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Abstract

Several mathematical models to predict tumor growth over time have been developed in
the last decades. A central aspect of such models is the interaction of tumor cells with immune
effector cells. The Kuznetsov model (Kuznetsov et al. (1994), Bulletin of Mathematical Biology,
vol. 56, no. 2, pp. 295–321) is the most prominent of these models and has been used as a
basis for many other related models and theoretical studies. However, none of these models
have been validated with large-scale real-world data of human patients treated with cancer
immunotherapy. In addition, parameter estimation of these models remains a major bottleneck
on the way to model-based and data-driven medical treatment. In this study, we quantitatively
fit Kuznetsov’s model to a large dataset of 1472 patients, of which 210 patients have more
than six data points, by estimating the model parameters of each patient individually. We
also conduct a global practical identifiability analysis for the estimated parameters. We thus
demonstrate that several combinations of parameter values could lead to accurate data fitting.
This opens the potential for global parameter estimation of the model, in which the values of all
parameters are fixed for all patients. Furthermore, by omitting the last two or three data points,
we show that the model can be extrapolated and predict future tumor dynamics. This paves
the way for a more clinically relevant application of mathematical tumor modeling, in which the
treatment strategy could be adjusted in advance according to the model’s future predictions.

Keywords— Mathematical oncology, tumor growth modelling, tumor growth prediction, parameter esti-
mation, parameter identifiability analysis

1

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.02.478884doi: bioRxiv preprint 

mailto:amitsos@alum.mit.edu
mailto:jkather@ukaachen.de
https://doi.org/10.1101/2022.02.02.478884
http://creativecommons.org/licenses/by/4.0/


1. Introduction

Cancer immunotherapy with immune checkpoint inhibitors has revolutionized the treatment of patients
with solid tumors in the last ten years. In addition to chemotherapy and molecularly-targeted therapy,
immunotherapy provides a new set of tools for the oncology toolkit [1]. In several tumor types such as
melanoma, non-small cell lung cancer (NSCLC), and genito-urinary tumors, immunotherapy has markedly
improved the average life expectancy of patients with advanced disease. Both laboratory and clinical ex-
periments have verified the importance of the immune system in fighting cancer [2]–[4]. Patients who suffer
from acquired immunodeficiency syndrome (AIDS) are very susceptible to having some rare forms of cancer
[2], [5]. This also shows the significant role the immune system plays against cancer.

One of the fundamental problems in treating patients with cancer immunotherapy is the lack of predictive
biomarkers. Ideally, before the treatment begins, patients could be selected for immunotherapy, but existing
biomarkers fail to deliver a high predictive value in most tumor types [6]. In addition, most patients who
initially respond to immunotherapy progress experience a relapse: the tumor later on develops immune
escape mechanisms due to evolutionary pressure. Forecasting the time of relapse or treatment resistance is
of high practical relevance [7], [8]. However, predictions of such changes in the tumor behavior are currently
not possible in clinical routine. The main problem is that most biomarkers such as tumor mutational burden
(TMB) are static, i.e. they are measured at a given time point but are not dynamically updated as the
tumor evolves.

In other complex systems such as financial markets [9], climate systems [10] or complex industrial processes
[11], differential equation models can provide a prediction of the behavior of the system over time. By
analogy, in oncology, a number of mathematical models to predict tumor growth over time have been
developed in the last decades [12]. Most notably, multiple of these models explicitly include the interactions
of tumors with the immune system and are therefore in principle suited to model response and resistance
to cancer immunotherapy [13]. Boer and Hogeweg (1986) modeled the cellular immune reaction to tumors.
They demonstrated that small doses of antigens lead to tumor dormancy [2], [14]. Kirschner and Panetta
(1998) linked the oscillations in the tumor size and the long-term tumor regression to the dynamics among
immune cells, tumor cells, and Interleukin-2 [2], [15]. The most prominent of these models was presented by
Kuznetsov et al. [16] in 1994. Kuznetsov’s model has served as a blueprint for many other related models
[2], [17], [18] and has been investigated in several theoretical studies [2], [19]–[21].

However, none of these established oncological models are currently being used in the clinic. What is more,
very few of these models have been systematically fitted to actual clinical data. While some studies have
fitted models to murine tumors on a small scale [2], [22], [23], the pronounced differences between mice and
humans preclude the transfer of such insights to real-world cancer patients [24].

The structures of these mathematical models are well defined [16], [25]–[27]. However, in the complex
biological environment of cells, little is known about the associated parameters and kinetic constants. The
parameter values are essential for quantitative modeling and prediction of cancer progression. In mechanistic
models, one can integrate the data from various experimental procedures and sources, and design in-silico
experiments to generate hypotheses for underlying mechanisms [28], [29]. By fitting the model to the
experimental data, we reverse-engineer the parameters of the system. Parameter estimation of mathematical
cancer models remains a major bottleneck on the way to model-based and data-driven medical treatment of
the future.

In this study, we use a mathematical model based on Kuznetsov’s model to characterize the interactions
between the growing tumor and the immune system, and aim to fill this conceptual gap in the literature.
We use a large dataset of thousands of cancer patients who underwent cancer immunotherapy as part of
clinical trials. We then investigate how well the model can represent the actual tumor volume changes over
time in these patients. After estimating the parameters of the model, we conduct an identifiability analysis
to examine the uniqueness of the estimated parameters (i.e., whether we have over-fitting). Finally, we
investigate if the model can be used to forecast treatment response or relapse under immunotherapy.

The remainder of the article is structured as follows. First, we briefly present the acquisition of patients data
and its pre-treatment in Section 2. In Section 3, we then provide the model and all the methods used to
estimate model parameters and fit the data, conduct parameter identifiability analysis and extrapolate the
model for tumor growth prediction. Finally, before drawing conclusions in Section 5, we present and discuss
the obtained results in Section 4.
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2. Data Acquisition

We briefly provide here the declaration and sources of the experimental data. For more details, please refer
to [30].

2.1. Declarations and Data Sharing

We followed the Declaration of Helsinki and International Ethical Guidelines for Biomedical Research Involv-
ing Human Subjects developed by the Council for International Organizations of Medical Sciences (CIOMS).
In this study, we used a publicly available set of anonymized patient data shared by [30], which is originally
derived from five large clinical trials, as we describe below. Patients gave their informed consent for data
analyses as part of the original clinical trials. No specific ethical approval was sought or required for this
retrospective analysis of a publicly available dataset.

2.2. Data Measurement and Pre-treatment

The original data for this study is from five clinical trials which were designed to evaluate the efficiency of
Atezolizumab (an immune checkpoint inhibitor). Table 1 shows the original number of patients and their
treatment arms. Four out of these five trials evaluated the effect of Atezolizumab on NSCLC and cohort
GO29293 reported this efficiency on bladder cancer. In two of the cohorts (GO28753, GO28915), patients’
responses to Atezolizumab treatment were compared to the outcome of the second treatment arm who
received Docetaxel (a chemotherapy drug) as treatment. In all the trials, the longest and shortest diameter
(LD and SD) of the target and non-target lesions (measured manually based on the CT scans) alongside
the time intervals are reported. In this study, we used the anonymized and publicly available subset of data
from [30]. This subset is created by selecting the patients with three or more measurement points. For each
of these patients, only the LD measurement for one target lesion has been selected. For this reason, the total
number of original patients of clinical trials has been decreased from 2693 to 1472. All the pre-processing
details for the data generation has been described in more details in [30]. Moreover, before using the data we
pre-processed it by first removing repetitive and null inputs. Following [30]–[32], we converted the measured
LD in mm to the number of tumor cells (TC) by considering 4/3× (8× 10−6) mm3/TC. We also considered
only patients with more than six net measurements. Figure 1 shows the number of patients per study and
arm before and after data pre-processing. Finally, the total number of patients has been reduced from 1472
to 210.

Table 1: Description of the original data.

Study ID Cancer Type
No. of

Patients
Treatment

GO28625 [33] NSCLC 138 Atezolizumab
GO28753 [34] NSCLC 287 Atezolizumab/Docetaxel
GO28754 [35] NSCLC 657 Atezolizumab
GO28915 [36] NSCLC 1182 Atezolizumab/Docetaxel
GO29293 [37] Bladder Cancer 429 Atezolizumab
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Figure 1: Number of patients (Pt.) considered per studies and arms, before and after data pre-processing.

3. Methods

In this section, we introduce the mathematical model of Kuznetsov [16] with slight modifications. Afterwards,
we show the optimization formulations for: the estimation of the model parameters by fitting the clinical
data and for the parameter identifiability analysis. We finally investigate the extrapolation capabilities of
the model.

3.1. Mathematical Tumor Model

To predict the frequently observed phenomena in clinics like tumor dormancy and tumor size oscillation, the
tumor mathematical model has to include terms related to the response of the immune system. The inclusion
of the entire immune system in the mathematical model can be very difficult [38]. The anti-tumor immune
response has highly nonlinear dynamics which are complicated and not well understood. Therefore, models
that describe the immune system response to tumor presence should necessarily focus on those elements of
the immune system that have the highest effects on tumor dynamics [2]. Kuznetsov’s model [16] describes
the response of the cytotoxic T lymphocyte (CTL) to the growth of an immunogenic tumor. Usually, a
cell-mediated immune response to a tumor takes place. The cytotoxic T lymphocytes and natural killer
(NK) cells play the main role. The model considers immunogenic TC that are attacked by cytotoxic effector
cells (EC). The EC can be, for example, CTL or NK cells. The model takes into account the possibility of
EC inactivation as well as the infiltration of the TC by EC. TC and EC interaction is described through the
following reactions:

EC + TC
k1−−⇀↽−−−
k−1

EC−TC,

EC−TC
k2−−→ EC + TC∗,

EC−TC
k3−−→ EC∗ + TC,
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where EC–TC denotes conjugates of effector and tumor cells; and EC∗ and TC∗ are the inactivated effector
and lithally-hit tumor cells, respectively. We define E, T , C, E∗, T ∗ as the number of EC, TC, EC–TC
conjugates, EC∗, and TC∗, respectively. The non-negative kinetic parameters, k1, k−1, k2 and k3, describe
the rates of the interactions. EC–TC conjugates can reversibly decompose without damaging the cells with
the kinetic rate k−1. However, they can also irreversibly result in EC∗ or TC∗ with respective kinetic rates
k2 and k3. The following system of nonlinear differential-algebraic equations describes those interactions,
which is a slightly simplified version of the model of Kuznetsov [16].

dE

dt

∣∣∣
t

= s+ F (C(t), T (t))− hE(t)− k1E(t)T (t) + (k−1 + k2)C(t) , (1a)

dT

dt

∣∣∣
t

= aT (t)− k1E(t)T (t) + (k−1 + k3)C(t) , (1b)

dC

dt

∣∣∣
t

= k1E(t)T (t)− (k−1 + k2 + k3)C(t) , (1c)

F (C(t), T (t)) =
fC(t)

g + T (t)
. (1d)

The equations describing the rate of change of E∗ and T ∗ are not included in the system because they are
irreversibly formed and thus have no effect on the other variables, and our target is to model T and E
only. In [16], the model includes a sink term in the rate of change equation of T that represents TC growth
limitation due to biological environment conditions. It considers, for example, resources competition like
oxygen and substrates. We do not consider this term because growth limitations of even high initial T are
associated with high rates of cytotoxic EC accumulation as well as the absence of their activity suppression
by TC [39].

The rate of flow of mature EC to TC localization area is characterized by the generation term s. This
rate is unaffected by the presence of TC. The destruction or migration of EC from the localization region
of TC is represented by the elimination rate h. The model does not take into account any TC or EC–TC
conjugates migration. Both multiplication and death of TC are included in parameter a that characterizes
the maximum growth rate of TC population. The function F (C, T ) represents the accumulation rate of the
cytotoxic EC in the TC localization area due to tumor existence (stimulated accumulation), where f and g
are positive constants. The EC accumulation, F (C, T ), is due to signals, like released cytokines, generated
by the EC in EC-TC conjugates. Thus this stimulated accumulation has some maximum value when T
becomes large.

Following the suggestion of Kuznetsov [16], we consider a quasi-steady-state assumption for (1c), i.e.,
dC/dt

∣∣
t
≈ 0. Thus, C ≈ KET , where K = kl/(k2 + k3 − k−1). As a result, (1a) and (1b) become:

dE

dt

∣∣∣
t

= s+
fKE(t)T (t)

g + T (t)
− hE(t)−Kk3E(t)T (t) , (2a)

dT

dt

∣∣∣
t

= aT (t)−Kk2E(t)T (t) . (2b)

For further analysis and use of the model in parameter estimation and identifiability analysis, we use the
same strategy of Kuznetsov [16] for non-dimensionalizing model equations. We non-dimensionalize (2a) and
(2b) by considering concentration scales E0 = 107 cells and T0 = 109 cells for EC and TC, respectively [16].
We non-dimensionalize t by relating it to the deactivation rate of TC and introducing τ = k2KT0t/100. The
final model formulation is:

dx

dτ

∣∣∣
τ

= σ +
ρx(τ)y(τ)

η + y(τ)
− δx(τ)− µx(τ)y(τ) , x

∣∣
τ=τ1

= x1 , (3a)

dy

dτ

∣∣∣
τ

= αy(τ)− E0

T0
x(τ)y(τ) , y

∣∣
τ=τ1

= y1 , (3b)

where

x(τ) =
E(t)

E0
, y(τ) =

T (t)

T0
, σ =

s

k2KE0T0
, ρ =

f

k2T0
,

η =
g

T0
, µ =

k3
k2

, δ =
h

k2KT0
, and α =

a

k2KT0
.
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Thus, the final model is composed of two ordinary differential equations (ODEs) with two variables, x and y,
with their respective initial values, x1 and y1, at the initial normalized time, τ1, and six unknown parameters,
σ, ρ, η, µ, δ, and α.

3.2. Data Fitting and Parameter Estimation

To determine the parameter values for the nonlinear system (3a) and (3b) that best describe the experimental
data, we conduct a regression analysis in the nonlinear least-squares sense by minimizing the sum of the
squared residuals. The considered residuals are the differences between the measured values of tumor lesion
longest diameters (converted to tumor number of cells as previously discussed) and the ones calculated from
the model. In the present contribution, we do not seek global values of parameters, i.e, the same values for all
patients. Instead, we solve the optimization problem for each patient individually to identify the parameter
values that best describe the data of that patient. This constitutes a first step to check whether the model
can describe the experimental data at all and analyze the ranges of parameter values. We also estimate the
initial normalized value of EC number, x1, because it is unknown. In contrast, the initial normalized value
of TC number, y1, is provided experimentally and does not need to be estimated. The nonlinear least square
problem for each patient j ∈ J = {1, 2, . . . , J} is expressed as follows:

minimize
pj ,x1j

∑
i∈Ij

yij (τij ,pj , x1j )− ỹij , ∀i ∈ Ij ,

subject to model equations (3a) and (3b) ,

pl
j ≤ pj ≤ pu

j ,

xl1j ≤ x1j ≤ x
u
1j ,

(OP1)

where J is the total number of patients considered. After data pre-processing, J = 210 patients. The
index i ∈ Ij is for the observed experimental values, where Ij = {1, 2, . . . , Nj} with Nj being the total
number of observed values for patient j. The non-dimensionalized model-predicted and observed values of
TC number at the normalized time τij are yij (τij ,pj , x1j ) and ỹij , respectively. The initial value of the non-
dimensionalized EC number at τ1j , x1j , has lower and upper bounds xl1j and xu1j , respectively. The vector
pj contains the non-dimensionalized parameter values of the model equations, (3a) and (3b), for patient j,
pj = [σj , µj , δj , αj , ρj , ηj ]. The lower and upper bounds of the components of pj are the components of
vectors pl

j and pu
j , respectively. The decision variables of the optimization problem are thus the components

of pj and x1j . The dynamic optimization problem (OP1) is nonconvex and nonlinear, and can thus have
multiple (suboptimal) local solutions. Hence, global optimization techniques are required to guarantee the
global optimal solution, popt

j and xopt1j
.

3.3. Parameter Identifiability Analysis

Parameter identifiability analysis determines if model parameters can be uniquely estimated [40]. Different
definitions of identifiability analysis are available in the literature. Miao et al. [41] reviewed several methods
of parameter identifiability analysis for nonlinear ODE models and distinguished between different method-
ologies including structural and practical identifiability analyses. In the former analysis, one determines if a
given structure of a model allows the realization of unique parameters when certain measured variables are
provided [40]. However, it only provides necessary conditions for identifiability because it does not take into
consideration parameters precision [42], [43]. In contrast, practical identifiability aims to predict confidence
intervals for the estimated parameters [42], [44]. It can be conducted locally (in the neighborhood of the
estimated parameter values) or globally over the entire range of values. We here carry out the latter analysis
and evaluate it globally to improve the confidence in the parameter values that are determined by solving
(OP1).

We conduct the global practical identifiability analysis by determining the smallest box that contains the
so-called feasible parameter set Pej for each patient j, as suggested in [42]. This set includes all values of

parameters in pj for which the differences between model predictions yij (τij ,pj , x
opt
1j

) and optimal model

predictions yoptij
(determined by solving (OP1)) fall within certain defined bounds ∀i ∈ Ij , that is

Pej = {pj ∈ Pj | −εyoptij
≤ yij (τij ,pj , x

opt
1j

)− yoptij
≤ εyoptij

} , ∀j ∈ J , (4)

where yoptij
= yij (τij ,p

opt
j , xopt1j

), ε is the percentage of deviation, and Pj is the set of parameter values in

pj bounded by the components of pl
j and pu

j defined in (OP1). The set Pej is depicted in dark gray as
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shown in Figure 2 for the case of a two-dimensional vector pj . We approximate the nonconvex set Pej by a
rectangular box (light gray color), whose edges are formed by the extreme values of the elements of pj (pmin

j1
,

pmax
j1

, pmin
j2

, pmax
j2

). We determine these extreme values by solving a series of constrained dynamic optimization
problems. For a vector pj that consists of K parameters, the optimization problem for parameter number
k is formulated ∀j ∈ J, and ∀k ∈ K as follows [42], [45]:

maximize
pmin

j ,pmax
j

pmax
jk
− pmin

jk
,

subject to − εyoptij
≤ yij (τij ,p

max
j , xopt1j

)− yoptij
≤ εyoptij

, ∀i ∈ Ij ,

− εyoptij
≤ yij (τij ,p

min
j , xopt1j

)− yoptij
≤ εyoptij

, ∀i ∈ Ij ,

model equations (3a) and (3b) ,

popt
j ≤ pmax

j ≤ pu
j ,

pl
j ≤ pmin

j ≤ popt
j ,

(OP2)

with K = {1, 2, . . . ,K} and K = 6. We set ε to 20%, which means that the differences between model
predictions for pj = pmax

j and pj = pmin
j , and optimal model predictions for pj = popt

j fall within 20% of

the optimal prediction values ∀i ∈ Ij . For each parameter pjk in pj , its minimum value pmin
kj

in pmin
j and

its maximum value pmax
jk

in pmax
j are determined by solving (OP2). Therefore, (OP2) is solved K times for

each patient j ∈ J. As a result, the approximation of Pej is determined, and its edges are the elements of
pmin
j and pmax

j . The set Pej allows for the determination of confidence regions of the estimated parameter

values in popt
j . When Pej covers a large space in the direction of pjk , the estimated parameter poptjk

is not
identifiable, in the sense that there is a large range of values for pjk that could lead to a good fit. When the
set covers a small space, poptjk

is identifiable because the parameter is determined to a sufficient accuracy. To
decide on identifiability a certain threshold is thus needed. We here do not define a cutoff, we rather analyze
the identifiability qualitatively.

𝑝𝑗2
max

𝑝𝑗2
min

𝑝𝑗1
min 𝑝𝑗1

max

𝑝′𝑗1
max

𝑝′𝑗2
max

𝑝′𝑗1
min

𝑝′𝑗2
min

𝑃e𝑗
𝐩𝑗
opt

𝑝𝑗2

𝑝𝑗1

Figure 2: Illustration of parameter identifiability via global confidence intervals (based on [42]). The dark
gray region indicates the feasible set Pej that includes all values of parameters in the two-dimensional vector

pj for which the differences between model predictions yij (τij ,pj , x
opt
1j

) and optimal model predictions yoptij
fall within certain defined bounds. The light gray region shows the rectangular box that conservatively
approximates this feasible set, where the box edges are the extreme values of the elements of pj (pmin

j1
, pmax

j1
,

pmin
j2

, pmax
j2

).
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3.4. Tumor Growth Prediction

Beyond being able to reproduce experimental data a posteriori, a more clinically relevant application of
mathematical tumor modeling would be if the model was able to predict tumor growth. This could lead to
model-based tumor treatment, as the supplied doses to patients could be adjusted in advance according to
model predictions. In Subsection 3.2, we fitted the model to all experimental data points when estimating
the parameters. In order to compare model extrapolation capabilities and future predictions to the clinical
data, we now do not include the last ζ points of the data when fitting the model and solving (OP1). For
each patient j, we solve an optimization problem similar to (OP1), but using only the data points in the
set Iextj instead of Ij , where Iextj = {1, 2, . . . , Nj − ζ}. The optimal values of the decision variables obtained
from this problem are called pext

j and xext1j . We then integrate the model equations for pj = pext
j and

x1j = xext1j from τ1j to τ(Nj)j
, thus extrapolating beyond the data used for fitting. The results of the

integrated yextij
= yij (τij ,p

ext
j , xext1j ) between τ(Nj−ζ)j and τ(Nj)j

are the extrapolated part of the model that

can be compared with the remaining ζ data points to gauge the extrapolation capabilities. We consider two
model extrapolation cases in which ζ is equal to two and three.

Moreover, we formulate another optimization problem to investigate how far model extrapolation could
deviate from the actual values. We aim to find two “extreme-case” lines that are designed to be as far
away from each other at the final time point (τ(Nj)j

) while both being within some θ tolerance of the found

optimal fit (yextij
) for the fitted time before extrapolation starts. For this, we solve the following optimization

problem ∀j ∈ J:

maximize
pupp

j ,plow
j ,xupp

1j
,xlow

1j

y(Nj)j
(τ(Nj)j

,pupp
j , xupp1j

)− y(Nj)j
(τ(Nj)j

,plow
j , xlow1j ) ,

subject to − θyextij ≤ yij (τij ,p
upp
j , xupp1j

)− yextij ≤ θy
ext
ij , ∀i ∈ Iextj ,

− θyextij ≤ yij (τij ,p
low
j , xlow1j )− yextij ≤ θy

ext
ij , ∀i ∈ Iextj ,

model equations (3a) and (3b) ,

pl
j ≤ pupp

j ≤ pu
j ,

pl
j ≤ plow

j ≤ pu
j ,

xl1j ≤ x
upp
1j
≤ xu1j ,

xl1j ≤ x
low
1j ≤ x

u
1j ,

(OP3)

where pupp
j and plow

j are the vectors that contain the parameter values for the upper and lower “extreme-
case” model extrapolation deviations, respectively. The initial values of the non-dimensionalized EC number
at τ1j for these upper and lower deviation cases are xupp1j

and xlow1j , respectively. We set θ to 10%. By

integrating (3a) and (3b) from τ1j to τ(Nj)j
, we get yuppij

= yij (τij ,p
upp
j , xupp1j

) and ylowij = yij (τij ,p
low
j , xlow1j ),

which allow the comparison of these two “extreme-case” extrapolation deviations with the remaining ζ data
points after τ(Nj−ζ)j (start of extrapolation).

3.5. Implementation

We implement the model, (3a) and (3b), in MATLAB R2019b [46]. All optimization problems are solved
in the MATLAB version of the global optimization toolbox MEIGO using the enhanced scatter search
metaheuristic (eSS) method [47]. The eSS is stochastic and employs some elements of the scatter search
and path re-linking methodologies [48]. Thus, the solution depends on the initial conditions and the global
optimum is not guaranteed. We set the maximum number of function evaluations, the maximum CPU time
and the maximum absolute violation of the constraints to 105, 100 s and 10−5, respectively. We use a 50%
probability of biasing the search towards bounds and the dynamic hill climbing (DHC) [49] as a local search
method. For all aforementioned optimization problems, we set xl1j and xu1j to 10−2 and 102, respectively.

All elements of pl
j and pu

j are set to 10−2 and 102, respectively.

The ODE (3a) and (3b) are solved using the variable-step, variable-order (VSVO) solver based on the
numerical differentiation formulas (NDFs) of orders one to five (ode15s) [50]. We set the relative and
absolute error tolerances to 10−3 and 10−6, respectively. The solution refinement factor is one and the
maximum step size is 0.1(τ(Nj)j

− τ1j ).
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4. Results and Discussion

We now show the results of estimation, identifiability, and predictions. We show the results of six selected
patients in details and give performance measures for all 210 patients. We selected those six patients in a
way to provide the different profiles of TC dynamics. Data fitting and growth prediction results of all 210
patients are provided in the supplementary material.

4.1. Data Fitting and Parameter Estimation

We fitted the parameters of a modified Kuznetsov model on a dataset of solid tumors in human patients
under immunotherapy treatment. The model predicted the different tumor growth profiles represented by
a selection of representative patients, as well as in the total (unselected) cohort. As shown in Figure 3 and
Table 2, model prediction and experimental data profiles are qualitatively and quantitatively very close for
these patients. The mean absolute error (MAE), the root-mean-square error (RMSE), and the coefficient
of determination (R2) for the selected six patients are given in Table 2. We found that the model gave
very high goodness of fit as measured by R2. Across 210 patients in all studies, an average R2 of 0.784 was
achieved. Moreover, Table 4 provides the number of patients and the R2 values per study and per arm.
Study 1 and Study 5 have higher R2 than the remaining studies. Arm 1 has the highest R2 in all studies
except for Study 2. Although direct comparison of this performance with the previous work in [30] is not
possible, comparing the MAE of the selected six patients with the reported average MAE in the previous
study indicates good fitting performance of the developed Kuznetsov model. Furthermore, by analyzing the
goodness of fit in individual patients, we found that the modified Kuznetsov model was able to fit clinically
interesting patterns. In particular, the modified Kuznetsov model was able to predict relapse after initial
tumor response (patient #207 in Figure 3) and other types of fluctuating behavior, solving a key limitation
of previously used simpler models as in [30].

Table 2: Quantification of the goodness of fit of the model as shown in Figure 3. We compare the values of
all data points to model results when calculating MAE, RMSE and R2.

Patient # MAE RMSE R2

22 0.178 0.226 0.931
83 0.065 0.103 0.996
163 0.084 0.108 0.963
186 1.171 1.993 0.949
203 1.638 2.039 0.974
207 0.115 0.154 0.987

All Patients (1 → 210) — — 0.784
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Figure 3: Data fitting results of TC number of the selected patients. The solid (black) line shows model
results, where all data points are used when estimating the parameters. The points represent the measured
data. Ordinates: normalized number of tumor cells. Abscissas: normalized treatment time, where negative
values indicate time before the start of treatment. The model can fit experimental data with different
qualitative trends (e.g., up, down and “U”-curve).

We fitted the parameters of the modified Kuznetsov model to a large clinical dataset obtained from five
clinical trials. In general, the distributions of the resulting parameter values were similar between the
studies (Figure 4). These ranges can be useful for further studies because they enable other researchers to
determine plausible ranges and optimal boundaries when fitting the same model to other datasets, thereby
simplifying the optimization procedure. A global parameter estimation, however, was not performed in this
study and could be attempted in future studies.

Figure 4 shows the estimated values of model parameters of all 210 patients. All parameter values vary per
patient. The values are distributed all over the bounds, except for α, which has a maximum of 6.331. The
parameter α is the normalized parameter for a, which represents the maximum growth rate of TC population.
In addition, most of the values of µ and ρ are close to the upper bound. Although parameter values are quite
distributed between the bounds, the aforementioned findings can help in narrowing the expected ranges of
values of parameters when global parameter estimation is targeted. Moreover, the distribution of parameter
values is compared among the considered five studies. As we can see in Figure 4, the distribution densities
between the bounds of parameter values are the same for all studies.
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Figure 4: Estimated values of the parameters of (3a) and (3b) model for all 210 patients (after data pre-
processing) individually. Ordinates: parameter values. Abscissas: non-dimensionalized model parameters,
placed in the following order from left to right: σ, µ, δ, α, ρ, η. The values are scattered all over the bounds’
ranges, but α values, which have a maximum of 6.331. Moreover, the distribution densities of parameter
values are very close to each other among the studies.

4.2. Parameter Identifiability Analysis

Figure 5 provides the identifiability analysis results of the estimated model parameter values of the selected
patients. Depending on the patient and the parameter, the estimated parameter values can be unique or
take other values. For patient #22, the approximated feasible parameter set covers a small space in all
parameters directions. Their estimated parameter values are close to being unique and thus identifiable.
On the other hand, the approximated feasible parameter set for patient #203 covers a large space in all
parameter directions. Therefore, the found values are not unique and other combinations of values could
lead to good fits and predictions. For the remaining selected patients, the feasible parameter sets can be
small or large depending on the patient and the parameter.

When the target is to estimate parameter values of the tumor dynamics model of a certain patient, identifiable
values are what we need. However, when the aim is to find global parameters values for all patients, large
spaces of the feasible parameter sets can be desirable for finding those global values, in which they are
independent of a considered patient. In summary, the results of Figure 5 show that for several combinations
of parameter values, good data fitting and model predictions can be achieved. This opens the potential for
global parameter estimation, in which the estimated values of model parameters are the same for all patients.
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Figure 5: Identifiability analysis results of estimated values of model parameters of the selected patients.
Ordinates: parameter values. Abscissas: non-dimensionalized model parameters, placed in the following
order from left to right: σ, µ, δ, α, ρ, η. The points are the estimated values. The arrowheads are the
maximum and minimum values found by the analysis. The results show that there are several combinations
of parameter values at which the model can fit the experimental data.

4.3. Tumor Growth Prediction

In clinical decision making, a possible role of mechanistic models is forecasting tumor growth during treat-
ment, potentially enabling physicians to adjust the treatment strategy earlier. We found that the modified
Kuznetsov model indeed was able to extrapolate beyond the initial time points when the last two or three
data points are not included when fitting the model. The solid black lines in Figure 6 show model extrapo-
lation results of the selected patients when the last two data points are not considered for fitting. For the six
patients, the model quantitatively forecasts tumor dynamics, except for patient #186. The last data point
of patient #186 is almost impossible to forecast because it suddenly shifts upward after a mild and constant
increase of tumor growth. However, the model can still qualitatively predict the growth. For the other
patients, the predictions are very close to the experimental data. In Table 3, the first sub-table “optimal
Extra.” provides the MAE, RMSE, and R2 of the selected patients, as well as the average deviation for the
extrapolated part, represented as “dev”. The values of R2 for the six patients are close to one except for
patient #186 due to the aforementioned explanation. Compared to the previous work in [30], model extrap-
olation results have here higher R2 values, specifically, an R2 of 0.979 was reached for patient #207. The
average values of R2 and dev of all 210 patients are also provided in the table. Model extrapolation results
when omitting the last two data points for all 210 patients are provided in the supplementary material. Also,
we provide model extrapolation results while omitting the last three data points for the selected six patients
in the supplementary material. For the latter results, the model could also predict the growth very well.

In addition, Table 4 provides the R2 and dev values per study and per arm for model extrapolation when
omitting the last two data points. In general, and as expected, the calculated average R2 for the extrapolation
experiment is lower than the R2 when using all the data points in all the studies. Similar to data fitting,
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Study 1 and Study 5 have higher R2 than the remaining studies. In Study 3, Arm 2 and Arm 3 have the
lowest R2. Interestingly, in Study 2 and Study 4, the extrapolation performance of the model is markedly
better for the Docetaxel group (Arm 2) than for the Atezolizumab group (Arm 1). This indicates that
patients receiving Docetaxel have a more predictable response trajectory compared to patients receiving
immunotherapy in whom unexpected patterns of tumor response can occur even at later time points.

Moreover, Figure 6 shows how far model extrapolation could deviate from the actual values. The results
of the two “extreme-case” (dash-dotted blue and the dashed magenta) lines are designed to be as far away
from each other at the final time point (τ(Nj)j

) while both being within some 10% tolerance of the found

optimal fit for the fitted time before extrapolation starts. For some patients, the “extreme-case” lines can
significantly deviate from the actual values, especially for the upper case (dash-dotted blue lines), as for
patients #22 and #83. In contrast, the “extreme-case” lines for patients #163 and #186 are very close
to the optimal extrapolated ones. Sub-tables “Upper Extra.” and “Upper Extra.” in Table 3 provide the
MAE, RMSE, R2 and dev for the selected patients for the two “extreme-case” extrapolations.

To sum up, the model can forecast tumor dynamics of the patients and the “extreme-case” extrapolation
scenarios were conducted to check the worst model predictions. For some patients the “extreme-case”
extrapolation results deviate from the actual values, for others they remain close to the optimal extrapolation
results.

Table 3: Quantification of the goodness of fit and prediction of the model as shown in Figure 6. Here the
last two data points are not considered for parameter estimation. We compare the values of all data points
to model results when calculating the errors and R2. The average deviation of model prediction results
from the measured values during extrapolation time (shaded region in Figure 6) is represented by dev. The
Optimal Extra. sub-table shows the values for the optimal model prediction results (the solid (black) line in
Figure 6). The Upper Extra. sub-table relates values to the upper “extreme-case” extrapolation deviation
results (the dash-dotted (blue) line in Figure 6). The Lower Extra. sub-table relates values to the lower
“extreme-case” extrapolation deviation results (the dashed (magenta) line in Figure 6).

Patient # MAE RMSE R2 dev

Optimal
Extra.

22 0.179 0.229 0.929 0.049
83 0.171 0.279 0.971 0.474
163 0.086 0.117 0.956 0.079
186 3.020 8.194 0.134 0.414
203 1.745 2.044 0.974 0.323
207 0.152 0.196 0.979 0.068

All Patients (1 → 210) — — 0.419 0.768

Upper
Extra.

22 0.394 0.566 0.568 1.295
83 0.484 1.302 0.363 1.503
163 0.106 0.140 0.938 0.330
186 2.983 8.035 0.168 0.403
203 3.561 5.719 0.798 1.559
207 0.625 0.834 0.618 0.428

Lower
Extra.

22 0.301 0.372 0.813 0.720
83 0.224 0.409 0.937 0.721
163 0.122 0.151 0.928 0.475
186 3.258 8.499 0.069 0.485
203 3.538 4.145 0.894 0.828
207 0.465 0.811 0.639 0.348

13

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.02.478884doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.02.478884
http://creativecommons.org/licenses/by/4.0/


Figure 6: Model extrapolation results of the selected patients. The solid (black) line represents the optimal
model prediction. The dash-dotted (blue) and the dashed (magenta) lines show the upper and the lower
“extreme-case” model extrapolation deviation results, respectively. Here the last two data points are not
considered for parameter estimation. The points show the measured data. Shaded areas highlight regions
of model extrapolation. Ordinates: normalized number of tumor cells. Abscissas: normalized treatment
time, negative values indicate time before the start of treatment. The model is capable of forecasting tumor
dynamics qualitatively and sometimes quantitatively.
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Table 4: Quantification of the goodness of fit and extrapolation of the model per the conducted studies
and arms. We compare the values of all data points to model results when calculating the R2. For model
extrapolation, the average deviation of model prediction results from the measured values during extrapola-
tion time (shaded region in Figure 6) is represented by dev. A detailed description of the included studies
is available in [30]. Briefly, study arms with “Atezolizumab” or “MPDL” are immunotherapy. “Docetaxel”
is the main chemotherapy in these trials.

Data Fitting Extrapolation

Study No. (Name) Arm No. (Name)
No. of

Patients
R2 R2 dev

1 (FIR)

1 (MPDL3280A-1) 3 0.869 0.582 1.256
2 (MPDL3280A-2) 11 0.847 0.535 0.406
3 (MPDL3280A-3) 0 — — —

Total 14 0.852 0.545 0.588

2 (POPLAR)
1 (Atezolizumab) 6 0.581 0.241 0.943

2 (Docetaxel) 25 0.747 0.474 0.761

Total 31 0.715 0.429 0.796

3 (BIRCH)

1 (MPDL3280A-1a) 2 0.964 0.980 1.983
2 (MPDL3280A-2a) 6 0.587 -0.077 1.143
3 (MPDL3280A-3a) 2 0.243 -0.036 0.317
4 (MPDL3280A-1b) 8 0.864 0.522 0.525
5 (MPDL3280A-2b) 3 0.749 0.226 0.394
6 (MPDL3280A-3b) 9 0.884 0.575 0.670

Total 30 0.769 0.382 0.762

4 (OAK)
1 (Atezolizumab) 29 0.811 0.218 0.393

2 (Docetaxel) 82 0.783 0.455 0.869

Total 111 0.790 0.393 0.745

5 (IMvigor 210) 1 (Atezolizumab) 24 0.825 0.501 0.953

Total 210 0.784 0.419 0.768
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5. Conclusion

In this study, we show that quantitative mathematical models can be used to describe and forecast the
behavior of cancer. Previous studies have used the same datasets to fit very simple ODE models to the
tumor volume measurements over time [30]. However, in Ghaffari Laleh et al. [30], it was observed that all
established ODE models were not able to fit “U”-shaped trajectories well. In clinical terms, patients who
relapsed after an initial response, or patients who showed a delayed response, were not adequately represented
in these previous models. Compared to this, the present study evaluates a more complex model which has
the benefit of being able to describe a larger variety of real-world time series. This specific model is a slight
simplification of the Kuznetsov model [16], which has not been linked with or validated in large amounts of
quantitative real-world human data. Specifically, it could quantitatively fit the Kuznetsov model to a large
dataset of 1472 patients. Data are collected from patients undergoing immunotherapy or chemotherapy
treatments.

In the parameter estimation for each patient, we found that some parameters for some patients are not unique
(identifiability analysis). This means that many combinations of parameter values could lead to good fitting
and predictions. This opens the potential for global parameter estimation, in which parameter values are the
same for all patients. Still, the model could predict tumor growth (2-3 omitted measurements) which could
indicate practical usefulness as a predictive biomarker. Specifically, the model fitting and prediction could
potentially describe and forecast the behavior of cancer, improve the understanding of underlying biological
mechanisms, and provide model approaches for cancer treatments. Future studies should attempt a global
parameter estimation, use deterministic and less computationally demanding solution methods. Another
possibility is the reduction of the number of model parameters in order to have less number of parameters
to estimate and thus enhance the possibility to reach global values.

The model complexity is mostly limited by the availability of suitable data. Therefore, if more data become
available, it would be possible to include other terms in the model, e.g., explicitly representing different types
of immune cell populations or multiple cancer cell clones.
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