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Abstract 

DNA methylation plays crucial roles during fetal development as well as aging. Whether 

the aging of the brain is programmed at the fetal stage remains untested. To test this 

hypothesis, mouse epigenetic clock (epiclock) was profiled in fetal (gestation day 15), 

postnatal (day 5), and aging (week 70) brain of male and female C57BL/6J inbred mice. 

Data analysis showed that on week 70 the female brain was epigenetically younger than 

the male brain. Predictive modeling by neural network identified specific methylations in 

the brain at the developing stages that were predictive of epigenetic state of the brain 

during aging. Transcriptomic analysis showed coordinated changes in expression of 

epiclock genes in the fetal brain relative to placenta. Whole-genome bisulfite sequencing 

identified sites that were methylated both in the placenta and fetal brain in a sex-specific 

manner. Epiclock genes and genes associated with specific signaling pathways, primarily 

the gonadotropin-releasing hormone receptor (GnRHR) pathway, were associated with 

these sex-bias methylations in the placenta as well as fetal brain. Transcriptional crosstalk 

among the epiclock and GnRHR pathway genes was evident in the placenta that was 

maintained in the brain during development as well as aging. Collectively, these findings 

suggest that sex differences in the aging of brain are of fetal origin and epigenetically 

linked to the placenta.   

Introduction 

The Dilman theory of developmental aging (DevAge) (1) suggests that mechanisms that 

regulate developmental processes early in life have commonalities with the processes that 

regulate aging. Genomics and systems-biology studies have supported the DevAge theory 
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and have further revealed that the developmental aging link is evolutionarily conserved 

between mice and human  (2, 3).  The connection of aging with reproduction has been 

suggested in multiple studies  (4–6). Gestation length  (7), placenta development  (8), and 

fertility  (9) influences on aging and longevity. Furthermore, sex also influences 

differential aging of organs  (10). Different organs show differential gene expression 

changes during aging that are sex-specific (11). In humans, the female brain remains 

persistently younger than the male brain  (12, 13).  

DNA methylation is a major factor of epigenetic regulation of aging  (14–17). 

Methylation, the majority of which occur in CpGs (5'-Cytosine-phosphate-Guanine-3’) 

sites, changes in correlation with age. They are commonly referred to as epigenetic clock 

(epiclock) and serve as reliable predictors of the biological age of organs. Several studies 

have profiled methylation changes in the brain during aging  (17–19) and in the 

developing brain at fetal stages and found that aberrant methylation in the fetal brain can 

influence the risk of brain diseases later in life  (20, 21). Commonalities in morphometric 

changes have also been observed in the brain during development and aging (22). These 

studies have collectively suggested that processes that regulate the development and 

aging of the brain are not mutually exclusive. Mice models have provided further insights 

into epigenetic regulation of brain during development and aging (23–26), including 

influence of sex on epigenetic control of brain development and function (27–29).  

While the role of placenta in fetal programming is well documented  (30–34), recent 

studies show that the placenta plays adaptive roles to safeguard fetal brain development 

from adverse conditions during pregnancy  (35). Our earlier study showed a coordinated 
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changes of specific receptor and ligand genes between the placenta and fetal brain, 

suggesting their roles in the regulation of the brain-placental axis in mice (36). In 

addition, we also found evidences for differential expression of specific aging genes in 

the male and female fetal brain in response to ablation of uterine Foxa2, an essential gene 

required for pregnancy establishment (37). We also showed that specific genes are 

regulated in a sex-bias manner during fetal brain development in pigs (38). Furthermore, 

studies by others have shown that epigenetic and metabolic changes in the fetal brain can 

impact overall health later in life (34, 35) particularly in the context of declining 

metabolism in the brain (36, 37). However, the epigenetic connection between 

development and aging of brain remains poorly studied. The present study aims to test if 

development and aging of brain have epigenetic links and determine if such links are 

influenced by fetal sex and placenta. 

Materials and Methods 

Ethics statement 

All animal procedures were approved by the Institutional Animal Care and Use 

Committee of the University of Missouri and were conducted according to the National 

Institute of Health Guide for the Care and Use of Laboratory Animals.  

Animals 

Adult C57BL/6J mice were mated. The day vaginal plug was observed that was 

considered as gestation day (GD) 1. On GD15, dams were euthanized in CO2 followed 

by cervical dislocation. We selected GD15 because the placenta is fully developed, and 
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the brain-placental crosstalk was confirmed at this time point (36). The placenta was 

carefully separated from the metrial gland and decidua, and the fetal brain was collected 

using curved forceps. All the samples were washed in PBS and snap-frozen in liquid 

nitrogen. Sex was determined by PCR  (39). A total of 12 fetal brains and placenta were 

collected (3 replicates x 2 tissue types x 2 sexes). We further collected three replicates of 

male and female brains from postnatal day 5 (PND5) and 70 weeks old mice (WK70). 

Epigenetic clock profiling 

Mouse multi-tissue epigenetic clock was profiled with DNA of GD15, PND5 and WK70 

male and female brains using the Zymo (ZYMO RESEARCH, Irvine, CA 92614, U.S.A) 

DNAge® estimation service, which is based the Horvath pan-tissue clock using elastic 

net regression (40). Briefly, DNA from frozen brain samples was purified using the 

Quick-DNATM Miniprep Plus kit (Cat. No. D4068). Bisulfite conversion was performed 

using the EZ DNA Methylation-LightningTM Kit (Cat. No. D5030), followed by 

enrichment for target loci and sequencing on an Illumina® HiSeq instrument. Sequence 

reads were identified using Illumina base calling software and aligned to the mouse 

reference genome (GRCm38) using Bismark  (41) which was also used for methylation 

calling. Methylation level was estimated as the proportion of reads mapped to each 

cytosine relative to the total number mapped reads to the site. The methylation data of 

each brain sample was then compared with cortex aging data of mouse by Zymo’s 

DNAge® predictor tool as described earlier (42). 

Whole-genome bisulfite sequencing (WGBS)  
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Genomic DNA was extracted from GD15 fetal brain and placenta of both sexes using 

Gentra Puregene Tissue Kit (catalog #158667, Qiagen) as per the manufacturer’s 

instruction. Equimolar amounts of DNA from the three biological replicates were pooled 

together for each sample that used for methylation analysis as described earlier (43). 

After bisulfite conversion of DNA, sequencing libraries were generated using the 

NEBNext® Ultra™ II DNA Library Prep Kit (New England Biolabs, MA). Library 

preparation and sequencing were performed at the University of Missouri Genomics 

Technology Core. The libraries were sequenced to 20x genome coverage (150 bases 

sequence reads) using NovaSeq 6000.  

WGBS data analysis 

The raw data were subjected to quality control by TrimGalore followed by mapping to 

the reference genome (GRCm38) by Bismark  (41). Briefly, the reference GRCm38 

genome sequences were bisulfite converted and indexed using the 

‘bismark_genome_preparation’ function before mapping. The read alignment was then 

performed by bowtie2 aligner implemented within Bismark  (44). The methylation sites 

were extracted using thebismark_methylation_extractor to generate methylation coverage 

of each sample in a genome-wide manner. The coverage files contained chromosome 

name, start position, end position, methylation percentage, and number of methylated, 

and unmethylated reads for each CpG site. We only focused on CpG sites as they 

represent the majority of methylations in mammalian genomes  (45). The sites that had 

low coverage (read counts < 8) were excluded from further analysis  (46). The count data 
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was converted to beta-values of methylation as described earlier (47). The raw and 

processed data are available in GEO accession# GSE157553.  

Genomic distribution of methylation sites 

 BEDTools  (48) was used to identify methylations in different genomic locations based 

on genome annotation (GRCm38) obtained from UCSC Genome Browser. In addition, 

awk and grep were used to filter and count methylation sites in different annotation 

features. 

RNA-seq  

RNA-seq was performed to profile gene expression of male and female brains collected 

on PND5 and WK70. The RNA-seq data of brain and placenta from male and female 

fetuses (GD15) was compared with RNA-seq data of PND5 and WK70 brain. The GD15 

RNA-seq data was generated earlier by us  (37) which are also publicly available in the 

Gene Expression Omnibus database (accession # GSE157555). Total RNA was isolated 

from PND5 and WK70 brain samples using TRIzol (Catalog 15596026, Thermo Fisher) 

based protocol. The RNA quality was checked using a Fragment Analyzer (Advanced 

Analytical Technologies). The RNA concentration was determined using a Qubit 2.0 

Fluorometer (Life Technologies). Libraries were prepared from total RNA using the 

Illumina TruSeq Stranded Total RNA with Ribo-Zero Gold Library Prep Kit at the 

University of Missouri Genomics Technology Core. Each library was sequenced (~30 

million paired-end reads, 150 bases read length) using Illumina NovaSeq 6000 sequencer.  

RNA-seq data analysis 
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RNA-seq data analysis was performed as described in our earlier studies (37, 38). Briefly, 

the quality of raw sequences was checked with FastQC followed by trimming the 

adaptors from the sequence reads by cutadapt. The fqtrim tool was used to perform base 

quality trimming (Phred score >30) by sliding window scan (6 nucleotides). The quality 

reads were then mapped to the mouse reference genome GRCm38 using Hisat2 aligner  

(49). Read counting from the alignment data was performed by FeatureCounts  (50).  

Mutual information network analysis 

The information theory (MI) approach (51) was used to infer gene expression networks. 

MI is a measure of the information content between two variables: a numerical value 

ranging from 0 to 1 depending on, intuitively, how much knowing one variable would 

predict the variability of the other. We calculated MIs in a pair-wise manner, both at gene 

and sample levels, to generate a weighted adjacency matrix by the Maximum Relevance 

Minimum Redundancy (MRMR) method  (52). Then mutual information network 

analysis was performed using minet  (53) followed by network visualization by GGally.  

Statistical analysis  

All statistical tests were performed in R. Chi-Square analysis was performed to infer the 

significance of 2x2 contingency tests. Enrichment analysis was performed by Fisher 

exact tests followed by multiple corrections of p-values by False Discovery Rate (FDR). 

Comparison of variation between methylation and expression was based on beta-values 

of methylation (47) and fragment per kilobase per million (FPKM) values of expression  

(54). Distances calculation of methylation and expression variation was based on the 
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Euclidean method. Hierarchical clustering was performed from the distance measures by 

ward.D2 as the method of agglomeration. Comparison between clusters (tanglegram 

analysis) was performed using the package dendextend. The canonical correlation 

analysis was performed by cancor function of CCA package. In this analysis, expression 

of epiclock genes in the GD15 placenta was treated as the independent variable (x-

values), and the fetal brain was treated as the dependent variable (y-values). Correlation 

coefficients (coefficients of x and y values) were multiplied with the respective data 

matrices of fetal brain and placenta to generate covariates for comparison. The neuralnet 

package was used to train neural network (NN) models by backpropagation using the 

weight backtracking method (55). NN consists of three layers: input-layer that takes 

training data for model to learn, hidden-layer uses backpropagation to optimize the 

weights of the input variables to develop the model, output-layer uses the trained model 

to predicts the variable from a test data. The methylation data of the aging brain was used 

as predicted values, and those of fetal and postnatal brains were used as predictor values 

in NN modeling. The trained model was used to separately predict the methylation level 

in male and female aging brains. Finally, the observed and model-predicted methylation 

values of the aging brain in both sexes were compared to create confusion matrix using 

caret package to evaluate model accuracy. 

Results 

Epigenetic clock profiles of male and female brain 

DNA methylation of mouse epiclock was profiled in GD15, PND5, and WK70 male and 

female brains (Supplementary Table 1). The methylation data were used in epigenetic 
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age (also called DNA age) analysis  (56) which showed that the female brain was 

biologically younger (29.6 weeks) than the male brain (38.1 weeks) despite the same 

chronological age of the animals. The female brain showed a higher level of methylation 

than the male brain for 854 sites, whereas the male brain showed higher methylation than 

the female brain for 1,028 sites (Figure 1a). A relatively lower level of epiclock 

methylation was observed in the fetal and postnatal brain compared to the aging brain 

(Supplementary Figure 1). Methylation level either increased or decreased in the brain 

among the three life stages (fetal, postnatal, and aging) in a sex-biased manner (Figure 

1b). No significant bias was observed in a 2x2 contingency analysis of the number of 

sites that either increased or decreased in methylation level of male and female brain at 

fetal versus postnatal stage (P =0.84). But a significant (P < 0.0001) difference was 

observed between postnatal and aging stage. Upon aging, a greater number of sites 

showed increased methylation in the brain of males than that of females (Figure 1b). 

Furthermore, specific epiclock genes were methylated in a sex-biased manner at all three 

life stages. A total of 245 epiclock sites showed increased methylation in the female brain 

than the male brain at each of the three stages (Figure 1c). An opposite pattern was 

observed with 187 sites (Figure 1d). The female bias methylations showed higher 

median beta-values (methylation level) compared to that of male bias methylation sites 

(Figure 1d). Moreover, the female bias methylations showed higher level of variation 

than that of male bias methylations, and this pattern was consistent among the fetal, 

postnatal, and aging stages. 

Developmental methylations as predictors of aging brain  
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We employed NN modeling to test if methylation changes of epiclock genes in the brain 

at developmental stages (fetal and postnatal) are predictors of methylation of the aging 

brain (Figure 2). The epiclock methylation of the brain at fetal and postnatal stages were 

used to train NN model to learn the corresponding changes in methylation of the aging 

brain separately in males and females. The model converged after 778 iterative steps 

(number of optimizations at an error rate of less than 5%) with an average error rate of 

1.69 in the female brain (Figure 2a). In the male brain, the model converged with only 

175 iterations with an average error of 1.15 (Figure 2b). This agrees with our observation 

that variation in epiclock methylation is relatively higher in the female brain than the 

male brain. The confusion matrix showing the number of true and false predictions 

relative to the observed data are shown in Figure 2c and d. It shows that the model 

identified 113 methylations in the brain that occurred in the developmental stages (fetal 

and postnatal stages) that were predictive of epiclock changes in the brain upon aging 

(Supplementary Table 2).  

Expression changes of epiclock genes in brain 

RNA-seq was performed to profile gene expression of the same brain samples used for 

methylation analysis. Methylation changes of the predictive markers identified from 

neuralnet analysis (listed in Supplementary Table 2) were compared with expression 

level of the cognate genes in the brain at the fetal, postnatal, and aging stages. The 

tanglegram in Figure 3a showed that methylation changes were more similar between 

fetal and postnatal brain than aging brain. But expression changes were more similar 

between postnatal and aging brain than the fetal brain. This pattern of yin and yang 
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between methylation and expression changes in the brain suggested that low methylation 

was associated with higher expression in the fetal brain, whereas increase in methylation 

was linked to lower expression of genes upon aging (Figure 3b and c).   

Next, we compared expression changes of the epiclock genes in the brain relative to 

placenta (Figure 4a). The hierarchical clustering analysis showed that epiclock genes 

were expressed in fetal brain in a more similar manner with placenta than the postnatal 

and aging brain. However, genes unrelated to epiclock did not show this pattern (Figure 

4b). In non-epiclock genes, expression of fetal brain grouped together with that of 

postnatal and aging brain, and gene expression of placenta was distinct. This suggested 

that epigenetic clock is coordinately expressed between placenta and fetal brain. To 

further test this idea, canonical correlation analysis (CCA) (57) was performed. CCA 

showed that covariates of expression (which is expression multiplied with the correlation 

coefficient) of epiclock genes in the fetal brain was positively correlated with that of 

placenta (Supplementary Figure 2). But this relationship was absent in the expression of 

non-epiclock genes. This supported our idea that epigenetic clock is active during 

pregnancy and is likely associated with the regulation of the brain-placental axis (36, 58). 

Placenta shows sex-bias methylation in concert with fetal brain  

Whole-genome bisulfite sequencing (WGBS) was performed to further analyze global 

methylation of placenta in a comparative manner with that of fetal brain in both sexes. 

WGBS (data available in GEO, accession# GSE157553) identified 15,269 and 17,028 

CpGs that were methylated in female-bias (FB) and male-bias (MB) manner respectively 

in both fetal brain and placenta (Figure 5a and b). The genomic position and methylation 
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level of these sites are provided in Supplementary Table 3. A significant (P=0.0003) 

bias was observed in the location of these methylations in genic versus intergenic regions 

in the genome (Figure 5c). While some genes harbored either FB or MB methylations, 

genes were also identified that harbored both FB and MB methylations (Figure 5d).  

The sex-bias methylations in gene bodies were predominantly found in introns. They 

were roughly 11-fold more in number than those in exons (Table 1). The frequency of 

sex-bias methylations was low in the untranslated regions (UTRs). While we identified 

630 FB and 587 MB methylations within cis-regulatory regions, we rarely found these 

methylations in the promoters and Refseq functional elements (59). Sex-bias 

methylations were more frequent in CpG shores than CpG islands (Table 1). 

Additionally, sex-bias methylations were found within repeat elements, the majority of 

which were associated with different retrotransposons both within genic and intergenic 

regions. While, in general, methylations occurred at a higher level in repeat sequences 

than non-repeat sequences in the genome, the number of sex-bias methylations were 

significantly different genic versus intergenic repeats (Figure 6) indicating a role of 

heterochromatin methylation in sex-bias gene regulation between fetal brain and placenta 

(28, 60–62).    

Functional annotation of genes harboring the sex-bias methylations was performed. The 

analysis showed significant enrichment of specific pathways (Fisher exact test, P < 9.05) 

most of which were related to signaling (Supplementary Table 4). Genes with FB 

methylations were enriched with T cell activation, Huntington disease, FGF and Cadherin 

signaling pathways. Genes with MB methylations were enriched with pathways of axon 
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guidance mediated by netrin, histamine H1 receptor mediated signaling, thyrotropin-

releasing hormone receptor signaling, and heterotrimeric G-protein signaling. Also, 

specific pathways were commonly enriched by genes harboring both FB and MB 

methylations (see Supplementary Table 4).   

Crosstalk between epiclock and signaling genes in fetal brain is maintained in aging 

brain 

We identified specific epiclock gens and signaling pathway genes (Supplementary 

Table 5) that were methylated in both placenta and fetal brain in a coordinated manner. 

Principal component analysis showed two distinct groups of methylations in these 

epiclock and signaling genes identified in both placenta and fetal brain (Figure 7a). 

Hierarchical cluster analysis showed specific epiclock genes (Khdrbs2, Brinp2, Clvs2, 

Sfi1, Gas7, Rhot1, Bcas3, Ankrd24, Sox30, Trim7, Wnt3a, and Lrrc75a) and 

gonadotropin-releasing hormone receptor (GnRHR) pathway genes (Pbx1, Atf3, Rap1b, 

Fos, Grb2, Zeb1, Smad4, Cdc42, and Raf1) were coordinately methylated in both 

placenta and fetal brain in a sex-dependent manner (Figure 7b and c). The sex-bias 

methylations of these genes are listed in Supplementary Table 5. Mutual information 

network analysis (51) of expression changes of these genes further showed that they 

interacted differentially in males compared to females (Figure 8a and b).  Furthermore, 

the analysis showed that the expression of these genes in the placenta was mutually 

informative in the brain at fetal as well as postnatal and aging stages (Figure 8c and d). 

This suggested that crosstalk among the epiclock genes and GnRHR pathway genes in 
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the placenta is epigenetically maintained in the brain throughout life, but in a sex-bias 

manner. 

Discussion 

The current study investigated the epigenetic aging of male and female brain of 

C57BL/6J mice. The male brain showed higher epigenetic age than that of female brain. 

As the chronological age was same (70 weeks), this suggested that the epigenetic aging 

of the brain is sexually dimorphic. Sexual dimorphisms of brain have been reported in 

diverse animals, including flies  (63), birds  (64), rodents and humans (65).  Sex 

differences in brain aging is also known (66–70). Results from the current study  in mice 

are consistent with earlier study in humans which showed that the female brain remains 

younger than the male brain in a persistent manner (12). Evolutionary studies suggest that 

natural selection may shape brain neoteny (youth), and such selective forces can vary 

within and between species (67, 71). Moreover,  brain aging can vary at individual as 

well as population levels within species (72, 73). Such heterogeneity in brain aging have 

been well documented (74–76). This includes studies in mice that showed that the inbred 

mice strains are age differentially (77). In addition, influence of sex on aging has also 

been implicated  (78). 

DNA methylation changes in the brain throughout life  (18, 79, 80). Our data showed that 

there are patterns how these changes in brain as mice age. We found that specific CpG 

were persistently methylated in a sex-bias manner in fetal, postnatal, and old age. 

Epigenetic clock analysis (81) identified CpGs  (n=275) that were methylated higher in 

females than males. In contrast, relatively fewer sites (n=187) were methylated higher in 
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males than females. The female bias methylations had a higher level of variation than 

male bias methylations in the brain at all stages (Figure 1) which supported earlier 

observation that persistent methylations were required in female brain to suppress genes 

associated with brain masculinization (82). We were further able to identify specific 

epiclock methylation and associated genes as early-life predictors of brain aging in 

females versus males.  

Methylation impacted gene expression in the brain (Figure 3). Methylation level was 

lower in the brain at fetal and postnatal stages than old age. In contrast, expression level 

was higher in postnatal and old ages than in fetal stage. This contrasting pattern 

suggested that methylation likely suppressed epiclock gene expression in the brain 

starting after birth. An earlier study in humans has shown that the brain transcriptome 

undergoes a significant remodeling at the postnatal age  (71). Additionally, we observed 

that epiclock expression of the fetal brain was more related to that of the placenta than 

that of the postnatal and aging brain. Genes not related to epiclock did not this pattern. 

Expression of those genes in the fetal brain was more related to postnatal and aging brain 

than the placenta. This suggested that epiclock genes are regulated between placenta and 

fetal brain in a manner that is distinct from all other genes active during pregnancy.  

We performed whole-genome methylation analysis that showed large distinctions in 

DNA methylation between fetal brain and placenta. It was expected as tissue-specific 

variation in DNA methylation has been extensively reported from previous studies (83–

85). While different tissues accumulate methylations differentially, concordance in DNA 

methylation between tissues are also known (86). Studies have shown concordance in 
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DNA methylation in mouse placenta and fetal brain in response to exposure to 

polychlorinated biphenyls  (87) and prenatal stress  (88), indicating possible epigenetic 

programming of fetal brain by the placenta. In the current study, we observed that both 

placenta and fetal brain were coordinately methylated specific CpG sites in a sex-bias 

manner (Figure 5). These methylations occurred in gene bodies more often than in 

intergenic regions, which may support earlier reports that gene body methylations play 

essential roles in placental functions  (89, 90). We observed that the sex-bias 

methylations were higher in repeat elements including L1 retrotransposons, Alu repeats 

and short interspersed repeats (Figure 6) than methylation in non-repeat sequences 

further supporting that heterochromatin methylation may have common influence on 

reproduction (91) and brain development (17).  

A key finding of this study was the evidence of crosstalk among epigenetic clock and 

GnRHR pathway genes in the placenta and fetal brain (Supplementary Table 5). 

Network analysis showed evidence for placental links to brain that is maintained in the 

brain at postnatal and the aging stage. GnRH plays key roles in mammalian reproduction 

by inducing luteinizing hormone (LH), and follicle-stimulating hormone (FSH). It also 

functions in DNA modification that is required to express the target genes in gonadotrope 

(92). Besides a role in the anterior pituitary, GnRH also plays important roles in the 

placenta, likely to modulate the maternal-fetal interface  (93). In mice, gonadotropin 

production varies in a sex-dependent manner during late gestation, in which fetal 

androgen plays a critical regulatory function  (94). Regulation of GnRH is suppressed by 

androgen in males, which plays roles in brain masculinization (95). Suppression of genes 
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associated with brain masculinization is mediated by DNA methylation in the brain of 

females  (82). Multiple studies have shown that exposure to sex hormone at the fetal 

stage plays a leading role in sex-specific fetal programming of cellular metabolism that 

poses a differential risk to metabolic diseases later in life  (96, 97), including a metabolic 

decline of the brain  (98).  

In conclusion, the current study shows that epigenetic aging of brain is sex-bias, and 

further suggests that this bias is linked to the placenta as evident from DNA methylation 

of placenta relative to the brain of male versus female fetuses. The results support 

DevAge theory (1) that early-life developmental processes have epigenetic links to aging 

processes. It further highlights that aging is a biological process that originates from the 

fetal stage and persists throughout the life. 
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Figure Legends 

Figure 1. Epigenetic clock analysis of aged and developing brain in male and female 

mice. A. Epigenetic age, based on the methylation status of the epigenetic clock, of the 

male and female brain of 70 weeks old mice. The Venn diagram shows the number of 
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epiclock sites with higher methylation in females than males, or vice versa. The 

intersection shows the number of sites that had the same level of methylation in the brain 

in both sexes. B. Comparison of methylation of epiclock in the male and female brain at 

fetal stage (GD15) and postnatal stage (PND5) with the aged stage (WK70). The number 

and direction of arrows show a higher level of methylation of epiclock sites between 

stages (arrowhead shows the stage where methylation is higher).  2x2 contingency test 

shows no significant bias in the number of CpGs with increase or decrease methylation 

during brain development (GD15 vs. PND5) but significant bias between PND5 and 

WK70. C. Number of epiclock sites showing consistently either female bias or male bias 

methylation in the brain among all three life stages (fetal, postnatal, and aging). D. 

Boxplot shows the female-bias epiclock methylation in the brain among the three life 

stages. The median methylation is shown by horizontal lines inside the boxes. E. Boxplot 

shows the male-bias epiclock methylation among the three life stages. The median 

methylation is also shown by horizontal lines inside the boxes. 

Figure 2. NN modeling of the epigenetic clock variation. A. Epigenetic clock with 

female-bias methylation data was used to train NN model. B. The epigenetic clock with 

male-bias methylation data was used to train NN model. The trained models were then 

used for predictions of methylation of aging brain.  The confusion matrix shows the 

number of true and false predictions relative to the observed methylation data (C and D). 

Figure 3. Comparison of methylation and expression variation of epiclock 

prediction maker genes.  A. Tanglegram shows comparison of methylation and 

expression patterns of the epiclock predictive genes (from NN models) among the fetal, 
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postnatal, and aging brains of both sexes. B. Heatmap of methylation variation of 

epiclock marker genes.  C. Heatmap of expression variation of epiclock marker genes. 

Figure 4. Comparison of placenta and brain gene expression. A. Heatmap of 

expression of all epiclock genes in placenta along with the fetal brain, postnatal brain, 

and aging brain.  B. Heatmap of expression of non-epiclock genes in placenta and fetal 

brain, postnatal brain, and aging brain. In both plots, the scales on the top left show the 

color codes for methylation levels. 

Figure 5. Common sex-bias methylation in the placenta and fetal brain. A. Boxplot 

showing that specific sites are methylated in a female-bias (FB) manner in both placenta 

and fetal brain. Y-axis shows beta-values of methylation. X-axis shows brain (BR) and 

placenta (PL) of both sexes (M= male and F=female). B. Boxplot showing that specific 

sites are methylated in a male-bias (MB) manner in both placenta and fetal brain. Y-axis 

shows beta-values of methylation. X-axis shows brain (BR) and placenta (PL) of both 

sexes (M= male and F=female). C. Barplot showing the number of methylations that 

were either female-bias or male-bias methylations within genes or in intergenic regions. 

The 2x2 contingency test p-value of association (sex vs. location) is shown. D.  Venn 

diagram showing the number of genes with either male-bias or female-bias methylation 

or both male- as well as female-bias methylations. The cartoons show the location of 

male and female bias methylations in those genes for illustrative purpose. 

Figure 6. Methylation of repeat elements in the placenta and fetal brain. A. A 

schematic representation of methylation of repeat elements either in genic or intergenic 

regions. B. Barplot showing the number of all methylations (sex-bias or not) in different 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 3, 2022. ; https://doi.org/10.1101/2022.02.02.478867doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.02.478867


 

 

28 

 

repeat elements. Top-most abundant repeats (based on number of methylation) are 

shown. C. Number of sex bias methylations observed in both placenta and fetal brain are 

differentially associated (significance level shown) with repeat elements within genic and 

intergenic regions. D. Comparison of methylation level of epiclock sites within repeat 

elements among fetal, postnatal, and aged brain. E. Comparison of the methylation level 

of epiclock sites found within non-repeat elements among fetal, postnatal, and aged brain. 

Figure 7. Sex-bias methylation changes among epiclock and signaling genes in the 

brain. A. Principal component analysis of male (M) and female (F) bias changes in 

methylation of epiclock and signaling genes in the brain among the fetal, postnatal, and 

aging stages. The color codes are according to the association (types) of the methylations 

with genes and sex listed in the legend right to the plot.  B. Circular dendrogram based on 

hierarchical cluster analysis of female-bias methylations. The leaf color in the 

dendrogram matches to color code description in A. The branch color of the two clusters 

is shown in red and green. C. Circular dendrogram based on hierarchical cluster analysis 

of male-bias methylations. The leaf color in the dendrogram matches to color code 

description in A. The branch color of the two clusters is shown in red and green. 

Figure 8. Crosstalk among epiclock and signaling genes.  Expression network among 

epiclock and signaling genes associated with female-bias (A) and male-bias methylations 

(B). Color codes represent gene types shown in the plots. C. Circos plot showing 

placental links with brain in females. D. Circos plot showing placental links with brain in 

males. The arches in both C and D represent the information contents mutually shared 

between the placenta and brain (shown on the circumference of the plots). 
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Supplementary Figure legends 

 

Supplementary Figure 1. Heatmap showing variation in methylation of epigenetic clock 

in the brain of males and females at GD15, PND5, and WK70. The scale on the top left 

shows the color codes for methylation levels. 

Supplementary Figure 2. Scatter plots showing the relationship between covariates (of 

two major axes x and y calculated from the canonical correlation analysis) of methylation 

changes in placenta relative to the fetal brain of both sexes. The pattern for epiclock 

genes is shown in A, and for all other genes is shown in B. 

Supplementary Table List 

 

Supplementary Table 1. Methylation level (beta-value) of mouse epigenetic clock in 

fetal (GD15), postnatal (PND5), and aging (WK70) brain of female and male mice. 

Associated genes are also shown.  

Supplementary Table 2. List of early-life methylation marks that are predictive of brain 

aging in males and females. 

Supplementary Table 3. List of CpG sites showing sex-bias methylation in both 

placenta and fetal brain. The methylation level in the placenta and fetal brain are shown. 

Genes associated with methylations are also listed. 

Supplementary Table 4. Significant enrichment of specific pathways by genes with 

either male- or female-bias methylations in the placenta and fetal brain. 
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Supplementary Table 5. List of methylations in epiclock and signaling genes that show 

differential crosstalk in males versus females. The epiclock genes that were identified as 

predictive markers of brain aging and the genes associated with the GnRHR pathway are 

indicated.  
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Table 1. Number of FB and MB methylations in fetal brain and placenta in different 

genic and intergenic features of the genome. 

Feature FB MB 

Exon 662 730 

Intron 7594 8141 

UTRs 298 331 

Promoter 3 4 

CpG island 1 3 

CpG shore 165 175 

Refseq Functional Element 14 20 
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