
Quantifying the Local Adaptive Landscape of a
Nascent Bacterial Community

Joao A Ascensao1, Kelly M Wetmore2, Benjamin H Good3, Adam P Arkin1,2, and Oskar Hallatschek4

1Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
2Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA

3Department of Applied Physics, Stanford University, Stanford, CA, USA
4Departments of Physics and Integrative Biology, University of California Berkeley, Berkeley, CA, USA

The fitness effects of all possible mutations available to an or-1

ganism largely shapes the dynamics of evolutionary adaptation.2

Tremendous progress has been made in quantifying the strength3

and abundance of selected mutations available to single micro-4

bial species in simple environments, lacking strong ecological5

interactions. However, the adaptive potential of strains that6

are part of multi-strain communities remains largely unclear.7

We sought to fill this gap by analyzing a stable community of8

two closely related ecotypes ("L" and "S") shortly after they9

emerged within the E. coli Long-Term Evolution Experiment10

(LTEE). We engineered genome-wide barcoded transposon li-11

braries to measure the fitness effects of all possible gene knock-12

outs in the coexisting strains as well as their ancestor, for many13

different, ecologically relevant conditions. We found that the14

fitness effects of many gene knockouts sensitively depends on15

the genetic background and the ecological conditions, as set by16

the abiotic environment and relative frequency of both ecotypes.17

Despite the idiosyncratic behavior of individual knockouts, we18

still see consistent statistical patterns of fitness effect variation19

across both genetic background and community composition.20

Genes that are in the same operon, or that strongly interact21

with each other, are more likely to be correlated with each other22

across backgrounds compared to random pairs of genes. Ad-23

ditionally, fitness effects are correlated with evolutionary out-24

comes for a number of conditions, possibly revealing shifting25

patterns of adaptation. Together, our results reveal how ecolog-26

ical and epistatic effects combine to drive adaptive potential in27

a nascent ecological community.28
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Introduction32

Microbial communities are ubiquitous across all environ-33

ments, and are key players in disease processes, biogeochem-34

ical cycling, and ecosystem functioning (1–6). While most35

research on natural microbiomes has been fueled by their36

ecological significance, recent studies have begun to focus37

on microbial community evolution and uncovered clear signs38

of adaptation and diversification (7–10). Thus, microbiome39

assembly, structure, and function may have to be understood40

against a backdrop of an ever-churning evolutionary dynam-41

ics.42

That evolutionary and ecological changes often go together43

has been most clearly shown in controlled experiments on44

synthetic microbial communities: evolution can change the45

way microbes consume resources or otherwise interact with 46

each other (11–15). This leads to environmental changes that 47

modify selection pressures, forcing lineages into new evolu- 48

tionary paths (16–21). Complex adaptive landscapes have 49

been hypothesized to chiefly shape the feedback between 50

ecology and evolution in microbial communities (19, 22), 51

but it is still unclear how diversification and other ecologi- 52

cal shifts change those landscapes. 53

In ecologically simple monoculture populations, population 54

genetic theory has shown that the evolutionary dynamics are 55

largely predictable from knowing local aspects of a static fit- 56

ness landscape, encoding the fitness effects of all currently 57

available mutations, which is called the "distribution of fit- 58

ness effects" (DFE) (23–28). Such work has been successful 59

in rationalizing and predicting outcomes of evolution experi- 60

ments from DFE measurements (29, 30). 61

High-quality measurements of the DFE in a given system 62

require sampling and measuring the fitness effects of suffi- 63

ciently many mutations across the genome. This has only 64

become possible recently, due to the rise of sequencing tech- 65

nologies. DNA barcoding systems have become especially 66

influential to better understand microbial adaptive evolution. 67

By taking advantage of amplicon sequencing methods to 68

measure barcode frequency dynamics, these systems have 69

been used with great success to directly observe evolution- 70

ary dynamics (30–33), and identify selected mutations and 71

the statistical patterns that characterize them (34–39). 72

However, the concept of a single, static DFE may not be ap- 73

plicable or useful to describe a diversified population. It is 74

possible that different ecotypes experience different adaptive 75

landscapes, even if they are closely related, which moreover 76

may shift in response to compositional or other ecological 77

changes. Despite the importance of microbial communities, 78

very little is known about how much the local landscape de- 79

pends on biotic interactions with their coexisting strains ver- 80

sus genetic background alone, and how those patterns shift 81

upon diversification. 82

Here we aim to elucidate the adaptive landscape of a micro- 83

bial community by measuring how the invasion fitness ef- 84

fects of a large panel of mutations depends on the state of the 85

ecosystem. Invasion fitness refers to the growth rate of a mu- 86

tant relative to its ancestor when the mutant is rare in the pop- 87

ulation. To sample from the DFE, we create genome-wide 88

knockout libraries via random-barcoded transposon mutage- 89

nesis (40, 41) on the backgrounds of the coexisting ecotypes. 90
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While knockout mutations do not represent all possible mu-91

tations in the genome, this approach allows us to sample a92

wide variety of mutations across the genome and to com-93

pare the effect of the same mutation across different genetic94

backgrounds and community compositions. The resulting95

ecotype-, and composition-dependent DFE statistically char-96

acterizes the abundance and specificity of beneficial muta-97

tions and, thus, reveals how the rate and pattern of mutation98

accumulation depends on the state of the ecosystem.99

We reasoned that the ecologically-dependent DFEs accessi-100

ble by our approach are particularly relevant to the fate of a101

recently diversified ecosystem, consisting of closely related102

ecotypes with overlapping niches. Additionally, quantifying103

the DFEs of such a nascent community would shed light on104

how the discovery and infiltration of a new niche changes105

the local adaptive landscape, in both focal and "nearby" envi-106

ronments. The composition-dependence of the DFE would107

also provide information on the types of mutations avail-108

able to the community–"pure fitness" mutations would show109

minimal fitness changes in response to composition shifts,110

whereas frequency-dependent mutations may point to shifts111

in niche occupation/strategy. Theory suggests that the rela-112

tive availability of "pure fitness" versus frequency-dependent113

mutations may strongly influence the resulting evolutionary114

dynamics, but there have been few empirical measurements115

of how many mutations show frequency-dependent effects116

(19).117

We therefore chose to focus on a model ecosystem that118

spontaneously emerge.d in the course of the E. coli Long119

Term Evolution Experiment (LTEE) – an experiment that has120

tracked the evolution of several E. coli populations over the121

course of over 70,000 generations (at the time of writing).122

Early in the LTEE, it was recognized that one of the twelve123

lineages, the ara-2 population on which we focus in this124

study, spontaneously diversified into two lineages that coex-125

ist via negative frequency dependence, termed S and L (for126

their small and large colony sizes on certain agar plates) (42).127

S and L coexist by inhabiting different temporal/metabolic128

niches in the LTEE environment, set up as serial dilutions129

in glucose minimal media–L grows more quickly on glucose130

during exponential phase, while S specializes on stationary131

phase survival and utilizing acetate, a byproduct of overflow132

metabolism (43, 44). Following diversification, the lineages133

have persisted to this day and continued to evolve and adapt,134

diverging on genetic, transcriptional, and metabolic levels135

(16, 42–47). While our focal ara-2 line is the best studied136

case of diversification in the LTEE, it is not the only one.137

Recent time-resolved metagenomic sequencing of the LTEE138

has shown that, in fact, 9 out of the 12 populations evolved139

two separate lineages that coexisted with each other for tens140

of thousands of generations, while continuing to accumulate141

mutations and adapt (47), demonstrating that spontaneous142

diversification followed by coevolution is a major adaptive143

route for this system.144

Results 145

Measuring knockout fitness effects. We sought to mea- 146

sure the knockout fitness effects available to the small LTEE- 147

derived ecosystem of S and L, and how they depend on eco- 148

logical conditions, specifically, (i) the composition of the 149

community, and (ii) openness of a given metabolic niche. 150

To this end, we created randomly barcoded transposon li- 151

braries of three LTEE clones, using previously developed 152

methods (RB-TnSeq) (40, 41)–S and L clones sampled from 153

6.5k generations, right after diversification (16, 42), and their 154

LTEE ancestor, REL606 (Figure 1A). We used these libraries 155

to measure the knockout fitness effects of nearly all non- 156

essential genes in various environments relevant to the evolu- 157

tion of the population in the LTEE (Table 1), by propagating 158

the libraries in defined conditions (with two biological repli- 159

cates per experiment) and using Illumina amplicon sequenc- 160

ing to track the frequency trajectories of different barcodes 161

(Figure 1B). By essentially measuring the log-slope of the 162

frequency trajectories, we can estimate the fitness effect, s, 163

of a given mutant (Figure 1C), which we report in units of 164

1/generation. Transposon insertion events were highly re- 165

dundant, with a median of ∼20 insertions per gene, allowing 166

us to combine information from multiple barcode trajecto- 167

ries into one fitness measurement through our statistical fit- 168

ness inference pipeline and identify significantly non-neutral 169

mutations (FDR correction; α = 0.05). We carefully quanti- 170

fied sources of error in barcode frequency measurements and 171

propagated them to our fitness estimates, which was crucial 172

to effective and accurate analysis of the data (see supplement 173

section S3)–for example, we could exclude knockouts with 174

overly noisy fitness measurements, or weight measurements 175

by their error. 176

Barcoded transposon mutagenesis has been successfully and 177

consistently used to measure knockout fitness effects across 178

many contexts (40, 41), but as the knockouts are not bonafide 179

deletions, it is possible that some genes with transposon in- 180

sertions retain some activity. However, the fact that we have 181

multiple transposon insertions spread across the length of 182

each gene, along with our outlier barcode detection scheme, 183

allows us to be more confident that our fitness measurements 184

are dominated by the typical effects of an insertion. 185

After inferring the fitness effect of each gene knockout, we 186

can compare fitness effects across genetic backgrounds and 187

environments. We can first look at knockout fitness effects in 188

the evolutionary condition proxies–the closest approximation 189

to the environment where evolution in the LTEE took place: 190

the REL606 library in monoculture, and S and L libraries 191

together, coexisting at the ecological equilibrium frequency. 192

We chose to highlight the condition where S and L were co- 193

existing at their ecological equilibrium to be able to distin- 194

guish environmental versus genetic contributions to fitness 195

effects–the libraries were cocultured together, in the same 196

flasks, thus experiencing the same environment. In cocul- 197

ture experiments, the S/L libraries are mixed in the minority 198

together with wild-type S/L clones at the desired frequency 199

(see supplement section S2). The ecotype frequencies do not 200

change considerably over the time period considered (Figure 201
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Fig. 1. Measuring mutational fitness effects. (A) Timeline of evolution in the ara-2 LTEE population, showing mutation accumulation and diversification into S and L around
6k generations, then clone sampling at 6.5k generations; data from (47), jitter added to mutation fixation time for easier visualization. Hypermutator phenotype appeared
around 2.5k generations (48). (B) Schematic of transposon mutagenesis process to generate barcoded libraries of REL606, 6.5k S and L, as well as experimental procedure
to observe barcode dynamics. (C) Barcoded knockout mutant frequency trajectories in the evolutionary condition for each genetic background, colored by estimated fitness.
All barcodes within a gene were summed together; shown are the trajectories from replicate 1 in the evolutionary condition for each genetic background (monoculture for
REL606, together at ecological equilibrium frequency for S and L; representative of both replicates). (D) Overall distributions of fitness effects in the evolutionary condition for
each genetic background. The majority of knockouts were neutral, so only genes that were called as significantly non-neutral were included (see supplement section S3.2).
(E) Replicate-replicate correlation of estimated fitness effects. (F) Comparison of knockout fitness effects across genetic backgrounds, which are generally uncorrelated.
Points with a blue interior correspond to genes that were mutated (excluding S-SNPs) in 6.5k S/L relative to REL606 (sequencing data from (46)). Points with red outlines
correspond to genes that were mutated in parallel in nonmutator LTEE populations (data from (47)). The correlation coefficients decrease slightly if we recompute them,
excluding likely neutral genes (ρ = 0.14, 0.03, 0.03; top to bottom). In panels E-F, knockouts with high measurement noise (σs > 0.3%) were excluded (except for labeled
genes), and ρ is the weighted pearson correlation coefficient. Also in panels E-F, the "cloud" of points around 0 mostly represents likely neutral knockouts.

S7).202

If we look at the overall DFE in the evolutionary condition203

proxies, we see that REL606 has access to beneficial knock-204

outs of much larger effect size than either S or L (Figure205

1D), suggesting that REL606 would adapt much quicker than206

S or L. Additionally, S has a larger beneficial DFE com-207

pared to L, which may be because S is starting to exploit208

an under-utilized niche (acetate specialization), where more209

significant gains can be made by improving the exploitation210

of the niche. On the other hand, L has inherited the putative211

old niche (glucose specialization), which was presumably the212

primary target of adaptation during the first ∼6k generations213

of evolution. As previously mentioned, the overall shape of214

the DFE largely controls the instantaneous speed of adapta-215

tion (23–28). The evolutionary tendency towards a "shrink-216

ing DFE" is known as global diminishing returns epistasis,217

which has previously been proposed as a mechanism to ex-218

plain the decelerating fitness trajectories of the LTEE popula-219

tions (49, 50). While diminishing returns epistasis was previ-220

ously observed to affect the first couple common LTEE mu-221

tations (51), global diminishing returns (affecting the whole222

DFE) after the accumulation of many mutations had not yet223

been directly observed.224

We can also compare the fitness effects of each knockout 225

mutation both between replicates and across genetic back- 226

grounds (Figure 1E-F), to contrast within-sample to between- 227

sample variance. In contrast to a strong replicate-replicate 228

correlation, we see that fitness effects are largely uncorre- 229

lated between genetic backgrounds. It may be unsurpris- 230

ing that mutational effects of S and L are uncorrelated with 231

those of their ancestor, as REL606 may be creating and ex- 232

periencing a slightly different environment compared to S 233

and L, even though they were all started in the same me- 234

dia. However, as previously mentioned, we measured the 235

fitness effects of S and L while they were coexisting in the 236

same flasks, so the two ecotypes were experiencing the ex- 237

act same environment. Thus, the lack of correlation between 238

the fitness effects of S and L must be due to epistatic effects. 239

It appears that individual mutations behave idiosyncratically 240

despite statistical patterns of epistasis, in contrast with pre- 241

vious experiments (51, 52) which saw diminishing returns 242

both globally and with individual mutations. Most knock- 243

out mutations that were strongly beneficial in REL606 and 244

then acquired a mutation in that gene in the 6.5k S/L back- 245

ground became effectively neutral when knocked out in S/L 246

(nadR, pykF, ybaL, ygaZ); it makes sense that mutating a gene 247
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that was already mutated (with a fitness effect) wouldn’t have248

an effect, if the mutation was effectively a loss-of-function.249

One gene, spoT, was beneficial in REL606 but deleterious250

in both S and L when knocked out, indicating that the natu-251

ral spoT SNP may represent a change-of-function rather than252

a loss-of-function mutation. However, the majority of se-253

lected genes in REL606 were not mutated between 0 and 6.5k254

generations in S/L, so the fact that their fitness effects sig-255

nificantly changed across genetic background implicates the256

role of widespread, global idiosyncratic epistasis. Further-257

more, there are several genes that were mutated in parallel in258

multiple lines of the LTEE, but are only beneficial on the S259

background (trkH, ybbN) or both the S and L backgrounds260

(fadL) when knocked out, while being neutral or deleterious261

on the REL606 background, suggesting that predictable epis-262

tasis could have shaped which mutations became beneficial263

in the LTEE. ’Coupon collection’ is a null model of muta-264

tion accumulation/epistasis, where a beneficial DFE is com-265

posed of a finite number of mutations, and only changes due266

to the depletion of those mutations when they fix in a pop-267

ulation. While the coupon collecting model is clearly rele-268

vant for some mutations, the lack of fitness effect correlation269

between genetic backgrounds seems to be largely driven by270

global epistasis.271

As a simple check, we compared the fitness effect of one of272

the largest effect knockouts in our collection, pykF, to pre-273

viously collected data. We reanalyzed data from Peng et274

al. (2018) Mol Biol Evol (53) (to recalculate fitness using275

the metric that we use) and found that their pykF deletion276

mutant had a selective coefficient s ≈ 4%, compared to our277

measurement s ≈ 12%; the highest fitness effect of a pykF278

nonsynonymous mutation on the ancestral background was279

s ≈ 9%, which is similar to our measurement. Additionally,280

our measured fitness effect of pykF is quite consistent—it is281

approximately the same across all replicates in the Mono 1282

and 2 experiments in REL606 (performed on different days).283

And all of the individual barcodes that landed in pykF appear284

to have approximately the same slopes. One possibility to285

describe the discrepancy could be the presence of frequency286

dependent fitness effects—the strength of selection may be287

higher when the mutant is rare (as is the case in our data),288

compared to when it occupies a sizable portion of the popu-289

lation (as in Peng et al. 2018). Another possibility could be290

that transposon insertions did not completely eliminate pykF291

activity, as it would in a deletion.292

Knockout fitness effects strongly depend on ecologi-293

cal conditions. The ecological interactions between S and294

L are mediated through the environment, most likely pri-295

marily through cross-feeding (43, 44). Therefore, it’s rea-296

sonable to think that the environment will change with the297

ecosystem composition, which could be modified by both298

ecological and evolutionary processes–indeed, ecotype com-299

position does change significantly and relatively rapidly over300

evolutionary time (∼1k-10ks generations) (42, 47). Thus, we301

sought to explore how mutational fitness effects varied with302

ecosystem composition (Figure S7). Notably, we see a con-303

sistent trend where fitness effects generally have a smaller304

magnitude when S and L are in monoculture compared to 305

when they are in coculture (Figures 2A, S11A). Addition- 306

ally, we also see that the overall shape of the DFEs change 307

as a function of frequency, with generally larger fitness ef- 308

fects when the ecotype is in the minority, for both beneficial 309

and deleterious knockouts (Figures 2B, S11B). Analogous to 310

the case of global diminishing returns epistasis, this observa- 311

tion holds on a statistical level, but does not explain all of the 312

fitness effect variation between the different conditions, im- 313

plying that individual mutations are affected by the ecosys- 314

tem composition in idiosyncratic ways–statistical properties 315

of the DFE seem to be strongly dependent on the ecosys- 316

tem composition, but the effects of individual mutations may 317

depend on their underlying physiological consequences and 318

how they affect ecological interactions. Thus, it appears that 319

the impact of both ecotypes on the environment is different 320

enough to make selection pressures strongly dependent on 321

the current mixture of ecotypes. 322

The LTEE environment, while relatively simple, varies quite 323

significantly over the course of a single cycle (43, 54), allow- 324

ing ecotypes to carve out different temporal ecological niches 325

during cycles of lag, exponential, and stationary phases. To 326

explore how selection pressures vary in different niches in 327

the growth cycle, we measured fitness in exponential growth 328

on glucose and acetate (which appears in the LTEE environ- 329

ment due to overflow metabolism), and at a reduced dilution 330

rate of 1:10 such that portion of the growth cycle in station- 331

ary phase is increased (Table 1). We found that the shape 332

of the DFE changed substantially based on the environment 333

(Figures 2B). For example, while S and L have a similar ben- 334

eficial DFE shape in monoculture, L has access to stronger 335

beneficial knockout mutations in glucose exponential phase 336

compared to S. As another example, the beneficial DFE in ac- 337

etate is larger than any other DFE in both S and L, potentially 338

pointing to a substantial, as-of-yet unrealized adaptive poten- 339

tial for adaptation on acetate. Interestingly, despite the envi- 340

ronmental variation, REL606 always has a more pronounced 341

beneficial DFE compared to S and L. 342

It is important to note that measurement noise varied non- 343

negligibly across experiments, primarily because of changes 344

in bottleneck size (and thus in the strength of genetic drift) 345

due to differences in library frequency and and other exper- 346

imental differences (see supplement section S2). Thus, our 347

power to detect selected mutations close to neutrality varied 348

across experiments. 349

In contrast to previous work (35), it appears that there is 350

no consistent relationship between background fitness and 351

shape of the deleterious DFE, which instead appears to de- 352

pend more on environment. Possible reasons for the discrep- 353

ancy include species-dependent differences, and the fact that 354

our set of experiments used backgrounds connected by evolu- 355

tion, while Johnson et al. used evolutionarily unrelated yeast 356

hybrids with varying fitness in the test environment, whose 357

changing DFEs were not controlled by evolution. One possi- 358

ble evolutionary explanation could be second-order selection 359

against mutants with wider deleterious DFEs, because those 360

mutants would be more likely to pick up a deleterious hitch- 361
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Fig. 2. Statistical properties of DFEs as well as effects of individual mutations sensitively depend on environment. (A) Knockout fitness effects tend to have a larger
magnitude when S and L are at ecological equilibrium versus when they are in monoculture. Line shown is a rolling average of fitness effects± standard error. (B) Distribution
of fitness effects across environments, where we only included knockouts that were called as significantly non-neutral. Please note that the DFEs of REL606 are on a different
scale than S and L. (C) Illustration of how the sign of fitness effects changes across environments. Few mutations are unconditionally beneficial or deleterious, many are
non-neutral only in one or few environments, and sign-flipping of fitness effects across environments is pervasive. REL606 only has 4 unique environments, compared to 6
for S and L. Size of circle is proportional to number of genes that fall into each class.

Experiment Libraries Same flasks? Description 〈fS〉
Mono R, S, L N Library monoculture
1:10 dil R, S, L N Library monoculture, 1:10 daily dilution
Glu exp R, S, L N Library monoculture, kept in glucose exponential phase
Ac exp R, S, L N Library monoculture, kept in acetate exponential phase
Eco Eq 1 S, L Y S + L libraries with wt L at ecological equilibrium 0.15
Eco Eq 2 S N S library with wt S + L at ecological equilibrium 0.17
Eco Eq 2 L N L library with wt S + L at ecological equilibrium 0.21
L in maj S N S library with wt L in majority 0.08
S in maj 1 L N L library with wt S in majority 0.97
S in maj 2 S, L Y S + L libraries with wt S in majority 0.98
S in maj 3 L N L library with wt S in majority 0.97

Table 1. Summary of BarSeq experiments reported in this work. Dilution rate was variable in the glucose/acetate exponential phase experiments, to keep the populations
in exponential phase (see supplement section S2), but unless otherwise noted, the daily dilution rate was 1:100, consistent with the LTEE condition. All experiments were
performed in the LTEE media, DM25, except for the acetate exponential phase experiment. The abbreviations R, S, and L refer to REL606, and 6.5k S/L, respectively. In
coculture experiments, 〈fS〉 is the total frequency of S, averaged over all time points and replicates.

hiker mutation along with any beneficial driver mutation.362

In addition to the strong dependence of the macroscopic363

DFE on environment, it appears that the fitness effects of364

individual mutations can also change radically by environ-365

ment. Strikingly, in the set of considered environments,366

conditional non-neutrality and sign-flipping appear to oc-367

cur across all three genetic backgrounds (Figure 2C). The368

majority of knockouts are non-neutral in at least one mea-369

sured environment; just about ∼20% of knockouts are called370

as neutral across all environments. Very few mutations are371

unconditionally beneficial or deleterious across all environ-372

ments, and many more mutations flip signs across environ-373

ments, suggesting the presence of widespread trade-offs be-374

tween adapting to different components of an environment.375

The ubiquitous presence of sign-flipping also suggests that376

subtle changes to environmental conditions–by changes to377

community composition or niche openness via adaptation– 378

could meaningfully affect evolutionary outcomes by chang- 379

ing which mutations are likely to establish. The presence of 380

sign-flipping still holds if we reduce the p-value cutoff from 381

0.05 to 10−3 or 10−5 to determine non-neutrality (Figure 382

S12), or only consider genes with |s| > 1% or |s| > 2% as 383

non-neutral (Figure S13), although more genes are called as 384

neutral, as would be expected. However, it is important to 385

note that we only considered genes to be non-neutral if their 386

fitness was significantly different from 0; thus, it is likely 387

that some knockouts were incorrectly called as neutral, espe- 388

cially if their fitness effect is small. Additionally, we have 389

only measured a relatively small set of closely related envi- 390

ronments "nearby" the LTEE environment, so we might ex- 391

pect that if we measure fitness in a sufficiently large number 392

of environments, many more genes would be non-neutral in 393
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at least one.394

By computing the correlation of mutational fitness effects395

across environments (weighted by measurement error), we396

can obtain a measure of the functional similarity of environ-397

ments, which we can also use to cluster said environments398

(Figure 3A). As a first observation and check, it is reassur-399

ing to see the clustering of quasi-replicate experiments, i.e.400

experiments with relatively minor differences in the experi-401

mental set-up and performed on different days–Eco Eq 1/2,402

S in maj 1/2/3 (L), and Mono 1/2 (REL606) (see supplement403

section S2). However, the correlations between the quasi-404

replicates are lower than we see for replicate experiments that405

we did at the same time–this could indicate either that some406

fitness measurements are sensitive to the small experimental407

differences (size of flasks, whether libraries are cocultured408

or not, etc.), or simply performing the experiments on dif-409

ferent days with different environmental fluctuations leads to410

deviations in measured fitness, as is perhaps the case in other411

systems (37). The latter hypothesis is further supported by412

the fact that two experiments were in fact performed at the413

same time (S in maj 2 and 3), and had among the highest414

correlation of all quasi-replicates.415

Otherwise, there are still some interesting patterns that we416

can pick out by looking at correlations across environments.417

For example, it looks like the environments related to the pu-418

tative ecotype niches–glucose and acetate exponential growth419

in L and S respectively–cluster with conditions where the420

ecotype is in the minority. On the other hand, the monocul-421

ture experiment in S clusters with glucose exponential phase.422

Also, in REL606 and L, the acetate experiment is the out-423

group compared to all the other environments, and almost424

completely uncorrelated with fitness in glucose exponential425

phase, but most correlated with the 1:10 dilution condition.426

In S, this is not the case, and acetate fitness is least correlated427

with 1:10 dilution fitness. This may indicate that stationary428

phase in REL606 and L may have much more acetate with429

which to grow on compared to S, and adaptation to acetate430

may involve tradeoffs with adaptation to glucose, at least in431

REL606 and L. We also performed a principal components432

analysis on our data, using (normalized) fitness effects as fea-433

tures (Figure 3B). We see that L experiments cluster sepa-434

rately from the S and REL606 experiments, with the excep-435

tion of the acetate exponential phase condition. Otherwise,436

the PCA largely reproduces the insights from the previous437

correlation clustering analysis.438

Correlations between genes across environments. To439

explore the nature of the strong background dependence that440

we observed, we sought to understand which genes are corre-441

lated with each other across environments, with the intuition442

that genes that perform the same function should change their443

fitness effects across environments in similar ways. For ex-444

ample, the sufABCDSE operon encodes proteins that help to445

assemble iron-sulfur clusters (56), and they all have corre-446

lated knockout fitness effects across environments in all three447

genetic backgrounds (Figure S15A)–as they should, if the448

knockouts all have very similar metabolic/ physiological con-449

sequences. However, other gene sets are only correlated in a450

subset of backgrounds. Most genes in the fecABCDE operon 451

are correlated with each other in all backgrounds except for 452

fecA, which is well correlated with the others in REL606, 453

less correlated in S, and uncorrelated with the others in L 454

(Figure 4A). Similarly, the genes in the proVWX operon are 455

almost perfectly correlated, except one condition where proV 456

has a ∼7% higher fitness than the other two knockouts (Fig- 457

ure S15B). We can also look at the fitness effects of a sub- 458

set of knockouts that are beneficial at least once for every 459

genetic background, across environments (Figure S16). We 460

see that subsets of genes that are sometimes beneficial on 461

a background are positively correlated with each other, e.g. 462

pykF/cyoA in REL606 and ptsP/mrcA/gppA in 6.5k L, per- 463

haps suggesting that the knockouts have common functional 464

effects. These correlations often break when the mutations 465

appear on different genetic backgrounds, e.g. pykF/cyoA are 466

no longer correlated on (at least) the 6.5k L background, 467

and ptsP/mrcA/gppA are no longer correlated on the 6.5k S 468

background, while ptsP/mrcA actually appear negatively cor- 469

related on the REL606 background. Together, these exam- 470

ples suggest that correlations between knockout fitness ef- 471

fects may change in idiosyncratic ways across genetic back- 472

grounds. 473

We systematically quantified the pairwise correlation of 474

knockout fitness across environments–termed "cofitness", 475

previously defined in (41)–where we used the weighted pear- 476

son’s correlation coefficient to account for differences in 477

measurement error across environments. We computed the 478

cofitness of all pairs of genes (excluding those called as neu- 479

tral across all environments) across the REL606, S and L li- 480

braries, as well as a null cofitness distribution for each pair 481

to determine if the two genes are significantly correlated; 482

the set of all significant gene-gene correlations determine 483

the edges in the cofitness networks (see supplement section 484

S4.2). We explored the structure of the resulting cofitness 485

networks via clustering (55) (see supplement section S4.2), 486

where we found sets of communities for all three libraries 487

with modularity > 0, indicating that there are more edges 488

within each community than between communities (Figure 489

4B) (57). We performed a number of controls to ensure that 490

our results weren’t driven by measurement noise or technical 491

effects of clustering; see supplement section S4.2 for more 492

information. 493

The presence of strong communities suggests that most 494

knockouts are significantly correlated with others, potentially 495

pointing to similar functional effects driving changes in fit- 496

ness. We then wanted to compare how these clusters differ 497

between the different genetic backgrounds, with the idea that 498

how and if clusters change should reveal information on how 499

the effective functions of genes differ across genetic back- 500

grounds. Surprisingly, we find that gene clusters are not 501

well preserved across genetic backgrounds, and in fact, genes 502

are typically seemingly randomly reassorted between genetic 503

backgrounds (Figures 4B, S21). In further support of corre- 504

lations breaking between backgrounds, if we recompute the 505

cofitness networks using only one of the biological replicates 506

per experiment, we see that cofitness networks are more sim- 507
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Fig. 3. Similarity of fitness effects between environments. (A) Clustering environments by using fitness effect correlation as a measure of similarity reveals which
environments are the most functionally alike. For example, environments related to the putative ecotype niches–exponential acetate growth and glucose growth, for S and
L respectively–cluster with conditions where the ecotype is in the minority. The red and yellow dots indicate that the branch has ≥ 90% or ≥ 70% support respectively,
computed via bootstrapping. (B) Principal components analysis (PCA) of our data, using (normalized) fitness effects as features (% variance). We see that L experiments
cluster separately from the S and REL606 experiments, with the exception of the acetate exponential phase condition.

ilar within genetic backgrounds compared to between back-508

grounds (Figure S19). There are a couple clusters that show509

non-random sampling across genetic background, however,510

the deviation from random sampling is mostly small, with511

one noticeable exception–clusters 5, 3, and 1 in REL606, S,512

and L, respectively, all seem to share a larger than random513

number of genes with each other (p < 10−4 for all clusters).514

From a Gene Ontology enrichment analysis, genes that are515

associated with biofilm formation (GO:0043708), adhesion516

(GO:0022610), and pilus organization (GO:0043711) are517

over-represented in these clusters, along with genes involved518

in organonitrogen compound biosynthesis (GO:1901566), al-519

though to a weaker extent (Figure S22). This suggests that520

there is at least one (large) functionally related group of genes521

that stay correlated across genetic backgrounds, implying522

that their fitness-determining effects are mostly the same, re-523

gardless of genetic background.524

We wanted to know why other functional groups of genes525

do not stay correlated with each other, and if there was any526

structure hiding in the seeming randomness of cluster re- 527

assortment. A simple first test could ask if genes in the 528

same operon are more likely to stay correlated with each 529

other across backgrounds, which is the case for several of 530

our aforementioned examples. This indeed appears to be the 531

case across all genetic backgrounds (Figure 4C). However, 532

genes often share functions with other genes outside their 533

operons, so we turned to investigating the relationship be- 534

tween the cofitness and genetic networks. We used EcoliNet 535

as a representation of the E. coli genetic network, as it at- 536

tempts to capture all interactions between genes by integrat- 537

ing various data-types, regardless of the mechanism (tran- 538

scriptional, protein-protein, etc), and assigns a score to each 539

interaction that effectively represents the strength of the in- 540

teraction (58). We then computed the probability that two 541

genes are in the same community in one genetic background, 542

given that they’re together in another background, as a func- 543

tion of EcoliNet score (Figures 4D). We see that gene pairs 544

that are predicted to strongly interact (high EcoliNet score) 545
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Fig. 4. Correlations between genes across environments. We observed that many pairs of genes have correlated fitness effects across environments, for example (A)
most genes of the fecABCDE operon. However, fecA is correlated with the other genes to varying degrees, depending on the genetic background. (B) We computed the
pairwise correlation of fitness effects (cofitness) for all pairs of genes, and then clustered genes with a community detection algorithm (55).We then rearranged the cofitness
matrices by reordering genes based on "optimal" clustering of other genetic backgrounds. For each column, we ordered the genes based on the clustering of a given genetic
background. For each row, we used the cofitness matrix for a given background. It is apparent that replotting the cofitness matrix using another strain’s clustering does not
produce noticeable structure. (C, D) Cluster reassortment is not entirely random–pairs of genes (C) in the same operon and (D) that strongly interact with each other (high
EcoliNet score), tend to stay in the same clusters across genetic backgrounds. In contrast, the cofitness of pairs of genes that are not in those categories appear to change
in a way that is indistinguishable from random reassortment. In panels C and D, the abbreviations R, S, and L refer to REL606, and 6.5k S/L, respectively.

are much more likely to be correlated across genetic back-546

grounds. We can also see these same patterns without ref-547

erencing any cluster labels–if we look at the correlation be-548

tween all cofitness pairs across genetic backgrounds, pairs549

that are in the same operon (Figure S23A) and those with the550

highest EcoliNet score (Figure S23B) give the highest cor-551

relation. It also appears that the shortest distance between552

two nodes in the EcoliNet network (Figure S25) also pre-553

dicts if the two genes will stay correlated across genetic back-554

ground, albeit the effect is weaker. We should note that it is555

perhaps the case that there are weaker consistencies across556

backgrounds for non-operon/non-interacting genes pairs that557

we don’t have the statistical power to detect. Still, these anal-558

yses suggest that evolution significantly changes which func-559

tional effects of genes are important for determining fitness,560

such that the cofitness of genes pairs is much more preserved561

across genetic background for the most strongly interacting562

genes, but not as much for other gene pairs.563

Fitness effects are correlated with evolutionary out- 564

comes. We sought to explore if the knockout fitness ef- 565

fects that we measured were correlated with evolutionary 566

outcomes in the LTEE, i.e. establishment of mutations and 567

changes in gene expression. So, we first investigated if genes 568

with non-neutral knockout fitness were more or less likely to 569

be mutated and rise to a sufficiently high frequency in the 570

population. Using the clonal sequencing data from Tenaillon 571

et al. (2016) (59) and Plucain et al. (2014) (46), we identi- 572

fied genes that mutated between selected LTEE time-points, 573

and ran a logistic model with fitness effect as the predictor 574

and mutated status as the response variable (see supplement 575

section S4.3), separately for beneficial (Figures 5A) and dele- 576

terious genes (S26A). We used three sequenced clones (one 577

available for each time point) for both S and L, while we used 578

all clones from all non-mutator populations (at a given time 579

point) for REL606. We used the appearance of a mutation 580

(excluding synonymous SNPs) within a gene as a proxy for 581

establishment. 582
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Fig. 5. Fitness effects of beneficial genes are correlated with evolutionary outcomes. We explored if genes with beneficial knockout fitness effects are correlated with
(A) establishment of a mutation in a gene, and (B) changes in gene expression over evolutionary time, relative to neutral knockouts. (A) Slopes from logistic models, with
presence of a mutation in a gene as the response variable. The fitness effects were normalized by the median beneficial fitness effect, so that coefficients can be interpreted
as the average difference in log-odds establishment between neutral knockouts and the ’typical’ beneficial knockout. REL606 beneficial knockout fitness is positively correlated
with gene establishment probability for most environments, but in different time intervals, potentially pointing to shifting targets of selection. (B) We compared the distributions
of log-fold change in expression between genes with neutral knockout fitness effects, less beneficial effects (lower 50%), and more beneficial effects (upper 50%). We used
the change in expression from 0k gens (REL606) to 40k gens (L), from 6.5k gens (S) to 40k gens (S), and from 6.5k gens (L) to 40k gens (L) for the REL606, 6.5k S, and
6.5k L panels, respectively. The expression change between ancestor and 40k L (left) is nearly identical to the expression change between ancestor and 40k S as well as
other timepoints (Figure S29). Beneficial knockout fitness in REL606 is generally positively correlated with increasing gene expression over time. In S and L, fitness in several
environments–including the ecological equilibrium and acetate and glucose growth–is correlated with decreasing gene expression. Asterisks denote coefficients/comparisons
that are significantly different from 0 (FDR correction; * p < 0.05, ** p < 0.01, *** p < 0.001).

Fitness of beneficial knockouts in the 1:10 dilution condi-583

tion and monoculture (LTEE condition) in the REL606 back-584

ground is strongly correlated with which mutations establish585

from 0-5k generations, while fitness in acetate exponential586

phase is only correlated with establishment later in the evolu-587

tion (difference in slopes between 0-5k and 5-20k is signifi-588

cant at p < 0.05 via permutation test for 1:10 dilution and ac-589

etate conditions, not for monoculture or glucose conditions).590

This is potentially a signal that the targets of selection are591

shifting over time–REL606 may initially adapt via lag phase592

shortening/stationary phase survival, while only later adapt-593

ing via increased acetate growth rate. This could happen, for594

example, by either clonal interference favoring the highest-595

effect mutations, or due to global epistatic effects (47). The596

former hypothesis is supported by the observation that three597

mutations appear in genes with beneficial acetate knockouts598

at 2k generations, but they then disappeared by 5k genera-599

tions, potentially indicating that they were out-competed by600

other beneficial mutations (Figure S28). There is only one601

S/L condition that shows a significant difference in muta-602

tion establishment probability between beneficial and neu-603

tral mutations–genes with beneficial fitness in acetate are less604

likely to mutate compared to neutrals in S. However, changes605

in gene expression suggest adaptation to acetate may be oc-606

curing through indirect routes in S, as detailed below. How-607

ever, we expect our power to detect correlations between mu- 608

tational fitness and mutation establishment to be lower for S 609

and L. They have a ∼100x higher mutation rate than REL606 610

(48), implying that the ratio of neutral hitchhiking to benefi- 611

cial driver mutations is higher as well. 612

We also investigated if fitness effects are correlated with 613

changes in gene expression, using microarray data from Le 614

Gac et al. 2012 (16), which measured gene expression 615

in REL606, and S/L at 6.5k, 17k, and 40k generations. 616

These measurements serve as a distinct readout of evolution- 617

ary change compared to genomic mutational dynamics, be- 618

cause even if a gene is not directly mutated, gene expression 619

can still change through indirect genetic interactions. Thus, 620

gene expression measurements allow us to probe the effects 621

of the cumulative mutations fixed by evolution. We com- 622

pared the distribution of log-fold expression changes over 623

approximately 40k generations for genes with neutral and 624

non-neutral knockout fitness effects, separately for beneficial 625

(Figure 5B) and deleterious genes (Figure S26B). We see that 626

the median change in gene expression is significantly differ- 627

ent between neutral and beneficial genes across several con- 628

ditions, but generally only for the upper 50% of beneficial 629

genes. This indicates that the magnitude of the knockout fit- 630

ness effect is important for determining how much the me- 631

dian gene changes in expression. We can get more power 632
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to detect relationships between the magnitude of the knock-633

out fitness effect and log-fold change in gene expression by634

fitting linear models to the data (Figure S29). The same pat-635

terns hold if we restrict our analysis to highly expressed genes636

(Figure S30).637

In REL606, genes with beneficial knockout fitness effects638

tend to increase in expression (relative to neutral genes) over639

evolutionary time; this is perhaps surprising, because we640

would expect selection to decrease gene expression if knock-641

ing out that gene is beneficial. We saw the same pattern with642

deleterious genes (Figure S26B). One possibility to explain643

tvery, the expression of growth-relevant genes is increased644

by some mutation with a highly pleiotropic effect (e.g. in a645

master regulator), whose overall benefits outweigh the costs646

of raising the expression of beneficial knockout genes.647

In contrast, in S and L, there are a couple of environments648

where gene expression significantly decreases over evolu-649

tionary time for genes with beneficial knockout fitness ef-650

fects (compared to neutrals). These conditions include envi-651

ronments related to the putative ecotype niches–acetate and652

glucose exponential growth in S and L respectively. On the653

other hand, while fitness in the ecological equilibrium is asso-654

ciated with decreased gene expression, this is not the case for655

fitness in monoculture and the 1:10 dilution environments,656

indicating again that the latter environments are less rele-657

vant for evolution in the LTEE environment. Despite the fact658

that acetate-adapting mutations are not establishing on the S659

background (at least initially), gene expression still decreases660

by 40k generations, perhaps indicating that adaptation to ac-661

etate is occurring through routes other than directly mutating662

genes with beneficial knockout effects.663

We also saw that S and L beneficial knockout fitness in glu-664

cose exponential phase is positively correlated with an in-665

crease in gene expression from 0-6.5k (Figure S29). On av-666

erage, those same genes decrease in relative gene expression667

when evolving on the L background, whereas they do not668

change on the S background. This set of data could indicate669

that from 0-6.5k many genes increased in gene expression670

via adaptive evolution that were actively unhelpful for glu-671

cose growth, either because of transcriptomic misallocation672

or other types of antagonistic pleiotropy, such that knocking673

them out conferred a benefit. Upon diversification of S and L,674

the direction of gene expression change appears to switch for675

L, perhaps suggesting that L is evolving towards a more glu-676

cose growth-optimized transcriptome, while S is not. This set677

of observations provides a possible example of how diversi-678

fication changes the selection pressures acting on organisms.679

Interestingly, deleterious knockout fitness effects across all680

environments in S/L tend to be associated with an increase681

in gene expression between 0 and 6.5k generations (Figure682

S26B). This observation may provide a partial explanation683

for why some knockouts become deleterious in S/L when684

they were neutral in REL606–6.5k generations of evolution685

caused the genes to suddenly become important, so they be-686

came more costly to knock out. Another, unrelated obser-687

vation could help us to understand why some genes have688

deleterious knockout fitness effects–it appears that deleteri-689

ous genes are more highly connected in the E. coli gene in- 690

teraction network (EcoliNet) compared to neutrals (on aver- 691

age), indicating that some genes may be deleterious because 692

when they’re knockout out, they also affect the functioning 693

of many other genes (Figure S31). 694

Discussion 695

In order to be able to predict how evolution will proceed 696

in community contexts, we need to know the distribution 697

of mutational fitness effects, along with how it depends on 698

genetic background and ecological conditions. To that end, 699

we measured the genome-wide knockout fitness effects of a 700

recently diversified ecosystem, S and L, and their ancestor, 701

REL606. Despite the fact that the fitness effects of individ- 702

ual mutations appear to be highly dependent on both genetic 703

background and environment (strong (G ×) G × E effects), 704

we saw consistent statistical patterns of variation across both 705

axes, namely global diminishing returns epistasis and a neg- 706

ative frequency-fitness correlation (in S and L). In contrast, 707

previous studies that observed diminishing returns epistasis 708

saw both the mean of the DFE as well as the fitness effects 709

of individual mutations decrease as a function of background 710

fitness (51, 52); this discrepancy may indicate that uniform 711

negative epistasis of individual mutations may only be rele- 712

vant for the first handful of mutational steps, before yielding 713

to more complex and idiosyncratic forms of epistasis. While 714

the underlying mechanism that generates this form of global 715

epistasis is still unclear, our observations are consistent with 716

recent theoretical (60) and experimental work (61) that sug- 717

gest that global diminishing returns epistasis may arise as a 718

general consequence of idiosyncratic epistasis. 719

Even though S and L only diverged∼500 generations ago, the 720

mixing ratio of the two ecotypes strongly affects the DFEs, 721

suggesting that strong eco-evolutionary coupling is possible 722

even in closely related strains. This would imply that selec- 723

tive pressures depend strongly on the community mixture, 724

which changes significantly and relatively rapidly due to evo- 725

lution (42, 47). The sensitivity of knockout fitness effects to 726

relatively minor variations on the LTEE environment, such as 727

changing niche availability or ecosystem composition, may 728

be evolutionarily significant–we know that the growth traits 729

of S and L also change quite drastically during their coevolu- 730

tion (16, 44), which along with changes to ecosystem compo- 731

sition, will change the environment, and thus change which 732

mutations are favored by selection. One specific hypothe- 733

sis that emerges from our data is that selective forces may 734

be more similar to environments related to the putative eco- 735

type niches when the ecotype is rare, for both S and L. This 736

is supported by both clustering environments by fitness ef- 737

fect correlations, and which environments were correlated 738

with changes in gene expression. It would follow that se- 739

lection could favor different degrees of specialization within 740

the current niche as the ecotype frequencies and growth traits 741

change due to evolution. Regardless of the specific imple- 742

mentation, the process where (i) mutations change growth 743

traits and ecosystem composition, which (ii) change ecolog- 744

ical conditions, which in turn (iii) change the mutational fit- 745
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ness effects of both ecotypes, could represent an important746

and pervasive type of eco-evolutionary feedback.747

We aimed to better understand the background and environ-748

ment dependence of mutational fitness effects by systemati-749

cally studying fitness correlations across environments. Our750

intuition was that knocking out genes with similar functions751

should have similar effects across environments. We saw752

that, by and large, different sets of genes were correlated753

with each other across genetic backgrounds; only strongly754

interacting pairs of genes were likely to be correlated across755

all backgrounds. These widespread changes could be caused756

by a number of different evolutionary phenomena–for exam-757

ple, evolution could have induced widespread changes in the758

functional effects of genes or which functional effects matter759

for fitness. Additionally, inasmuch as fitness in an environ-760

ment is a reflection of phenotype–e.g. fitness in exponential761

phase is likely a simple function of exponential growth rate–762

the extensive changes in fitness across environments could763

be interpreted as support for ubiquitous pleiotropic effects of764

knockout mutations.765

We investigated if our measured knockout fitness effects were766

correlated with evolutionary outcomes, i.e. mutation estab-767

lishment and gene expression changes. We found significant768

correlations across several, but not all environments, lead-769

ing to hypotheses on how selection has acted on LTEE pop-770

ulations. From correlations of knockout fitness effects with771

mutation establishment, we found potential signals of shift-772

ing selection over time in REL606. Changes in gene expres-773

sion provide a distinct window into evolutionary change, as774

expression can change through genetic interactions, even if775

a gene is not directly mutated. Among other patterns, the776

fitness correlations with gene expression changes potentially777

reveal how the traits under selection changed from pre- to778

post-diversification, and how they are different between S and779

L. Pinpointing the precise causes of these patterns could be780

a fruitful avenue for future work. Overall, the connections781

between evolutionary changes and knockout fitness effects782

demonstrates the utility of our approach to understand how783

adaptation happens in the "natural" evolutionary context.784

Ultimately, we would like to predict the outcomes of evo-785

lution in community contexts. By showing how the distri-786

bution of invasion fitness effects changes as a result of ge-787

netic background and ecological conditions, our dataset rep-788

resents a major step forward in that direction. The invasion789

fitness effects directly impact the establishment probability790

of a beneficial mutation, as well as the mutant dynamics un-791

til it reaches a substantial proportion of the population. The792

distribution of deleterious invasion fitness effects also con-793

trols other relevant evolutionary phenomena, including the794

equilibrium reached by mutation-selection balance, and the795

probability that a deleterious mutation will hitchhike on a796

beneficial mutant ("genetic draft"). However, in principal,797

the fitness effect of a mutation could change as it approaches798

fixation (within the ecotype) due to frequency-dependent ef-799

fects. We are not able to measure these effects with our ex-800

perimental set-up, as our ability to measure fitness effects in801

high-throughput requires that mutants remain rare. However,802

frequency-dependent mutations could significantly alter ex- 803

pected evolutionary dynamics, so as such, measuring such 804

effects are a major direction for future work. 805

As previously mentioned, we only surveyed the fitness effects 806

of knockout mutations, which represent a subset of all muta- 807

tions available to an organism. While it is possible that other 808

types of mutations could display different patterns, knockout 809

mutations appear to be prevalent and important for adapta- 810

tion in the LTEE (47, 62), and our measured knockout fit- 811

ness effects are correlated with evolutionary outcomes. Addi- 812

tionally, we studied a relatively simple ecosystem, consisting 813

of just two recently diverged ecotypes; measuring the muta- 814

tional effects in more complicated ecosystems and how they 815

change as a result of longer periods of evolution is likely a 816

fruitful future avenue of investigation. Overall, the methods 817

and results presented here pave the way for future studies 818

investigating how mutational fitness effects depend on eco- 819

evolutionary processes, and how eco-evolutionary feedback 820

arises from changing fitness effects. 821

Methods 822

See supplementary information. 823

Data, code, and strain availability 824

Glycerol stock copies of the REL606, 6.5k S, and 6.5k L Tn5 825

barcoded libraries are available upon request. All code used 826

to process the data and perform the analyses as well as pro- 827

cessed data are available on GitHub, 828

https://github.com/joaoascensao/S-L-REL606-BarSeq 829
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S1 Barcoded transposon library construction 1220

To construct the barcoded transposon libraries, we isolated 1221

subclones of REL606, REL11555 (6.5k S), and REL11556 1222

(6.5k L), all gifts of Richard Lenski (Michigan State Uni- 1223

versity). Transposon mutagenesis was performed as previ- 1224

ously described (40, 41) by mating each LTEE clone with 1225

an E. coli WM3064 donor (Diaminopimelic acid [DAP] aux- 1226

otroph and pir+) containing previously described (40) ran- 1227

domly barcoded Tn5 plasmids with a kanamycin cassette 1228

and an R6K origin of replication. The LTEE clones were 1229

grown in DM2000 (Davis Minimal Media with 2000mg/L D- 1230

glucose), and the donor was grown in LB/Kan, all to mid-log 1231

phase. After washing the cultures, each LTEE culture was 1232

then mixed with the donor in a 1:1 ratio, then placed on 0.45 1233

µM nitrocellulose filters (Millipore cat. no. HAWP04700) 1234

on top of a 1% agar plate with EZ-MOPS rich, defined me- 1235

dia (Teknova cat. no. M2105) + 20mM sodium pyruvate 1236

(’EZ-py’) + 0.3mM DAP. The rich media was chosen be- 1237

cause it had a number of different carbon sources (glucose, 1238

amino acids, pyruvate) and sufficient amounts of all other re- 1239

quired macro/micronutrients, lessening the chances of sub- 1240

stantial negative selection in the growth media. After conju- 1241

gation, the filters were picked up and placed in rich media; 1242

subsequently, the resuspended cells were plated on EZ-py 1243

agar plates supplemented with 50 µg/mL kanamycin. Af- 1244

ter approximately 24hrs of growth at 37C, colonies were 1245

scraped up and grown in EZ-py liquid media with 50 µg/mL 1246

kanamycin until OD∼1; we then saved the cultures in sev- 1247

eral 10% glycerol stocks. Transposon insertion mapping (Tn- 1248

Seq) libaries were prepared as previously described (40); li- 1249

braries were then sequenced on the Illumina HiSeq 4000 1250

(150PE) at the Vincent J. Coates Genomics Sequencing Lab- 1251

oratory at UC Berkeley. The resulting sequencing data 1252
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was used to create a table relating each barcode to a ge-1253

nomic insertion location, using a previously developed script1254

(MapTnSeq.pl) (40).1255

S2 BarSeq experiments1256

S2.1 Set-up of experiments. To start a BarSeq experi-1257

ment, we first unfroze 1mL glycerol stock of the REL606,1258

6.5k S and/or 6.5k L transposon libraries and transferred1259

the entirety to 10mL EZ-py media (media used for library1260

construction) in 50mL glass erlenmeyer flasks, which were1261

grown for 16-24hrs at 37C, shaken at 120rpm. All cultures1262

for all experiments were grown with the same shaker, in the1263

same 37C warm room. In several experiments where we mea-1264

sured fitness effects of 6.5k S/L barcoded libraries at various1265

ecotype frequencies, we also grew the wild type S/L with the1266

same media, under the same conditions. The next day, we1267

washed the cultures by pelleting via centrifugation for 3 min-1268

utes at 5000rpm, aspirating the supernatant, and resuspend-1269

ing in DM0 (Davis Minimal Media without a carbon source)1270

three times. After thoroughly vortexing the cultures, we1271

transferred them 1:1000 to the appropriate media in n flasks1272

(see below)–depending on the experiment, we used different1273

numbers of flasks and different sizes, either 10mL media in1274

50mL glass flasks or 200mL media in 1L glass flasks (same1275

ratios, scaled up). We used multiple flasks and larger flasks to1276

increase the total population size, decreasing fluctuations due1277

to genetic drift. We then performed two more transfers in the1278

appropriate conditions for the experiment to help physiolog-1279

ically adapt the cultures to the conditions. If we were doing1280

a coculture experiment, we would mix the cultures at the ap-1281

propriate frequencies during the second transfer. If we used1282

multiple flasks in an experiment, we would sample an equal1283

amount of culture from each flask into a microcentrifuge or1284

Falcon tube, thoroughly mix the cultures, and redistribute1285

among the same number of flasks with new media–thus, the1286

cultures distributed in multiple flasks were effectively all part1287

of the same population. After the third transfer, we would1288

collect cells for day 0 of the experiment, and use that culture1289

to start two biological replicates that are independently prop-1290

agated for the remainder of the experiment. All cultures were1291

grown at 37C, shaken at 120rpm. Cells were harvested at1292

defined time points by centrifugation at 15000rpm for 10min1293

of ∼60mL culture for all experiments except Ac Exp (10mL)1294

and Mono 2 (30mL), pooling culture from all flasks in an ex-1295

periment/replicate at equal ratios. Subsequently, the pellets1296

were stored at -80C until the experiment was finished.1297

S2.2 Conditions for each experiment.1298

S2.2.1 Monoculture. For the Mono (1) experiments, we prop-1299

agated the libraries alone in DM25 (Davis Minimal Media1300

with 25mg/L D-glucose) in 5x 50mL flasks over the course1301

of 4 days. For the REL606 Mono 2 experiment, we used1302

3x 50mL flasks over the course of 8 days, with four biolog-1303

ical replicates in DM25. We transferred cultures 1:100 ev-1304

ery 24hrs, and took the number of generations per transfer as1305

log2 100.1306

S2.2.2 Coculture experiments. As mentioned above, we 1307

started wildtype cultures of 6.5k S and/or L clones (same 1308

clones used to make the RB-Tn libraries) at the same time and 1309

with the same procedure as the library cultures (Table 1, main 1310

text), and mixing the cultures at the appropriate frequencies at 1311

the second "adaptation" serial transfer. We measured the eco- 1312

logical equilibrium frequency to be approximately 15−20% 1313

S (Figure S8), so we ensured that the S frequency was started 1314

in that range for the "ecological equilibrium" experiments. 1315

We started the "S/L in majority" experiments such that the 1316

minority ecotype was > 10% of the total population (Figure 1317

S7). 1318

We used DM25 media and propagated the cultures for 4 days, 1319

except for S in maj 2/3 where we used 6 days, transferring 1320

1:100 every 24hrs (log2 100 generations) for all coculture ex- 1321

periments. For the Eco Eq 1 experiment, we mixed both S 1322

and L libraries in the same cultures along with wildtype L, 1323

using 4x 1L flasks. For the Eco Eq 2 experiments, S and 1324

L libraries were in separate cultures, both with wildtype S 1325

and L set at the appropriate frequency, with RB-Tn library 1326

frequency around 5−10% (Figure S7); cultures were propa- 1327

gated in 10x 50mL flasks. For the L in Maj and S in Maj 1 1328

experiments, we mixed wt L + S library and wt S + L library, 1329

respectively; cultures were propagated in 10x 50mL flasks. 1330

For the S in maj 2/3 experiments, we mixed wt S with S+L 1331

and L libraries respectively; cultures were propagated in 4x 1332

1L flasks. 1333

We measured the frequency of S/L in the population by plat- 1334

ing and counting colonies at the end of a transfer on TM 1335

plates (tetrazolium maltose; 10g/L tryptone [Sigma T7293], 1336

1g/L yeast extract [Sigma Y1625], 5g/L NaCl, 16g/L agar, 1337

10g/L maltose, 1mL/L 5% TTC [Sigma T8877]), where S 1338

appears as red colonies and L appears as white colonies, 1339

previously used in (46). We could also measure the fre- 1340

quency of cells from RB-Tn libraries by plating the cultures 1341

on LB/Kanamycin plates, as the transposon has a kanamycin 1342

resistance cassette (Figure S7). We diluted all cultures (at 1343

the end of a cycle) in DM0. Dilution rates varied over 1344

experiments: in Eco Eq 1, we diluted cultures by a fac- 1345

tor of 2 ∗ 10−5mL−1 to plate on both TM and LB/Kan 1346

plates, in Eco Eq 2 we used dilution rates of 10−5mL−1
1347

and 10−4mL−1 to plate on TM and LB/Kan plates respec- 1348

tively, in the L in Maj and S in Maj 1 experiments we used 1349

a 2 ∗ 10−5mL−1 dilution rate to plate on just TM plates, 1350

and in the S in maj 2/3 experiments we used dilution rates 1351

of 2 ∗ 10−5mL−1 and 2 ∗ 10−4mL−1 to plate on TM and 1352

LB/Kan plates respectively. 1353

S2.2.3 1:10 dilution. We propagated cultures with a 1:10 di- 1354

lution, instead of the standard LTEE dilution rate of 1:100, 1355

to investigate the effect of a lengthened stationary phase rel- 1356

ative to exponential phase. We used DM27.8 media (Davis 1357

Minimal Media with 27.8mg/L D-glucose), because the con- 1358

centration of glucose would fall to 25mg/L after dilution. 1359

We used 1x 1L flask for each library culture (180mL me- 1360

dia + 20mL culture), propagating the cultures for 8 days ev- 1361

ery 24hrs with log2 10 generations per day. We pelleted and 1362

saved cultures every other day (0,2,4,6,8). 1363

Ascensao et al. | Adaptive Landscapes bioRχiv | 15

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2022. ; https://doi.org/10.1101/2022.02.03.475969doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.03.475969
http://creativecommons.org/licenses/by-nc/4.0/


S2.2.4 Acetate exponential phase. We sought to measure1364

knockout fitness effects when the RB-Tn libraries were kept1365

in acetate exponential phase, where we used DM2000-acetate1366

(Davis Minimal Media with 2000mg/L Sodium Acetate) and1367

grew the cultures in 1x 50mL flask. We first measured ex-1368

ponential growth rates for wt REL606, L, and S clones in1369

DM2000-acetate, which were approximately 0.08/hr, 0.12/hr,1370

and 0.18/hr respectively. We also observed that all cultures1371

were still in mid-exponential phase at OD∼0.6. So, if we1372

started at initial OD0 of 0.09, 0.03, 0.008 for REL606, L, and1373

S respectively, the cultures would end up at OD∼0.6 after 241374

hours. Thus, for each transfer, we would measure the actual1375

OD for each culture (after 24hrs of growth) and transfer the1376

appropriate volume of old culture to new 10mL DM2000-1377

acetate such that the final concentration was the appropriate1378

OD0. We recorded the number of generations for each cycle1379

as log2ODf/OD0. Due to the variable number of genera-1380

tions per transfer for each genetic background (owing to dif-1381

ferent growth rates), we collected samples at days 0,2,4,6,81382

for REL606; 0,1,2,4,5,6 for L; 0,1,2,3,4,5 for S.1383

S2.2.5 Glucose exponential phase. We measured knockout1384

fitness effects in glucose exponential phase with DM25 me-1385

dia in 1x 1L flask. We measured the length of DM25 expo-1386

nential phase to be about 8.25 hrs for REL606, and 5.25 hrs1387

for both S and L after a 1:100 dilution into new media. For1388

the adaptation phase, we did two full 24hr cycles of growth1389

in DM25, followed by one cycle of growth for ∼8hrs and1390

∼5hrs for REL606 and S/L, respectively. After the adaptation1391

phase, we transferred cultures 1:100 into new DM25 media1392

(warmed to 37C) four times, after 7.5-8hrs for REL606 and1393

4.5-5hrs for S and L. As DM25 media is quite dilute and thus1394

OD measurements are relatively inaccurate, we estimated the1395

number of cells that were transferred by plating the cultures1396

on LB plates at a 2 ∗ 10−5mL−1 dilution rate and counting1397

colonies, calculating the number of generations for that trans-1398

fer as log2 100CFUf/CFU0. We only ended up including1399

the first two transfers of the REL606 library experiment (time1400

points 0,1,2), as it was apparent from CFUs that the third1401

transfer resulted in a large bottleneck owing to a smaller than1402

expected population size before the transfer, likely because1403

of slower than expected growth.1404

S2.3 DNA extraction, PCR, Sequencing. After the ex-1405

periment was finished, pellets were pulled from the -80C1406

freezer and genomic DNA was extracted with the Qiagen1407

DNeasy tissue and blood extraction kit (cat no. 69504),1408

eluted in double distilled water with typical yields around1409

50ng/µL. DNA barcodes were amplified from gDNA sam-1410

ples via PCR with Q5 Hot Start Polymerase (NEB, cat.1411

no. M0493S); 50ul reactions were composed of 5µL PCR1412

primers, 5µL gDNA, 10µL 5x buffer, 10µL GC enhancer,1413

1µL dNTPs, 0.5µL Q5 polymerase, 18.5µL water. We used1414

custom dual-indexed primers that contained binding sites up-1415

and down-stream of the barcode region, along with the neces-1416

sary Illumina read/index binding sites; fwd primer (AATGAT1417

ACGGCG ACCACC GAGATC TACACT CTTTCC CTA-1418

CAC GACGCT CTTCCG ATCT NnXXXXXX GTCGAC1419

CTGCAG CGTACG) where X stands for the custom for- 1420

ward 6bp index, and Nn is 1-4 random nucleotides, vary- 1421

ing with the primer pair; rev primer (CAAGCA GAAGAC 1422

GGCATA CGAGAT XXXXXX GTGACT GGAGTT CA- 1423

GACG TGTGCT CTTCCG ATCTGA TGTCCA CGAGGT 1424

CTCT) where X stands for standard Illumina 6bp IT index. 1425

We used a different primer pair for each gDNA sample from 1426

a different experiment/replicate/time point, so that we could 1427

demultiplex the samples after sequencing. The PCR program 1428

was 4min at 95C, [30sec at 95C, 30sec at 55C, 30sec at 72C] 1429

x25 cycles, 5min at 72C. We verified that we had the correct 1430

PCR products via agarose gel electophoresis. All PCR re- 1431

actions were then pooled and cleaned with the Zymo DNA 1432

Clean and Concentrator kit (cat. no. D4013), and eluted in 1433

double distilled water. The final pooled sample was then se- 1434

quenced on an Illumina HiSeq 4000 (50SR) at the Vincent J. 1435

Coates Genomics Sequencing Laboratory at UC Berkeley. 1436

S3 Fitness inference pipeline 1437

S3.1 Read counting and error correction. We first pro- 1438

cessed the raw (demultiplexed) sequencing reads using a pre- 1439

viously developed Perl script (40, 41) that pulls out the bar- 1440

code sequence by trimming regions corresponding to the se- 1441

quencing primers and regions up/downstream of the barcode, 1442

as well as discarding reads that do not match the secondary 1443

sequencing index or have insufficiently high quality scores 1444

(MultiCodes.pl). Then, counts of unique barcodes are tabu- 1445

lated to get a table corresponding barcode sequence to counts. 1446

However, due to errors that arise during PCR and sequenc- 1447

ing, some of the barcode reads acquire mutations that would 1448

prevent them from directly mapping to a transposon inser- 1449

tion location. Thus, we must correct for these sequencing er- 1450

rors by matching mutated barcodes to their parent, and merg- 1451

ing the read counts together. The aforementioned Perl script 1452

identifies off-by-one barcode pairs; if the minority barcode 1453

(the one with fewer counts) unambiguously maps to a single 1454

majority barcode, the barcode counts are merged. To detect 1455

larger mutational distances between the derived and parent 1456

barcodes, we computed the Levenshtein (edit) distance be- 1457

tween pairs of barcodes (as implemented in the Python C 1458

package Levenshtein (63)). Barcode read counts were 1459

merged if the edit distance was 4 or less, and if the minority 1460

barcode only mapped to one majority barcode at the mini- 1461

mum edit distance. 1462

We then used previously acquired TnSeq data that maps the 1463

barcode identity to its transposon insertion location in order 1464

to identify which gene (if any) the barcoded transposon dis- 1465

rupted. Transposons that hit the first or last 5% of the gene 1466

sequence were excluded, as it is possible that these insertions 1467

do not result in disruption of production of the gene product. 1468

To ensure that barcodes at least begin their trajectories at a 1469

sufficiently high read count, if there were barcodes within a 1470

gene with low initial counts, r0,i < 80, we summed the low- 1471

est (initial) count barcode into the next-lowest count barcode 1472

until mini r0,i ≥ 80. We restricted our analysis to genes that 1473

had ≥ 4 barcodes, allowing us to gain confidence that the 1474

measured knockout fitness is not dependent on rare fluctua- 1475
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Library # genes hit ≥ 3 times # barcodes % bc reads mapped
REL606 3,401 609,854 84%
6.5k S 3,382 522,253 84%
6.5k L 2,877 157,260 89%

Table S1. Summary of statistics of constructed RB-TnSeq libraries.

tions or secondary mutations. Additionally, some barcodes1476

went extinct during the course of the experiment, either due1477

to genetic drift or selection; if a barcode went extinct, i.e. has1478

0 counts from text to T , we would trim all time points af-1479

ter, but not including, text. We eliminated barcodes that go1480

extinct after just one time point.1481

S3.2 Probabilistic model of read count trajectories1482

and fitness inference. To infer the fitness of individual1483

genotypes from BarSeq count data, we must first understand1484

what frequency trajectories we would expect for a given fit-1485

ness, and how technical noise (e.g. from sample preparation1486

and sequencing) and genetic drift affect those trajectories.1487

Consistent with previous work (30, 31, 35), we construct a1488

maximum-likelihood estimator to infer fitness from trajecto-1489

ries of barcode read counts, using a deterministic approxima-1490

tion of frequency dynamics.1491

On average, when the frequency of a lineage is sufficiently1492

small ft,i � 1, the frequency dynamics will exponentially1493

grow/decay according to the genotype fitness, s, as well as1494

the mean fitness of the population, x̄t (see section S3.4),1495

〈ft,i〉= f0,ie
(s−x̄t)t

We measured the time in generations, which we measured1496

for each time point in each experiment (see section S2.2).1497

The reason we used a timescale of 1/generation instead of1498

e.g. 1/cycle was to be able to better compare the magnitude1499

of effects across experiments–e.g. the two exponential phase1500

experiments had varying numbers of generations from cycle-1501

to-cycle and between strains (due to differences in exponen-1502

tial growth rates). However, the fitness effects can be scaled1503

by a factor of approximately 6.64 to get per-cycle fitness ef-1504

fects, at least in the 1:100 serial dilution experiments. The1505

two sources of noise–genetic drift and measurement noise–1506

both arise from counting processes, so the combined noise1507

will follow var(ft,i) ∝ 〈ft,i〉 (see section S3.3). To account1508

for the inherent discreteness of counting sequencing reads–1509

especially important to accurately model deleterious geno-1510

types that quickly drop to low frequencies–we modeled the1511

observed counts at time t (always measured in generations)1512

of barcode i inserted in a given gene, rt,i, as a negative bino-1513

mial random variable,1514

rt,i|s,f0,i ∼ NB(µt,i, ct) (1)
〈rt,i〉= µt,i (2)

var(rt,i) = ct〈rt,i〉 (3)

µt,i =Rtf0,ie
(s−x̄t)t (4)

Where Rt is the total number of counts, and ct is the mea-1515

sured variance parameter. The final likelihood for the fitness,1516

s, of a given gene knockout is obtained by numerically in- 1517

tegrating over f0,i (’integrated likelihood’ with a flat prior)– 1518

incorporating the uncertainty in the intercept nuisance param- 1519

eters into the fitness estimate and turning the problem into a 1520

one-dimensional maximum likelihood–and then combining 1521

the likelihoods of all barcodes inserted into the gene, 1522

P (ri|s,f0,i) =
∏
t

Γ
(
rt,i+ µt,i

ct−1

)
Γ
(
µt,i
ct−1

)
Γ(rt,i+ 1)

(ct−1)rt,i

c
rt,i+

µt,i
ct−1

t

(5)

L(s|r) =
∏
i

∫
df0,iP (ri|s,f0,i) (6)

The point estimate of the knockout fitness, ŝ, is then numeri- 1523

cally computed as the maximum likelihood, and the standard 1524

error is approximated as the inverse, square-root observed in- 1525

formation, 1526

ŝ= argmax
s

logL(s|r) (7)

std ŝ= 1/
√
−∂2

s logL(s|r)|ŝ (8)

We ran biological replicates for all experiments reported 1527

here; to obtain combined genotype fitness estimates across 1528

replicates we simply multiplied the likelihoods together, re- 1529

peating the maximum likelihood procedure. 1530

As the majority of barcoded knockouts are neutral or nearly 1531

so (s ≈ 0), we must have a method to distinguish between 1532

likely neutral and selected knockout mutations; this can be 1533

accomplished by computing a p-value under the null hypoth- 1534

esis s = 0. For ease of computation and generality we com- 1535

pute the p-value as the posterior probability that the likeli- 1536

hood ratio between null and alternative hypotheses is greater 1537

than 1, i.e. the probability that the data more strongly support 1538

the null hypothesis over the alternative, 1539

p= Ps|r

(
L(0|r)
L(s|r) > 1

)
P (s|r)∝ L(s|r)

This convenient definition has been shown to be equivalent 1540

to the frequentist definition of the p-value using a likelihood 1541

ratio test statistic (if the distribution is invariant under trans- 1542

formation) (64, 65), and does not require asymptotic approx- 1543

imations. 1544

In practice, this p-value can be calculated by first, finely dis- 1545

cretizing the likelihood curve along s and normalizing it to 1546

get the posterior, 1547
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Pj(sj |r) = L(sj |r)∑
jL(sj |r)

(9)

Then, calculating the log-likelihood ratio along all dis-
cretized s values,

LLRj = logL(0|r)− logL(sj |r) (10)

And finally, summing to get the posterior probability that the1548

data supports the null hypothesis more than the alternative,1549

where I[·] is the indicator function,1550

p=
∑
j

I[LLRj > 0]Pj(sj |r)

We used the standard method of Benjamini & Hochberg to1551

control for the false discovery rate at α= 0.05.1552

S3.3 Estimation of error parameters. In order to estimate1553

fitness of individual genotypes from BarSeq data, we must1554

first obtain an estimate of the error parameters for each time1555

point in the experiments. There are two distinct sources of1556

noise in our BarSeq measurements–measurement (technical)1557

noise, arising from library preparation and sequencing error,1558

which is uncorrelated in time, and variance due to genetic1559

drift, which accumulates over time. Both sources of noise are1560

count processes, where the variance of barcode population1561

frequencies will be proportional to the mean,1562

〈ft,i〉= 〈rt,i〉
Rt
∝ var(ft,i)

In order to eliminate the dependence of the variance on the1563

mean, we apply a variance-stabilizing transformation,1564

φt,i ≡
√
ft,i

The variance of barcode frequencies of neutral lineages over1565

two time points will then depend on the variance that has ac-1566

cumulated due to genetic drift, as well as the technical noise1567

at the sampled time points. If there are sufficiently many read1568

counts/individuals such that the central limit theorem applies,1569

the variances will simply be additive,1570

κj,k ≡ var(φi,j−φi,k) = ζj + ζk+ |j−k|4Ne
(11)

Where ζt is the technical noise at time point t, Ne is the ef-1571

fective population size, and |j−k| is the number of transfers1572

performed between times j and k. The above equation de-1573

fines a set of linear equations, with ζt and Ne as unknown1574

parameters.1575

We can measure κj,k for all possible combinations of tj and1576

tk given large enough set of neutral barcodes. Our RB-TnSeq1577

libraries have a large number of transposons that were in-1578

serted into intergenic regions, the vast majority of which pre-1579

sumably have no fitness effect; thus, we use these intergenic1580

barcodes as our set of putatively neutral barcodes. We con-1581

firmed that our measured κj,k did not systematically vary1582

as a function of rj (Figure S1), indicating that the expected 1583

mean-variance relationship, var(ft,i) ∝ 〈ft,i〉, is consistent 1584

with our data. 1585

We only included intergenic barcodes that satisfy 50< rt,i < 1586

500, as our computation depends on having sufficiently many 1587

counts such that the central limit theorem applies, and bar- 1588

codes at a higher frequency are more likely to have acquired 1589

secondary mutations and be impacted by selection. In or- 1590

der to further guard against the effects of potential ’outlier’ 1591

barcodes (those with non-neutral fitnesses), we compute vari- 1592

ance estimates, κ̂j,k, with a more robust measurement of vari- 1593

ability, the median absolute deviation (MAD), 1594

ψi,j,k ≡ φi,j−φi,k (12)
MADj,k = med

i
|ψi,j,k−med

i
ψi,j,k| (13)

κ̂j,k =
(

MADj,k
0.67449

)2
(14)

We resampled barcodes with replacement (standard boot- 1595

strapping) 500 times to compute the relative errors on the 1596

κ̂j,k measurements. To decompose variability into the cor- 1597

related (1/Ne) and uncorrelated (ζt) components, we numer- 1598

ically minimized squared error of the expected relationship 1599

(eq. 11) between the noise parameters and the measured κ̂j,k, 1600

with inverse variance weighting, 1601

ζ,Ne = argmin
ζ,Ne

∑
j,k

(
ζj + ζk+ |j−k|4Ne − κ̂j,k

)2

var(κ̂j,k)

We subjected the minimization to the constraint that ζt ≥ 1602

1
4Rt , i.e. technical noise must be at least as large as vari- 1603

ance due to sampling. After converting the variance parame- 1604

ters from frequencies back to read counts, the total marginal 1605

variance parameter at a single time point is, 1606

ĉt = (4ζt+ 1/Ne)Rt
The number of intergenic barcodes included varies across 1607

RB-TnSeq libraries, experiments, and time points, but ap- 1608

proximately on the order of ∼104 intergenic barcodes are 1609

used to estimate the variance parameters. The errors on the 1610

estimated ĉt are generally small (. 1%), so the point estimate 1611

ĉt was directly used for all downstream inferences. 1612

S3.4 Estimation of mean fitness dynamics. As benefi- 1613

cial mutations increase in frequency, and deleterious muta- 1614

tions decrease, the mean fitness of the population changes 1615

over time, impacting the rate of frequency change of all geno- 1616

types in the population. To estimate the mean fitness dynam- 1617

ics for each experiment, we can track the dynamics of neutral 1618

genotypes, again using the large set of intergenic barcodes. 1619

We obtain an estimate of the mean fitness between times 0 1620

and t by simply taking the negative log slope over many bar- 1621

codes, 1622

ˆ̄xt,i =−1
t

[
log
(
rt,i
Rt

)
− log

(
r0, i

R0

)]
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Fig. S1. The measured noise parameter κj,k is consistently approximately con-
stant as a function of initial number of barcode reads. Data is from S/L/REL606
monoculture experiments, replicate 1. Curves are smoothed with a moving aver-
age,±2 reads.

As detailed in the previous section, it is advantageous to use1623

robust forms of estimation to guard against the presence of1624

outliers. Groups of ∼100 randomly selected intergenic bar-1625

codes with rt,i< 500 were summed together to create "super-1626

barcodes", in order to improve individual estimates. The1627

mean fitness ˆ̄xt,i was estimated for each super-barcode sep-1628

arately, and then the final estimate ˆ̄xt was obtained by tak-1629

ing the median over all super-barcodes. The standard error1630

was estimated via the median absolute deviation between all1631

super-barcodes, analogous to equations 13-14. Again, the1632

point estimate ˆ̄xt is used for all downstream analyses, as1633

mean fitness error was consistently small.1634

S3.5 Identification of putative outlier barcodes. We ob-1635

served that some barcodes had trajectories that noticeably dif-1636

fered from the rest of the barcodes within the genotype, likely1637

caused by the presence of secondary (selected) mutations that1638

arose elsewhere in the genome or rare frequency fluctuations.1639

We observed outlier barcodes with both beneficial and dele-1640

terious trajectories relative to the rest of the barcodes within1641

the genotype. Problematically, some of these outlier bar-1642

codes were at high abundance relative to the other barcodes in1643

the genotype, thus dominating the genotype fitness estimate.1644

This necessitated a need to either accommodate outliers in1645

our fitness estimation procedure or detect and reject outliers.1646

We found that a number of robust estimators that we explored1647

(e.g. maximum median/trimmed likelihood) had unreason-1648

ably high variance in fitness given our data (std ŝ& ŝ). Thus,1649

we opted to use a method to detect and reject outlier barcodes1650

within genotypes. We based our outlier detection method on1651

the resistant diagnostic RDi introduced by Rousseeuw and1652

Leroy (1987) (66), a high-breakdown measure of statistical1653

deviation.1654

For every genotype with at nbc ≥ 4 unique barcodes, we1655

computed a fitness estimate for each barcode, ŝi, via max-1656

imum likelihood (eqs. 5-8). We then used a resampling1657

approach to randomly sample 200 different combinations of1658

nr = dnbc/2e barcodes, where samples are labeled J . To get1659

an estimate of the ’typical’ fitness, ŝJ,typ, of the barcodes 1660

within a gene, we either take the weighted median (nr < 10) 1661

or weighted trimmed mean (nr ≥ 10, trim 30% off each tail) 1662

of the resampled barcode fitnesses, where in both cases, sam- 1663

ples are weighted by their inverse variance, wi = 1/(var ŝi). 1664

The weighted median is used for low number of samples, 1665

while the trimmed weighted mean is used for high number 1666

of samples, because the trimmed weighted mean generally 1667

has lower sampling variance when the number of samples re- 1668

maining after trimming is sufficiently large. To compare the 1669

strength of evidence for a fitness of ŝi or ŝJ,typ for barcode 1670

i, we compute the likelihood ratio, 1671

LRJ,i = log Li(ŝi|ri)
Li(ŝJ,typ|ri)

The deviation of barcode i from the rest of the barcodes in 1672

the genotype is then, 1673

ui = max
J

LRJ,i
med
i

LRJ,i

The final resistant diagnostic is finally calculated as a stan- 1674

dardized version of ui, 1675

RDi = ui
med
i
ui

If RDi > cutoff, then barcode i is considered an outlier and 1676

thrown away. 1677

S3.5.1 Simulations. To determine an appropriate cutoff 1678

value, we performed simulations of the data generating 1679

process, and calculated the RD for each barcode within 1680

a simulated gene using the above method. Specifically, 1681

we simulated trajectories of lineage frequencies with s ∈ 1682

{−0.02,0,0.02} gen−1 with the standard diffusion approx- 1683

imation, assuming f � 1, 1684

∂tf = sf +
√

f

Ne
η(t)

〈η(t)〉= 0
〈η(t)η(t′)〉= δ(t− t′)

We ’observed’ trajectories at the end of each ’day’ (≈ 6.64 1685

gen) for 4 days, and added measurement noise, 1686

φt ≡
√
ft

φobst |φt ∼N (φt, ζ)

We used Ne = 108 day and ζ = 2 ∗ 10−8. We then grouped 1687

20 simulated lineages together into a ’gene’ (approximate 1688

median number of barcodes per gene in our libraries), with 1689

n ∈ {1,2,3} selected lineages (of the same sign), and the rest 1690

as neutral lineages. After calculating the RD for each sim- 1691

ulated gene, we calculated the true positive/negative rate for 1692

calling a lineage as an outlier for a given threshold (Figure 1693

S2). 1694
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Fig. S2. (a) Detection of selected, outlier barcodes in otherwise neutral genes. Dotted lines are the true negative rate, solid lines are the true positive rate. (b) Average
inferred fitness (ie apparent fitness, differing from the true fitness by fluctuations) of barcodes with different RDs. Dotted lines are from neutral barcodes, solid lines are
outlier barcodes. ’Neutral’ barcodes with RD ≈ 6 have sufficiently large fluctuations to have trajectories that appear to have a 1% deviation from neutrality.

Fig. S3. Examples of high-abundance outlier barcodes detected in otherwise neutral genotypes. Red barcodes were called as outliers. Examples taken from an experiment
with the 6.5k S library in co-culture with L at the equilibrium frequency.

We can see that the method can sensitively detect relatively1695

small, ∼2%, differences in fitness, while minimizing the1696

number of neutral barcodes that are incorrectly thrown away.1697

True positive rate decreases somewhat if there are multiple1698

outlier barcodes within a gene, but the difference appears to1699

be minimal, as expected from the construction of the RD as1700

a high-breakdown deviance statistic. From the simulations,1701

we chose a cutoff of 6, which only falsely throws out ∼5%1702

of neutral lineages, while detecting ∼85− 95% of outliers.1703

This threshold also seems to empirically work with our data,1704

detecting at least the most obvious outliers (see e.g. Figure1705

S3).1706

S3.6 Consequences of potential barcode frequency1707

biases. One major assumption of the above analyses is that1708

the frequency of barcodes from BarSeq data represents an un-1709

biased estimate of the actual frequency of barcoded cells in1710

the population. While we expect this assumption to generally1711

hold, there are two major ways that this assumption could be1712

violated: (1) if barcodes are differentially amplified due to 1713

e.g. differences in GC content, and (2) if genomic regions 1714

near the chromosomal origin of replication are present at a 1715

higher copy number due to fast growth. Both types of biases 1716

have been observed in some previous RB-TnSeq experiments 1717

(40, 41). We can check for the presence of frequency biases 1718

by comparing the inferred value of the error parameter κt 1719

(see section S3.3) for barcodes with different GC contents 1720

and across genomic positions, as biases in frequency mea- 1721

surements will change the apparent strength of genetic drift. 1722

We see that κt generally does not change across these con- 1723

ditions (Figure S4), and thus the aforementioned sources of 1724

frequency biases do not seem to be particularly prevalent or 1725

strong in our system. 1726

Of course, other unknown sources of frequency bias could 1727

be present, or too weak to detect; but, under our inference 1728

pipeline, biases in frequency would only affect the variance 1729

of inferred s, not its expected value, as long as the bias across 1730

time points remains constant. We can see this by considering 1731
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the deterministic (mean) dynamics of mutant frequencies f1732

in a population with m genotypes,1733

fi(t) = f0,ie
sit∑m

j f0,je
sjt

We could then include a strain-specific, constant multiplica-1734

tive bias parameter, γi. The observed frequencies would then1735

follow,1736

fi(t) = γif0,ie
sit∑m

j γjf0,je
sjt

By observing these biased frequencies instead of the actual1737

frequencies, we would infer si and γif0,i, therefore only bi-1738

asing the nuisance intercept parameter.1739

As expected from the above analysis, there was no consis-1740

tent, detectable correlation between genomic position and in-1741

ferred fitness (Figure S6). However, there is one exception:1742

in a couple of the L experiments, it looks like there is a dip in1743

median fitness around ∼2.7 Mb, seemingly caused by a lack1744

of neutral/beneficial variants. This position is about ∼1 Mb1745

downstream from the origin of replication (3.8Mb), and ∼11746

Mb upstream of the termination of replication and Dif site1747

(∼1.5Mb). So it appears to be unlikely an artifact of uneven1748

copy numbers or a DNA extraction bias. The origin of this1749

signal is unclear, but seems to indicate that there is a region1750

of the L genome that is more likely to have deleterious ef-1751

fects from knockout mutations. However, in any case, the1752

dip seems to be isolated to a seemingly unremarkable por-1753

tion of the genome, and thus does not call into question the1754

general validity and assumptions of our model.1755

S4 Analysis1756

S4.1 Similarity of fitness effects across environments.1757

To compute the correlation of knockout fitness effects across1758

environments for a given genetic background (main text Fig-1759

ure 3), we first removed genes with noisy fitness effects1760

(σs > 1%), then calculated the weighted pearson correlation1761

coefficient, where genes are labeled k and environments are1762

labeled i, j,1763

wk = 1/(var ŝi,k+ var ŝj,k) (15)

µ(x) =
∑
kwkxk∑
kwk

(16)

wcov(x,y;w) =
∑
kwk(xk−µ(x))(yk−µ(y))∑

kwk
(17)

ρi,j = wcov(ŝi, ŝj ;w)√
wcov(ŝi, ŝi;w)wcov(ŝj , ŝj ;w)

(18)

We then performed hierarchical clustering using Ward’s1764

method across environments for each genetic background,1765

with 1−ρi,j as the distance metric. Environment pairs with1766

ρi,j < 0 are set to 0 for the purposes of clustering, as there1767

were few negative correlations, and all were small.1768

We used a bootstrapping procedure to estimate the statistical 1769

support for each cluster of environments. Using only the in- 1770

tersection of genes that passed across all environments, we 1771

performed standard resampling of genes with replacement, 1772

and then repeated the correlation measurement of knockout 1773

fitness values for each pair of environments. Then we re- 1774

peated the hierarchical clustering and compared each branch- 1775

ing of the original tree to the bootstrapped tree using the 1776

method of (67). We repeated the resampling procedure 5000 1777

times for each genetic background and reported the average 1778

support for each clade. 1779

We performed a principal components analysis on our data, 1780

using normalized fitness effects as the features. We only 1781

included genes that had measured fitness effects across all ex- 1782

periments. We normalized the fitness data separately for each 1783

experiment so that the scale of fitness effects was comparable 1784

across conditions. We first performed a quantile transform 1785

(to a gaussian distribution) on the fitness effects using 1786

sklearn.preprocessing.quantile_transform, 1787

and then subsequently centered and scaled the data to turn 1788

it into a standard normal. We performed the PCA with 1789

sklearn.decomposition.PCA. 1790

S4.2 Network of gene-by-gene correlations. To inves- 1791

tigate potential relationships between genes in the different 1792

strain investigated in our work, we sought to quantify the de- 1793

gree of correlation of fitness measurements across all envi- 1794

ronments between every pair of genes, a quantity that has pre- 1795

viously been referred to as cofitness (41). Highly correlated 1796

fitness measurements may indicate that genes are connected 1797

via gene regulation. In order to account for the fact that the 1798

measurement error in fitness measurements varies between 1799

genes and environments, we computed the cofitness of every 1800

pair of genes i, j as the weighted pearson correlation coeffi- 1801

cient, where environments are labeled k, analogous to equa- 1802

tions 15-18. We excluded genes that were not called as sig- 1803

nificantly non-neutral in at least one experiment, and genes 1804

with successful fitness measurements in < 4 experiments. 1805

The vast majority of non-zero correlations are likely gener- 1806

ated by chance, due to the relatively small number of envi- 1807

ronments where fitness is measured. Therefore, for each pair 1808

of genes, we generated a null cofitness distribution through 1809

a resampling procedure performed 300 times, by (1) ran- 1810

domly permuting the fitness assignments for both genes, (2) 1811

resampling each fitness value such that ŝboot ∼ N (ŝ,std ŝ) 1812

("parametric bootstrapping"), and (3) recalculating cofitness 1813

via equations 15-18. We then compared the measured cofit- 1814

ness to the null distribution to generate a 1-sided p-value. Af- 1815

ter correcting the set of p-values with a Benjamini-Hochberg 1816

FDR correction, we considered gene pairs to be signficantly 1817

correlated at α = 0.05, effectively drawing an edge between 1818

the two genes in the cofitness network. 1819

After identifying statistically significant correlations between 1820

genes across environments, we sought to cluster genes into 1821

communities, without considering the magnitude or sign of 1822

the cofitness values. We used the ’Fluid Communities’ algo- 1823

rithm (55), as implemented in the networkx python pack- 1824

age (68), because of the flexibility of the algorithm, and 1825
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Fig. S4. The measured noise parameter κj,k does not vary systematically over (a) genomic position, or (b) barcode GC content, indicating that these factors do not
measurably bias barcode frequency measurements. Data is from S/L/REL606 monoculture (1) experiments, replicate 1.

the resulting communities had the highest modularity of all1826

community-finding algorithms we explored. As the fluid1827

communities algorithm is initialized stochastically, and re-1828

quires pre-specifying k communities, we ran the algorithm1829

on our data across varying community sizes, k ∈ [4,20], with1830

200 replicates for each k (Figure S17). We then picked the1831

communities with the highest modularity for each genetic1832

background. For the purposes of community finding, we1833

treated all significant edges as the same, without consider-1834

ing the actual cofitness value of the edge. All community1835

sets found had modularity > 0, indicating that genes were1836

more tightly connected within their community compared to1837

between communities.1838

Standard gene ontology enrichment analysis was performed1839

on each community in each genetic background with the1840

goatools python package (69), using Fisher’s exact test to1841

find significantly over-represented annotations in a gene set,1842

with an FDR correction and α= 0.05.1843

We sought to check if variance in fitness across environments1844

for any given knockout could predict if two genes would stay1845

in the same cluster across genetic backgrounds, as a control1846

for the observed correlation with EcoliNet score. We average1847

fitness variance across environments over the two knockouts1848

of interest, referring to the quantity as 〈var(s)〉. We fit a lo-1849

gistic model with normalized EcoliNet score of the gene pair,1850

nscore ≡ score/stdscore and nvar ≡ 〈var(s)〉/std〈var(s)〉1851

as the predictors (standard deviation is taken over all knock-1852

out pairs), and the probability that the two genes are together1853

in strain 2, if they were together in strain 1 as the response1854

variable, logpi/(1−pi) = nscoreβscore+nvarβvar+β0 +1855

εi. The results are shown in Figure S24.1856

It is known that community detection algorithms can have1857

potential surfaces with large plateaus without a clear max-1858

imum, i.e. can give many solutions with similar modularity1859

but different groupings (70). We wanted to see if the observed1860

(mostly) "random reassortment" of genes among clusters be-1861

tween genetic backgrounds could be explained by this effect.1862

Thus, we compared the optimal partition of each background1863

to the 100 next-best partitions across all backgrounds (Figure 1864

S18). For each suboptimal partition, we asked if two genes 1865

were in the same cluster in the optimal partition, what is the 1866

probability that they are also in the same cluster in the sub- 1867

optimal partition. We see that if we compare partitions in 1868

the same genetic background, this probability is around 40%, 1869

while it is around 10% when comparing partitions across 1870

background. This suggests that different reasonable parti- 1871

tions of the cofitness networks are much more similar within 1872

genetic backgrounds than between backgrounds. We also 1873

re-ordered the genes of the cofitness network such that they 1874

followed the ordering of another genetic background’s opti- 1875

mal partition (Figure 4B). It is apparent that replotting the 1876

cofitness matrix using another genetic background’s cluster- 1877

ing does not produce noticeable structure. Together, these 1878

results suggest that while different reasonable partitions can 1879

give slightly different clusters, the observed reassortment of 1880

knockout fitness correlations among backgrounds cannot just 1881

be explained by failures of the community detection algo- 1882

rithm. We also investigated the extent to which the structure 1883

of our cofitness networks was driven by measurement noise 1884

(Figure S19, S20). We leveraged the fact that we had at least 1885

two biological replicates per experiment, and computed new 1886

cofitness networks (in the same manner as described above), 1887

only using either biological replicate "1" or "2". We can see 1888

that even when the data is independently split, the cofitness 1889

networks within a genetic background are more similar than 1890

between backgrounds. 1891

S4.3 Genome evolution. We sought to understand if 1892

knockout fitness measurements could predict the probability 1893

that a gene would mutate in the LTEE. To that end, we down- 1894

loaded clonal sequencing data from Tenaillon et al. (2016) 1895

(59), where the authors isolated and sequenced clones from 1896

a number of time points across all 12 lines of the LTEE, and 1897

identified mutations relative to the REL606 ancestor. We ex- 1898

cluded synonymous SNPs from our analysis. A representa- 1899

tion of the raw data can be found in Figure S28. 1900

We then sought to understand if knockout fitness effects can 1901
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predict if a mutation will appear in a gene in the Tenaillon1902

et al. dataset, as a proxy for establishment. For REL606,1903

classified a gene as mutated if a mutation appeared in one of1904

the 12 LTEE lines (excluding mutator populations). For S and1905

L, we classified genes as mutated only if they were present1906

in the appropriate sublineage, i.e. in REL11830, REL110361907

or REL11831, REL11035 for S and L respectively. We also1908

excluded mutations that were already present in our S and1909

L clones, which we determined from clonal sequencing data1910

from Plucain et al. (2014) (46). We then fit a logistic model1911

with knockout fitness effect as the predictor variable and gene1912

mutated status (between time points) as the response variable,1913

logpest,i/(1−pest,i) =±s̃iβest±+β0 + εi

We fit two different coefficients for beneficial and deleteri-1914

ous mutations in each environment, βest+ and βest− respec-1915

tively. We only include genes that are putatively neutral, i.e.1916

|s|< 0.005 and not called as significantly non-neutral, along1917

with genes that are either significantly beneficial or delete-1918

rious, all at significance level α = 0.05. We normalized the1919

fitness values by the median value of the non-neutral genes,1920

i.e.1921

s̃i = si
med
i/∈neutral

si
(19)

We use the logistic model implementation in the1922

statsmodels python package (71). We used the1923

standard method of Benjamini & Hochberg to control for1924

the false discovery rate, pooling all tests across beneficial1925

and deleterious coefficients. To test if there is a significant1926

difference between REL606 logit slopes at 0-5k and 5-20k,1927

we employed a permutation test. To construct a null distri-1928

bution of the difference in slopes, for each gene we shuffled1929

whether it ’established’ (0 or 1) between 0-5k and 5-20k and1930

recomputed the regression coefficients 1000 times, recording1931

the difference. We then compared the actual difference in1932

coefficients to the null distribution to get p-values.1933

S4.4 Changes in gene expression. We used a microar-1934

ray gene expression dataset previously reported by Le Gac et1935

al. (2012) (16) to compare to our knockout fitness measure-1936

ments, downloaded from the NCBI Gene Expression Om-1937

nibus (72), importing data with GEOquery (73). We pri-1938

marily used the GEO2R tool to process the raw microarray1939

data along with the R package limma (74, 75). After ap-1940

plying a log2 transform to the data, we ensured that all col-1941

lected samples had approximately the same intensity distri-1942

butions by performing a quantile normalization. Then, pool-1943

ing all replicates within a strain, we fit a linear model to our1944

data to determine the relative log-fold change in expression1945

between different strains, taking into account the measured1946

mean-variance relationship. A representation of the raw data1947

can be found in Figure S27. We also compared the distri-1948

bution of log-fold fitness effects between neutral and non-1949

neutral genes (Figure 5B). We computed p-values to compare1950

the distributions with standard Mann-Whitney U tests.1951

We then fit a linear model to investigate if there was a corre- 1952

lation between fitness measured in a given environment, si, 1953

and log-change in gene expression between evolutionary time 1954

points ∆Ei, such that 1955

∆Ei =±s̃iβexp±+β0 + εi

Similar to the gene establishment model, we fit two different 1956

coefficients for beneficial and deleterious mutations in each 1957

environment, βexp+ and βexp− respectively (Figure S29). 1958

We only include genes that are putatively neutral, i.e. |s| < 1959

0.005 and not called as significantly non-neutral, along with 1960

genes that are either significantly beneficial or deleterious, 1961

all at significance level α = 0.05. We normalized the fitness 1962

values by the median value of the non-neutral genes, in the 1963

same manner as equation 19. We fit the model with weighted 1964

least squares, as implemented in the statsmodels python 1965

package (71), with weights wi ∝ 1/var∆Ei, to incorporate 1966

the fact that there are different levels of measurement error 1967

in the log-fold change expression for each gene. We used 1968

the standard method of Benjamini & Hochberg to control for 1969

the false discovery rate, pooling all tests across beneficial and 1970

deleterious coefficients. 1971

As a control, we also investigated if our results would change 1972

if we excluded poorly expressed genes. It is perhaps the 1973

case that neutral knockouts are potentially a bad comparison 1974

class, because many of them may be poorly expressed at all 1975

times, and thus ineligible to undergo large changes in expres- 1976

sion. We can test for this alternative hypothesis by focusing 1977

our analysis on solely initially highly expressed (50th per- 1978

centile) genes, excluding poorly expressed genes. The results 1979

are shown in figure S30. The regression coefficients change 1980

somewhat, but not qualitatively, showing that the aforemen- 1981

tioned hypothesis is not likely the driver of the signals we 1982

observed. 1983
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Fig. S5. Statistics of RB-TnSeq libraries, (A) initial distribution of barcode frequencies in library populations, and (B) distribution of number of unique barcoded transposon
insertions into each gene (cds).
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Fig. S6. Relationship between genomic position and fitness effect. Red dots are the fitness effects of individual knockouts, black line is the rolling median fitness effect (error
bars are standard errors).

Fig. S7. Frequency trajectories of mixed culture experiments from CFUs. For each coculture experiment, we diluted and plated cultures on both TM plates (S/L indicator
plates) and LB/Kan plates (pulls out cells from the RB-TnSeq libraries). We didn’t plate experiments "S/L in maj (1)" on LB/Kan plates because we only cocultured wt S/L with
L/S RB-TnSeq libraries respectively. Please note that each subplot is on a different scale.
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Fig. S8. Measured S/L frequency dependent fitness and ecological equilibrium via CFUs on TM plates (S/L indicator plates). Independent cocultures of S and L wt clones
were propagated in standard LTEE conditions. Red lines indicate cultures that were started at high frequencies of S, blue lines indicate cultures started at low frequences.
Error bars represent standard errors.
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Fig. S9. All measured DFEs across experiments, arranged by environment.
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Fig. S10. Comparison of fitness effects; identical to Figure 1F in the main text, except we highlighted all genes in mutated operons. It is still the case that there are many
genes that did not get a mutation in their operon, but still changed from a beneficial to non-beneficial fitness effect across genetic backgrounds.
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Fig. S11. Frequency-dependent knockout fitness effects for both 6.5k S and L. (A) Similar to Fig 2A in main text, except comparing fitness at ecological equilibrium to fitness
when the ecotype is in the minority. (B) Changes in summary statistics of the DFE as a function of ecotype frequency. Solid lines represent the beneficial side of the DFE,
while dashed lines represent the deleterious side.
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Fig. S12. Fitness effect sign-flipping across environments. Same as Figure 2C (main text), but (post-FDR correction) p-value cutoff is reduced from 0.05 to (A) 10−3 or (B)
10−5

Fig. S13. Fitness effect sign-flipping across environments. Same as Figure 2C (main text), but we only consider genes non-neutral with fitness (A) |s|> 1% or (B) |s|> 2%
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Fig. S14. Fitness effect correlations between strains.

Fig. S15. Fitness effects of (A) sufABCDSE and (B) proVWX operons in REL606 and 6.5k L/S.
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Fig. S16. Fitness effects of knockouts across environments, where knockouts are beneficial in at least one condition on the (A) REL606, (B) 6.5k S, (C) 6.5k L background.

Fig. S17. Modularity of cofitness clusters, across 200 (stochastic) initializations for different numbers of communities from 4−15.
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Fig. S18. We compared the optimal partition of the REL606/S/L cofitness networks to the next 100 best (but suboptimal) partitions, also shown in Figure S17. For each
suboptimal partition, we asked if two genes were in the same cluster in the optimal partition, what is the probability that they are also in the same cluster in the suboptimal
partition. We can see that if we compare partitions in the same genetic background, this probability is around 40%, while it is around 10% when comparing partitions across
background. This suggests that different reasonable partitions of the cofitness networks are much more similar within genetic backgrounds than between backgrounds.
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Fig. S19. In order to better understand the extent to which the structure of our cofitness networks is driven by measurement noise, we re-computed the cofitness networks,
only using one of the biological replicates per experiment for every experiment. We then computed the correlation of all cofitness values across all networks. We can see that
even when the data is independently split, the cofitness networks within a genetic background are more similar than between backgrounds. In the figure, R, S and L refer to
REL606, 6.5k S/L libraries, respectively, and 1 and 2 refer to using only biological replicates "1" and "2" from each experiment.
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Fig. S20. We repeated the cofitness clustering, as done in Figure 4B, using cofitness networks computed using only one of the biological replicates per experiment for every
experiment (as done in Figure S19). We see similar results to Figure 4B, where clusters are visibly preserved only when clustered on the same background, albeit to a weaker
extent. In the figure, R, S and L refer to REL606, 6.5k S/L libraries, respectively, and 1 and 2 refer to using only biological replicates "1" and "2" from each experiment.
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Fig. S21. In order to explore how clusters of genes changed across genetic background, we calculated the fraction of genes in a given cluster that belong to a cluster in a
different genetic background. We see that clusters are mostly not preserved between genetic backgrounds, with the exception of the clusters marked by asterisks, which
show non-random sampling across genetic backgrounds (* p < 0.05, ** p < 0.005, *** p < 10−4; Pearson’s chi-squared test). †set of clusters across all three genetic
backgrounds which share more genes than expected, driven primarily by adhesion-related genes.
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Fig. S22. Biofilm (GO:0043708)/adhesion (GO:0022610)/ pilus organization (GO:0043711)/ organonitrogen compound biosynthesis (GO:1901566) genes tend to appear in
the same clusters across genetic backgrounds. P-values are post-FDR correction.

Fig. S23. Correlations between cofitness increase (A) when genes are in the same operon and (B) with EcoliNet (58) score. A score of 0 indicates that the gene pair is not
connected in EcoliNet, i.e. a node distance greater than 1.
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Fig. S24. Variance in fitness effect across environment does not fully explain correlation between EcoliNet score and probability that two genes will be in the same cluster
across strains. (A) Covariation of EcoliNet scores and variations in fitness effects in some strain pairs. The observed covariation is interesting in and of itself, as it suggests
that more strongly interacting genes tend to have a larger variation in fitness effects across environments. (B) A standard multiple logistic regression with both fitness variance
(in strain 2) and EcoliNet score as covariates, with response variable as the probability two genes are in the same cluster in strain 2, if they were together in strain 1. For most
strain pairs, the regression reveals that the correlation reported in Figure 4D still holds after controlling for variation in fitness effects. * p < 0.05. See section S4.2 for model
details.

Fig. S25. Shortest distance between genes in EcoliNet (58) predicts if genes stay correlated across genetic background
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Fig. S26. Relationship between deleterious mutations and evolutionary outcomes. (A) Deleterious fitness effects generally do not predict which genes will mutate, with the
one exception that L seems more likely than random to get mutations in genes with deleterious acetate knockout fitness. (B) In REL606, deleterious knockout fitness effects
are predictive of increased gene expression across all tested environments. Asterisks denote coefficients/comparisons that are significantly different than 0 (* p < 0.05, **
p < 0.01, *** p < 0.001).
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Fig. S27. Relationship between fitness effects and log-fold gene expression change for all experiments, relative to the average change for neutral knockouts. Lines show
mean gene expression change as a function of fitness effect (± standard error), with a±0.01 moving average.
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Fig. S28. Establishment of a mutation in a gene by its knockout fitness.
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Fig. S29. Linear model to explore correlation of gene expression changes with knockout fitness effects, comparing neutral to (a) beneficial and (b) deleterious knockouts.
Asterisks denote coefficients that are significantly different than 0 (FDR correction; * p < 0.05, ** p < 0.01, *** p < 0.001).

Fig. S30. Restricting analysis of Figure S29 to exclude poorly expressed genes (bottom 50%) does not qualitatively change results of analysis, when comparing neutral to
(a) beneficial and (b) deleterious knockouts.
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Fig. S31. Fitness effects predict EcoliNet node degree. Deleterious knockouts across environments are more likely to have a high degree compared to neutral knockouts.
The same general pattern appears for beneficial knockouts, although less clearly. Linear model fit with ordinary least squares; normalized analogous to model in section
S4.4. Asterisks denote coefficients that are significantly different than 0 (* p < 0.05, ** p < 0.01, *** p < 0.001).
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