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The fitness effects of all possible mutations available to an or-1

ganism largely shapes the dynamics of evolutionary adaptation.2

Tremendous progress has been made in quantifying the strength3

and abundance of selected mutations available to single micro-4

bial species in simple environments, lacking strong ecological5

interactions. However, the adaptive potential of strains that are6

part of multi-strain communities remains largely unclear. We7

sought to fill this gap for a stable community of two closely re-8

lated ecotypes (“L” and “S”) shortly after they emerged within9

the E. coli Long-Term Evolution Experiment (LTEE). To this10

end, we engineered genome-wide barcoded transposon libraries11

and developed a computational inference pipeline to measure12

the fitness effects of all possible gene knockouts in the coexist-13

ing strains as well as their ancestor, for many different con-14

ditions. We found that the fitness effect of most gene knock-15

outs sensitively depends on the genetic background and the eco-16

logical conditions, as set by environmental perturbations and17

the relative frequency of both ecotypes. Despite the idiosyn-18

cratic behavior of individual knockouts, we still see consistent19

statistical patterns of fitness effect variation across both genetic20

background and community composition. The background de-21

pendence of mutational effects appears to reflect widespread22

changes in which gene functions are important for determining23

fitness, for all but the most strongly interacting genes. Addition-24

ally, fitness effects are correlated with evolutionary outcomes25

for a number of conditions, possibly revealing shifting patterns26

of adaptation. Together, our results reveal how ecological and27

epistatic effects combine to drive adaptive potential in recently28

diverged, coexisting ecotypes.29
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Introduction33

The fitness effects of all possible mutations largely shapes the34

adaptive routes available to an organism and the overall dy-35

namics of adaptation. Population genetic theory has helped36

us to understand what evolutionary dynamics we should ex-37

pect if we know the fitness effects of all available mutations,38

i.e. the "distribution of fitness effects" (DFE), and how the39

distribution changes due to epistasis and evolution (1–6). Ad-40

ditionally, knowing the selective strength of a given muta-41

tion can help to predict the chance that the mutation estab-42

lishes in a population. However, high-quality measurements43

of the DFE in a given system requires sampling and measur-44

ing the fitness effects of sufficiently many mutations across45

the genome. This has only become possible recently (primar-46

ily in microbes), due to the rise of sequencing technologies. 47

DNA barcoding systems have become especially influential 48

to better understand microbial adaptive evolution. By taking 49

advantage of amplicon sequencing methods to measure bar- 50

code frequency dynamics, these systems have been used with 51

great success to directly observe evolutionary dynamics (7– 52

10), identify selected mutations and the statistical patterns 53

that characterize them (11–13), and uncover the pleiotropic 54

effects of mutations across environments (14–16). 55

However, the spectrum of mutational effects, and thus the 56

adaptive potential, in strains that are part of multi-strain com- 57

munities remains largely unclear. The notion of a single- 58

dimensional DFE may not even apply to community mem- 59

bers, as the community evolution may depend on how a mu- 60

tation changes adaptation to all the relevant environmental 61

niches. Thus, the coexisting ecotypes of a community are 62

ecologically and evolutionarily coupled to each other in an 63

eco-evolutionary process that begins as soon as a new eco- 64

type arrives in community. The process that generates new 65

ecotypes from existing community members, ecological di- 66

versification, was previously considered to be a relatively rare 67

event. However, spontaneous and rapid diversification ap- 68

pears to be pervasive in many natural microbiomes (17–19) 69

and experimental systems, where ecological stability is usu- 70

ally attained by niche partitioning (20–22) or cross-feeding 71

(23, 24). A canonical example of these eco-evolutionary dy- 72

namics have been observed in the E. coli Long Term Evolu- 73

tion Experiment (LTEE)–an experiment that has tracked the 74

evolution of several E. coli populations over the course of 75

over 70,000 generations (at the time of writing). Through 76

time-resolved metagenomic sequencing of the LTEE, it was 77

found that 9 out of the 12 populations evolved two separate 78

lineages that coexisted with each other for tens of thousands 79

of generations, while continuing to accumulate mutations and 80

adapt (25). Together, these observations suggest that spon- 81

taneous diversification followed by coevolution is a major 82

adaptive route for microbial populations. 83

Despite the ubiquity of eco-evolutionary dynamics charac- 84

terized by diversification and coevolution, we have limited 85

theoretical understanding (26, 27) and experimental mea- 86

surements of how mutational effects should depend on the 87

(a)biotic environment, and how they drive evolutionary dy- 88

namics. Thus, we sought to (i) better understand how the 89

spectrum of mutational effects changes over long evolu- 90

tionary timescales and after ecological diversification, (ii) 91
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how mutational fitness effects depend on ecological condi-92

tions, and (iii) if and how they are correlated with evolu-93

tionary outcomes, i.e. establishment of mutations in a gene94

and changes in gene expression. To sample mutational fit-95

ness effects, we created genome-wide knockout libraries via96

random-barcoded transposon mutagenesis (28, 29). While97

knockout mutations do not represent all possible mutations98

in the genome, this approach allows us to sample a wide vari-99

ety of mutations across the genome and to compare the effect100

of the same mutation across different genetic backgrounds.101

We used a population from the LTEE as a model system, pri-102

marily because we can sample and probe clones right after103

the ecological diversification event. This allows us to bet-104

ter understand the adaptive potential in a nascent commu-105

nity and how that then affects further coevolution. Early in106

the LTEE, one population, ara-2, spontaneously diversified107

into two lineages that coexist via negative frequency depen-108

dence, termed S and L (for their small and large colony sizes109

on certain agar plates) (30). S and L coexist by inhabiting110

different temporal niches in the LTEE environment, set up111

as serial dilutions in glucose minimal media–L grows more112

quickly on glucose during exponential phase, while S spe-113

cializes on stationary phase survival and utilizing acetate, a114

byproduct of overflow metabolism (31, 32). Following di-115

versification, the lineages have persisted to this day and con-116

tinued to evolve and adapt, diverging on genetic, transcrip-117

tional, and metabolic levels (25, 30–35). Because of the long,118

documented evolutionary history of the LTEE as well as our119

barcoding approach, our data allows for the quantification120

of how fitness effects change due to evolution and ecology,121

presenting opportunities to identify general patterns of eco-122

evolutionary processes.123

Results124

Measuring knockout fitness effects. We sought to mea-125

sure the knockout fitness effects available to the small LTEE-126

derived ecosystem of S and L, and how they depend on127

ecological conditions, including the abundance of its con-128

stituents. To this end, we created randomly barcoded trans-129

poson libraries of three LTEE clones, using previously devel-130

oped methods (RB-TnSeq) (28, 29)–S and L clones sampled131

from 6.5k generations, right after diversification (30, 34), and132

their LTEE ancestor, REL606 (Figure 1A). We used these li-133

braries to measure the knockout fitness effects of nearly all134

non-essential genes in various environments relevant to the135

evolution of the population in the LTEE (Table 1), by propa-136

gating the libraries in defined conditions (with two biological137

replicates per experiment) and using Illumina amplicon se-138

quencing to track the frequency trajectories of different bar-139

codes (Figure 1B). By essentially measuring the log-slope of140

the frequency trajectories, we can estimate the fitness effect,141

s, of a given mutant (Figure 1C), which we report in units142

of 1/generation. Transposon insertion events were highly re-143

dundant, with a median of ∼20 insertions per gene, allowing144

us to combine information from multiple barcode trajecto-145

ries into one fitness measurement through our statistical fit-146

ness inference pipeline and identify significantly non-neutral147

mutations (FDR correction; α = 0.05). We carefully quanti- 148

fied sources of error in barcode frequency measurements and 149

propagated them to our fitness estimates, which was crucial 150

to effective and accurate analysis of the data (see supplement 151

section S3)–for example, we could exclude knockouts with 152

overly noisy fitness measurements, or weight measurements 153

by their error. 154

After inferring the fitness effect of each gene knockout, we 155

can compare fitness effects across genetic backgrounds and 156

environments. We can first look at knockout fitness effects 157

in the evolutionary condition proxies–the closest approxima- 158

tion to the environment where evolution in the LTEE took 159

place: the REL606 library in monoculture, and S and L li- 160

braries together, coexisting at the ecological equilibrium fre- 161

quency. In coculture experiments, the S/L libraries are mixed 162

in the minority together with wild-type S/L clones at the de- 163

sired frequency (see supplement section S2). The ecotype 164

frequencies do not change considerably over the time period 165

considered (Figure S6). As previously mentioned, the overall 166

DFE and how it changes due to evolution largely controls the 167

speed of adaptation (1–6). If we look at the overall DFE in 168

the evolutionary condition proxies, we see that REL606 has 169

access to beneficial knockouts of much larger effect size than 170

either S or L (Figure 1D), suggesting that REL606 would 171

adapt much quicker than S or L. The evolutionary tendency 172

towards a "shrinking DFE" is known as global diminishing 173

returns epistasis, which has previously been proposed as a 174

mechanism to explain the decelerating fitness trajectories of 175

the LTEE populations (37, 38). While diminishing returns 176

epistasis was previously observed to affect the first couple 177

common LTEE mutations (39), global diminishing returns 178

(affecting the whole DFE) after the accumulation of many 179

mutations had not yet been directly observed. 180

We can also compare the fitness effects of each knockout 181

mutation both between replicates and across genetic back- 182

grounds (Figure 1E-F), to contrast within-sample to between- 183

sample variance. In contrast to a strong replicate-replicate 184

correlation, we see that fitness effects are largely uncorre- 185

lated between genetic backgrounds; so, it appears that in- 186

dividual mutations behave idiosyncratically despite statisti- 187

cal patterns of epistasis, in contrast with previous experi- 188

ments (39, 40) which saw diminishing returns both glob- 189

ally and with individual mutations. Most knockout muta- 190

tions that were strongly beneficial in REL606 and then ac- 191

quired a mutation in that gene in the 6.5k S/L background 192

became effectively neutral when knocked out in S/L (nadR, 193

pykF, ybaL, ygaZ); it makes sense that mutating a gene that 194

was already mutated (with a fitness effect) wouldn’t have 195

an effect, if the mutation was effectively a loss-of-function. 196

One gene, spoT, was beneficial in REL606 but deleterious 197

in both S and L when knocked out, indicating that the nat- 198

ural spoT SNP likely represents a change-of-function rather 199

than a loss-of-function mutation. However, the majority of 200

selected genes in REL606 were not mutated between 0 and 201

6.5k generations in S/L, so the fact that their fitness effects 202

significantly changed across genetic background implicates 203

the role of widespread, global idiosyncratic epistasis. Fur- 204
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Fig. 1. Measuring mutational fitness effects. (A) Timeline of evolution in the ara-2 LTEE population, showing mutation accumulation and diversification into S and L around
6k generations, then clone sampling at 6.5k generations; data from (25), jitter added to mutation fixation time for easier visualization. Hypermutator phenotype appeared
around 2.5k generations (36). (B) Schematic of transposon mutagenesis process to generate barcoded libraries of REL606, 6.5k S and L, as well as experimental procedure
to observe barcode dynamics. (C) Barcoded knockout mutant frequency trajectories in the evolutionary condition for each genetic background, colored by estimated fitness.
All barcodes within a gene were summed together; shown are the trajectories from replicate 1 in the evolutionary condition for each genetic background (monoculture for
REL606, together at ecological equilibrium frequency for S and L; representative of both replicates). (D) Overall distributions of fitness effects in the evolutionary condition for
each genetic background. The majority of knockouts were neutral, so only genes that were called as significantly non-neutral were included (see supplement section S3.2).
(E) Replicate-replicate correlation of estimated fitness effects. (F) Comparison of knockout fitness effects across genetic backgrounds, which are generally uncorrelated.
Points with a blue interior correspond to genes that were mutated (excluding S-SNPs) in 6.5k S/L relative to REL606 (sequencing data from (35)). Points with red outlines
correspond to genes that were mutated in parallel in nonmutator LTEE populations (data from (25)). In panels E-F, knockouts with high measurement noise (σs > 0.3%)
were excluded (except for labeled genes), and ρ is the weighted pearson correlation coefficient. Also in panels E-F, the "cloud" of points around 0 mostly represents likely
neutral knockouts.

thermore, there are several genes that were mutated in paral-205

lel in multiple lines of the LTEE, but are only beneficial on206

the S background (trkH, ybbN) or both the S and L back-207

grounds (fadL) when knocked out, while being neutral or208

deleterious on the REL606 background, suggesting that pre-209

dictable epistasis could have shaped which mutations became210

beneficial in the LTEE. ’Coupon collection’ is a null model of211

mutation accumulation/epistasis, where a beneficial DFE is212

composed of a finite number of mutations, and only changes213

due to the depletion of those mutations when they fix in a214

population. While the coupon collecting model is clearly rel-215

evant for some mutations, the lack of fitness effect correlation216

between genetic backgrounds seems to be largely driven by217

global epistasis.218

Knockout fitness effects strongly depend on ecologi-219

cal conditions. The ecological interactions between S and220

L are mediated through the environment, most likely pri-221

marily through cross-feeding (31, 32). Therefore, it’s rea-222

sonable to think that the environment will change with the223

ecosystem composition, which could be modified by both224

ecological and evolutionary processes–indeed, ecotype com-225

position does change significantly and relatively rapidly over226

evolutionary time (∼1k-10ks generations) (25, 30). Thus, we 227

sought to explore how mutational fitness effects varied with 228

ecosystem composition (Figure S6). Notably, we see a con- 229

sistent trend where fitness effects generally have a smaller 230

magnitude when S and L are in monoculture compared to 231

when they are in coculture (Figures 2A, S10A). Addition- 232

ally, we also see that the overall shape of the DFEs change 233

as a function of frequency, with generally larger fitness ef- 234

fects when the ecotype is in the minority, for both beneficial 235

and deleterious knockouts (Figures 2B, S10B). Analogous to 236

the case of global diminishing returns epistasis, this observa- 237

tion holds on a statistical level, but does not explain all of the 238

fitness effect variation between the different conditions, im- 239

plying that individual mutations are affected by the ecosys- 240

tem composition in idiosyncratic ways–statistical properties 241

of the DFE seem to be strongly dependent on the ecosys- 242

tem composition, but the effects of individual mutations may 243

depend on their underlying physiological consequences and 244

how they affect ecological interactions. Thus, it appears that 245

the impact of both ecotypes on the environment is different 246

enough to make selection pressures strongly dependent on 247

the current mixture of ecotypes. 248

The LTEE environment, while relatively simple, varies quite 249
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Fig. 2. Statistical properties of DFEs as well as effects of individual mutations sensitively depend on environment. (A) Knockout fitness effects tend to have a larger
magnitude when S and L are at ecological equilibrium versus when they are in monoculture. Line shown is a rolling average of fitness effects± standard error. (B) Distribution
of fitness effects across environments, where we only included knockouts that were called as significantly non-neutral. Please note that the DFEs of REL606 are on a different
scale than S and L. (C) Illustration of how the sign of fitness effects changes across environments. Few mutations are unconditionally beneficial or deleterious, many are
non-neutral only in one or few environments, and sign-flipping of fitness effects across environments is pervasive. REL606 only has 4 unique environments, compared to 6
for S and L. Size of circle is proportional to number of genes that fall into each class.

Experiment Libraries Same flasks? Description
Mono R, S, L N Library monoculture
1:10 dil R, S, L N Library monoculture, 1:10 daily dilution
Glu exp R, S, L N Library monoculture, kept in glucose exponential phase
Ac exp R, S, L N Library monoculture, kept in acetate exponential phase
Eco Eq 1 S, L Y S + L libraries with wt L at ecological equilibrium
Eco Eq 2 S N S library with wt S + L at ecological equilibrium
Eco Eq 2 L N L library with wt S + L at ecological equilibrium
L in maj S N S library with wt L in majority
S in maj 1 L N L library with wt S in majority
S in maj 2 S, L Y S + L libraries with wt S in majority
S in maj 3 L N L library with wt S in majority

Table 1. Summary of BarSeq experiments reported in this work. Dilution rate was variable in the glucose/acetate exponential phase experiments, to keep the populations
in exponential phase (see supplement section S2), but unless otherwise noted, the daily dilution rate was 1:100, consistent with the LTEE condition. All experiments were
performed in the LTEE media, DM25, except for the acetate exponential phase experiment. The abbreviations R, S, and L refer to REL606, and 6.5k S/L, respectively.

significantly over the course of a single cycle (31, 41), allow-250

ing ecotypes to carve out different temporal ecological niches251

during cycles of lag, exponential, and stationary phases. To252

explore how selection pressures vary in different niches in253

the growth cycle, we measured fitness in exponential growth254

on glucose and acetate (which appears in the LTEE environ-255

ment due to overflow metabolism), and at a reduced dilution256

rate of 1:10 such that portion of the growth cycle in station-257

ary phase is increased (Table 1). We found that the shape258

of the DFE changed substantially based on the environment259

(Figures 2B). For example, while S and L have a similar ben-260

eficial DFE shape in monoculture, L has access to stronger261

beneficial knockout mutations in glucose exponential phase262

compared to S. As another example, the beneficial DFE in ac-263

etate is larger than any other DFE in both S and L, potentially264

pointing to a substantial, as-of-yet unrealized adaptive poten-265

tial for adaptation on acetate. Interestingly, despite the envi- 266

ronmental variation, REL606 always has a more pronounced 267

beneficial DFE compared to S and L. 268

It is important to note that measurement noise varied non- 269

negligibly across experiments, primarily because of changes 270

in bottleneck size (and thus in the strength of genetic drift) 271

due to differences in library frequency and and other exper- 272

imental differences (see supplement section S2). Thus, our 273

power to detect selected mutations close to neutrality var- 274

ied across experiments. In contrast to previous work (12), 275

it appears that there is no consistent relationship between 276

background fitness and shape of the deleterious DFE, which 277

instead appears to depend more on environment. Possible 278

reasons for the discrepancy include species-dependent differ- 279

ences, and the fact that our set of experiments used back- 280

grounds connected by evolution, while Johnson et al. used 281
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evolutionarily unrelated yeast hybrids with varying fitness in282

the test environment, whose changing DFEs were not con-283

trolled by evolution.284

In addition to the strong dependence of the macroscopic DFE285

on environment, it appears that the fitness effects of indi-286

vidual mutations can also change radically by environment.287

Strikingly, in the set of considered environments, conditional288

non-neutrality and sign-flipping appear to be very common289

across all three genetic backgrounds (Figure 2C). The ma-290

jority of knockouts are non-neutral in at least one measured291

environment; just about ∼20% of knockouts are called as292

neutral across all environments. Very few mutations are293

unconditionally beneficial or deleterious across all environ-294

ments, and many more mutations flip signs across environ-295

ments, suggesting the presence of widespread trade-offs be-296

tween adapting to different components of an environment.297

Both conditional neutrality (x > 0, y = 0) and antagonistic298

pleiotropy (x > 0, y > 0) appear prevalent in our system.299

The ubiquitous presence of sign-flipping also suggests that300

subtle changes to environmental conditions–e.g. by changes301

to ecotype frequency via adaptation–could meaningfully af-302

fect evolutionary outcomes by changing which mutations are303

likely to establish. The ubiquity of sign-flipping still holds304

if we reduce the p-value cutoff from 0.05 to 10−3 or 10−5
305

to determine non-neutrality (Figure S11), or only consider306

genes with |s|> 1% or |s|> 2% as non-neutral (Figure S12),307

although more genes are called as neutral, as would be ex-308

pected. However, it is important to note that we only con-309

sidered genes to be non-neutral if their fitness was signifi-310

cantly different from 0; thus, it is likely that some knockouts311

were incorrectly called as neutral, especially if their fitness312

effect is small. Additionally, we have only measured a rela-313

tively small set of closely related environments (representing314

niches within the LTEE environment), so we might expect315

that if we measure fitness in a sufficiently large number of316

environments, many more genes would be non-neutral in at317

least one.318

By computing the correlation of mutational fitness effects319

across environments (weighted by measurement error), we320

can obtain a measure of the functional similarity of environ-321

ments, which we can also use to cluster said environments322

(Figure 3). As a first observation and check, it is reassuring to323

see the clustering of quasi-replicate experiments, i.e. exper-324

iments with relatively minor differences in the experimental325

set-up and performed on different days–Eco Eq 1/2, S in maj326

1/2/3 (L), and Mono 1/2 (REL606) (see supplement section327

S2). However, the correlations between the quasi-replicates328

are lower than we see for replicate experiments that we did329

at the same time–this could indicate either that some fitness330

measurements are sensitive to the small experimental differ-331

ences (size of flasks, whether libraries are cocultured or not,332

etc.), or simply performing the experiments on different days333

with different environmental fluctuations leads to deviations334

in measured fitness, as is perhaps the case in other systems335

(14). The latter hypothesis is further supported by the fact336

that two experiments were in fact performed at the same time337

(S in maj 2 and 3), and had among the highest correlation of338

all quasi-replicates. 339

Otherwise, there are still some interesting patterns that we 340

can pick out by looking at correlations across environments. 341

For example, it looks like the environments related to the pu- 342

tative ecotype niches–glucose and acetate exponential growth 343

in L and S respectively–cluster with conditions where the 344

ecotype is in the minority. On the other hand, the monocul- 345

ture experiment in S clusters with glucose exponential phase. 346

Also, in REL606 and L, the acetate experiment is the out- 347

group compared to all the other environments, and almost 348

completely uncorrelated with fitness in glucose exponential 349

phase, but most correlated with the 1:10 dilution condition. 350

In S, this is not the case, and acetate fitness is least correlated 351

with 1:10 dilution fitness. This may indicate that stationary 352

phase in REL606 and L may have much more acetate with 353

which to grow on compared to S, and adaptation to acetate 354

may involve tradeoffs with adaptation to glucose, at least in 355

REL606 and L. 356

Correlations between genes across environments. To 357

explore the nature of the strong background dependence that 358

we observed, we sought to understand which genes are cor- 359

related with each other across environments, with the intu- 360

ition that genes that perform the same function should change 361

their fitness effects across environments in similar ways. For 362

example, the sufABCDSE operon encodes proteins that help 363

to assemble iron-sulfur clusters (43), and they all have cor- 364

related knockout fitness effects across environments in all 365

three genetic backgrounds (Figure S14A)–as they should, if 366

the knockouts all have very similar metabolic/ physiological 367

consequences. However, other gene sets are only correlated 368

in a subset of backgrounds. Most genes in the fecABCDE 369

operon are correlated with each other in all backgrounds ex- 370

cept for fecA, which is well correlated with the others in 371

REL606, less correlated in S, and uncorrelated with the oth- 372

ers in L (Figure 4A). Similarly, the genes in the proVWX 373

operon are almost perfectly correlated, except one condi- 374

tion where proV has a ∼7% higher fitness than the other two 375

knockouts (Figure S14B). We can also look at the fitness ef- 376

fects of a subset of knockouts that are beneficial at least once 377

for every genetic background, across environments (Figure 378

S15). We see that subsets of genes that are often beneficial on 379

a background are positively correlated with each other, e.g. 380

pykF/cyoA in REL606 and ptsP/mrcA/gppA in 6.5k L, per- 381

haps suggesting that the knockouts have common function 382

effects. These correlations often break when the mutations 383

appear on different genetic backgrounds, e.g. pykF/cyoA are 384

no longer correlated on (at least) the 6.5k L background, 385

and ptsP/mrcA/gppA are no longer correlated on the 6.5k S 386

background, while ptsP/mrcA actually appear negatively cor- 387

related on the REL606 background. Together, these exam- 388

ples suggest that correlations between knockout fitness ef- 389

fects may change in idiosyncratic ways across genetic back- 390

grounds. 391

We systematically quantified the pairwise correlation of 392

knockout fitness across environments–termed "cofitness", 393

previously defined in (29)–where we used the weighted pear- 394

son’s correlation coefficient to account for differences in 395
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Fig. 3. Correlations of fitness effects between environments. Clustering environments by using fitness effect correlation as a measure of similarity reveals which
environments are the most functionally alike. For example, environments related to the putative ecotype niches–exponential acetate growth and glucose growth, for S and
L respectively–cluster with conditions where the ecotype is in the minority. The red and yellow dots indicate that the branch has ≥ 90% or ≥ 70% support respectively,
computed via bootstrapping.

Fig. 4. Correlations between genes across environments. We observed that many pairs of genes have correlated fitness effects across environments, for example (A)
most genes of the fecABCDE operon. However, fecA is correlated with the other genes to varying degrees, depending on the genetic background. (B) We computed the
pairwise correlation of fitness effects (cofitness) for all pairs of genes, and then clustered genes with a community detection algorithm (42).We then rearranged the cofitness
matrices by reordering genes based on "optimal" clustering of other genetic backgrounds. For each column, we ordered the genes based on the clustering of a given genetic
background. For each row, we used the cofitness matrix for a given background. It is apparent that replotting the cofitness matrix using another strain’s clustering does not
produce noticeable structure. (C, D) Cluster reassortment is not entirely random–pairs of genes (C) in the same operon and (D) that strongly interact with each other (high
EcoliNet score), tend to stay in the same clusters across genetic backgrounds. In panels C and D, the abbreviations R, S, and L refer to REL606, and 6.5k S/L, respectively.
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measurement error across environments. We computed the396

cofitness of all pairs of genes (excluding those called as neu-397

tral across all environments) across the REL606, S and L li-398

braries, as well as a null cofitness distribution for each pair399

to determine if the two genes are significantly correlated;400

the set of all significant gene-gene correlations determine401

the edges in the cofitness networks (see supplement section402

S4.2). We explored the structure of the resulting cofitness403

networks via clustering (42) (see supplement section S4.2),404

where we found sets of communities for all three libraries405

with modularity > 0, indicating that there are more edges406

within each community than between communities (Figure407

4B) (44). We performed a number of controls to ensure that408

our results weren’t driven by measurement noise or technical409

effects of clustering; see supplement section S4.2 for more410

information.411

The presence of strong communities suggests that most412

knockouts are significantly correlated with others, potentially413

pointing to similar functional effects driving changes in fit-414

ness. We then wanted to compare how these clusters dif-415

fer between the different genetic backgrounds, with the idea416

that how and if clusters change should reveal information417

on how the effective functions of genes differ across ge-418

netic backgrounds. Surprisingly, we find that gene clusters419

are not well preserved across genetic backgrounds, and in420

fact, genes are typically seemingly randomly reassorted be-421

tween genetic backgrounds (Figures 4B, S19). There are422

a couple clusters that show non-random sampling across423

genetic background, however, the deviation from random424

sampling is mostly small, with one noticeable exception–425

clusters 5, 3, and 1 in REL606, S, and L, respectively, all426

seem to share a larger than random number of genes with427

each other (p < 10−4 for all clusters). From a Gene On-428

tology enrichment analysis, genes that are associated with429

biofilm formation (GO:0043708), adhesion (GO:0022610),430

and pilus organization (GO:0043711) are over-represented in431

these clusters, along with genes involved in organonitrogen432

compound biosynthesis (GO:1901566), although to a weaker433

extent (Figure S20). This suggests that there is at least one434

(large) functionally related group of genes that stay corre-435

lated across genetic backgrounds, implying that their fitness-436

determining effects are mostly the same, regardless of genetic437

background.438

We wanted to know why other functional groups of genes439

do not stay correlated with each other, and if there was any440

structure hiding in the seeming randomness of cluster re-441

assortment. A simple first test could ask if genes in the442

same operon are more likely to stay correlated with each443

other across backgrounds, which is the case for several of444

our aforementioned examples. This indeed appears to be the445

case across all genetic backgrounds (Figure 4C). However,446

genes often share functions with other genes outside their447

operons, so we turned to investigating the relationship be-448

tween the cofitness and genetic networks. We used EcoliNet449

as a representation of the E. coli genetic network, as it at-450

tempts to capture all interactions between genes by integrat-451

ing various data-types, regardless of the mechanism (tran-452

scriptional, protein-protein, etc), and assigns a score to each 453

interaction that effectively represents the strength of the inter- 454

action (45). We then computed the probability that two genes 455

are in the same community in one genetic background, given 456

that they’re together in another background, as a function of 457

EcoliNet score (Figures 4D). We see that gene pairs that are 458

predicted to strongly interact (high EcoliNet score) are much 459

more likely to be correlated across genetic backgrounds. We 460

can also see these same patterns without referencing any clus- 461

ter labels–if we look at the correlation between all cofitness 462

pairs across genetic backgrounds, pairs that are in the same 463

operon (Figure S21A) and those with the highest EcoliNet 464

score (Figure S21B) give the highest correlation. It also ap- 465

pears that the shortest distance between two nodes in the Eco- 466

liNet network (Figure S23) also predicts if the two genes will 467

stay correlated across genetic background, albeit the effect is 468

weaker. In all, these analyses suggest that evolution drasti- 469

cally changes which functional effects of genes are important 470

for determining fitness, such that the cofitness of genes pairs 471

is not preserved across genetic backgrounds, for all but the 472

most strongly interacting genes. 473

Fitness effects are correlated with evolutionary out- 474

comes. We sought to explore if the knockout fitness ef- 475

fects that we measured were correlated with evolutionary 476

outcomes in the LTEE, i.e. establishment of mutations and 477

changes in gene expression. So, we first investigated if genes 478

with non-neutral knockout fitness were more or less likely to 479

be mutated and rise to a sufficiently high frequency in the 480

population. Using the clonal sequencing data from Tenaillon 481

et al. (2016) (46) and Plucain et al. (2014) (35), we identi- 482

fied genes that mutated between selected LTEE time-points, 483

and ran a logistic model with fitness effect as the predictor 484

and mutated status as the response variable (see supplement 485

section S4.3), separately for beneficial (Figures 5A) and dele- 486

terious genes (S24A). We used three sequenced clones (one 487

available for each time point) for both S and L, while we used 488

all clones from all non-mutator populations (at a given time 489

point) for REL606. We used the appearance of a mutation 490

(excluding synonymous SNPs) within a gene as a proxy for 491

establishment. 492

Fitness of beneficial knockouts in the 1:10 dilution condi- 493

tion and monoculture (LTEE condition) in the REL606 back- 494

ground is strongly correlated with which mutations estab- 495

lish from 0-5k generations, while fitness in acetate exponen- 496

tial phase is only correlated with establishment later in the 497

evolution (difference in slopes between 0-5k and 5-20k is 498

significant at p < 0.05 for 1:10 dilution and acetate condi- 499

tions, not for monoculture or glucose conditions). This is 500

potentially a signal that the targets of selection are shifting 501

over time–REL606 may initially adapt via lag phase shorten- 502

ing/stationary phase survival, while only later adapting via in- 503

creased acetate growth rate. This could happen, for example, 504

by either clonal interference favoring the highest-effect mu- 505

tations, or due to global epistatic effects (25). The former hy- 506

pothesis is supported by the observation that three mutations 507

appear in genes with beneficial acetate knockouts at 2k gen- 508

erations, but they then disappeared by 5k generations, poten- 509
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Fig. 5. Fitness effects of beneficial genes are correlated with evolutionary outcomes. Slopes from logistic and linear models respectively to explore if beneficial knockout
fitness effects are correlated with (A) establishment of a mutation in a gene, and (B) changes in gene expression over evolutionary time, relative to neutral knockouts. Fitness
effects were normalized by the median beneficial fitness effect, so that coefficients can be interpreted as the average difference in (A) log-odds establishment and (B)
log-fold change in expression, between neutral knockouts and the ’typical’ beneficial knockout. (A) REL606 beneficial knockout fitness is positively correlated with gene
establishment probability for most environments, but in different time intervals, potentially pointing to shifting targets of selection. (B) Beneficial knockout fitness in REL606 is
positively correlated with increasing gene expression over time for all environments except acetate exponential phase. In S and L, fitness in several environments–including
the ecological equilibrium and acetate and glucose growth, respectively–is correlated with decreasing gene expression. Fitness in some environments is also correlated with
an increased gene expression between the ancestral state and the ecotypes between 6.5k generations. Asterisks denote coefficients that are significantly different than 0
(FDR correction; * p < 0.05, ** p < 0.01, *** p < 0.001).

tially indicating that they were out-competed by other benefi-510

cial mutations (Figure S26). There is only one S/L condition511

that shows a significant difference in mutation establishment512

probability between beneficial and neutral mutations–genes513

with beneficial fitness in acetate are less likely to mutate com-514

pared to neutrals in S. However, changes in gene expression515

suggest adaptation to acetate may be occuring through indi-516

rect routes in S, as detailed below. However, we expect our517

power to detect correlations between mutational fitness and518

mutation establishment to be lower for S and L. They have a519

∼100x higher mutation rate than REL606, implying that the520

ratio of neutral hitchhiking to beneficial driver mutations is521

higher as well.522

We also investigated if fitness effects are correlated with523

changes in gene expression, using microarray data from Le524

Gac et al. 2012 (34), which measured gene expression in525

REL606, and S/L at 6.5k, 17k, and 40k generations. These526

measurements serve as a distinct readout of evolutionary527

change compared to genomic mutational dynamics, because528

even if a gene is not directly mutated, gene expression can529

still change through indirect genetic interactions. Thus, gene530

expression measurements allow us to probe the effects of the531

cumulative mutations fixed by evolution, where we fit linear532

models to examine the relationship between knockout fitness533

effect of a gene and log-fold change in gene expression be-534

tween two time points (see supplement section S4.4), sepa-535

rately for beneficial (Figure 5B) and deleterious genes (Fig-536

ure S24B). 537

In REL606, genes with beneficial knockout fitness effects 538

tend to increase in expression (relative to neutral genes) over 539

evolutionary time; this is perhaps surprising, because we 540

would expect selection to decrease gene expression if knock- 541

ing out that gene is beneficial. One possibility to explain 542

this pattern could be that most genes that are beneficial when 543

knocked out in REL606 also have access to potentially even 544

more highly beneficial change-of-function mutations, which 545

may then add selection pressure to increase expression. This 546

is the case with mutations in pykF, for example, where knock- 547

ing out the gene provides a large benefit in the LTEE environ- 548

ment, but even larger effects are available by various nonsyn- 549

onymous mutations (47). 550

In contrast, in S and L, there are a couple of environments 551

where gene expression significantly decreases over evolu- 552

tionary time for genes with beneficial knockout fitness ef- 553

fects (compared to neutrals). These conditions include envi- 554

ronments related to the putative ecotype niches–acetate and 555

glucose exponential growth in S and L respectively. This 556

could lead us to hypothesize again that adaptive forces in 557

the LTEE are in the specializing direction for both ecotypes. 558

On the other hand, while fitness in the ecological equilib- 559

rium is associated with decreased gene expression, this is not 560

the case for fitness in monoculture and non-specializing en- 561

vironments, indicating again that the latter environments are 562

less relevant for evolution in the LTEE environment. Despite 563
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the fact that acetate-adapting mutations are not establishing564

on the S background (at least initially), gene expression still565

decreases by 40k generations, perhaps indicating that adapta-566

tion to acetate is occurring through routes other than directly567

mutating genes with beneficial knockout effects.568

We also saw that S and L beneficial knockout fitness in glu-569

cose exponential phase is positively correlated with an in-570

crease in gene expression from 0-6.5k. On average, those571

same genes decrease in relative gene expression when evolv-572

ing on the L background, whereas they do not change on the573

S background. This set of data could indicate that from 0-574

6.5k many genes increased in gene expression via adaptive575

evolution that were actively unhelpful for glucose growth, ei-576

ther because of transcriptomic misallocation or other types577

of antagonistic pleiotropy, such that knocking them out con-578

ferred a benefit. Upon diversification of S and L, the direc-579

tion of gene expression change appears to switch for L, per-580

haps suggesting that L is evolving towards a more glucose581

growth-optimized transcriptome, while S is not. This set of582

observations provides a possible example of how diversifica-583

tion changes the selection pressures acting on organisms.584

Interestingly, deleterious knockout fitness effects across all585

environments in S/L tend to be associated with an increase586

in gene expression between 0 and 6.5k generations (Figure587

S24B). This observation may provide a partial explanation588

for why some knockouts become deleterious in S/L when589

they were neutral in REL606–6.5k generations of evolution590

caused the genes to suddenly become important, so they be-591

came more costly to knock out. Another, unrelated obser-592

vation could help us to understand why some genes have593

deleterious knockout fitness effects–it appears that deleteri-594

ous genes are more highly connected in the E. coli gene in-595

teraction network (EcoliNet) compared to neutrals (on aver-596

age), indicating that some genes may be deleterious because597

when they’re knockout out, they also affect the functioning598

of many other genes (Figure S27).599

Discussion600

To assess how mutational fitness effects depend on genetic601

background and ecological conditions, we measured the602

genome-wide knockout fitness effects of a recently diversi-603

fied ecosystem, S and L, and their ancestor, REL606. Despite604

the fact that the fitness effects of individual mutations appear605

to be highly dependent on both genetic background and envi-606

ronment (strong (G×) G× E effects), we saw consistent sta-607

tistical patterns of variation across both axes, namely global608

diminishing returns epistasis and a negative frequency-fitness609

correlation (in S and L). In contrast, previous studies that ob-610

served diminishing returns epistasis saw both the mean of the611

DFE as well as the fitness effects of individual mutations de-612

crease as a function of background fitness (39, 40); this dis-613

crepancy may indicate that uniform negative epistasis of in-614

dividual mutations may only be relevant for the first handful615

of mutational steps, before yielding to more complex and id-616

iosyncratic forms of epistasis.617

Even though S and L only diverged∼500 generations ago, the618

mixing ratio of the two ecotypes strongly affects the DFEs,619

suggesting that strong eco-evolutionary coupling is possible 620

even in closely related strains. This would imply that selec- 621

tive pressures depend strongly on the community mixture, 622

which changes significantly and relatively rapidly due to evo- 623

lution (25, 30). The sensitivity of knockout fitness effects to 624

relatively minor variations on the LTEE environment, such as 625

changing niche availability or ecosystem composition, may 626

be evolutionarily significant–we know that the growth traits 627

of S and L also change quite drastically during their coevolu- 628

tion (32, 34), which along with changes to ecosystem compo- 629

sition, will change the environment, and thus change which 630

mutations are favored by selection. One specific hypothe- 631

sis that emerges from our data is that selective forces may 632

be more similar to environments related to the putative eco- 633

type niches when the ecotype is rare, for both S and L. This 634

is supported by both clustering environments by fitness ef- 635

fect correlations, and which environments were correlated 636

with changes in gene expression. It would follow that se- 637

lection could favor different degrees of specialization within 638

the current niche as the ecotype frequencies and growth traits 639

change due to evolution. Regardless of the specific imple- 640

mentation, the process where (i) mutations change growth 641

traits and ecosystem composition, which (ii) change ecolog- 642

ical conditions, which in turn (iii) change the mutational fit- 643

ness effects of both ecotypes, could represent an important 644

and pervasive type of eco-evolutionary feedback. 645

We aimed to better understand the background and environ- 646

ment dependence of mutational fitness effects by systemati- 647

cally studying fitness correlations across environments. Our 648

intuition was that knocking out genes with similar functions 649

should have similar effects across environments. We saw 650

that, by and large, different sets of genes were correlated 651

with each other across genetic backgrounds; only strongly 652

interacting pairs of genes were likely to be correlated across 653

all backgrounds. These widespread changes could be caused 654

by a number of different evolutionary phenomena–for exam- 655

ple, evolution could have induced widespread changes in the 656

functional effects of genes or which functional effects matter 657

for fitness. Additionally, inasmuch as fitness in an environ- 658

ment is a reflection of phenotype–e.g. fitness in exponential 659

phase is likely a simple function of exponential growth rate– 660

the extensive changes in fitness across environments could 661

be interpreted as support for ubiquitous pleiotropic effects of 662

knockout mutations. 663

We investigated if our measured knockout fitness effects were 664

correlated with evolutionary outcomes, i.e. mutation estab- 665

lishment and gene expression changes. We found significant 666

correlations across several, but not all environments, lead- 667

ing to hypotheses on how selection has acted on LTEE pop- 668

ulations. From correlations of knockout fitness effects with 669

mutation establishment, we found potential signals of shift- 670

ing selection over time in REL606. Changes in gene expres- 671

sion provide a distinct window into evolutionary change, as 672

expression can change through genetic interactions, even if 673

a gene is not directly mutated. Among other patterns, the 674

fitness correlations with gene expression changes potentially 675

reveal how the traits under selection changed from pre- to 676
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post-diversification, and how they are different between S and677

L. Overall, the connections between evolutionary changes678

and knockout fitness effects demonstrates the utility of our679

approach to understand how adaptation happens in the "natu-680

ral" evolutionary context.681

Our study is limited by the fact that we only surveyed the fit-682

ness effects of knockout mutations, which represent a subset683

of all mutations available to an organism. While it is possible684

that other types of mutations could display different patterns,685

knockout mutations appear to be prevalent and important for686

adaptation in the LTEE (25, 48), and our measured knock-687

out fitness effects are correlated with evolutionary outcomes.688

Additionally, we studied a relatively simple ecosystem, con-689

sisting of just two recently diverged ecotypes; measuring the690

mutational effects in more complicated ecosystems and how691

they change as a result of longer periods of evolution is likely692

a fruitful future avenue of investigation. Overall, the meth-693

ods and results presented here pave the way for future studies694

investigating how mutational fitness effects depend on eco-695

evolutionary processes, and how eco-evolutionary feedback696

arises from changing fitness effects.697

Methods698

See supplementary information.699

Data and code availability700

All data and code used to process the data and perform the701

analyses are available on GitHub,702

https://github.com/joaoascensao/S-L-REL606-BarSeq703
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S1 Barcoded transposon library construction 1014

To construct the barcoded transposon libraries, we isolated 1015

subclones of REL606, REL11555 (6.5k S), and REL11556 1016

(6.5k L), all gifts of Richard Lenski (Michigan State Uni- 1017

versity). Transposon mutagenesis was performed as previ- 1018

ously described (28, 29) by mating each LTEE clone with 1019

an E. coli WM3064 donor (Diaminopimelic acid [DAP] aux- 1020

otroph and pir+) containing previously described (28) ran- 1021

domly barcoded Tn5 plasmids with a kanamycin cassette 1022

and an R6K origin of replication. The LTEE clones were 1023

grown in DM2000 (Davis Minimal Media with 2000mg/L D- 1024

glucose), and the donor was grown in LB/Kan, all to mid-log 1025

phase. After washing the cultures, each LTEE culture was 1026

then mixed with the donor in a 1:1 ratio, then placed on 0.45 1027

µM nitrocellulose filters (Millipore cat. no. HAWP04700) 1028

on top of a 1% agar plate with EZ-MOPS rich, defined me- 1029

dia (Teknova cat. no. M2105) + 20mM sodium pyruvate 1030

(’EZ-py’) + 0.3mM DAP. The rich media was chosen be- 1031

cause it had a number of different carbon sources (glucose, 1032

amino acids, pyruvate) and sufficient amounts of all other re- 1033

quired macro/micronutrients, lessening the chances of sub- 1034

stantial negative selection in the growth media. After conju- 1035

gation, the filters were picked up and placed in rich media; 1036

subsequently, the resuspended cells were plated on EZ-py 1037

agar plates supplemented with 50 µg/mL kanamycin. Af- 1038

ter approximately 24hrs of growth at 37C, colonies were 1039

scraped up and grown in EZ-py liquid media with 50 µg/mL 1040

kanamycin until OD∼1; we then saved the cultures in sev- 1041

eral 10% glycerol stocks. Transposon insertion mapping (Tn- 1042

Seq) libaries were prepared as previously described (28); li- 1043

braries were then sequenced on the Illumina HiSeq 4000 1044

(150PE) at the Vincent J. Coates Genomics Sequencing Lab- 1045

oratory at UC Berkeley. The resulting sequencing data 1046

was used to create a table relating each barcode to a ge- 1047

nomic insertion location, using a previously developed script 1048

(MapTnSeq.pl) (28). 1049

S2 BarSeq experiments 1050

S2.1 Set-up of experiments. To start a BarSeq experi- 1051

ment, we first unfroze 1mL glycerol stock of the REL606, 1052
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6.5k S and/or 6.5k L transposon libraries and transferred1053

the entirety to 10mL EZ-py media (media used for library1054

construction) in 50mL glass erlenmeyer flasks, which were1055

grown for 16-24hrs at 37C, shaken at 120rpm. All cultures1056

for all experiments were grown with the same shaker, in the1057

same 37C warm room. In several experiments where we mea-1058

sured fitness effects of 6.5k S/L barcoded libraries at various1059

ecotype frequencies, we also grew the wild type S/L with the1060

same media, under the same conditions. The next day, we1061

washed the cultures by pelleting via centrifugation for 3 min-1062

utes at 5000rpm, aspirating the supernatant, and resuspend-1063

ing in DM0 (Davis Minimal Media without a carbon source)1064

three times. After thoroughly vortexing the cultures, we1065

transferred them 1:1000 to the appropriate media in n flasks1066

(see below)–depending on the experiment, we used different1067

numbers of flasks and different sizes, either 10mL media in1068

50mL glass flasks or 200mL media in 1L glass flasks (same1069

ratios, scaled up). We used multiple flasks and larger flasks to1070

increase the total population size, decreasing fluctuations due1071

to genetic drift. We then performed two more transfers in the1072

appropriate conditions for the experiment to help physiolog-1073

ically adapt the cultures to the conditions. If we were doing1074

a coculture experiment, we would mix the cultures at the ap-1075

propriate frequencies during the second transfer. If we used1076

multiple flasks in an experiment, we would sample an equal1077

amount of culture from each flask into a microcentrifuge or1078

Falcon tube, thoroughly mix the cultures, and redistribute1079

among the same number of flasks with new media–thus, the1080

cultures distributed in multiple flasks were effectively all part1081

of the same population. After the third transfer, we would1082

collect cells for day 0 of the experiment, and use that culture1083

to start two biological replicates that are independently prop-1084

agated for the remainder of the experiment. All cultures were1085

grown at 37C, shaken at 120rpm. Cells were harvested at1086

defined time points by centrifugation at 15000rpm for 10min1087

of ∼60mL culture for all experiments except Ac Exp (10mL)1088

and Mono 2 (30mL), pooling culture from all flasks in an ex-1089

periment/replicate at equal ratios. Subsequently, the pellets1090

were stored at -80C until the experiment was finished.1091

S2.2 Conditions for each experiment.1092

S2.2.1 Monoculture. For the Mono (1) experiments, we prop-1093

agated the libraries alone in DM25 (Davis Minimal Media1094

with 25mg/L D-glucose) in 5x 50mL flasks over the course1095

of 4 days. For the REL606 Mono 2 experiment, we used1096

3x 50mL flasks over the course of 8 days, with four biolog-1097

ical replicates in DM25. We transferred cultures 1:100 ev-1098

ery 24hrs, and took the number of generations per transfer as1099

log2 100.1100

S2.2.2 Coculture experiments. As mentioned above, we1101

started wildtype cultures of 6.5k S and/or L clones (same1102

clones used to make the RB-Tn libraries) at the same time and1103

with the same procedure as the library cultures (Table 1, main1104

text), and mixing the cultures at the appropriate frequencies at1105

the second "adaptation" serial transfer. We measured the eco-1106

logical equilibrium frequency to be approximately 15−20%1107

S (Figure S7), so we ensured that the S frequency was started 1108

in that range for the "ecological equilibrium" experiments. 1109

We started the "S/L in majority" experiments such that the 1110

minority ecotype was > 10% of the total population (Figure 1111

S6). 1112

We used DM25 media and propagated the cultures for 4 days, 1113

except for S in maj 2/3 where we used 6 days, transferring 1114

1:100 every 24hrs (log2 100 generations) for all coculture ex- 1115

periments. For the Eco Eq 1 experiment, we mixed both S 1116

and L libraries in the same cultures along with wildtype L, 1117

using 4x 1L flasks. For the Eco Eq 2 experiments, S and 1118

L libraries were in separate cultures, both with wildtype S 1119

and L set at the appropriate frequency, with RB-Tn library 1120

frequency around 5−10% (Figure S6); cultures were propa- 1121

gated in 10x 50mL flasks. For the L in Maj and S in Maj 1 1122

experiments, we mixed wt L + S library and wt S + L library, 1123

respectively; cultures were propagated in 10x 50mL flasks. 1124

For the S in maj 2/3 experiments, we mixed wt S with S+L 1125

and L libraries respectively; cultures were propagated in 4x 1126

1L flasks. 1127

We measured the frequency of S/L in the population by plat- 1128

ing and counting colonies at the end of a transfer on TM 1129

plates (tetrazolium maltose; 10g/L tryptone [Sigma T7293], 1130

1g/L yeast extract [Sigma Y1625], 5g/L NaCl, 16g/L agar, 1131

10g/L maltose, 1mL/L 5% TTC [Sigma T8877]), where S 1132

appears as red colonies and L appears as white colonies, 1133

previously used in (35). We could also measure the fre- 1134

quency of cells from RB-Tn libraries by plating the cultures 1135

on LB/Kanamycin plates, as the transposon has a kanamycin 1136

resistance cassette (Figure S6). We diluted all cultures (at 1137

the end of a cycle) in DM0. Dilution rates varied over 1138

experiments: in Eco Eq 1, we diluted cultures by a fac- 1139

tor of 2 ∗ 10−5mL−1 to plate on both TM and LB/Kan 1140

plates, in Eco Eq 2 we used dilution rates of 10−5mL−1
1141

and 10−4mL−1 to plate on TM and LB/Kan plates respec- 1142

tively, in the L in Maj and S in Maj 1 experiments we used 1143

a 2 ∗ 10−5mL−1 dilution rate to plate on just TM plates, 1144

and in the S in maj 2/3 experiments we used dilution rates 1145

of 2 ∗ 10−5mL−1 and 2 ∗ 10−4mL−1 to plate on TM and 1146

LB/Kan plates respectively. 1147

S2.2.3 1:10 dilution. We propagated cultures with a 1:10 di- 1148

lution, instead of the standard LTEE dilution rate of 1:100, 1149

to investigate the effect of a lengthened stationary phase rel- 1150

ative to exponential phase. We used DM27.8 media (Davis 1151

Minimal Media with 27.8mg/L D-glucose), because the con- 1152

centration of glucose would fall to 25mg/L after dilution. 1153

We used 1x 1L flask for each library culture (180mL me- 1154

dia + 20mL culture), propagating the cultures for 8 days ev- 1155

ery 24hrs with log2 10 generations per day. We pelleted and 1156

saved cultures every other day (0,2,4,6,8). 1157

S2.2.4 Acetate exponential phase. We sought to measure 1158

knockout fitness effects when the RB-Tn libraries were kept 1159

in acetate exponential phase, where we used DM2000-acetate 1160

(Davis Minimal Media with 2000mg/L Sodium Acetate) and 1161

grew the cultures in 1x 50mL flask. We first measured ex- 1162

ponential growth rates for wt REL606, L, and S clones in 1163
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DM2000-acetate, which were approximately 0.08/hr, 0.12/hr,1164

and 0.18/hr respectively. We also observed that all cultures1165

were still in mid-exponential phase at OD∼0.6. So, if we1166

started at initial OD0 of 0.09, 0.03, 0.008 for REL606, L, and1167

S respectively, the cultures would end up at OD∼0.6 after 241168

hours. Thus, for each transfer, we would measure the actual1169

OD for each culture (after 24hrs of growth) and transfer the1170

appropriate volume of old culture to new 10mL DM2000-1171

acetate such that the final concentration was the appropriate1172

OD0. We recorded the number of generations for each cycle1173

as log2ODf/OD0. Due to the variable number of genera-1174

tions per transfer for each genetic background (owing to dif-1175

ferent growth rates), we collected samples at days 0,2,4,6,81176

for REL606; 0,1,2,4,5,6 for L; 0,1,2,3,4,5 for S.1177

S2.2.5 Glucose exponential phase. We measured knockout1178

fitness effects in glucose exponential phase with DM25 me-1179

dia in 1x 1L flask. We measured the length of DM25 expo-1180

nential phase to be about 8.25 hrs for REL606, and 5.25 hrs1181

for both S and L after a 1:100 dilution into new media. For1182

the adaptation phase, we did two full 24hr cycles of growth1183

in DM25, followed by one cycle of growth for ∼8hrs and1184

∼5hrs for REL606 and S/L, respectively. After the adaptation1185

phase, we transferred cultures 1:100 into new DM25 media1186

(warmed to 37C) four times, after 7.5-8hrs for REL606 and1187

4.5-5hrs for S and L. As DM25 media is quite dilute and thus1188

OD measurements are relatively inaccurate, we estimated the1189

number of cells that were transferred by plating the cultures1190

on LB plates at a 2 ∗ 10−5mL−1 dilution rate and counting1191

colonies, calculating the number of generations for that trans-1192

fer as log2 100CFUf/CFU0. We only ended up including1193

the first two transfers of the REL606 library experiment (time1194

points 0,1,2), as it was apparent from CFUs that the third1195

transfer resulted in a large bottleneck owing to a smaller than1196

expected population size before the transfer, likely because1197

of slower than expected growth.1198

S2.3 DNA extraction, PCR, Sequencing. After the ex-1199

periment was finished, pellets were pulled from the -80C1200

freezer and genomic DNA was extracted with the Qiagen1201

DNeasy tissue and blood extraction kit (cat no. 69504),1202

eluted in double distilled water with typical yields around1203

50ng/µL. DNA barcodes were amplified from gDNA sam-1204

ples via PCR with Q5 Hot Start Polymerase (NEB, cat.1205

no. M0493S); 50ul reactions were composed of 5µL PCR1206

primers, 5µL gDNA, 10µL 5x buffer, 10µL GC enhancer,1207

1µL dNTPs, 0.5µL Q5 polymerase, 18.5µL water. We used1208

custom dual-indexed primers that contained binding sites up-1209

and down-stream of the barcode region, along with the neces-1210

sary Illumina read/index binding sites; fwd primer (AATGAT1211

ACGGCG ACCACC GAGATC TACACT CTTTCC CTA-1212

CAC GACGCT CTTCCG ATCT NnXXXXXX GTCGAC1213

CTGCAG CGTACG) where X stands for the custom for-1214

ward 6bp index, and Nn is 1-4 random nucleotides, vary-1215

ing with the primer pair; rev primer (CAAGCA GAAGAC1216

GGCATA CGAGAT XXXXXX GTGACT GGAGTT CA-1217

GACG TGTGCT CTTCCG ATCTGA TGTCCA CGAGGT1218

CTCT) where X stands for standard Illumina 6bp IT index.1219

We used a different primer pair for each gDNA sample from 1220

a different experiment/replicate/time point, so that we could 1221

demultiplex the samples after sequencing. The PCR program 1222

was 4min at 95C, [30sec at 95C, 30sec at 55C, 30sec at 72C] 1223

x25 cycles, 5min at 72C. We verified that we had the correct 1224

PCR products via agarose gel electophoresis. All PCR re- 1225

actions were then pooled and cleaned with the Zymo DNA 1226

Clean and Concentrator kit (cat. no. D4013), and eluted in 1227

double distilled water. The final pooled sample was then se- 1228

quenced on an Illumina HiSeq 4000 (50SR) at the Vincent J. 1229

Coates Genomics Sequencing Laboratory at UC Berkeley. 1230

S3 Fitness inference pipeline 1231

S3.1 Read counting and error correction. We first pro- 1232

cessed the raw (demultiplexed) sequencing reads using a pre- 1233

viously developed Perl script (28, 29) that pulls out the bar- 1234

code sequence by trimming regions corresponding to the se- 1235

quencing primers and regions up/downstream of the barcode, 1236

as well as discarding reads that do not match the secondary 1237

sequencing index or have insufficiently high quality scores 1238

(MultiCodes.pl). Then, counts of unique barcodes are tabu- 1239

lated to get a table corresponding barcode sequence to counts. 1240

However, due to errors that arise during PCR and sequenc- 1241

ing, some of the barcode reads acquire mutations that would 1242

prevent them from directly mapping to a transposon inser- 1243

tion location. Thus, we must correct for these sequencing er- 1244

rors by matching mutated barcodes to their parent, and merg- 1245

ing the read counts together. The aforementioned Perl script 1246

identifies off-by-one barcode pairs; if the minority barcode 1247

(the one with fewer counts) unambiguously maps to a single 1248

majority barcode, the barcode counts are merged. To detect 1249

larger mutational distances between the derived and parent 1250

barcodes, we computed the Levenshtein (edit) distance be- 1251

tween pairs of barcodes (as implemented in the Python C 1252

package Levenshtein (49)). Barcode read counts were 1253

merged if the edit distance was 4 or less, and if the minority 1254

barcode only mapped to one majority barcode at the mini- 1255

mum edit distance. 1256

We then used previously acquired TnSeq data that maps the 1257

barcode identity to its transposon insertion location in order 1258

to identify which gene (if any) the barcoded transposon dis- 1259

rupted. Transposons that hit the first or last 5% of the gene 1260

sequence were excluded, as it is possible that these insertions 1261

do not result in disruption of production of the gene product. 1262

To ensure that barcodes at least begin their trajectories at a 1263

sufficiently high read count, if there were barcodes within a 1264

gene with low initial counts, ri,0 < 80, we summed the low- 1265

est (initial) count barcode into the next-lowest count barcode 1266

until mini ri,0 ≥ 80. We restricted our analysis to genes that 1267

had ≥ 4 barcodes, allowing us to gain confidence that the 1268

measured knockout fitness is not dependent on rare fluctua- 1269

tions or secondary mutations. Additionally, some barcodes 1270

went extinct during the course of the experiment, either due 1271

to genetic drift or selection; if a barcode went extinct, i.e. has 1272

0 counts from text to T , we would trim all time points af- 1273

ter, but not including, text. We eliminated barcodes that go 1274

extinct after just one time point. 1275
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Library # genes hit ≥ 3 times # barcodes % bc reads mapped
REL606 3,401 609,854 84%
6.5k S 3,382 522,253 84%
6.5k L 2,877 157,260 89%

Table S1. Summary of statistics of constructed RB-TnSeq libraries.

S3.2 Probabilistic model of read count trajectories1276

and fitness inference. To infer the fitness of individual1277

genotypes from BarSeq count data, we must first understand1278

what frequency trajectories we would expect for a given fit-1279

ness, and how technical noise (e.g. from sample prepara-1280

tion and sequencing) and genetic drift affect those trajecto-1281

ries. Consistent with previous work (7, 8, 12), we construct1282

a maximum-likelihood estimator to infer fitness from trajec-1283

tories of barcode read counts, using a deterministic approxi-1284

mation of frequency dynamics.1285

On average, when the frequency of a lineage is sufficiently1286

small ft,i � 1, the frequency dynamics will exponentially1287

grow/decay according to the genotype fitness, s, as well as1288

the mean fitness of the population, x̄t (see section S3.4),1289

〈fi,t〉= f0,ie
(s−x̄t)t

We measured the time in generations, which we measured1290

for each time point in each experiment (see section S2.2).1291

The reason we used a timescale of 1/generation instead of1292

e.g. 1/cycle was to be able to better compare the magnitude1293

of effects across experiments–e.g. the two exponential phase1294

experiments had varying numbers of generations from cycle-1295

to-cycle and between strains (due to differences in exponen-1296

tial growth rates). However, the fitness effects can be scaled1297

by a factor of approximately 6.64 to get per-cycle fitness ef-1298

fects, at least in the 1:100 serial dilution experiments. The1299

two sources of noise–genetic drift and measurement noise–1300

both arise from counting processes, so the combined noise1301

will follow var(ft,i) ∝ 〈fi,t〉 (see section S3.3). To account1302

for the inherent discreteness of counting sequencing reads–1303

especially important to accurately model deleterious geno-1304

types that quickly drop to low frequencies–we modeled the1305

observed counts at time t (always measured in generations)1306

of barcode i inserted in a given gene, ri,t, as a negative bino-1307

mial random variable,1308

ri,t|s,f0,i ∼ NB(µi,t, ct) (1)
〈ri,t〉= µi,t (2)

var(ri,t) = ct〈ri,t〉 (3)

µi,t =Rtf0,ie
(s−x̄t)t (4)

Where Rt is the total number of counts, and ct is the mea-1309

sured variance parameter. The final likelihood for the fitness,1310

s, of a given gene knockout is obtained by numerically in-1311

tegrating over f0,i (’integrated likelihood’ with a flat prior)–1312

incorporating the uncertainty in the intercept nuisance param-1313

eters into the fitness estimate and turning the problem into a1314

one-dimensional maximum likelihood–and then combining1315

the likelihoods of all barcodes inserted into the gene,1316

P (ri|s,f0,i) =
∏
t

Γ
(
ri,t+ µi,t

ct−1

)
Γ
(
µi,t
ct−1

)
Γ(ri,t+ 1)

(ct−1)ri,t

c
ri,t+

µi,t
ct−1

t

(5)

L(s|r) =
∏
i

∫
df0,iP (ri|s,f0,i) (6)

The point estimate of the knockout fitness, ŝ, is then numeri- 1317

cally computed as the maximum likelihood, and the standard 1318

error is approximated as the inverse, square-root observed in- 1319

formation, 1320

ŝ= argmax
s

logL(s|r) (7)

std ŝ= 1/
√
−∂2

s logL(s|r)|ŝ (8)

We ran biological replicates for all experiments reported 1321

here; to obtain combined genotype fitness estimates across 1322

replicates we simply multiplied the likelihoods together, re- 1323

peating the maximum likelihood procedure. 1324

As the majority of barcoded knockouts are neutral or nearly 1325

so (s ≈ 0), we must have a method to distinguish between 1326

likely neutral and selected knockout mutations; this can be 1327

accomplished by computing a p-value under the null hypoth- 1328

esis s = 0. For ease of computation and generality we com- 1329

pute the p-value as the posterior probability that the likeli- 1330

hood ratio between null and alternative hypotheses is greater 1331

than 1, i.e. the probability that the data more strongly support 1332

the null hypothesis over the alternative, 1333

p= Ps|r

(
L(0|r)
L(s|r) > 1

)
P (s|r)∝ L(s|r)

This convenient definition has been shown to be equivalent 1334

to the frequentist definition of the p-value using a likelihood 1335

ratio test statistic (50, 51), and does not require asymptotic 1336

approximations. We used the standard method of Benjamini 1337

& Hochberg to control for the false discovery rate at α = 1338

0.05. 1339

S3.3 Estimation of error parameters. In order to estimate 1340

fitness of individual genotypes from BarSeq data, we must 1341

first obtain an estimate of the error parameters for each time 1342

point in the experiments. There are two distinct sources of 1343

noise in our BarSeq measurements–measurement (technical) 1344

noise, arising from library preparation and sequencing error, 1345

which is uncorrelated in time, and variance due to genetic 1346
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drift, which accumulates over time. Both sources of noise are1347

count processes, where the variance of barcode population1348

frequencies will be proportional to the mean,1349

〈fi,t〉= 〈ri,t〉
Rt
∝ var(fi,t)

In order to eliminate the dependence of the variance on the1350

mean, we apply a variance-stabilizing transformation,1351

φi,t ≡
√
fi,t

The variance of barcode frequencies of neutral lineages over1352

two time points will then depend on the variance that has ac-1353

cumulated due to genetic drift, as well as the technical noise1354

at the sampled time points. If there are sufficiently many read1355

counts/individuals such that the central limit theorem applies,1356

the variances will simply be additive,1357

κj,k ≡ var(φi,j−φi,k) = ζj + ζk+ |j−k|4Ne
(9)

Where ζt is the technical noise at time point t, Ne is the ef-1358

fective population size, and |j−k| is the number of transfers1359

performed between times j and k. The above equation de-1360

fines a set of linear equations, with ζt and Ne as unknown1361

parameters.1362

We can measure κj,k for all possible combinations of tj and1363

tk given large enough set of neutral barcodes. Our RB-TnSeq1364

libraries have a large number of transposons that were in-1365

serted into intergenic regions, the vast majority of which pre-1366

sumably have no fitness effect; thus, we use these intergenic1367

barcodes as our set of putatively neutral barcodes. We con-1368

firmed that our measured κj,k did not systematically vary1369

as a function of rj (Figure S1), indicating that the expected1370

mean-variance relationship, 〈fi,t〉 ∝ var(fi,t), is consistent1371

with our data.1372

We only included intergenic barcodes that satisfy 50< ri,t <1373

500, as our computation depends on having sufficiently many1374

counts such that the central limit theorem applies, and bar-1375

codes at a higher frequency are more likely to have acquired1376

secondary mutations and be impacted by selection. In or-1377

der to further guard against the effects of potential ’outlier’1378

barcodes (those with non-neutral fitnesses), we compute vari-1379

ance estimates, κ̂j,k, with a more robust measurement of vari-1380

ability, the median absolute deviation (MAD),1381

ψi,j,k ≡ φi,j−φi,k (10)
MADj,k = med

i
|ψi,j,k−med

i
ψi,j,k| (11)

κ̂j,k =
(

MADj,k
0.67449

)2
(12)

We resampled barcodes with replacement (standard boot-1382

strapping) 500 times to compute the relative errors on the1383

κ̂j,k measurements. To decompose variability into the cor-1384

related (1/Ne) and uncorrelated (ζt) components, we numer-1385

ically minimized squared error of the expected relationship1386

Fig. S1. The measured noise parameter κj,k is consistently approximately con-
stant as a function of initial number of barcode reads. Data is from S/L/REL606
monoculture experiments, replicate 1. Curves are smoothed with a moving aver-
age,±2 reads.

(eq. 9) between the noise parameters and the measured κ̂j,k, 1387

with inverse variance weighting, 1388

ζ,Ne = argmin
ζ,Ne

∑
j,k

(
ζj + ζk+ |j−k|4Ne − κ̂j,k

)2

var(κ̂j,k)

We subjected the minimization to the constraint that ζt ≥ 1389

1
4Rt , i.e. technical noise must be at least as large as vari- 1390

ance due to sampling. After converting the variance parame- 1391

ters from frequencies back to read counts, the total marginal 1392

variance parameter at a single time point is, 1393

ĉt = (4ζt+ 1/Ne)Rt

The number of intergenic barcodes included varies across 1394

RB-TnSeq libraries, experiments, and time points, but ap- 1395

proximately on the order of ∼104 intergenic barcodes are 1396

used to estimate the variance parameters. The errors on the 1397

estimated ĉt are generally small (. 1%), so the point estimate 1398

ĉt was directly used for all downstream inferences. 1399

S3.4 Estimation of mean fitness dynamics. As benefi- 1400

cial mutations increase in frequency, and deleterious muta- 1401

tions decrease, the mean fitness of the population changes 1402

over time, impacting the rate of frequency change of all geno- 1403

types in the population. To estimate the mean fitness dynam- 1404

ics for each experiment, we can track the dynamics of neutral 1405

genotypes, again using the large set of intergenic barcodes. 1406

We obtain an estimate of the mean fitness between times 0 1407

and t by simply taking the negative log slope over many bar- 1408

codes, 1409

ˆ̄xi,t =−1
t

(
log( rt

Rt
)− log( r0

R0
)
)

As detailed in the previous section, it is advantageous to use 1410

robust forms of estimation to guard against the presence of 1411
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outliers. Groups of ∼100 randomly selected intergenic bar-1412

codes with ri,t< 500 were summed together to create "super-1413

barcodes", in order to improve individual estimates. The1414

mean fitness ˆ̄xi,t was estimated for each super-barcode sep-1415

arately, and then the final estimate ˆ̄xt was obtained by tak-1416

ing the median over all super-barcodes. The standard error1417

was estimated via the median absolute deviation between all1418

super-barcodes, analogous to equations 11-12. Again, the1419

point estimate ˆ̄xt is used for all downstream analyses, as1420

mean fitness error was consistently small.1421

S3.5 Identification of putative outlier barcodes. We ob-1422

served that some barcodes had trajectories that noticeably dif-1423

fered from the rest of the barcodes within the genotype, likely1424

caused by the presence of secondary (selected) mutations that1425

arose elsewhere in the genome or rare frequency fluctuations.1426

We observed outlier barcodes with both beneficial and dele-1427

terious trajectories relative to the rest of the barcodes within1428

the genotype. Problematically, some of these outlier bar-1429

codes were at high abundance relative to the other barcodes in1430

the genotype, thus dominating the genotype fitness estimate.1431

This necessitated a need to either accommodate outliers in1432

our fitness estimation procedure or detect and reject outliers.1433

We found that a number of robust estimators that we explored1434

(e.g. maximum median/trimmed likelihood) had unreason-1435

ably high variance in fitness given our data (std ŝ& ŝ). Thus,1436

we opted to use a method to detect and reject outlier barcodes1437

within genotypes. We based our outlier detection method on1438

the resistant diagnostic RDi introduced by Rousseeuw and1439

Leroy (1987) (52), a high-breakdown measure of statistical1440

deviation.1441

For every genotype with at nbc ≥ 4 unique barcodes, we1442

computed a fitness estimate for each barcode, ŝi, via max-1443

imum likelihood (eqs. 5-8). We then used a resampling1444

approach to randomly sample 200 different combinations of1445

nr = dnbc/2e barcodes, where samples are labeled J . To get1446

an estimate of the ’typical’ fitness, ŝJ,typ, of the barcodes1447

within a gene, we either take the weighted median (nr < 10)1448

or weighted trimmed mean (nr ≥ 10, trim 30% off each tail)1449

of the resampled barcode fitnesses, where in both cases, sam-1450

ples are weighted by their inverse variance, wi = 1/(var ŝi).1451

The weighted median is used for low number of samples,1452

while the trimmed weighted mean is used for high number1453

of samples, because the trimmed weighted mean generally1454

has lower sampling variance when the number of samples re-1455

maining after trimming is sufficiently large. To compare the1456

strength of evidence for a fitness of ŝi or ŝJ,typ for barcode1457

i, we compute the likelihood ratio,1458

LRJ,i = log Li(ŝi|ri)
Li(ŝJ,typ|ri)

The deviation of barcode i from the rest of the barcodes in1459

the genotype is then,1460

ui = max
J

LRJ,i
med
i

LRJ,i

The final resistant diagnostic is finally calculated as a stan- 1461

dardized version of ui, 1462

RDi = ui
med
i
ui

If RDi > cutoff, then barcode i is considered an outlier and 1463

thrown away. 1464

S3.5.1 Simulations. To determine an appropriate cutoff 1465

value, we performed simulations of the data generating 1466

process, and calculated the RD for each barcode within 1467

a simulated gene using the above method. Specifically, 1468

we simulated trajectories of lineage frequencies with s ∈ 1469

{−0.02,0,0.02} gen−1 with the standard diffusion approx- 1470

imation, assuming f � 1, 1471

∂tf = sf +
√

f

Ne
η(t)

〈η(t)〉= 0
〈η(t)η(t′)〉= δ(t− t′)

We ’observed’ trajectories at the end of each ’day’ (≈ 6.64 1472

gen) for 4 days, and added measurement noise, 1473

φt ≡
√
ft

φobst |φt ∼N (φt, ζ)

We used Ne = 108 day and ζ = 2 ∗ 10−8. We then grouped 1474

20 simulated lineages together into a ’gene’ (approximate 1475

median number of barcodes per gene in our libraries), with 1476

n ∈ {1,2,3} selected lineages (of the same sign), and the rest 1477

as neutral lineages. After calculating the RD for each sim- 1478

ulated gene, we calculated the true positive/negative rate for 1479

calling a lineage as an outlier for a given threshold (Figure 1480

S2). 1481

We can see that the method can sensitively detect relatively 1482

small, ∼2%, differences in fitness, while minimizing the 1483

number of neutral barcodes that are incorrectly thrown away. 1484

True positive rate decreases somewhat if there are multiple 1485

outlier barcodes within a gene, but the difference appears to 1486

be minimal, as expected from the construction of the RD as 1487

a high-breakdown deviance statistic. From the simulations, 1488

we chose a cutoff of 6, which only falsely throws out ∼5% 1489

of neutral lineages, while detecting ∼85− 95% of outliers. 1490

This threshold also seems to empirically work with our data, 1491

detecting at least the most obvious outliers (see e.g. Figure 1492

S3). 1493

S3.6 Consequences of potential barcode frequency 1494

biases. One major assumption of the above analyses is that 1495

the frequency of barcodes from BarSeq data represents an un- 1496

biased estimate of the actual frequency of barcoded cells in 1497

the population. While we expect this assumption to generally 1498

hold, there are two major ways that this assumption could be 1499

violated: (1) if barcodes are differentially amplified due to 1500

e.g. differences in GC content, and (2) if genomic regions 1501
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Fig. S2. (a) Detection of selected, outlier barcodes in otherwise neutral genes. Dotted lines are the true negative rate, solid lines are the true positive rate. (b) Average
inferred fitness (ie apparent fitness, differing from the true fitness by fluctuations) of barcodes with different RDs. Dotted lines are from neutral barcodes, solid lines are
outlier barcodes. ’Neutral’ barcodes with RD ≈ 6 have sufficiently large fluctuations to have trajectories that appear to have a 1% deviation from neutrality.

Fig. S3. Examples of high-abundance outlier barcodes detected in otherwise neutral genotypes. Red barcodes were called as outliers. Examples taken from an experiment
with the 6.5k S library in co-culture with L at the equilibrium frequency.

near the chromosomal origin of replication are present at a1502

higher copy number due to fast growth. Both types of biases1503

have been observed in some previous RB-TnSeq experiments1504

(28, 29). We can check for the presence of frequency biases1505

by comparing the inferred value of the error parameter κt1506

(see section S3.3) for barcodes with different GC contents1507

and across genomic positions, as biases in frequency mea-1508

surements will change the apparent strength of genetic drift.1509

We see that κt generally does not change across these con-1510

ditions (Figure S4), and thus the aforementioned sources of1511

frequency biases do not seem to be particularly prevalent or1512

strong in our system.1513

Of course, other unknown sources of frequency bias could1514

be present, or too weak to detect; but, under our inference1515

pipeline, biases in frequency would only affect the variance1516

of inferred s, not its expected value, as long as the bias across1517

time points remains constant. We can see this by considering1518

the deterministic (mean) dynamics of mutant frequencies f1519

in a population with m genotypes,1520

fi(t) = fi,0e
sit∑m

j fj,0e
sjt

We could then include a strain-specific, constant multiplica- 1521

tive bias parameter, γi. The observed frequencies would then 1522

follow, 1523

fi(t) = γifi,0e
sit∑m

j γjfj,0e
sjt

By observing these biased frequencies instead of the actual 1524

frequencies, we would infer si and γifi,0, therefore only bi- 1525

asing the nuisance intercept parameter. 1526

S4 Analysis 1527

S4.1 Correlation of fitness effects across environ- 1528

ments. To compute the correlation of knockout fitness ef- 1529

fects across environments for a given genetic background 1530
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Fig. S4. The measured noise parameter κj,k does not vary systematically over (a) genomic position, or (b) barcode GC content, indicating that these factors do not
measurably bias barcode frequency measurements. Data is from S/L/REL606 monoculture (1) experiments, replicate 1.

(main text Figure 3), we first removed genes with noisy fit-1531

ness effects (σs > 1%), then calculated the weighted pearson1532

correlation coefficient, where genes are labeled k and envi-1533

ronments are labeled i, j,1534

wk = 1/(var ŝi,k+ var ŝj,k) (13)

µ(x) =
∑
kwkxk∑
kwk

(14)

wcov(x,y;w) =
∑
kwk(xk−µ(x))(yk−µ(y))∑

kwk
(15)

ρi,j = wcov(ŝi, ŝj ;w)√
wcov(ŝi, ŝi;w)wcov(ŝj , ŝj ;w)

(16)

We then performed hierarchical clustering using Ward’s1535

method across environments for each genetic background,1536

with 1−ρi,j as the distance metric. Environment pairs with1537

ρi,j < 0 are set to 0 for the purposes of clustering, as there1538

were few negative correlations, and all were small.1539

We used a bootstrapping procedure to estimate the statistical1540

support for each cluster of environments. Using only the in-1541

tersection of genes that passed across all environments, we1542

performed standard resampling of genes with replacement,1543

and then repeated the correlation measurement of knockout1544

fitness values for each pair of environments. Then we re-1545

peated the hierarchical clustering and compared each branch-1546

ing of the original tree to the bootstrapped tree using the1547

method of (53). We repeated the resampling procedure 50001548

times for each genetic background and reported the average1549

support for each clade.1550

S4.2 Network of gene-by-gene correlations. To inves-1551

tigate potential relationships between genes in the different1552

strain investigated in our work, we sought to quantify the de-1553

gree of correlation of fitness measurements across all envi-1554

ronments between every pair of genes, a quantity that has pre-1555

viously been referred to as cofitness (29). Highly correlated1556

fitness measurements may indicate that genes are connected1557

via gene regulation. In order to account for the fact that the 1558

measurement error in fitness measurements varies between 1559

genes and environments, we computed the cofitness of every 1560

pair of genes i, j as the weighted pearson correlation coeffi- 1561

cient, where environments are labeled k, analogous to equa- 1562

tions 13-16. We excluded genes that were not called as sig- 1563

nificantly non-neutral in at least one experiment, and genes 1564

with successful fitness measurements in < 4 experiments. 1565

The vast majority of non-zero correlations are likely gener- 1566

ated by chance, due to the relatively small number of envi- 1567

ronments where fitness is measured. Therefore, for each pair 1568

of genes, we generated a null cofitness distribution through 1569

a resampling procedure performed 300 times, by (1) ran- 1570

domly permuting the fitness assignments for both genes, (2) 1571

resampling each fitness value such that ŝboot ∼ N (ŝ,std ŝ) 1572

("parametric bootstrapping"), and (3) recalculating cofitness 1573

via equations 13-16. We then compared the measured cofit- 1574

ness to the null distribution to generate a 1-sided p-value. Af- 1575

ter correcting the set of p-values with a Benjamini-Hochberg 1576

FDR correction, we considered gene pairs to be signficantly 1577

correlated at α = 0.05, effectively drawing an edge between 1578

the two genes in the cofitness network. 1579

After identifying statistically significant correlations between 1580

genes across environments, we sought to cluster genes into 1581

communities, without considering the magnitude or sign of 1582

the cofitness values. We used the ’Fluid Communities’ algo- 1583

rithm (42), as implemented in the networkx python pack- 1584

age (54), because of the flexibility of the algorithm, and 1585

the resulting communities had the highest modularity of all 1586

community-finding algorithms we explored. As the fluid 1587

communities algorithm is initialized stochastically, and re- 1588

quires pre-specifying k communities, we ran the algorithm 1589

on our data across varying community sizes, k ∈ [4,20], with 1590

200 replicates for each k (Figure S16). We then picked the 1591

communities with the highest modularity for each genetic 1592

background. For the purposes of community finding, we 1593

treated all significant edges as the same, without consider- 1594

ing the actual cofitness value of the edge. All community 1595
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sets found had modularity > 0, indicating that genes were1596

more tightly connected within their community compared to1597

between communities.1598

Standard gene ontology enrichment analysis was performed1599

on each community in each genetic background with the1600

goatools python package (55), using Fisher’s exact test to1601

find significantly over-represented annotations in a gene set,1602

with an FDR correction and α= 0.05.1603

We sought to check if variance in fitness across environments1604

for any given knockout could predict if two genes would stay1605

in the same cluster across genetic backgrounds, as a control1606

for the observed correlation with EcoliNet score. We average1607

fitness variance across environments over the two knockouts1608

of interest, referring to the quantity as 〈var(s)〉. We fit a lo-1609

gistic model with normalized EcoliNet score of the gene pair,1610

nscore ≡ score/stdscore and nvar ≡ 〈var(s)〉/std〈var(s)〉1611

as the predictors (standard deviation is taken over all knock-1612

out pairs), and the probability that the two genes are together1613

in strain 2, if they were together in strain 1 as the response1614

variable, logpi/(1−pi) = nscoreβscore+nvarβvar+β0 +1615

εi. The results are shown in Figure S22.1616

It is known that community detection algorithms can have1617

potential surfaces with large plateaus without a clear max-1618

imum, i.e. can give many solutions with similar modularity1619

but different groupings (56). We wanted to see if the observed1620

(mostly) "random reassortment" of genes among clusters be-1621

tween genetic backgrounds could be explained by this effect.1622

Thus, we compared the optimal partition of each background1623

to the 100 next-best partitions across all backgrounds (Figure1624

S17). For each suboptimal partition, we asked if two genes1625

were in the same cluster in the optimal partition, what is the1626

probability that they are also in the same cluster in the sub-1627

optimal partition. We see that if we compare partitions in1628

the same genetic background, this probability is around 40%,1629

while it is around 10% when comparing partitions across1630

background. This suggests that different reasonable parti-1631

tions of the cofitness networks are much more similar within1632

genetic backgrounds than between backgrounds. We also1633

re-ordered the genes of the cofitness network such that they1634

followed the ordering of another genetic background’s opti-1635

mal partition (Figure 4B). It is apparent that replotting the1636

cofitness matrix using another genetic background’s cluster-1637

ing does not produce noticeable structure. Together, these1638

results suggest that while different reasonable partitions can1639

give slightly different clusters, the observed reassortment of1640

knockout fitness correlations among backgrounds cannot just1641

be explained by failures of the community detection algo-1642

rithm. We also investigated the extent to which the struc-1643

ture of our cofitness networks was driven by measurement1644

noise (Figure S18). We leveraged the fact that we had at least1645

two biological replicates per experiment, and computed new1646

cofitness networks (in the same manner as described above),1647

only using either biological replicate "1" or "2". We can see1648

that even when the data is independently split, the cofitness1649

networks within a genetic background are more similar than1650

between backgrounds.1651

S4.3 Genome evolution. We sought to understand if 1652

knockout fitness measurements could predict the probability 1653

that a gene would mutate in the LTEE. To that end, we down- 1654

loaded clonal sequencing data from Tenaillon et al. (2016) 1655

(46), where the authors isolated and sequenced clones from 1656

a number of time points across all 12 lines of the LTEE, and 1657

identified mutations relative to the REL606 ancestor. We ex- 1658

cluded synonymous SNPs from our analysis. A representa- 1659

tion of the raw data can be found in Figure S26. 1660

We then sought to understand if knockout fitness effects can 1661

predict if a mutation will appear in a gene in the Tenaillon 1662

et al. dataset, as a proxy for establishment. For REL606, 1663

classified a gene as mutated if a mutation appeared in one of 1664

the 12 LTEE lines (excluding mutator populations). For S and 1665

L, we classified genes as mutated only if they were present 1666

in the appropriate sublineage, i.e. in REL11830, REL11036 1667

or REL11831, REL11035 for S and L respectively. We also 1668

excluded mutations that were already present in our S and 1669

L clones, which we determined from clonal sequencing data 1670

from Plucain et al. (2014) (35). We then fit a logistic model 1671

with knockout fitness effect as the predictor variable and gene 1672

mutated status (between time points) as the response variable, 1673

logpest,i/(1−pest,i) =±s̃iβest±+β0 + εi

We fit two different coefficients for beneficial and deleteri- 1674

ous mutations in each environment, βest+ and βest− respec- 1675

tively. We only include genes that are putatively neutral, i.e. 1676

|s|< 0.005 and not called as significantly non-neutral, along 1677

with genes that are either significantly beneficial or delete- 1678

rious, all at significance level α = 0.05. We normalized the 1679

fitness values by the median value of the non-neutral genes, 1680

i.e. 1681

s̃i = si
med
i/∈neutral

si
(17)

We use the logistic model implementation in the 1682

statsmodels python package (57). We used the 1683

standard method of Benjamini & Hochberg to control for 1684

the false discovery rate, pooling all tests across beneficial 1685

and deleterious coefficients. To test if there is a significant 1686

difference between REL606 logit slopes at 0-5k and 5-20k, 1687

we employed a permutation test. To construct a null distri- 1688

bution of the difference in slopes, for each gene we shuffled 1689

whether it ’established’ (0 or 1) between 0-5k and 5-20k and 1690

recomputed the regression coefficients 1000 times, recording 1691

the difference. We then compared the actual difference in 1692

coefficients to the null distribution to get p-values. 1693

S4.4 Changes in gene expression. We used a microar- 1694

ray gene expression dataset previously reported by Le Gac et 1695

al. (2012) (34) to compare to our knockout fitness measure- 1696

ments, downloaded from the NCBI Gene Expression Om- 1697

nibus (58), importing data with GEOquery (59). We pri- 1698

marily used the GEO2R tool to process the raw microarray 1699

data along with the R package limma (60, 61). After ap- 1700

plying a log2 transform to the data, we ensured that all col- 1701
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lected samples had approximately the same intensity distri-1702

butions by performing a quantile normalization. Then, pool-1703

ing all replicates within a strain, we fit a linear model to our1704

data to determine the relative log-fold change in expression1705

between different strains, taking into account the measured1706

mean-variance relationship. A representation of the raw data1707

can be found in Figure S25.1708

We then fit a linear model investigate if there was a relation-1709

ship between fitness measured in a given environment, si,1710

and log-change in gene expression between evolutionary time1711

points ∆Ei, such that1712

∆Ei =±s̃iβexp±+β0 + εi

Similar to the gene establishment model, we fit two differ-1713

ent coefficients for beneficial and deleterious mutations in1714

each environment, βexp+ and βexp− respectively. We only1715

include genes that are putatively neutral, i.e. |s|< 0.005 and1716

not called as significantly non-neutral, along with genes that1717

are either significantly beneficial or deleterious, all at signif-1718

icance level α = 0.05. We normalized the fitness values by1719

the median value of the non-neutral genes, in the same man-1720

ner as equation 17. We fit the model with weighted least1721

squares, as implemented in the statsmodels python pack-1722

age (57), with weights wi ∝ 1/var∆Ei, to incorporate the1723

fact that there are different levels of measurement error in1724

the log-fold change expression for each gene. We used the1725

standard method of Benjamini & Hochberg to control for the1726

false discovery rate, pooling all tests across beneficial and1727

deleterious coefficients.1728
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Fig. S5. Statistics of RB-TnSeq libraries, (A) initial distribution of barcode frequencies in library populations, and (B) distribution of number of unique barcoded transposon
insertions into each gene (cds).

Fig. S6. Frequency trajectories of mixed culture experiments from CFUs. For each coculture experiment, we diluted and plated cultures on both TM plates (S/L indicator
plates) and LB/Kan plates (pulls out cells from the RB-TnSeq libraries). We didn’t plate experiments "S/L in maj (1)" on LB/Kan plates because we only cocultured wt S/L with
L/S RB-TnSeq libraries respectively. Please note that each subplot is on a different scale.
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Fig. S7. Measured S/L frequency dependent fitness and ecological equilibrium via CFUs on TM plates (S/L indicator plates). Cocultures of S and L wt clones were propagated
in standard LTEE conditions.
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Fig. S8. All measured DFEs across experiments, arranged by environment.
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Fig. S9. Comparison of fitness effects; identical to Figure 1F in the main text, except we highlighted all genes in mutated operons. It is still the case that there are many genes
that did not get a mutation in their operon, but still changed from a beneficial to non-beneficial fitness effect across genetic backgrounds.
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Fig. S10. Frequency-dependent knockout fitness effects for both 6.5k S and L. (A) Similar to Fig 2A in main text, except comparing fitness at ecological equilibrium to fitness
when the ecotype is in the minority. (B) Changes in summary statistics of the DFE as a function of ecotype frequency. Solid lines represent the beneficial side of the DFE,
while dashed lines represent the deleterious side.
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Fig. S11. Fitness effect sign-flipping across environments. Same as Figure 2C (main text), but (post-FDR correction) p-value cutoff is reduced from 0.05 to (A) 10−3 or (B)
10−5

Fig. S12. Fitness effect sign-flipping across environments. Same as Figure 2C (main text), but we only consider genes non-neutral with fitness (A) |s|> 1% or (B) |s|> 2%
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Fig. S13. Fitness effect correlations between strains.

Fig. S14. Fitness effects of (A) sufABCDSE and (B) proVWX operons in REL606 and 6.5k L/S.
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Fig. S15. Fitness effects of knockouts across environments, where knockouts are beneficial in at least one condition on the (A) REL606, (B) 6.5k S, (C) 6.5k L background.

Fig. S16. Modularity of cofitness clusters, across 200 (stochastic) initializations for different numbers of communities from 4−15.
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Fig. S17. We compared the optimal partition of the REL606/S/L cofitness networks to the next 100 best (but suboptimal) partitions, also shown in Figure S16. For each
suboptimal partition, we asked if two genes were in the same cluster in the optimal partition, what is the probability that they are also in the same cluster in the suboptimal
partition. We can see that if we compare partitions in the same genetic background, this probability is around 40%, while it is around 10% when comparing partitions across
background. This suggests that different reasonable partitions of the cofitness networks are much more similar within genetic backgrounds than between backgrounds.
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Fig. S18. In order to better understand the extent to which the structure of our cofitness networks is driven by measurement noise, we re-computed the cofitness networks,
only using one of the biological replicates per experiment for every experiment. We then computed the correlation of all cofitness values across all networks. We can see that
even when the data is independently split, the cofitness networks within a genetic background are more similar than between backgrounds. In the figure, R, S and L refer to
REL606, 6.5k S/L libraries, respectively, and 1 and 2 refer to using only biological replicates "1" and "2" from each experiment.
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Fig. S19. In order to explore how clusters of genes changed across genetic background, we calculated the fraction of genes in a given cluster that belong to a cluster in a
different genetic background. We see that clusters are mostly not preserved between genetic backgrounds, with the exception of the clusters marked by asterisks, which
show non-random sampling across genetic backgrounds (* p < 0.05, ** p < 0.005, *** p < 10−4; Pearson’s chi-squared test). †set of clusters across all three genetic
backgrounds which share more genes than expected, driven primarily by adhesion-related genes.
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Fig. S20. Biofilm (GO:0043708)/adhesion (GO:0022610)/ pilus organization (GO:0043711)/ organonitrogen compound biosynthesis (GO:1901566) genes tend to appear in
the same clusters across genetic backgrounds. P-values are post-FDR correction.

Fig. S21. Correlations between cofitness increase (A) when genes are in the same operon and (B) with EcoliNet (45) score. A score of 0 indicates that the gene pair is not
connected in EcoliNet, i.e. a node distance greater than 1.
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Fig. S22. Variance in fitness effect across environment does not fully explain correlation between EcoliNet score and probability that two genes will be in the same cluster
across strains. (A) Covariation of EcoliNet scores and variations in fitness effects in some strain pairs. The observed covariation is interesting in and of itself, as it suggests
that more strongly interacting genes tend to have a larger variation in fitness effects across environments. (B) A standard multiple logistic regression with both fitness variance
(in strain 2) and EcoliNet score as covariates, with response variable as the probability two genes are in the same cluster in strain 2, if they were together in strain 1. For most
strain pairs, the regression reveals that the correlation reported in Figure 4D still holds after controlling for variation in fitness effects. * p < 0.05. See section S4.2 for model
details.

Fig. S23. Shortest distance between genes in EcoliNet (45) predicts if genes stay correlated across genetic background
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Fig. S24. Relationship between deleterious mutations and evolutionary outcomes. (A) Deleterious fitness effects generally do not predict which genes will mutate, with the
one exception that L seems more likely than random to get mutations in genes with deleterious acetate knockout fitness. (B) In REL606, deleterious knockout fitness effects
are predictive of increased gene expression across all tested environments. In S and L, deleterious fitness effects tend to be associated with an increase in gene expression
between 0 and 6.5k generations. Asterisks denote coefficients that are significantly different than 0 (* p < 0.05, ** p < 0.01, *** p < 0.001).
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Fig. S25. Relationship between fitness effects and log-fold gene expression change for all experiments, relative to the average change for neutral knockouts. Lines show
mean gene expression change as a function of fitness effect (± standard error), with a±0.01 moving average.
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Fig. S26. Establishment of a mutation in a gene by its knockout fitness.

Fig. S27. Fitness effects predict EcoliNet node degree. Deleterious knockouts across environments are more likely to have a high degree compared to neutral knockouts.
The same general pattern appears for beneficial knockouts, although less clearly. Linear model fit with ordinary least squares; normalized analogous to model in section
S4.4. Asterisks denote coefficients that are significantly different than 0 (* p < 0.05, ** p < 0.01, *** p < 0.001).
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