisen  for  diverse  purposes,  and  these  have  been 
 applied  to  a  variety  of  neuroimaging  datasets.  However,  most  of  these  instantiations  have 
 focused  on  intensity-based  states,  i.e.  states  defined  by  the  activity  levels  of  one  or  more  nodes, 
 rather  than  connectivity-based  states,  i.e.  states  defined  by  patterns  of  functional  connectivity 
 between  nodes.  The  intensity-based  approach  is  problematic  if  we  want  to  understand 
 connectivity  dynamics,  since  there  is  no  reason  to  believe  that  the  resultant  states  can  provide 
 any  useful  information  about  dynamic  connectivity  patterns.  Here  we  aimed  to  remedy  this 
 methodological  challenge  by  introducing  a  new  hidden  Markov  model  approach  based  on 
 identifying  states  defined  as  full  functional  connectivity  profiles  among  brain  regions,  and 
 applying  this  approach  to  directly  extract  connectivity-based  states  in  functional  magnetic 
 resonance  imaging  (fMRI)  data.  We  then  empirically  explore  the  behavior  of  this  new  model  in 
 comparison  to  existing  approaches  based  on  intensity-based  states  and  summed  functional 
 connectivity  states,  utilizing  the  widely-available  HCP  unrelated  100  functional  magnetic 
 resonance  imaging  “resting  state”  dataset.  Results  show  that  our  newly-introduced  ‘full 
 functional  connectivity’  model  discovered  connectivity  states  with  more  distinguishable  patterns 
 than  those  derived  from  previously-employed  approaches,  and  demonstrated  clear  superiority  in 
 recovering  simulated  connectivity-based  states.  These  findings  suggest  that  if  our  goal  is  to 
 extract  and  interpret  connectivity  states  in  neuroimaging  data,  our  new  model  can  reveal  more 
 insights  than  previous  methods,  and  intensity-based  or  summed  functional  connectivity-based 
 approaches miss crucial information about the evolution of functional connectivity in the brain. 

 Keywords 
 Resting state fMRI; hidden Markov model; state patterns; neuroimaging; functional connectivity 

 Highlights 
 ●  Hidden Markov models can be used to investigate brain states noninvasively 
 ●  Previous models “recover” connectivity from intensity-based hidden states 
 ●  Other previous models “recover” connectivity from connectivity ‘summed’ across nodes 
 ●  Only full connectivity-based models can reveal true connectivity hidden states 
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 1.  Introduction 
 A  useful  framework  to  characterize  the  brain  is  to  view  it  as  a  dynamical  system  of  interacting 
 and  interchanging  brain  states  (Chen  et  al.  2016;  Vidaurre,  Smith,  and  Woolrich  2017;  Stevner  et 
 al.  2019;  Lurie  et  al.  2020)  .  Brain  states  are  patterns  of  activity  levels  or  connectivity  strengths 
 that  characterize  and  quantify  network  interactions.  These  states  can  be  further  split  into  two 
 broad  categories:  states  defined  by  the  activity  levels  of  one  or  more  nodes  (brain  areas),  which 
 we  call  intensity-based  states,  and  states  defined  by  patterns  of  functional  connectivity  between 
 nodes,  which  we  call  connectivity-based  states.  In  contrast  to  intensity-based  methods, 
 connectivity-based  states  and  their  dynamics  remain  relatively  underexplored.  However,  these 
 dynamic  connectivity  approaches  have  the  potential  to  reveal  fundamental  insights  into  complex 
 correlative  relationships  among  brain  regions;  developing  and  benchmarking  new  methods  for 
 extracting and characterizing these states is therefore of critical importance. 

 Outside  the  context  of  state-based  analysis,  examining  dynamic  changes  in  functional 
 connectivity  is  often  employed  in  noninvasive  neuroimaging  in  humans,  particularly  via 
 functional  magnetic  resonance  imaging  (fMRI).  Previous  methods  to  identify  connectivity-based 
 states  range  from  simple  to  complex.  On  the  simple  end,  one  can  calculate  pairwise  dynamic 
 functional  connectivity  (dFC),  i.e.  the  correlation  in  activity  between  pairs  of  nodes  in  a  brain 
 network  and  how  such  correlations  change  across  time.  Dynamic  functional  connectivity  is 
 typically  calculated  using  a  sliding  time  window  approach,  and  has  previously  been  used  to 
 characterize  these  states  using  fMRI  to  generate  insight  into  the  underlying  neural  mechanisms 
 of  brain  dynamics  (Chen  et  al.  2016;  Vidaurre,  Smith,  and  Woolrich  2017;  Lurie  et  al.  2020)  or 
 disease  mechanisms  (Ou  et  al.  2015;  Díez-Cirarda  et  al.  2018;  Fiorenzato  et  al.  2019)  .  In  the 
 sliding  time  window  approach,  information  contained  within  a  certain  window  length  is 
 co  rrelated  between  time  series  of  different  brain  regions,  which  is  moved  a  certain  number  of 
 time  points  until  a  general  picture  of  functional  connectivity  shifts  is  obtained  (Lurie  et  al.  2020)  ; 
 this forms the trajectory through dFC space. 

 One  promising  approach  commonly  used  to  characterize  evolution  of  intensity-based  brain  states 
 across  time  is  through  employing  hidden  Markov  models  (HMMs).  HMMs  utilize  probabilistic 
 models  to  determine  a  hidden  state  sequence  path  not  directly  observable  in  data  (L.  R.  Rabiner 
 1989;  Sean  R.  Eddy  2004;  S.  R.  Eddy  1996;  Jurafsky  and  Martin  2009)  and  have  been  shown  to 
 adequately  characterize  fluctuating  dynamics  of  temporally  changing  intensity-based  brain  states 
 in  a  data-driven  manner  (Chen  et  al.  2016;  Vidaurre,  Smith,  and  Woolrich  2017;  L.  R.  Rabiner 
 1989;  S.  R.  Eddy  1996)  .  To  achieve  this,  HMMs  employ  Markov  chains  that  infer  the  underlying 
 intensity-based  states  where  the  probability  of  residing  in  any  one  of  these  states  depends  only  on 
 the  previous  state  (L.  R.  Rabiner  1989;  S.  R.  Eddy  1996;  Sean  R.  Eddy  2004)  .  HMMs  uses  three 
 different  algorithms  (the  forward  algorithm,  the  Viterbi  algorithm,  and  the  Baum-Welch 
 algorithm)  in  conjunction  to  find  the  most  likely  sequence  of  hidden  states,  transition 
 probabilities,  and  emission  probabilities  based  on  an  observable  sequence  of  data  (L.  R.  Rabiner 
 1989;  L.  Rabiner  and  Juang  1986;  Jurafsky  and  Martin  2009)  .  HMMs  are  useful  to  investigate 
 brain  state  dynamics  in  fMRI  datasets  because  (1)  they  do  not  need  assumptions  about  the 
 relationships  among  brain  states  (Chen  et  al.  2016)  ,  and  (2)  spatial  and  temporal  information  are 
 inherent  to  the  model.  Because  of  these  properties,  HMMs  have  been  used  to  identify  latent  brain 
 states  from  brain  signals  acquired  from  fMRI  and  magnetoencephalography  (Chen  et  al.  2016; 
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 Vidaurre,  Smith,  and  Woolrich  2017;  Vidaurre,  Abeysuriya,  et  al.  2018;  Vidaurre,  Hunt,  et  al. 
 2018; Baker et al. 2014; Eavani et al. 2013; Vidaurre et al. 2016)  . 

 Intensity-based  HMMs  have  successfully  been  used  to  define  spatial  patterns  of  latent, 
 intensity-based  brain  activity  states,  as  well  as  to  recognize  the  transitions  and  time  spent  in  those 
 states  (Chen  et  al.  2016;  Vidaurre,  Smith,  and  Woolrich  2017;  Stevner  et  al.  2019;  Vidaurre, 
 Hunt,  et  al.  2018)  .  To  study  connectivity-based  states,  several  groups  have  examined  covariance 
 values  extracted  from  such  intensity-based  HMMs,  transforming  them  into  Pearson  correlations 
 to  create  connectivity-like  states  to  examine  (Vidaurre,  Smith,  and  Woolrich  2017;  Stevner  et  al. 
 2019)  .  However,  it  is  unclear  to  what  extent  such  transformed  covariances  reflect  true  underlying 
 connectivity-based  states  rather  than  simply  the  connectivities  that  the  intensity-based  states 
 happened to exhibit. A more direct approach seems desirable. 

 Thus,  if  we  wish  to  characterize  a  trajectory  through  connectivity-based  state  space,  defining  an 
 HMM  using  functional  connectivity  instead  of  signal  intensity  as  an  input  seems  a  natural  and 
 perhaps  simpler  approach.  Recently,  Ou  et  al.  2015  implemented  such  a  method  where  results 
 from  a  dFC  sliding  window  analysis  were  summed  into  a  representative  “connectivity  vector”  -- 
 describing  a  given  node’s  total  connectivity  to  all  other  nodes  in  the  network  --  for  every  time 
 point,  and  then  fitted  with  an  HMM  (Ou  et  al.  2015)  .  This  method  may  appear  advantageous  to 
 examining  the  trajectory  through  connectivity  state  space  because  it  results  in  HMM-derived 
 connectivity-based  states  which  allow  analysis  of  temporal  aspects  of  connectivity-based  states 
 in  a  diseased  population  (Ou  et  al.  2015)  .  Critically,  however,  because  of  the  summing  step,  this 
 method  sums  over  --  and  thus  potentially  obscures  --  dynamic  changes  in  pairwise  connectivity, 
 and  therefore  may  average  over  important  information,  leading  to  erroneous  or  less  than 
 pertinent  results.  For  example,  increased  connectivity  between  the  source  node  and  one  target 
 node  might  be  balanced  by  decreased  connectivity  to  another  node,  such  that  no  change  is 
 observed  in  the  overall  sum  of  connectivity.  Importantly,  despite  the  sensitivity  of  HMMs, 
 interpretation  of  the  output  of  a  fitted  HMM  depends  strongly  on  the  inputs  and  assumptions 
 used  to  develop  the  model.  That  is,  the  states  resulting  from  Ou  et  al.  2015’s  method  may  have 
 drastically  different  results  than  one  in  which  an  HMM  was  fitted  to  all  pairwise  correlation 
 values  --  between  all  pairs  of  nodes  --  resulting  from  the  sliding  window  analysis  (Ou  et  al. 
 2015)  . 

 Here  we  tackled  these  concerns  head-on  by  developing  and  evaluating  a  new  HMM-based 
 method  that  fits  all  correlation  values  obtained  from  a  dFC  sliding  window  analysis.  We 
 comprehensively  compared  this  novel  full  functional  connectivity  HMM  (FFC  HMM)  to  two 
 previously-reported  methods  used  to  examine  functional  connectivity  states  in  neuroimaging 
 data:  (1)  a  standard  intensity-based  HMM  (IB  HMM)  (Chen  et  al.  2016;  Vidaurre,  Smith,  and 
 Woolrich  2017;  Stevner  et  al.  2019)  ,  and  (2)  the  summed  functional  connectivity  HMM  (SFC 
 HMM)  described  above  (Ou  et  al.  2015)  .  We  fitted  each  of  these  models  to  a  widely-available 
 existing  dataset,  the  Human  Connectome  Project  Unrelated  100  (Van  Essen  et  al.  2013)  resting 
 state  functional  MRI  dataset.  Our  findings  highlight  the  advantages  of  our  new  FFC  HMM  in 
 characterizing  functional  connectivity  states,  as  well  as  cautioning  against  assuming  that 
 meaningful  connectivity  patterns  can  be  derived  from  models  fitted  to  alternative 
 (intensity-based) or functional connectivity inputs summed across nodes. 
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 2.  Methods 
 2.1 HCP dataset and networks 

 All  analyses  described  below  were  performed  on  the  Human  Connectome  Project  (HCP) 
 Unrelated  100  (a  subset  of  the  S500  release)  dataset  (Van  Essen  et  al.  2013)  ,  obtained  from  the 
 HCP  database  (https://ida.loni.usc.edu/login.jsp).  The  HCP  project  (Principal  Investigators: 
 Bruce  Rosen,  M.D.,  Ph.D.,  Martinos  Center  at  Massachusetts  General  Hospital;  Arthur  W.  Toga, 
 Ph.D.,  University  of  Southern  California,  Van  J.  Weeden,  MD,  Martinos  Center  at  Massachusetts 
 General  Hospital)  is  supported  by  the  National  Institute  of  Dental  and  Craniofacial  Research 
 (NIDCR),  the  National  Institute  of  Mental  Health  (NIMH)  and  the  National  Institute  of 
 Neurological  Disorders  and  Stroke  (NINDS).  HCP  is  the  result  of  efforts  of  co-investigators 
 from  the  University  of  Southern  California,  Martinos  Center  for  Biomedical  Imaging  at 
 Massachusetts  General  Hospital  (MGH),  Washington  University,  and  the  University  of 
 Minnesota. 

 The  portion  of  data  used  here  includes  100  subjects  (age  =  22–36,  gender  =  54  female/46  male) 
 who  underwent  a  14.4-minute  resting  state  scan  (repetition  time  =  720ms,  flip  angle  =  52°,  voxel 
 size  =  2mm  3  ,  echo  time  =  33ms,  field  of  view  =  208mm  x  180mm).  We  preprocessed  the  data 
 using  the  HCP  minimally  preprocessing  pipeline:  distortion  correction,  motion  correction, 
 alignment  to  standard  space,  and  surface  projection  (Glasser  et  al.  2013)  .  During  early 
 development  and  fitting  of  the  HMMs  described  below,  one  subject  was  found  to  remain  in  one 
 single,  subject-specific  state  that  was  only  visited  by  two  other  subjects  for  one  timepoint  each. 
 Removing  that  subject  did  not  affect  the  number  of  hidden  states  chosen  (or  any  other  parameter; 
 data  not  shown),  so  we  opted  to  conduct  all  analyses  described  below  on  the  remaining  99 
 subjects. 

 Following  previous  work  (Deshpande,  Santhanam,  and  Hu  2011;  Raichle  2011)  ,  BOLD  signal 
 was  extracted  from  regions  of  interest  (ROIs)  from  four  brain  networks  previously  associated 
 with  resting  state:  the  default  mode  network  (DMN),  fronto-parietal  control  network  (FPCN), 
 dorsal  attention  network  (DAN),  and  salience  network  (SN).  The  nodes  comprising  each  network 
 (29  nodes  in  total)  were  defined  using  anatomical  coordinates  specified  in  literature  (Table  S1). 
 Talairach  coordinates  for  DMN,  FPCN,  and  DAN  were  taken  from  Deshpande  et  al.  2011  and 
 converted  to  Montreal  Neurological  Institute  (MNI)  coordinates  (Deshpande,  Santhanam,  and  Hu 
 2011;  Lancaster  et  al.  2007;  Laird,  Lancaster,  and  Fox  2005;  Brett,  Johnsrude,  and  Owen  2002)  . 
 MNI  coordinates  for  SN  were  taken  directly  from  Raichle  2011  (Raichle  2011)  .  MNI  coordinates 
 for  all  ROIs  can  be  found  in  Appendix  A.1  (  Table  A1)  .  After  labeling  each  ROI  with  a  5mm  3 

 isotropic  marker,  the  BOLD  signal  was  extracted  from  each  voxel  and  averaged  across  all  voxels 
 in  the  ROI,  producing  a  single  time  series  representing  the  behavior  of  the  ROI  as  a  whole.  This 
 procedure  was  repeated  for  every  ROI  in  a  network  for  a  total  of  29  ROIs  (9  from  DMN,  7  from 
 FPCN,  6  from  DAN,  and  7  from  SN)  per  subject  (Deshpande  et  al.  2008;  2009;  Stilla  et  al. 
 2007)  . 

 2.2 Hidden Markov models 

 To  critically  evaluate  the  behavior  of  our  novel  full  functional  connectivity  HMM  (FFC  HMM), 
 we  compared  it  to  two  previously-reported  methods.  The  differences  among  these  methods  are 
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 defined  by  their  inputs.  That  is,  we  compared  our  FFC  HMM,  which  takes  as  input  a  time  series 
 of  pairwise  dFCs  between  all  pairs  of  ROIs  to  models  taking  as  input:  (1)  BOLD  time  series 
 (  intensity-based  HMM;  IB  HMM)  (Chen  et  al.  2016;  Vidaurre,  Smith,  and  Woolrich  2017; 
 Stevner  et  al.  2019)  ,  or  (2)  time  series  of  dFC  summed  across  all  nodes  that  a  given  node  is 
 connected  to  (  summed  functional  connectivity  HMM;  SFC  HMM)  (Ou  et  al.  2015)  .  Each  of  these 
 HMMs  is  based  on  the  same  fundamental  assumptions  and  are  detailed  in  Rabiner  and  Juang 
 1986,  Rabiner  1989  and  Jurafsky  and  Martin  2009  (L.  R.  Rabiner  1989;  L.  Rabiner  and  Juang 
 1986;  Jurafsky  and  Martin  2009)  .  Each  HMM  was  implemented  using  the  hmmlearn  python 
 library  (Pedregosa  et  al.  2011)  and  additional  details  for  implementation  of  each  HMM  are 
 described in  Appendix A.2  . 

 Below,  we  describe  these  established  approaches  and  their  behavior  in  order  to  provide  context 
 for the methods and results of our novel FFC HMM. 

 2.2.1 Intensity-based HMM 

 The  first  model  we  compare  to  our  novel  FFC  HMM  approach  is  the  standard  intensity-based 
 HMM  (IB  HMM).  IB  HMM  has  been  used  to  extract  brain  states  from  neuroimaging  data  (Chen 
 et  al.  2016;  Vidaurre,  Smith,  and  Woolrich  2017;  Stevner  et  al.  2019)  .  Here,  BOLD  signals  from 
 ROIs  (described  in  Table  S1)  were  extracted,  preprocessed,  z-scored,  and  concatenated  across 
 subjects  (  Fig.  A1  ).  These  fMRI  time  series  were  concatenated  timewise  across  all  subjects  to 
 create  a  matrix  of  size  (time  *  #  subjects)  x  (#  ROIs)  and  submitted  as  input  to  the  hmmlearn 
 package  to  be  fit  with  standard  procedures  described  elsewhere  (Pedregosa  et  al.  2011)  .  That  is, 
 the  forward  and  Viterbi  algorithms  were  used  in  conjunction  to  identify  the  most  likely  sequence 
 of  hidden  states  given  the  observable  BOLD  signal.  The  Baum-Welch  algorithm  was  then 
 implemented  to  calculate  the  transition  and  emission  probabilities  of  a  given  state  (L.  R.  Rabiner 
 1989; L. Rabiner and Juang 1986; Jurafsky and Martin 2009)  . 

 2.2.2 Summed functional connectivity HMM 

 The  second  method  we  compare  to  our  novel  FFC  HMM  is  the  summed  functional  connectivity 
 HMM  (SFC  HMM).  Here,  SFC  HMM  was  adapted  from  Ou  et  al.  2015  (Ou  et  al.  2015)  .  First,  a 
 sliding  time  window  analysis  (window  length  Δt=36  seconds  for  primary  analyses)  was  used  on 
 the  z-scored  BOLD  signal  to  obtain  an  ROI  x  ROI  connectivity  matrix  within  each  time  window 
 (Ou  et  al.  2015)  (  Fig.  A2  ).  This  generated  a  connectivity  time  series  of  length  (#  TRs  –  Δt) 
 representing  the  dynamics  of  functional  connectivity  over  time.  These  square  connectivity 
 matrices  were  summed  across  one  dimension  to  create  a  1  x  (#  ROIs)  vector  depicting  the  total 
 overall  connectedness  of  each  ROI  to  all  other  ROIs.  Repeating  this  for  every  time  window 
 provided  a  “summed  dFC  time  series”  containing  a  (#  time  windows  *  #  subjects)  x  ROI  data 
 matrix. 

 We  examined  the  behavior  of  the  SFC  HMM  under  different  window  lengths  for  calculating 
 dFC.  Lurie  et  al.  2020  postulated  that  a  window  length  less  than  60  seconds  may  be  optimal 
 (Lurie  et  al.  2020)  .  Thus,  for  the  primary  analysis,  a  window  length  of  50  time  points  (36 
 seconds)  was  selected.  However,  to  assess  the  extent  to  which  the  qualitative  behavior  of  the 
 model  is  dependent  on  window  length,  we  also  fit  the  model  under  varying  window  length  with 
 sizes  of  30  time  points  (21.6  seconds),  40  time  points  (28.8  seconds),  50  time  points  (36 
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 seconds),  60  time  points  (43.2  seconds),  and  80  time  points  (57.6  seconds).  A  histogram  of  the 
 distribution of R  2  values was used to evaluate the  state patterns across different time windows. 

 2.2.3 Full functional connectivity HMM 

 To  define  our  novel  full  functional  connectivity  HMM  (FFC  HMM),  we  aimed  to  remedy  the 
 shortcomings  of  SFC  HMM.  That  is,  while  SFC  HMM  is  an  established  method,  the  HMM  in 
 that  model  is  fit  to  a  summed  statistic  (summed  connectivity  values  within  each  ROI  x  ROI 
 matrix  from  the  “dFC  time  series”)  rather  than  to  individual  pairwise  connectivity  values.  This 
 results  in  the  HMM  identifying  changes  in  this  measure  rather  than  in  the  raw  correlations.  Thus, 
 not  only  is  the  user  forced  to  compute  the  full  connectivity  themselves  rather  than  the  model 
 directly  outputting  it,  but  the  states  themselves  --  and  their  timecourse  --  also  do  not  respect 
 pairwise shifts in functional connectivity that are obscured by the summation step. 

 To  rectify  this,  we  developed  our  FFC  HMM  approach.  Our  FFC  HMM  is  fitted  to  all  correlation 
 values  in  the  lower  (or,  equivalently,  upper)  triangle  of  the  dFC  matrix  in  every  time  window. 
 Thus,  FFC  HMM  differs  from  SFC  HMM  in  that  it  takes  as  input  the  pairwise  correlation 
 between  all  pairs  of  ROIs,  rather  than  the  summation  (i.e.,  total  absolute)  connectivity  of  each 
 ROI  to  all  other  ROIs.  Therefore,  as  before,  a  sliding  window  correlation  analysis  was  performed 
 on  the  z-scored  BOLD  signal  with  window  length  Δt  =  approximately  36  seconds  (50  time  points 
 for  primary  analyses;  see  SFC  HMM  description),  but  instead  of  summing  across  one  of  the 
 dimensions  of  the  ROI  x  ROI  matrices,  the  lower  (or,  equivalently,  upper)  triangle  of  R  2  Pearson 

 correlation  values  was  restructured  into  a  1  x  vector  (  Fig.  A3  ).  Repeating  this  for ( #     𝑅𝑂𝐼 ) 2 −( #     𝑅𝑂𝐼 )
 2 

 every  time  window  gives  a  (#  time  windows)  x  data  matrix  for  every  subject ( #     𝑅𝑂𝐼 ) 2 −( #     𝑅𝑂𝐼 )
 2 

 containing  the  time  series  of  all  pairwise  connectivities  between  all  pairs  of  ROIs.  These  results 
 were  then  concatenated  subject-wise  as  before,  such  that  the  final  input  to  FFC  HMM  was  a  (# 
 time  windows  *  #  subjects)  x  ROI  data  matrix  for  every  subject.  As  with  SFC  HMM,  we  also 
 evaluated  the  model’s  behavior  under  different  lengths  of  time  windows,  ranging  across  30  time 
 points  (21.6  seconds),  40  time  points  (28.8  seconds),  50  time  points  (36  seconds),  and  60  time 
 points (43.2 seconds), and 80 time points (57.6 seconds). 

 2.3 Preliminary model fitting and analysis 

 2.3.1 Determining the number of hidden states for each model 

 A  commonality  across  both  our  FFC  HMM  and  the  previously-published  approaches  (IB  HMM 
 and  SFC  HMM)  is  that  they  are  all  fitted  with  an  a  priori  defined  number  of  hidden  states.  That 
 is,  the  number  of  hidden  states  is  not  a  free  parameter  but  must  be  specified  by  the  experimenter. 
 To  determine  the  optimal  number  of  states  for  each  model,  we  adopted  the  Ranking  and 
 Averaging  Independent  Component  Analysis  by  Reproducibility  (RAICAR)  method,  which  uses 
 the  stability  of  recovered  hidden  state  patterns  to  determine  the  appropriateness  of  the  number  of 
 states  (Chen et al. 2016; Yang et al. 2008)  . 

 We  examined  the  stability  of  models  with  3  to  15  hidden  states.  For  each  HMM  with  each 
 number  of  hidden  states,  three  sets  of  state  patterns  were  obtained  by  three  different  realizations: 
 one  with  uniform  starting  probability  of  residing  in  all  states,  and  two  with  randomly  assigned 
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 starting  probabilities.  Because  the  labeling  of  states  is  arbitrary,  there  is  no  reason  to  believe 
 State  1  will  match  across  realizations  even  if  a  given  number  of  hidden  states  is  optimally  stable. 
 Therefore,  state  patterns  were  matched  across  realizations  via  Pearson  correlations,  such  that  e.g. 
 State  1  from  Realization  2  was  relabeled  as  State  2  just  in  case  the  Pearson  correlation  between 
 that  state  and  State  2  from  Realization  1  was  higher  than  any  other  pairwise  correlation.  Thus, 
 after  relabeling,  each  state  label  across  realizations  universally  corresponded  to  the  same  spatial 
 pattern  to  the  maximal  extent  possible  within  stability  constraints.  Within  each  state  assignment, 
 the  matched  state  patterns  were  then  Pearson  correlated  between  all  realizations  to  obtain 

 Pearson’s  R  2  values,  thereby  determining  the  maximal  degree ( #     𝑠𝑡𝑎𝑡𝑒𝑠 )!  /2 ! * ( #  𝑠𝑡𝑎𝑡𝑒𝑠    −  2 )!
 of  similarity  between  the  matched  patterns  for  the  present  number  of  hidden  states  being  tested. 
 Finally,  these  values  were  then  averaged,  sorted  from  largest  to  smallest,  and  plotted  as  a 
 function of the number of states in the model. 

 We  repeated  this  process  for  a  range  of  number  of  hidden  states,  generating  a  dataset  of  pattern 
 similarity  (R  2  )  organized  by  pattern  label;  these  maximal  achievable  pattern  similarities  were 
 compared  against  a  predetermined  threshold  of  stability  of  0.9.  Previous  groups  that  used  the 
 RAICAR-based  method  examined  more  ROIs  (236  from  Chen  et  al.  2016  and  162  independent 
 components  from  Yang  et  al.  2014)  and  employed  a  stability  threshold  of  0.8  (Chen  et  al.  2016; 
 Yang  et  al.  2008)  .  As  we  explored  only  29  ROIs,  we  opted  to  appoint  a  more  conservative 
 threshold:  0.9.  Cases  where  R  2  values  began  to  dip  below  this  threshold  indicated  that  this  model 
 was  unstable  with  that  number  of  hidden  states,  because  the  states  were  not  matching  sufficiently 
 (Chen  et  al.  2016;  Yang  et  al.  2008)  .  This  procedure  is  also  outlined  in  greater  detail  in 
 Appendix A.3  and  Fig. A4  . 

 2.3.2 Model recovery 

 An  important  step  towards  validating  our  FFC  HMM  and  benchmarking  it  against  previous 
 approaches  is  to  verify  the  degree  to  which  it  can  recognize  ground  truth  by  successfully 
 recovering  predefined  connectivity  states.  Thus,  we  manipulated  the  HCP  data  to  induce 
 “connectivity-defined  states”  as  follows.  First,  the  preprocessed  data  extracted  from  our  29  ROIs 
 were  randomly  permuted  across  time  to  create  a  noisy  time  series.  To  create 
 “connectivity-defined”  ground  truth  states,  we  replaced  the  scrambled  data  from  these  same  time 
 points  with  values  drawn  from  a  multivariate  gaussian  distribution  using  μ  =  0  and  an  ROI  x  ROI 
 σ  matrix  consisting  of  0.1  on  the  off-diagonals  where  we  aimed  to  induce  connectivity,  and  ones 
 on  the  diagonals.  For  example,  to  induce  a  “DMN  (9  ROIs)  connectivity  state”,  a  9  x  9  σ  matrix 
 was  made  with  0.1  on  all  off  diagonals  and  1  on  the  diagonals,  which  was  then  used  to  seed  a 
 time  series  of  simulated  BOLD  response  within  the  time  points  for  which  this  connectivity  state 
 was  to  be  induced;  the  result  was  then  used  to  replace  the  temporally  scrambled  data. 
 Connectivity  state  patterns  and  a  hidden  state  sequence  were  acquired  from  FFC  HMM  outputs 
 and  compared  against  outputs  from  IB  HMM  and  SFC  HMM  to  establish  to  what  extent  each 
 model is capable of recovering ground truth. 

 2.3.3 Model robustness to data size 

 We  are  also  interested  to  discover  whether  FFC  HMM  requires  large  amounts  of  data  to  produce 
 robust  results,  in  comparison  to  previously  established  approaches.  Therefore,  to  determine  the 
 ability  of  each  model  to  recover  stable  states  regardless  of  the  length  of  the  resting  state  scan,  we 

 8 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.02.478844doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?2AIiTY
https://www.zotero.org/google-docs/?2AIiTY
https://www.zotero.org/google-docs/?ur6yjV
https://doi.org/10.1101/2022.02.02.478844
http://creativecommons.org/licenses/by-nc-nd/4.0/


 performed  an  additional  reproducibility  analysis.  To  evaluate  whether  each  model  could  stably 
 discover  the  same  states  using  a  significantly  reduced  dataset,  we  fit  the  IB,  SFC,  and  FFC 
 HMMs  to  only  the  first  half  of  the  resting  state  scan  for  all  subjects  (that  is,  the  first  7.2  minutes 
 of  a  14.4  minute  scan)  and  computed  the  similarity  between  the  discovered  states  for  this  ‘half’ 
 dataset  and  the  full  dataset  used  in  the  main  analyses.  Similarity  was  computed  according  to  the 
 same  process  used  in  the  RAICAR-based  stability  analysis  (  Methods  Section  2.3.1  ),  except  that 
 states  were  matched  between  the  half-  and  full-dataset  HMMs  (fit  with  the  uniform  initial 
 conditions) rather than between different realizations. See  Appendix A.4  for more details. 

 (Intensity-defined  state  induction  and  model  validation  was  also  performed  but  is  not  included  in 
 the main text for brevity; see  Appendix B  for details.) 

 2.4 Analysis of model outputs 

 2.4.1 Connectivity state pattern analysis 

 The  primary  outcome  metric  of  interest  is  the  recovered  connectivity  states.  The  defining  feature 
 of  FFC  HMM  in  comparison  to  previous  methods  is  that  it  is  fit  to  full  connectivity  profiles,  so 
 we  would  hope  that  it  would  recover  more  distinct  full  connectivity  profiles  than  either  IB  HMM 
 or SFC HMM. 

 To  examine  this  behavior,  we  analyzed  the  obtained  connectivity  states  for  all  three  HMMs  at 
 their  most  stable  number  of  states.  The  extraction  method  for  these  connectivity  states  differed 
 by  model,  but  after  extraction,  analyses  were  similar  across  models.  Here  we  detail  those 
 extraction processes for each HMM, as well as the analytics employed. 

 Full  connectivity  state  patterns  (“connectivity  state  patterns”  or  “connectivity  states”  from  this 
 point  on,  to  differentiate  them  from  summed  connectivity  vectors)  depict  the  correlation  strength 
 between  all  pairs  of  nodes  within  a  given  state  (i.e.,  each  state  consists  of  a  29x29  matrix  of 
 Pearson  R  2  values).  For  IB  HMM,  connectivity  states  corresponding  to  each  intensity  state  were 
 acquired  by  mathematically  transforming  the  covariance  matrices  outputted  by  the  model  fitting 
 procedure  into  Pearson  correlation  values,  as  done  previously  (Vidaurre,  Smith,  and  Woolrich 
 2017;  Stevner  et  al.  2019;  Eavani  et  al.  2013)  .  For  SFC  HMM,  the  model’s  direct  outputs  are 
 vectors  of  the  mean  state  patterns  describing  mean  summed  correlation  values  representing 
 global  nodal  strength  during  a  particular  time  window  which  cannot  be  directly  ‘unpacked’  into 
 full  pairwise  connectivities  among  all  nodes;  therefore,  we  defined  connectivity  state  patterns  for 
 SFC  HMM  by  averaging  connectivity  matrices  across  time  points  when  its  Viterbi  path  labeled  a 
 state  to  be  active.  For  FFC  HMM,  the  connectivity  state  patterns  are  directly  outputted  from  the 

 model  corresponding  to  the  1  x  correlation  vector  inputted  for  every  time ( #     𝑅𝑂𝐼 ) 2 −( #     𝑅𝑂𝐼 )
 2 

 window,  which  are  then  reformatted  back  into  a  symmetric  ROI  x  ROI  matrix  to  constitute  the 
 connectivity  states;  we  also  additionally  calculated  the  connectivity  state  patterns  from  the 
 Viterbi paths for the purpose of direct comparison with the other two models. 

 All  connectivity  analyses  were  performed  on  differential  functional  connectivity  maps  from  the 
 IB,  SFC,  and  FFC  HMM  connectivity  states:  connectivity  matrices  that  “highlight”  the  unique 
 functional  connectivity  characteristics  of  each  state  (Stevner  et  al.  2019)  .  SFC  and  FFC  HMM 
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 state  differential  functional  connectivity  maps  were  computed  using  Eq.  1  where  X  i  is  the 
 original  raw  functional  connectivity  matrix  for  state  i  ,  H  i  gives  the  differential  functional 
 connectivity  maps  of  X  i  ,  and  j  gives  all  state  assignments  (given  the  number  of  states  determined 
 for the model) excluding the value of  i  (Stevner et  al. 2019)  . 

 (1)  𝐻 
 𝑖 
   =  𝑋 

 𝑖 
   − (    1 

 7 
 𝑗 ≠ 𝑖 
∑  𝑋 

 𝑗 
)

 Note  that  by  this  definition,  since  we  examined  state  differential  functional  connectivity  maps 
 rather  than  the  raw  states  themselves,  the  values  in  the  connectivity  states  represent  connectivity 
 levels  relative  to  baseline,  not  the  Pearson  R  2  values  themselves.  That  is,  for  all  state  differential 
 functional  connectivity  maps,  negative  values  are  associated  with  below  baseline  correlations, 
 not anticorrelations. 

 A  critical  question  is  to  what  extent  FFC  HMM’s  recovered  connectivity  states  are  adequately 
 captured  by  previous  methods  (IB  HMM  and  SFC  HMM).  Therefore,  we  examined  the 
 similarities  among  IB,  SFC,  and  FFC  HMMs  by  comparing  the  connectivity  states  they  revealed, 
 especially  to  see  whether  SFC  states  matched  FFC  states.  If  SFC  HMM  is  able  to  capture  the 
 same  states  as  FFC  HMM  (because  it  uses  the  same  connectivities  found  via  the  sliding  window 
 approach),  then  the  additional  complexity  of  FFC  HMM  is  unnecessary  and  SFC  HMM  is 
 adequate  for  examining  trajectories  through  connectivity  state  space  as  well  as  connectivity 
 states  themselves.  The  state  patterns  can  be  compared  by  Pearson  correlation  (Chen  et  al.  2016) 
 or  computing  the  Euclidean  distance  (Guggenmos,  Sterzer,  and  Cichy  2018)  between  all  pairs  of 
 states,  similar  to  our  procedure  for  the  stability  analysis  (  Methods  Section  2.3.1  ).  For  direct 
 comparison  with  our  stability  analysis  to  discover  the  ideal  number  of  hidden  states  for  each 
 model,  we  used  Pearson  correlations  and  sought  to  discover  a  ‘stability  threshold’  (similar  to  the 
 threshold  of  0.9  used  in  Methods  Section  2.3.1  )  that  would  result  in  unique,  one-to-one  pairwise 
 matching between states recovered by two different models. 

 Finally,  we  also  want  to  see  whether  FFC  HMM  can  recover  summed  connectivity  vectors  as 
 discovered  by  SFC  HMM,  which  would  add  to  its  utility  and  avoid  the  need  to  fit  two  models  to 
 ask  questions  about  both  mean  connectivity  profiles  as  well  as  full  connectivity  states.  Therefore, 
 we  similarly  computed  the  summed  functional  connectivity  state  patterns  corresponding  to  all 
 connectivity  state  differential  functional  connectivity  maps  for  IB,  SFC,  and  FFC  HMMs.  To 
 create  the  summed  functional  vectors  for  IB  and  FFC  HMMs,  we  summed  the  full  29x29  matrix 
 of  Pearson  R  2  values  across  one  of  the  dimensions;  for  SFC,  we  utilized  the  summed 
 connectivity vectors directly outputted by the model fitting procedure. 

 2.4.2 Viterbi path analysis 

 In  addition  to  examining  the  connectivity  states  themselves,  we  are  also  interested  in  examining 
 trajectories  through  state  space  and  how  FFC  HMM  might  differ  in  such  dynamics  from  the  two 
 previous  methods.  The  Viterbi  path,  or  hidden  state  sequence,  is  directly  outputted  from  all  three 
 HMMs.  We  therefore  examined  a  number  of  characteristics  of  the  Viterbi  path  outputs  from  FFC 
 HMM  in  comparison  to  IB  HMM  and  SFC  HMM,  including  switching  rate,  proportion  of  time 
 spent  in  each  state,  the  average  duration  of  a  state,  and  fractional  occupancy  correlation 
 (Vidaurre, Smith, and Woolrich 2017; Stevner et al. 2019)  . 
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 3.  Results 
 3.1 Preliminary model fitting 

 3.1.1 Determining the number of hidden states for each model 

 The  RAICAR-based  stability  analysis  results  for  IB,  SFC,  and  FFC  HMMs  are  shown  in  Fig.  1  , 
 limited  to  models  with  6  to  10  hidden  states  for  clarity  (full  results  for  models  with  3-15  hidden 
 states  are  shown  in  Figs.  A5  and  A6  and  do  not  change  the  conclusions  presented  in  the  main 
 text).  IB  HMM  and  SFC  HMM  were  both  most  stable  at  8  hidden  states  (  Figs.  1a  &  1b  ).  We 
 therefore  examined  the  stability  of  FFC  HMM  with  8  states,  and  determined  it  to  be  higher  than  a 
 9-state model (  Fig. 1c  ); thus, we assigned FFC HMM  to have 8 states as well. 

 Setting  all  models  to  have  the  same  number  of  hidden  states  allowed  for  a  level  comparison  of 
 local  and  global  analyses  across  all  HMMs,  setting  FFC  HMM  on  equal  footing  to  the  two 
 established  models  in  terms  of  complexity  of  outputs.  However,  we  note  that  an  identical  number 
 of  hidden  states  between  any  two  HMMs  may  not  always  occur  and  users  of  any  of  these  HMM 
 approaches  should  not  assume  that  the  number  of  hidden  states  that  is  appropriate  for  one  model 
 is  appropriate  for  another.  Specifically,  there  is  no  mathematical  or  conceptual  basis  to  suggest 
 that  FFC  HMM  should  have  the  same  number  of  hidden  states  as  SFC  HMM  or  IB  HMM 
 especially  (nor  that  SFC  HMM  and  IB  HMM  should  share  the  same  number  of  states).  The  fact 
 that  we  determined  8  states  to  be  best  for  all  models  in  the  present  analysis  is  therefore 
 incidental,  and  may  have  occurred  because  we  focused  on  a  relatively  small  number  of  ROIs, 
 which greatly narrowed the model complexity. 

 Figure  1.  RAICAR-based  stability  analysis  results  for  (A)  IB  HMM,  (B)  SFC  HMM,  and  (C) 
 FFC HMM. Eight hidden states were selected as the best size for all HMMs. 
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 3.1.2 Model recovery 

 Because  FFC  HMM  is  a  more  complex  model  than  the  previous  approaches,  it  is  important  to 
 verify  that  our  model  fitting  procedures  are  able  to  recover  ground  truth,  i.e.  that  the  states 
 outputted  by  each  model  are  likely  to  reflect  real  variation  in  the  dataset  and  not  noise.  To 
 validate  our  procedures,  we  therefore  simulated  connectivity-based  “states”  and  used  identical 
 data  preparation  and  model  fitting  procedures  to  discover  the  extent  to  which  such  states  could 
 be effectively recovered by our approach; see  Methods  Section 2.3.2  for details. 

 When  examining  these  induced  connectivity  states,  we  found  that  FFC  HMM  recovered 
 simulated  state  patterns  quite  cleanly  (  Fig.  2d  ),  with  mean  correlation  (R  2  )  between  true 
 simulated  and  recovered  Viterbi  paths  across  subjects  of  0.5738  ±  0.1301.  FFC  HMM  was  in  fact 
 more  precise  in  its  state  recovery  than  SFC  HMM  even  to  the  naked  eye  (  Fig.  2c  )  as  well  as 
 quantitatively  (mean  R  2  across  all  subjects  between  simulated  and  recovered  Viterbi  paths  of 
 0.3337  ±  0.1650).  Unsurprisingly,  IB  HMM  failed  to  adequately  recover  simulated  connectivity 
 states  (  Fig.  2b  ;  mean  R  2  between  simulated  and  recovered  Viterbi  paths  of  0.1741  ±  0.1569), 
 although  it  appeared  to  recognize  when  two  networks  were  “turned  on”  in  conjunction.  This  may 
 have  occurred  because  there  was  more  connectivity  for  the  model  to  recognize:  both  within-  and 
 between-network connectivity. 

 FFC  HMM  also  showed  strong  performance  in  recovering  the  actual  connectivity  states 
 themselves.  A  paired  t-test  on  the  Fisher-z  transformed  R  2  values  between  SFC  and  FFC  HMMs 
 indexing  how  similar  each  model’s  recovered  connectivity  states  were  to  the  induced  states 
 showed  that  FFC  HMM  was  significantly  better  at  recovering  induced  states  than  SFC  HMM 
 (t(98)  =  12.8745,  p  =  8.6087e-23).  Temporal  blurring  from  the  sliding  time  window  analysis 
 employed  by  both  connectivity-based  HMMs  may  explain  the  low  correlation  values  between  the 
 simulated and recovered state sequences from SFC and FFC HMMs. 
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 Figure  2.  Verification  of  HMM  connectivity-based  states.  (A)  The  artificially  induced  state 
 sequence  depicted  which  networks  exhibited  slightly  increased  within-  and/or  between-network 
 connectivity.  Outputted  state  sequences  from  (B)  IB  HMM,  (C)  SFC  HMM,  and  (D)  FFC  HMM 
 when  connectivity  states  were  induced.  FFC  HMM  recoveres  simulated  states  better  than  the 
 other two models; see main text for details. 

 3.2.3 Model robustness to data size 

 Because  FFC  HMM  is  a  more  complex  model  than  either  IB  HMM  or  SFC  HMM  –  that  is,  it 
 must  fit  more  complex  full  connectivity  patterns  rather  than  summed  connectivity  vectors  or 
 intensity-based  states  –  we  also  need  to  assess  its  robustness  to  the  amount  of  data  available  to 
 train  the  model.  We  also  want  to  compare  this  to  the  volume  of  data  necessary  to  adequately  train 
 the  comparison  models,  IB  HMM  and  SFC  HMM.  To  determine  the  degree  to  which  the  states 
 recovered  by  each  of  the  IB,  SFC,  and  FFC  HMMs  were  dependent  on  the  exact  length  of  the 
 input  data,  we  repeated  all  fitting  procedures  on  only  the  first  half  of  the  resting  state  scan  (first 
 7.2  minutes;  see  Methods  Section  2.3.3  ).  When  we  halved  the  dataset,  aligned  the  connectivity 
 states  by  their  similarity,  and  then  computed  their  overall  maximal  similarity,  we  found  that  the 
 connectivity  state  patterns  largely  remained  the  same  for  FFC  HMM  and  SFC  HMM  in 
 particular,  but  (again  unsurprisingly)  not  for  IB  HMM  (  Fig.  3  ).  Therefore,  it  appears  that  a 
 resting  state  scan  as  short  as  7.2  minutes  may  be  sufficient  to  recover  the  connectivity  states 
 discovered by FFC HMM in a scan twice that long. 

 Figure  3.  Pearson  correlation  values  (R  2  )  between  connectivity  state  patterns  identified  from 
 whole  (14.4  minutes)  and  half  (7.2  minutes)  of  the  HCP  Unrelated  100  fMRI  dataset  for  (A)  IB 
 HMM,  (B)  SFC HMM, and  (C)  FFC HMM. 

 3.2 Analysis of model outputs 

 With  8  states  selected  as  the  best  number  of  hidden  states  for  FFC  HMM  and  the  comparison 
 models  (IB  and  SFC  HMMs),  we  next  proceeded  to  evaluate  the  output  metrics:  state  analysis, 
 time  window  length  analysis,  and  Viterbi  path  analyses  including  switching  rate,  proportion  of 
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 time  spent  in  each  state,  the  average  duration  of  a  state,  and  fractional  occupancy  correlation. 
 States  from  each  model  are  distinguished  with  subscripts  corresponding  to  the  HMM  from  which 
 they  stem,  i.e.,  S1  FFC  corresponds  to  State  1  from  FFC  HMM.  In  the  following,  we  present  results 
 from  IB  and  SFC  HMMs  first  to  provide  context  for  the  differences  in  behavior  exhibited  by  our 
 FFC HMM. 

 3.2.1 Connectivity state pattern analysis 

 First,  we  examine  IB  HMM  as  a  baseline,  which  we  do  not  expect  to  recover  connectivity  states 
 well.  Unsurprisingly,  the  IB  HMM  connectivity  state  differential  functional  connectivity  maps 
 stemming  from  the  output  covariance  matrices  did  not  display  strong  distinguishing  patterns 
 either  within  or  between  the  states  even  when  state  differential  functional  connectivity  maps 
 were  assessed  (top  row,  Fig.  4  ).  However,  there  were  a  few  slight  deviations  from  mean 
 connectivity  overall.  For  example,  DAN  in  S7  IB  appears  to  be  relatively  disconnected  from  all 
 other  networks  and  associated  with  activated  DMN,  FPCN,  DAN,  and  SN.  We  also  observed  that 
 ROIs  within  DMN  and  DAN  appear  to  have  slightly  above  average  connectivity  in  S4  IB  and  are 
 linked  to  an  attention  state  where  FPCN  and  DAN  show  the  highest  levels  of  activation.  Finally, 
 S8  IB  shows  a  relative  disconnection  between  ROIs  in  FPCN  and  DAN  while  DAN  exhibits 
 slightly  elevated  within-network  connectivity  and  is  paired  with  all  four  networks’  deactivation. 
 Nevertheless,  these  results  show  that  a  model  not  trained  on  connectivity  states  is,  expectedly, 
 not able to recover connectivity states. 

 The  critical  benchmark  for  our  FFC  HMM  is  therefore  SFC  HMM’s  behavior.  Can  a  model  fitted 
 to  summed  connectivity  vectors  nevertheless  adequately  recover  full  connectivity  profiles?  As 
 described  above  (  Methods  Section  2.2.2  ),  the  states  for  SFC  HMM  were  found  by  averaging  the 
 ROI  x  ROI  connectivity  matrices  wherever  the  Viterbi  path  determined  a  state  to  be  active, 
 because  we  cannot  recover  full  connectivity  profiles  directly  from  the  summed  connectivity 
 vectors  outputted  by  the  model.  (For  reference,  the  summed  vectors  against  the  connectivity  state 
 differential functional connectivity maps of dimensions ROI x ROI are also plotted in  Fig. 4  .) 

 SFC  HMM  extracted  distinct  functional  connectivity  profiles  across  all  8  states  (middle  row,  Fig. 
 4  ).  From  visual  examination,  we  can  see  that  S1  SFC  showed  below-baseline  correlations  among 
 all  networks,  particularly  within  and  between  DAN  and  SN,  indicating  a  disconnect  within  the 
 attentional  system.  Elevated  correlations  within  and  between  all  networks  except  DAN  were 
 observed  in  S2  SFC  and  DAN  does  not  interact  with  the  rest  of  the  networks  within  this  state. 
 Slightly  higher  than  average  correlation  values  were  seen  within  S3  SFC  with  the  exception  of 
 several  DMN  exhibiting  below-average  connectivity  with  the  rest  of  the  networks.  The  strongest 
 connectivity  within  and  between  the  attentional  networks  was  seen  in  S4  SFC  .  S5  SFC  had  a 
 disconnect  among  DMN,  FPCN,  and  SN.  In  S6  SFC  ,  below  baseline  connectivity  was  seen  within 
 DAN  and  between  DAN  and  the  other  networks;  SN  exhibited  similar  behavior.  These  properties 
 indicate  a  disconnect  within  and  between  these  attentional  networks.  S7  SFC  showed  a  slight 
 disconnect  between  DMN  and  all  other  networks  indicating  a  disconnect  in  the  resting  state 
 networks.  Elevated  connectivity  within  DMN  and  between  DMN  and  all  other  networks  was 
 seen in S8  SFC  . 
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 Figure  4.  State  pattern  differential  functional  connectivity  maps  for  SFC  HMM  (top  row),  FFC 
 HMM  (middle  row),  and  IB  HMM  (bottom  row).  The  summed  connectivity  vectors  (summed 
 across  one  dimension)  are  displayed  below  each  state.  The  summed  values  for  SFC  were  directly 
 outputted  from  the  model  while  those  for  IB  and  FFC  were  calculated  as  described  in  Methods 
 Section 2.4.1  . 

 3.2.1.a Connectivity state comparisons 
 The  final  question,  then,  is  to  what  extent  the  connectivity  states  recovered  by  FFC  HMM  differ 
 from  those  found  via  SFC  HMM.  If  FFC  HMM’s  recovered  states  look  quite  a  lot  like  SFC 
 HMM’s,  then  the  additional  complexity  and  computing  power  required  to  fit  FFC  HMM  may  not 
 be  warranted.  However,  once  again  we  can  see  differences  between  FFC  HMM  and  SFC  HMM 
 (as  well  as  with  IB  HMM)  just  by  eye  (bottom  row,  Fig.  4  ).  S1  FFC  exhibited  no  distinguishable 
 state  differential  functional  connectivity  maps  since  all  connectivity  values  were  around  baseline 
 while  S2  FFC  showed  slightly  higher  than  baseline  connectivity  within  and  between  all  networks 
 except  for  DAN.  Slightly  above  average  correlations  within  and  between  all  networks  were  seen 
 in  S3  FFC  .  S4  FFC  showed  all  networks  to  have  above  average  correlations  with  one  another  and 
 S5  FFC  to  have  slightly  above  baseline  correlations  between  DAN  and  all  other  networks.  S6  FFC 
 exhibited  below  baseline  correlations  between  DAN  and  all  other  networks  as  well  as  between 
 SN  and  all  other  networks.  DMN  was  disconnected  from  all  other  networks  and  SN  and  DAN 
 have  slightly  above  average  correlation  within  and  between  each  other  in  S7  FFC  .  Finally,  reduced 
 correlations between DAN and all other networks were seen in S8  FFC  . 

 Let  us  now  engage  in  a  more  quantitative  comparison  between  states  recovered  by  each  model. 
 The  most  important  comparison  for  examining  FFC  HMM’s  behavior  is  to  compare  it  directly  to 
 SFC  HMM’s  recovered  states.  To  evaluate  such  potential  similarities,  we  directly  compared  the 
 connectivity-based  states  output  by  SFC  HMM  and  FFC  HMM  to  each  other  in  two  ways.  First, 
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 we  computed  the  pairwise  Pearson  correlations  among  all  pairs  of  states  (  Fig.  5a  ).  A  one-to-one 
 match  in  states  would  be  illustrated  with  one  large  correlation  coefficient  (one  orange/yellow) 
 square  and  seven  small  correlations  (seven  green/blue  squares)  in  each  row.  Yet  this  phenomenon 
 is  not  observed,  as  it  appears  there  are  several  states  that  might  ‘match’  across  the  two  models 
 from visual inspection. 

 To  quantitatively  assess  the  degree  to  which  there  might  be  one-to-one  state  matching  across 
 FFC  HMM  and  SFC  HMM,  we  took  inspiration  from  the  RAICAR  analysis  described  above  and 
 sought  to  identify  whether  there  was  a  threshold  at  which  there  would  be  a  one-to-one  state 
 matching  across  all  eight  states  found  by  both  models.  (Recall  that  in  the  RAICAR  analysis, 
 Section  3.1.1  ,  we  used  a  threshold  of  0.9.)  In  this  analysis,  we  are  looking  for  cases  where  a 
 particular  correlation  threshold  leads  to  exactly  one  SFC  HMM  state  matching  each  of  the  FFC 
 HMM  states.  We  examined  whether  any  possible  correlation  threshold  in  the  range  of  0-1  in 
 steps  of  0.05  would  lead  to  exactly  one  SFC  HMM  state  matching  each  FFC  HMM  state  by 
 counting  the  number  of  SFC  states  that  exceeded  each  possible  threshold.  Visually,  this  accounts 
 to  counting  how  many  ‘squares’  in  each  row  of  Fig.  5a  surpass  a  particular  value,  with  the  goal 
 being  exactly  one  for  all  rows.  This  quantitative  analysis  confirmed  the  visual  inspection  results: 
 There  was  no  threshold  for  which  all  –  or  even  most  –  FFC  HMM  states  could  achieve  a  unique 
 mapping  with  exactly  one  SFC  HMM  state  (  Fig.  5d  ).  This  finding  supports  the  interpretation  that 
 our  novel  FFC  HMM  recovers  functional  connectivity  states  that  are  distinct  from  those 
 recovered by SFC HMM. 
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 Figure  5.  Pairwise  comparisons  between  connectivity  states  discovered  by  each  HMM  show  that 
 each  model  recovered  eight  unique  states.  A  one-to-one  match  between  two  states  recovered  by 
 two  different  models  would  appear  as  a  single  orange/yellow  square  (high  Pearson  correlation) 
 among  seven  green/blue  squares  (low  Pearson  correlation)  in  those  two  states’  row  or  column 
 combination.  However,  (A)  FFC  HMM’s  recovered  states  showed  no  unique  correspondences 
 based  on  similarity  to  those  recovered  by  SFC  HMM  by  visual  inspection,  and  (D)  no  stability 
 threshold  (see  the  RAICAR  analysis  to  discover  number  of  hidden  states,  Sections  2.3.1  &  3.1.1  ) 
 can  lead  to  any  semblance  of  a  one-to-one  match  between  FFC  HMM’s  recovered  states  and 
 those  recovered  by  SFC  HMM.  Similar  results  were  found  for  pairwise  comparisons  between 
 FFC  HMM  and  IB  HMM  states  (panels  B  and  E)  and  between  SFC  HMM  and  IB  HMM  states 
 (panels C and F). 

 For  completeness,  we  also  repeated  this  analysis  for  comparisons  between  FFC  HMM  and  IB 
 HMM  (  Figs.  5b  &  5e  ),  as  well  as  comparing  SFC  HMM  and  IB  HMM  (  Figs.  5c  &  5f  ).  Results 
 from  these  pairwise  comparisons  mirror  those  from  the  critical  FFC  vs  SFC  comparison:  All 
 three  models  appear  to  discover  unique  connectivity  states,  as  there  is  no  visual  or  quantitative 
 correspondence  between  the  states  discovered  by  each  model.  Note  that  the  comparisons  with  IB 
 HMM  are  particularly  informative,  as  they  confirm  that  both  FFC  HMM  and  SFC  HMM 
 recovered  states  that  reflected  changes  in  connectivity  patterns  (in  SFC  HMM’s  case,  summed 
 connectivity  vectors)  and  were  robust  to  fluctuations  in  overall  BOLD  signal  magnitude  (i.e.,  the 
 connectivity-based  models  did  not  end  up  simply  discovering  ‘connectivity’  states  based  on 
 fluctuations  in  average  intensity).  See  Appendix  B  for  fuller  discussion  of  the  intensity-based 
 states  recovered  by  IB  HMM,  and  how  they  compare  to  intensity-based  states  derived  from  SFC 
 and FFC HMMs. 

 3.2.1.b Time window analysis (connectivity-based HMMs) 
 To  conclude  that  there  are  consistent  differences  between  FFC  HMM’s  recovered  connectivity 
 states  and  those  recovered  by  previous  approaches  –  SFC  HMM  in  particular  –  we  need  to 
 evaluate  to  what  extent  the  recovered  connectivity  states  themselves  are  robust  to  choices  made 
 early  in  the  data  processing  pipeline.  One  choice  that  has  the  potential  to  greatly  impact  the  states 
 recovered  by  FFC  HMM  and  SFC  HMM  is  the  selection  of  the  window  length  to  use  in  the 
 sliding-window computation of dynamic functional connectivity  (Lurie et al. 2020)  . 

 To  evaluate  the  impact  of  window  length  used  to  calculate  dynamic  functional  connectivity  on 
 the  connectivity  states  recovered  by  FFC  and  SFC  HMMs,  we  therefore  examined  how 
 connectivity  states  would  change  as  window  length  varied  from  30  to  80  time  points  (36-57.6 
 seconds).  Importantly,  neither  SFC  nor  FFC  HMMs  showed  a  strong  effect  of  such  a  change  in 
 window  length.  FFC  state  differential  functional  connectivity  maps  showed  minimal  differences 
 across  window  lengths.  All  states  matched  to  their  counterparts  with  R  2  ≥  ~0.5  with  1  exception: 
 matching  S3  FFC  40tp  to  S3  FFC  80tp  (R  2  =  0.3469).  Likewise,  all  SFC  state  differential  functional 
 connectivity  maps  matched  their  counterparts  across  window  sizes  with  Pearson  R  2  ≥  0.5  except 
 for  two  instances:  (1)  correlating  S4  SFC  30  time  points  (tp)  to  S4  SFC  80tp  (R  2  =  0.3084),  and  (2) 
 S3  SFC  of  any  time  length  to  80tp  (tp=30,  R  2  =  -0.3587;  tp=40,  R  2  =  -0.2588;  tp=50,  R  2  =  -0.3062; 
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 tp=60,  R  2  =  -0.2563).  In  fact,  although  the  difference  is  slight,  SFC  states  may  have  shown  more 
 variability  across  different  time  windows  than  FFC  states  because  of  the  summing  factor,  i.e.  the 
 definition  of  connectivity  in  SFC  as  the  sum  of  connectivity  from  one  node  to  all  other  nodes.  As 
 seen  in  Figs.  6  and  7  ,  poor  pattern  matching  occurred  when  correlating  state  differential 
 functional  connectivity  maps  to  differential  functional  connectivity  maps  from  a  window  size  of 
 (80 tp or ~60 seconds). 

 These  results  show  that  a  window  size  containing  less  than  approximately  60  seconds  of  data  is 
 preferred  for  these  two  connectivity-based  HMMs,  consistent  with  the  ideas  Lurie  et  al.  2020 
 presented  (Lurie  et  al.  2020)  .  The  histograms  of  connectivity  values  across  the  state  differential 
 functional  connectivity  maps  (far  right  columns,  Figs.  6  and  7  )  support  this  interpretation,  since 
 the  distributions  of  connectivity  values  became  less  separated  as  the  window  size  increased;  this 
 reduction  in  distributional  separability  suggests  that  the  state  patterns’  individual  distinctiveness 
 --  i.e.,  lack  of  resemblance  to  their  counterparts  --  was  larger  in  smaller  window  sizes  and  was 
 reduced  as  window  length  increased.  This  was  particularly  noticeable  in  the  80tp  window  size, 
 where  the  distributions  of  connectivity  values  appear  closest  together,  meaning  the  state  pattern 
 differential functional connectivity maps are minimally distinct from one another. 

 Thus,  the  window  length  used  in  the  primary  analyses  presented  above  (50  time  points,  or  ~36 
 seconds)  produces  similarly  unique  states  as  other  reasonable  window  lengths.  Together,  these 
 analyses  confirm  that  FFC  HMM  recovers  connectivity  states  that  are  distinct  from  those 
 recovered  by  SFC  HMM  (and  IB  HMM),  and  that  the  differences  between  FFC  HMM’s 
 connectivity  states  and  those  from  other  models  are  not  trivially  due  to  somewhat  arbitrary 
 choices about window length for calculating dynamic functional connectivity measures. 

 Figure  6.  SFC  HMM  connectivity  state  pattern  differential  functional  connectivity  maps  for 
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 window  sizes  of  30tp,  40tp,  50tp,  60tp,  and  80tp  used  in  the  sliding  window  correlation  analysis. 
 The  histograms  (rightmost  column)  display  the  overall  distribution  of  R  2  values  of  S1  SFC  -S8  SFC 
 differential  functional  connectivity  maps  for  each  window  size.  As  window  size  increases,  the 
 histograms  become  less  separated,  indicating  that  the  states  become  more  similar  in  pattern  as 
 window  size  increases.  These  results  show  that  any  window  size  containing  less  than  ~60 
 seconds of data (60tp or less) produces similarly distinct connectivity profiles for SFC HMM. 

 Figure  7.  FFC  HMM  connectivity  state  pattern  differential  functional  connectivity  maps  for 
 window  sizes  of  30tp,  40tp,  50tp,  60tp,  and  80tp  used  in  the  sliding  window  correlation  analysis. 
 The  histograms  (rightmost  column)  display  the  overall  distribution  of  R  2  values  of  S1  FFC  -S8  FFC 
 differential  functional  connectivity  maps  for  each  window  size.  As  window  size  increases,  the 
 histograms  become  less  separated,  indicating  that  the  states  become  more  similar  in  pattern  as 
 window  size  increases.  These  results  show  that  a  window  size  containing  less  than  ~60  seconds 
 of  data  (60tp  or  less)  produces  similarly  distinct  connectivity  profiles  for  FFC  HMM,  and  that 
 differences  between  FFC  HMM’s  connectivity  states  and  those  from  other  models  cannot 
 trivially be explained by arbitrary choices about window size. 

 3.2.2 Viterbi path analysis 

 Our  final  analyses  sought  to  evaluate  whether  FFC  HMM’s  recovered  trajectory  through 
 connectivity  state  space  was  particular  to  this  model,  or  could  be  recovered  through  fitting  a 
 simpler  previously-reported  model.  These  questions  can  be  answered  through  examining  each 
 model’s  Viterbi  path  across  the  whole  dataset’s  time  series,  which  indicate  which  state  was  active 
 at every time point for every subject. 
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 The  Viterbi  paths  can  be  visualized  by  assigning  each  state  a  color  and  plotting  them  for  every 
 person  as  a  function  of  time  point  (TR  in  the  fMRI  time  series,  IB  HMM,  Fig.  8a  )  or  of  time 
 window  (anchored  on  the  first  TR  of  the  time  window,  SFC  HMM  [  Fig.  8b  ]  and  FFC  HMM 
 [  Fig.  8c  ])  to  show  which  states  are  active  at  each  time  point.  These  visualizations  show  that, 
 compared  to  IB  HMM,  both  connectivity-based  HMMs  appear  ‘smoothed’  over  time,  i.e. 
 transition  among  states  more  slowly;  this  is  especially  dramatic  for  FFC  HMM.  Autocorrelation 
 and  temporal  discrepancy  in  input  resolution  between  the  intensity-  versus  connectivity-based 
 HMMs  --  i.e.,  IB  HMM  had  a  temporal  resolution  equal  to  that  of  the  fMRI  TR,  while  SFC  and 
 FFC  HMMs  had  an  effective  sampling  frequency  on  the  order  of  1  sample  per  36  seconds  -- 
 likely contributing to this smoothing. 

 Interestingly,  this  temporal  ‘smoothing’  appears  even  more  pronounced  for  FFC  HMM  than  for 
 SFC  HMM.  We  suspect  that  FFC  HMM  fitting  so  many  more  components  than  SFC  HMM  could 
 have  played  a  role  in  this  model  behavior.  That  is,  compared  to  SFC  HMM,  FFC  HMM  fitted  a 
 more  holistic  picture  of  the  information  in  a  sliding  window  analysis  and  therefore  necessitated 
 fitting  an  extremely  large  number  of  connectivity  values  per  time  window  (406  connectivity 
 values).  While  the  FFC  HMM  was  stable  (the  Viterbi  paths  converged  to  the  same  solution  for 
 every  initialization,  indicating  that  406  components  per  time  window  was  not  an  irrational 
 amount  of  data  to  fit),  this  level  of  complexity  was  significantly  higher  than  SFC’s  29 
 components  per  time  window.  This  increased  complexity  may  have  caused  FFC  HMM  to  take 
 longer  in  recognizing  switches  from  one  state  to  another:  FFC  HMM  was  required  to  find 
 significant  changes  in  14  times  as  many  connectivity  components  as  SFC  HMM.  Fitting  many 
 values  at  once  in  combination  with  a  very  noisy  dataset  could  have  caused  the  noise  to  outweigh 
 the  signal  in  FFC  HMM,  thereby  resulting  in  fewer  state  transitions.  Moreover,  the  severe 
 smoothing  may  have  resulted  from  constraining  FFC  HMM  to  bear  the  same  number  of  hidden 
 states  as  SFC  HMM  --  a  choice  we  made  for  the  sake  of  meaningful  comparisons  between  SFC 
 and  FFC.  It  is  possible  that  because  FFC  HMM  had  more  variables  that  it  could  have  stably 
 identified  more  states.  However,  a  comprehensive  exploration  of  these  and  other  potential 
 explanations  for  this  behavior  is  beyond  the  scope  of  the  present  project,  so  we  leave  these 
 explorations to future work. 

 As  a  final  check,  we  also  confirmed  that  these  Viterbi  paths  were  robust  to  different  realizations, 
 i.e.  different  initial  conditions  for  model  fitting.  Recall  that,  although  the  stability  analyses 
 determined  8  states  was  ideal  for  all  three  models,  state  assignment  (e.g.  labeling  a  state  as  “S1” 
 vs  “S8”)  was  initially  arbitrary  across  all  HMMs.  Nevertheless,  following  state  labeling 
 alignment  across  initializations  (see  Methods  Section  2.3.1  ),  we  observed  that  the  Viterbi  path 
 was  reproducible  across  different  realizations  of  the  HMMs  (R  2  ≥  ~0.84)  for  all  models  tested. 
 That  is,  for  all  initializations,  all  models  recognized  the  same  connectivity  states  to  be  prevalent 
 during the same time windows and the same switches between states. 
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 Figure  8.  Viterbi  Paths  for  (A)  IB  HMM,  (B)  SFC  HMM,  and  (C)  FFC  HMM.  The  Viterbi  paths 
 for  the  SFC  and  FFC  HMMs  are  much  “smoother”  (i.e.,  more  spread  out  in  time)  than  those  of 
 IB  HMM.  Within  the  connectivity-based  HMMs,  FFC  HMM’s  Viterbi  path  exhibits  fewer  and 
 less  frequent  switches  than  SFC  HMM’s,  which  may  have  occurred  because  of  the  selected 
 number  of  hidden  states  or  the  total  number  of  components  fitted.  See  main  text  for  detailed 
 discussion. 

 4.  Discussion 
 Here,  we  introduced  the  ‘full  functional  connectivity’  hidden  Markov  model  (FFC  HMM)  and 
 investigated  its  ability  to  extract  meaningful  functional  connectivity  states  in  resting  state  fMRI 
 data.  Using  the  HCP  Unrelated  100,  we  fitted  the  FFC  HMM  to  a  sliding  window  of  functional 
 connectivity  from  29  ROIs  across  four  networks  (DMN,  FPCN,  DAN,  and  SN)  and  compared 
 the  latent  functional  connectivity  states  that  it  discovered  to  those  identified  by  a  SFC  HMM  and 
 an  IB  HMM.  We  found  that  FFC  HMM’s  discovered  full  connectivity  states  were  starkly 
 different  from  those  recovered  by  SFC  and  IB  HMMs.  Moreover,  and  importantly,  FFC  HMM 
 recovered  simulated  connectivity-based  states  much  more  faithfully  than  either  IB  or  SFC  HMM. 
 This  suggests  that  any  full,  pairwise  functional  connectivity  profiles  that  are  recovered  from 
 either  IB  or  SFC  HMMs  must  be  interpreted  with  caution,  as  they  may  not  resemble  the  true 
 functional  connectivity  states  exhibited  in  the  data.  We  also  observed  that  FFC  HMM  (as  well  as 
 SFC  HMM)  showed  strong  robustness  to  choice  of  window  size  in  the  sliding  window 
 calculation  of  dynamic  functional  connectivity,  as  well  as  a  moderate  insensitivity  to  the  length 
 of  the  data  (50%  vs  100%  of  available  resting-state  data).  Together,  these  results  support  the 
 conclusion  that  FFC  HMM  is  the  appropriate  choice  when  the  goal  of  a  study  is  to  examine  and 
 interpret hidden functional connectivity profiles in functional neuroimaging data. 
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 4.1 Relation to previous literature 

 Our  results  drive  home  the  notation  that,  perhaps  unsurprisingly,  the  input  to  a  model  matters 
 when  interpreting  its  output.  More  specifically,  if  we  wish  to  discover  and  interpret  full 
 functional  connectivity  states  in  resting-state  fMRI  data,  we  should  not  assume  that  connectivity 
 states  derived  from  intensity-based  state  discovery  methods  (i.e.,  IB  HMM;  (Vidaurre,  Smith, 
 and  Woolrich  2017;  Stevner  et  al.  2019;  Eavani  et  al.  2013)  )  are  in  any  way  equivalent  to  the  true 
 functional  connectivity  states  in  a  dataset.  Moreover,  even  previous  methods  using  summations 
 of  functional  connectivity  vectors  (SFC  HMM;  (Ou  et  al.  2015)  )  cannot  be  used  to  recover  full 
 functional  connectivity  profiles,  as  they  are  insensitive  to  changes  in  each  node’s  functional 
 connectivity  profile  and  instead  only  seek  overall  changes  in  average  connectivity  for  each  node 
 examined.  Recall  that  this  previous  summed  functional  connectivity  vector  fitting  method  did 
 have  the  appeal  that  the  summing  step  greatly  reduces  the  computing  power  necessary  to 
 consider  all  connectivity  values  in  fitting  the  HMM;  however,  here  we  showed  that  the  increase 
 in  necessary  computing  is  worth  the  challenge,  because  FFC  HMM’s  recovered  states  and  Viterbi 
 paths are quite different from those recovered via the SFC HMM method. 

 Our  initial  fitting  and  model  recovery  results  (  Results  Section  3.1.2  )  suggest  that  these 
 differences  are  not  idiosyncratic,  but  are  robust  to  fitting  procedures.  First,  we  showed  that  FFC 
 HMM  is  better  suited  to  extracting  true  functional  connectivity  profiles  than  SFC  HMM  (and 
 certainly  better  than  IB  HMM).  We  observed  that  the  correlations  between  induced  and 
 discovered  states  were  on  average  much  higher  for  FFC  HMM  than  for  SFC  HMM  (mean  R  2  of 
 0.5738  ±  0.1301  for  FFC  HMM  but  of  0.3337  ±  0.1650  for  SFC  HMM).  Second,  we  also  showed 
 that  connectivity  state  patterns  also  largely  remained  the  same  for  FFC  and  SFC  HMMs  even 
 when  the  length  of  the  functional  times  series  was  reduced  by  half.  Specifically,  we  found 
 functional  time  series  with  durations  as  short  as  7.2  minutes  were  sufficient  to  provide 
 reproducible  functional  connectivity  states.  Third,  we  also  observed  that  the  differences  between 
 SFC  and  FFC  HMMs  were  preserved  regardless  of  the  size  of  the  sliding  window  used  for  the 
 calculation  of  dynamic  functional  connectivity.  Connectivity  state  patterns  appeared  to  be  robust 
 to  window  size  indicating  that  there  was  some  flexibility  in  selecting  this  parameter  in  sliding 
 window  analyses  performed  on  big  datasets  with  a  high  temporal  resolution  and  large  numbers  of 
 subjects.  A  window  size  containing  less  than  60  seconds  of  data  was  found  to  be  ideal  because 
 the  spatial  patterns  began  to  deviate  from  those  observed  when  using  longer  windows.  This  is 
 consistent  with  Lurie  et  al.  2020,  who  postulated  that  a  window  length  less  than  60  seconds  may 
 be  the  optimal  window  size  (  Lurie  et  al.  2020  ).  Our  time  window  analyses  (  Figs.  6  &  7  )  showed 
 that  a  window  less  than  60  seconds  makes  little  difference  in  the  distinctiveness  of  the 
 connectivity  states  recovered,  either  by  SFC  HMM  or  FFC  HMM.  Thus,  our  selection  of  50 
 timepoints  for  the  main  analysis  played  no  role  in  the  observed  differences  in  recovered 
 connectivity states between the two models. 

 We  also  observed  that,  despite  differences  in  the  switching  rate  between  SFC  and  FFC  HMMs, 
 the  summed  connectivity  vectors  for  each  matched  state  were  similar  (  Fig.  2  )  as  indicated  by 
 high  values  for  the  absolute  value  of  the  inner  product  of  the  summed  connectivity  vectors  for 
 matched  states  from  each  model  (mean  inner  product  across  all  states  =  0.84).  These  results 
 suggest  that  FFC  HMM  is  able  to  recover  the  summed  connectivity  vectors  that  would  be  sought 
 by  SFC  HMM,  i.e.  that  both  connectivity-based  HMMs  result  in  states  with  similar  average 
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 nodal  connectivity.  These  findings  are  encouraging  for  the  use  of  FFC  HMM  in  place  of  SFC 
 HMM,  as  examining  FFC  HMM’s  outputs  allows  us  to  answer  all  of  the  questions  addressed  by 
 SFC HMM. 

 Interestingly,  our  results  revealed  that  FFC  HMM  was  slower  to  change  states  even  with  the 
 same  sliding  window  size  as  SFC.  Given  that  FFC  HMM  examines  pairwise  connectivity  of  each 
 node  with  all  other  nodes  under  consideration  whereas  SFC  HMM  examines  the  average 
 connectivity  of  each  node,  we  posit  that  the  slower  switching  rate  in  FFC  HMM  is  due  to  the 
 increased  number  of  components  fitted  in  FFC  HMM  compared  to  SFC  HMM.  The  increased 
 number  of  components  fitted  in  the  FFC  HMM  may  reduce  state  switching  by  requiring  broader 
 changes  in  functional  connectivity  across  multiple  nodes  to  register  a  change  in  functional 
 connectivity  state.  It  is  possible  this  behavior  may  also  make  FFC  HMM  less  sensitive  to  noise 
 than  SFC  HMM,  although  a  comprehensive  demonstration  of  this  consequence  is  beyond  the 
 scope  of  the  present  paper.  Future  work  should  comprehensively  examine  the  underlying  causes 
 for the slower switch rates in FFC HMM as they may relate to these and other possible scenarios. 

 4.2 Limitations 

 Of  course,  our  approach  demonstrating  FFC  HMM’s  capabilities  does  have  limitations.  For 
 example,  one  might  note  that  when  using  sliding  window  functional  correlations  as  inputs  (SFC 
 and  FFC  HMMs),  there  is  a  large  amount  of  autocorrelation  in  the  input  connectivity  profiles  due 
 to  the  length  of  each  sliding  window  being  longer  than  the  incrementing  of  the  window’s  center 
 (essentially,  each  new  ‘window’  contains  a  majority  of  the  previous  ‘window’).  HMMs  in 
 general  assume  independent  Gaussians  in  the  likelihood  functions  and  three  different  algorithms 
 (the  forward  algorithm,  the  Viterbi  algorithm,  and  the  Baum-Welch  algorithm)  in  conjunction  to 
 find  the  most  likely  sequence  of  hidden  states,  transition  probabilities,  and  emission  probabilities 
 based  on  an  observable  sequence  of  data  (Jurafsky  and  Martin  2009;  S.  R.  Eddy  1996;  Sean  R. 
 Eddy  2004;  L.  Rabiner  and  Juang  1986;  L.  R.  Rabiner  1989)  .  Thus,  autocorrelation  of  the 
 functional  connectivity  profiles  across  time  might  cause  some  concerns  in  interpretation.  Here, 
 we  have  assumed  independence  as  a  simplifying  assumption,  following  previous  work  (Ou  et  al. 
 2015)  .  Future  work  should  evaluate  the  degree  to  which  autocorrelation  affects  the  outputs  of  any 
 model which takes dynamic functional connectivity as input (here, SFC and FFC HMMs). 

 Additionally,  the  analysis  presented  here  cannot  speak  to  the  entire  spectrum  of  types  of  data  one 
 might  wish  to  analyze  with  hidden  Markov  approaches.  For  example,  we  did  not  evaluate  the 
 degree  to  which  TR  impacts  FFC  HMM’s  performance,  nor  did  we  evaluate  the  shortest 
 resting-state  scan  duration  required  to  fit  FFC  HMM  satisfactorily.  Such  explorations  would 
 indeed  be  useful,  but  unfortunately  are  beyond  the  scope  of  this  manuscript  as  our  goal  here  was 
 to  present  a  proof  of  concept  and  empirical  demonstration  for  the  advantages  of  FFC  HMM  over 
 other established methods. Future work should examine these factors in detail. 

 Finally,  our  results  are  also  limited  due  to  our  selection  of  sliding  time  window  computations  of 
 functional  connectivity  as  types  of  inputs  to  our  hidden  Markov  models.  Although  the  sliding 
 time  window  approach  retains  sequential  dynamic  temporal  information  (Chen  et  al.  2016)  ,  it  is 
 limited  in  that  a  given  brain  state  may  not  persist  for  the  entire  sliding  window,  or  signals  from 
 multiple  brain  states  may  overlap  in  the  sliding  time  window.  If  instead  one  wishes  to 
 characterize  some  number  of  unique,  stable  states  of  functional  connectivity  --  i.e.,  under  some 
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 conditions,  two  nodes  are  highly  correlated  and  under  others  they  are  not  --  one  can  derive 
 functional  connectivity  states  using  other  dynamical  approaches  such  as  spatial  independent 
 component  analysis  (Beckmann  et  al.  2005;  Smith  et  al.  2012)  or  structural  equation  modeling 
 (Schlösser  et  al.  2003;  Petridou  et  al.  2013)  .  Other  similar  clustering  methods  have  been 
 designed  primarily  to  look  at  intensity-based  states,  such  as  coactivation  patterns  (Liu  and  Duyn 
 2013;  Liu,  Chang,  and  Duyn  2013)  .  However,  while  independent  component  analysis  and 
 structural  equation  modeling  are  able  to  characterize  the  spatial  patterns  of  connectivity  states  -- 
 i.e.,  stable  connectivity  patterns  describing  which  nodes  tend  to  be  connected  to  other  nodes  -- 
 they  only  identify  the  connectivity  states  themselves  and  do  not  account  for  the  temporal 
 ordering,  or  sequence,  of  fMRI  times  series  or,  consequently,  the  trajectory  through  connectivity 
 state  space  that  an  individua  l  might  traverse.  With  these  alternative  methods,  each  time  point  in  a 
 fMRI  time  series  is  treated  as  an  independent  sample  of  the  brain  in  these  approaches  and 
 shuffling  fMRI  time  series  does  not  affect  spatial  patterns  of  brain  states  derived  from  these 
 approaches.  Thus,  because  these  approaches  are  unable  to  analyze  temporal  interactions  between 
 connectivity  states  or  how  they  evolve  over  time,  as  of  now  one  of  the  best  tools  we  have  to 
 study the evolution of connectivity states over time. 

 4.3 Conclusions 

 We  found  that  the  newly-introduced  FFC  HMM  discovered  connectivity  states  with  more 
 distinguishable  patterns  than  those  derived  from  HMMs  with  an  intensity  input  (IB  HMM)  or 
 summed  connectivity  input  (SFC  HMM).  Our  comprehensive  state  comparison  across  IB  HMM, 
 SFC  HMM,  and  FFC  HMM  revealed  the  connectivity  profiles  as  extracted  by  FFC  HMM  to  be 
 fundamentally  different  from  the  functional  connectivity  profiles  extracted  by  either  of  the  other 
 two  methods.  We  also  demonstrated  that  the  disadvantages  of  fitting  FFC  HMM  in  terms  of 
 required  compute  power  are  outweighed  by  the  direct  interpretability  of  the  findings:  Rather  than 
 hypothesize  about  what  connectivity-based  states  might  have  been  from  a  simpler  model,  FFC 
 HMM  allows  for  an  essentially  direct  readout  of  connectivity-based  states  and  their  temporal 
 evolution.  This  behavior  makes  FFC  HMM  a  powerful  tool  for  extracting,  analyzing,  and 
 understanding  how  dynamic  connectivities  among  brain  regions  may  relate  to  different  disease 
 states or cognitive processes in future studies. 
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 Appendices 

 Appendix A. Detailed methods 

 A.1 Network ROI MNI coordinates 

 We  narrowed  our  scope  of  analysis  to  four  pre-defined  networks  that  have  previously  been 
 associated  with  resting  state:  the  default  mode  network  (DMN),  fronto-parietal  control  network 
 (FPCN),  dorsal  attention  network  (DAN),  and  salience  network  (SN).  The  nodes  comprising 
 each  network  were  defined  using  anatomical  coordinates  specified  in  literature  and  converted 
 from  Talairach  to  MNI  coordinates  when  necessary  (Raichle  2011;  Lancaster  et  al.  2007;  Laird, 
 Lancaster,  and  Fox  2005;  Brett,  Johnsrude,  and  Owen  2002;  Deshpande  et  al.  2008;  2009;  Stilla 
 et  al.  2007)  .  Dorsal  anterior  cingulate  cortex  and  left  dorsolateral  prefrontal  cortex  ROIs  in 
 FPCN  and  right  parahippocampal  gyrus  and  right  inferolateral  temporal  cortex  in  DMN  were 
 excluded  from  analyses  because  they  overlapped  or  were  too  closely  located  to  other  ROIs.  Thus, 
 we  only  used  29  ROIs  per  subject  when  examining  the  HCP  dataset  (9  from  DMN,  7  from 
 FPCN, 6 from DAN, and 7 from SN). 

 ROI  Abbrv.  Full Name  MNI (x,y,z)  Source 

 Default Mode Network 

 1  PCC  Posterior Cingulate Cortex  (2,54,16)  Deshpande et al. 2011 

 2  L pIPL  Left Posterior Inferior Parietal Lobule  (-46,-72,28)  Deshpande et al. 2011 

 3  R pIPL  Right Posterior Inferior Parietal Lobule  (50,-64,26)  Deshpande et al. 2011 

 4  OFC/vACC  Orbitofrontal Cortex/Ventral Anterior 
 Cingulate Cortex  (4,30,26)  Deshpande et al. 2011 

 5  dMPFC BA 
 8 

 Dorsomedial Prefrontal Cortex 
 Brodmann Area 8  (-14,54,34)  Deshpande et al. 2011 

 6  dMPFC BA 
 9 

 Dorsomedial Prefrontal Cortex 
 Brodmann Area 9  (22,58,26)  Deshpande et al. 2011 

 7  L DLPFC  Left Dorsolateral Prefrontal Cortex  (-50,20,34)  Deshpande et al. 2011 

 8  L PHG  Left Parahippocampal Gyrus  (-10,-38,-2)  Deshpande et al. 2011 

 9  L ITC  Left Inferolateral Temporal Cortex  (-60,-20,-18)  Deshpande et al. 2011 

 Fronto-Parietal Control Network 

 1  L aPFC  Left Anterior Prefrontal Cortex  (-36,56,10,)  Deshpande et al. 2011 

 2  R aPFC  Right Anterior Prefrontal Cortex  (34,52,10)  Deshpande et al. 2011 
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 3  R DLPFC  Right Dorsolateral Prefrontal Cortex  (46,14,42)  Deshpande et al. 2011 

 4  L aINS  Left Anterior Insula  (-30,20,-2)  Deshpande et al. 2011 

 5  R aINS  Right Anterior Insula  (32,22,-2)  Deshpande et al. 2011 

 6  L aIPL  Left Anterior Inferior Parietal Lobule  (-52,-50,46)  Deshpande et al. 2011 

 7  R aIPL  Right Anterior Inferior Parietal Lobule  (52,-46,46)  Deshpande et al. 2011 

 Dorsal Attention Network 

 1  L MT  Left MidThalamus  (-44,-64,-2)  Deshpande et al. 2011 

 2  R MT  Right MidThalamus  (50,-70,-4)  Deshpande et al. 2011 

 3  L FEF  Left Frontal Eye Field  (-24,-8,50)  Deshpande et al. 2011 

 4  R FEF  Right Frontal Eye Field  (28,-10,50)  Deshpande et al. 2011 

 5  L SPL  Left Superior Parietal Lobule  (-26,-52,56)  Deshpande et al. 2011 

 6  R SPL  Right Superior Parietal Lobule  (24,-56,-54)  Deshpande et al. 2011 

 Salience Network 

 1  DAC  Dorsal Anterior Cingulate  (0,-22,36)  Raichle 2011 

 2  L aPFC  Left Anterior PFC  (-34,44,30)  Raichle 2011 

 3  R aPFC  Right Anterior PFC  (32,44,30)  Raichle 2011 

 4  L Insula  Left Insula  (-40,2,6)  Raichle 2011 

 5  R Insula  Right Insula  (42,2,6)  Raichle 2011 

 6  L LP  Left Lateral Parietal  (-62,-46,30)  Raichle 2011 

 7  R LP  Right Lateral Parietal  (62,-46,30)  Raichle 2011 

 Table  A1:  List  of  MNI  coordinates  used  for  ROIs  in  the  default  mode  network  (DMN), 
 fronto-parietal  control  network  (FPCN),  dorsal  attention  network  (DAN),  and  salience  network 
 (SN).  Talaraich  coordinates  for  DMN,  FPCN,  and  DAN  were  taken  from  Deshpande  et  al.  2011 
 and  were  converted  to  MNI  using  (Deshpande,  Santhanam,  and  Hu  2011;  Lancaster  et  al.  2007; 
 Laird,  Lancaster,  and  Fox  2005;  Brett,  Johnsrude,  and  Owen  2002)  while  MNI  coordinates  for 
 SN were taken directly from Raichle 2011 (Raichle 2011). 
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 A.2 HMM models: graphical descriptions 

 The  following  figures  graphically  describe  the  methods  used  to  implement  the  three  HMMs 
 discussed  in  the  main  text.  Fig.  A1  corresponds  to  IB  HMM,  Fig.  A2  to  SFC  HMM,  and  Fig.  A3 
 to FFC HMM. 

 A.2.1 Intensity-based HMM 

 Figure  A1.  Illustration  of  the  procedure  used  to  implement  IB  HMM.  Once  the  BOLD  signal  is 
 extracted  from  all  predefined  ROIs,  it  is  concatenated  across  subjects  and  fitted  with  an  HMM 
 form the python hmmlearn library (Pedregosa et al. 2011). 
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 A.2.2 Summed functional connectivity HMM 

 Figure  A2.  Illustration  of  the  procedure  used  to  implement  SFC  HMM  as  followed  by  the 
 method  described  in  Ou  et  al.  2015  (Ou  et  al.  2015).  Once  a  sliding  time  window  correlation 
 analysis  is  performed,  the  connectivity  matrix  in  each  time  window  is  summed  across  a 
 dimension  into  a  representative  nodal  connectivity  vector.  After  executing  this  for  all  time 
 windows  and  for  all  subjects,  the  data  is  concatenated  across  all  subjects  and  fitted  with  an  HMM 
 form the python hmmlearn library (Pedregosa et al. 2011). 
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 A.2.3 Full functional connectivity HMM 

 Figure  A3.  Illustration  of  the  procedure  used  to  implement  FFC  HMM.  Once  a  sliding  time 
 window  correlation  analysis  is  performed,  the  lower  (or  upper)  triangle  of  values  from  the 
 connectivity  matrix  in  each  time  window  is  flattened  into  a  vector.  After  executing  this  for  all 
 time  windows  and  for  all  subjects,  the  data  is  concatenated  across  all  subjects  and  fitted  with  an 
 HMM from the python hmmlearn library (Pedregosa et al. 2011). 
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 A.3 Detail of the RAICAR-based method to determine number of hidden states for each model 

 Fig.  A4  illustrates  the  procedure  used  to  determine  the  optimal  number  of  states  for  this 
 investigation:  a  Ranking  and  Averaging  Independent  Component  Analysis  by  Reproducibility 
 (RAICAR)  based  method.  The  stability  analysis  results  for  models  with  3-15  hidden  states  for  IB 
 HMM and SFC HMM are depicted in  Figs. A5  and  A6  , respectively. 

 Figure  A4.  Schematic  illustrating  the  procedure  for  the  RAICAR-based  method  for  determining 
 number  of  hidden  states  in  a  model.  Each  of  the  blocks  shown  represent  a  state  where  matched 
 states  are  shown  in  the  same  color.  A  basic  example  of  3  states  is  shown  where  states’  spatial 
 patterns  are  first  matched  across  realizations  using  Pearson  correlation  values  (Chen  et  al.  2016; 
 Yang  et  al.  2008).  That  is,  states’  spatial  patterns  have  been  matched  via  the  highest  R  2  value 
 observed  and  reordered  to  the  same  state  assignment.  The  Pearson  correlation  is  then  found 
 amongst  all  pairs  of  states  within  a  matched  group  and  averaged  to  represent  the  stability  of  that 
 state  pattern  for  that  number  of  hidden  states.  This  procedure  is  then  repeated  for  all  states,  with 
 a model fitted with that particular number of hidden states. 
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 Figure  A5.  Stability  analysis  results  for  IB  HMM  for  models  with  3-15  hidden  states  with  a 
 predetermined  threshold  at  0.9.  It  may  appear  that  models  with  as  many  as  12  hidden  states 
 could  be  suitable  for  IB  HMM  because  its  stability  values  remained  above  the  predetermined 
 threshold.  However,  models  with  10,  11,  and  12  states  contained  a  repeated  state  making  then 
 undesirable  as  a  lack  of  parsimony  likely  occurred  in  the  state  spatial  patterns.  The  9-state  model 
 identified  a  state  where  mean  activation  equaled  zero  (consistent  with  Chen  et  al.  2016’s 
 findings)  that  was  not  observed  in  the  8-state  model  (cite  once  changes  are  accepted).  The  10-, 
 11-,  and  12-state  models  included  two  occurrences  of  this  activation  pattern;  although  these 
 models  were  considered  stable,  they  were  undesirable  because  they  contained  a  repeated  state 
 and  a  lack  of  parsimony.  Thus,  eight  states  were  the  preferred  choice  for  IB  HMM  in  this 
 investigation. 
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 Figure  A6.  Stability  analysis  results  for  SFC  HMM  for  models  with  3-15  hidden  states  with  a 
 predetermined threshold at 0.9. 
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 A.4 Details of model robustness to data size 

 In  Fig.  A7  ,  we  present  the  connectivity-based  state  patterns  identified  (along  with  their 
 corresponding  summed  vectors)  when  only  half  of  the  fMRI  dataset  (7.2  minutes)  was  fitted  with 
 an HMM. 

 Figure  A7.  State  pattern  differential  functional  connectivity  maps  for  SFC  HMM  (top  row),  FFC 
 HMM  (middle  row),  and  IB  HMM  (bottom  row)  when  only  half  of  the  fMRI  dataset  (7.2 
 minutes)  were  used.  The  summed  connectivity  values  across  one  dimension  are  displayed  below 
 each state. 
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 Appendix B. Intensity-based state patterns 

 B.1 Pattern acquisition 

 Intensity  state  patterns  are  defined  as  a  combination  of  activated  or  deactivated  ROIs  comprising 
 the  four  aforementioned  networks  (i.e.,  each  state  consists  of  a  1x29  vector  of  intensity  levels). 
 Intensity  states  in  the  SFC  and  FFC  HMMs  were  computed  using  the  method  of  state  acquisition 
 described  by  Chen  and  colleagues  (Chen  et  al.  2016)  .  Fig.  B1  shows  that  the  BOLD  time  series 
 was  truncated  by  a  length  of  Δt/2  to  match  the  temporal  scale  of  the  SFC  and  FFC  Viterbi  paths. 
 Next,  the  BOLD  signal  at  every  TR  where  the  SFC  or  FFC  labeled  a  state  to  be  active  was 
 averaged.  Repeating  this  for  all  ROIs  yielded  a  1  X  ROI  vector  of  intensity  for  every  ROI  for  a 
 particular state. 

 Figure  B1.  Schematic  illustration  outlining  the  method  used  to  recreate  the  intensity  states  using 
 the  Viterbi  paths  from  SFC  and  FFC  HMMs.  The  discrepancy  in  temporal  resolution  was 
 accounted  for  by  removing  some  TRs  of  the  BOLD  time  series  to  ensure  equal  length  between 
 the BOLD signal and the connectivity-based HMMs’ Viterbi paths. 

 B.2 Intensity-based states for all HMMs 

 The  intensity  patterns  for  IB  HMM  are  seen  in  Fig.  B2  where  the  subscripts  correspond  to  the 
 model  discussed;  i.e.,  S1  IB  corresponds  to  state  1  from  IB  HMM)  were  directly  outputted  from 
 the  model  fitting  procedure.  S1  IB  appears  to  be  a  DMN-dominant  state  since  the  DMN  is 
 activated,  and  all  other  networks  are  deactivated.  S2  IB  shows  both  DMN  and  FPCN  to  be 
 activated.  S3  IB  and  S4  IB  both  appear  to  be  attention-dominant  states:  DAN  and  SN  are  activated 
 in  S3  IB  while  FPCN,  DAN,  and  SN  are  activated  in  S4  IB  .  S5  IB  and  S7  IB  both  show  all  networks  to 
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 be  activated,  but  S5  IB  has  slightly  lower  activation  levels  compared  to  S7  IB  .  In  S6  IB  ,  DMN,  DAN, 
 and  SN  are  deactivated  and  FPCN  has  minor  positive  activation  levels.  S8  IB  shows  all  networks 
 to  be  deactivated.  The  corresponding  connectivity  states  stemming  from  the  output  covariance 
 matrices  can  be  found  in  the  bottom  row  of  Fig.  3  .  The  intensity  states  for  SFC  and  FFC  HMMs 
 using  the  methods  illustrated  in  Fig.  B1  are  seen  in  Fig.  B3a  and  B3c  ,  respectively  while  the 
 Euclidean  distances  between  them  and  the  intensity  states  directly  outputted  from  IB  HMM  are 
 seen  in  Fig.  B3b  and  Fig.  B3d  ,  respectively.  Comparing  the  two  connectivity-based  models’ 
 results  against  IB  HMM’s  outputted  intensity  state  patterns  aimed  to  determine  whether  the 
 model  types  were  recognizing  different  states  and  ensured  that  repeated  information  was  not 
 acquired  from  different  HMMs.  The  similarities  of  these  states  to  each  other  were  assessed  via 
 Euclidean distances (  Fig. B3  ). 

 Figure  B2.  IB  HMM  activation  state  patterns.  Values  shown  in  red  correspond  to  positive 
 activation levels while those in blue correspond to deactivation. 
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 Figure  B3.  Intensity  patterns  from  averaging  the  BOLD  signal  according  to  the  Viterbi  path  from 
 (A)  SFC  HMM  and  (B)  FFC  HMM.  (C)  and  (D)  ,  respectively,  show  the  Euclidean  distances 
 between  the  activation  patterns  directly  outputted  from  IB  HMM  (  Fig.  B2  )  and  those  from  panels 
 A  and  B  . 

 These  results  indicate  that  IB  HMM  recognized  fluctuations  in  BOLD  signal,  and  that  SFC  and 
 FFC  HMMs  were  not  sensitive  to  those  same  patterns.  Each  model  adequately  recognized 
 changes  in  the  data  inputted  into  their  respective  model  type  and,  therefore,  did  not  recognize  the 
 same  state  patterns.  Thus,  each  HMM  is  distinct  in  identifying  changes  unique  to  the  inputted 
 data, and consequently, in identifying states. 

 B.3 Intensity-based state model validation 

 To  create  “intensity-defined”  ground  truth  states,  eight  intensity  states  (matching  the  best  number 
 of  hidden  states  recovered  in  the  primary  analysis;  see  Results  Section  3.1.1  )  were  induced  by 
 adding  an  arbitrary  value  of  2  (the  signal  is  in  arbitrary  units)  to  nodes  in  certain  networks  and  at 
 certain time points within the permuted data. 
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 Fig.  B4a  depicts  the  time  series  of  states  we  induced  during  the  validation  analysis.  In 
 accordance  with  the  stability  analysis  results,  8  states  were  induced  in  our  model  validation 
 analyses.  For  the  first  validation  instantiation,  intensity  states  were  induced  by  adding  a  value  of 
 2  to  the  specified  networks  and  fitted  with  IB  HMM,  which  adequately  recovered  each  of  the 
 described  states  (  Fig.  B4b  ).  Compared  to  the  induced  state  sequence  (  Fig.  B4a  ),  the  IB  HMM 
 fitted  to  this  sequence  outputted  a  state  time  course  with  mean  R  2  across  all  subjects  of  0.9999  ± 
 4.1551e-04.  Consistent  with  the  unique  nature  of  intensity-based  versus  connectivity-based  states 
 (see  Results  Section  3.2.1  ),  as  expected  neither  of  the  connectivity-based  models  could  recover 
 states  induced  by  intensity-based  approaches  (  Figs.  B4c  and  B4d  ;  SFC  HMM  R  2  =  0.0501  ± 
 0.1003  and  FFC  HMM  R  2  0.0739  ±  0.0683  respectively).  This  finding  suggests  that  our  IB 
 HMM  model  fitting  procedure  is  ideally  suited  to  recover  intensity-based  states,  and  the  SFC  and 
 FFC models do not ‘accidentally’ discover such states when they are present. 

 Figure  B4.  Verification  of  HMM  intensity-based  states.  (A)  The  artificially  induced  state 
 sequence  depicted  which  networks  exhibited  slightly  increased  network  intensity  levels. 
 Outputted  state  sequences  from  (B)  IB  HMM,  (C)  SFC  HMM,  and  (D)  FFC  HMM  when 
 intensity states were induced. 
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