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Abstract

The size of genetic databases has grown large enough such that, genetic genealogical search,
a process of inferring familial relatedness by identifying DNA matches, has become a viable
approach to help individuals finding missing family members or law enforcement agencies lo-
cating suspects. However, a fast and accurate method is needed to search an out-of-database
individual against millions of individuals in such databases. Most existing approaches only offer
all-vs-all within panel match. Some prototype algorithms offer 1-vs-all query from out-of-panel
individual, but they do not tolerate errors. A new method, random projection-based identical-
by-descent (IBD) detection (RaPID) query, referred as RaPID-Query, is introduced to make fast
genealogical search possible. RaPID-Query method identifies IBD segments between a query
haplotype and a panel of haplotypes. By integrating matches over multiple PBWT indexes,
RaPID-Query method is able to locate IBD segments quickly with a given cutoff length while
allowing mismatched sites in IBD segments. A single query against all UK biobank autosomal
chromosomes can be completed within 2.76 seconds CPU time on average, with the minimum 7
cM IBD segment length and minimum 700 markers. Using the same criteria, RaPID-Query can
achieve 0.099 false negative rate and 0.017 false positive rate at the same time on a chromosome
20 sequencing panel having 92,296 sites, which is comparable to the state-of-the-art IBD detec-
tion method Hap-IBD. For the relatedness degree separation experiments, RaPID-Query is able
to distinguish up to fourth degree of the familial relatedness for a given individual pair, and
the area under the receiver operating characteristic curve values are at least 97.28%. It is an-
ticipated that RaPID-Query will make genealogical search convenient and effective, potentially
with the integration of complex inference models.

1 Introduction

With the popularity of direct-to-consumer (DTC) genotyping services, genetic databases are grow-
ing to tens of millions of individuals (https://thednageek.com/dna-tests/). Thus, using sin-
gle nucleotide polymorphisms (SNPs) data from autosomal chromosomes to perform genealogical
search has become feasible for familial relationship inference. DTC companies provide such geneal-
ogy service to predict the degree of relationships using accumulated shared identical-by-descent
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(IBD) segments between each customer and the genetic database of collected genetic data of their
customers. In early days, IBD segments are identified from a pairwise comparison based detection
algorithm (Henn et al., 2012). Currently, there are efficient IBD detection methods emerged and
available for relatedness inference, such as PBWT (Durbin, 2014), PBWT-Query (Naseri et al.,
2019a), RaPID (Naseri et al., 2019b), Hap-IBD (Zhou et al., 2020a), FastSMC (Nait Saada et al.,
2020), TPBWT (Freyman et al., 2020), d-PBWT (Sanaullah et al., 2021), iLASH (Shemirani et al.,
2021). Though these latest methods show the potential power of IBD driven approach in related-
ness studies (Sticca et al., 2021), most of them are not able to perform query search, a process that
takes an individual’s genetic data as the query and searches the population genetic database for
IBD segments.

For real-time query search, indexing-based approach such as Naseri et al.’s and Sanaullah et al.’s
query approach (Naseri et al., 2019a; Sanaullah et al., 2021) are promising. Both query approaches
are based on the Positional Burrows–Wheeler transform (PBWT), an efficient haplotype matching
algorithm developed by Durbin (2014). Naseri et al. proposes PBWT-Query, a long match based
query algorithm that is able to effectively find IBD segments in a given panel for a given query.
It is more practical formulation for genealogical search than Durbin’s set-maximal match based
query algorithm, as it allows specifying the minimal length of the match. Naseri et al. also
proposes L-PBWT-Query which uses an additional data structure LEAP array to achieve run-time
efficiency (Naseri et al., 2019a). Sanaullah et al. further improves the PBWT-Query algorithm by
proposing the triple sweep long match query and the single sweep long match query algorithms.
Comparing to Naseri et al.’s algorithm, Sanaullah et al.’s single sweep long match query algorithm
efficiently reduces the memory usage while keeps a fast query time. The triple sweep long match
query algorithm theoretically achieves the linear run time complexity. For chromosome 21 panel
with 974,618 haplotypes and 9,793 sites, the average query time of matches having at least one
thousand sites for the single sweep long match query algorithm is 2.13 milliseconds for PBWT
implementation, and 3.55 milliseconds for d-PBWT implementation (Sanaullah et al., 2021).

However, Naseri et al.’s and Sanaullah et al.’s query search algorithms are still not practical for
genealogical search in real databases because they do not allow any mismatches when performing
IBD segment detection. IBD segment may have mismatched sites due to mutation, gene conversion,
or genotyping error. The exact IBD segment matching result from Naseri et al.’s or Sanaullah et
al.’s algorithm may underestimate the length of the real IBD segment, which may impact the degree
of relatedness inference. Thus, a new efficient haplotype query method tolerating mismatches is
desired.

Here, we propose a new PBWT based IBD detection method, random projection-based identical-
by-descent (IBD) detection (RaPID) query, referred as RaPID-Query. To allow mismatches while
maintaining efficiency and accuracy, RaPID-Query uses the idea of multiple low-resolution PBWT
panels by random projection introduced in RaPID (Naseri et al., 2019b). In addition, a few al-
gorithmic innovations are introduced. First, we use x-PBWT-Query, an extended PBWT query
algorithm, by simplifying Sanaullah et al.’s single sweep long match query algorithm. Second, we
come up with a multi-resolution PBWT idea: while merging the results from the multiple low-
resolution PBWT scans which gives approximate IBD segments, a high-resolution PBWT is run
to refine the result with additional segmental reconstruction. RaPID-Query provides a promising
method for fast query search. We compare the performance of RaPID-Query with the state-of-the-
art all-vs-all IBD detection method Hap-IBD (Zhou et al., 2020a). We investigate the feasibility of
the query time on large cohort dataset for RaPID-Query. We also perform the analysis of individual
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relatedness degree separation on IBD segments detected by RaPID-Query and compare the result
with x-PBWT-Query.

2 Methods

The RaPID-Query method uses a new long match query algorithm, named x-PBWT-Query algo-
rithm (i.e., extended PBWT query algorithm, by simplifying Sanaullah et al.’s single sweep long
match query algorithm (Sanaullah et al., 2021)) to detect the IBD segment, with the random pro-
jection trait to tolerate mismatching sites in IBD segment. The resulted IBD segments from the
query are refined by running long match query algorithm on the full resolution panel. The random
project trait is inherited from RaPID (Naseri et al., 2019b). A new merging algorithm tailored
to querying is proposed, which requires no additional disk space as there is no intermediate files
output to the disk. Compared to PBWT query algorithms (Naseri et al., 2019a; Sanaullah et al.,
2021), the IBD segments from RaPID-Query method are with high quality and allowing mismatch
sites for the query search.

2.1 x-PBWT-Query

The x-PBWT-Query algorithm is a simplified version of Sanaullah et al.’s single sweep long match
query algorithm (Sanaullah et al., 2021). The algorithm takes a query and a panel with n number
of sites as the input, as well as the minimum cutoff length of the IBD segment L (where L ∈
[1, n]). It outputs the IBD segments found between the query individual and individual in the
panel (i.e., it reports a tuple (individual id in panel, IBD start position, IBD end position) for the
query individual id). The algorithm assumes PBWT panels (i.e. prefix array p, divergence array
d, and block indicator related arrays u and v) (Durbin, 2014) are pre-computed and accessible.
The x-PBWT-Query algorithm pseudocode can be found in Algorithm S1, and the detail of the
getBlockIndicator(·) function to update the match block [f, g) indicators f (or g) in Algorithm S1
is described in Algorithm S2, which covers both regular and boundary cases.

The Sanaullah et al.’s single sweep long match query algorithm (Sanaullah et al., 2021) assumes
the query haplotype is virtually inserted into the panel. A virtual query indicator is used to track the
query haplotype location in the panel. The algorithm adopts the set-maximal match mechanism,
first introduced by Durbin (2014), to find the long match block. This is similar to the behavior of
Naseri et al.’s PBWT-Query algorithm (Naseri et al., 2019a). If the length of the start position e of
the set-maximal match to the current scanned site position k is at least the cutoff long match length
L, a match block is formed. The newly formed match block has one haplotype only, whose location
depends on the values of block indicator arrays u and v, as well as the virtual query indicator.
Then, the algorithm uses the neighbor haplotypes’ divergence values to expand the match block
in both directions. If such divergence value shows the length of the match between the haplotype
in the match block edge and the neighbor haplotype outside of the match block edge is at least
k + 1 − L, the match block is expanded. Finally, the algorithm reports matches if the matches in
the match block have the opposite site value to that of its neighbor’s haplotype (i.e. a break) in
the next-to-be scanned site position.

The proposed x-PBWT-Query algorithm simplifies the Sanaullah et al.’s single sweep long
match query algorithm when forming the match block. Firstly, it does not use the concept of virtual
insertion thus tracking the virtual query indicator is no longer needed. Secondly, it eliminates the
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Figure 1: x-PBWT-Query Long Match Block Initialization Example (L = 6).

redundant steps of evaluating the divergence values of the haplotypes if they are already in the set-
maximal match block. In x-PBWT-Query algorithm, the step of updating the value of the virtual
query indicator in each site is not needed. The long match block is initially formed to include
all haplotypes in the set-maximal match block when the constraint “e = k + 1 − L” is satisfied.
Figure 1 is an example of the long match block initialization process when L = 6. Comparing to the
procedure of initializing match block in Sanaullah et al.’s single sweep long match query algorithm,
where the match block starts with one haplotype, the x-PBWT-Query algorithm’s match block
starts with all haplotypes in the set-maximal match block. This approach simplifies the match
block build-up process by avoiding re-evaluating the divergence values of the haplotypes already in
the set-maximal match block during the step of expanding the match block. Though theoretically
the time complexity stays the same, it reduces the overhead in practical applications.

Additionally, The x-PBWT-Query algorithm offers a new feature: site distance tracking. This
feature makes x-PBWT-Query algorithm be feasible when the cutoff long match length L is in
either physical or genetic unit of measurement. The algorithm tracks site index i who is L away
from the currently scanned site k while maintaining the same complexity of the algorithm. Figure 2
is an example of the updates of the site distance track index i in scanned site k. Site distance track
index ikL indicates the closest site having L centiMorgan (cM) distance away from site k. The site
distance track index i is updated as the site scanning goes. Since the site scanning would never
go backwards, the maximum number of the update is bounded by the number of sites (i.e. linear
operation). When expanding the match block, the site distance track index i is marked as the
start position of the matches in the match block. In Sanaullah et al.’s single sweep long match
query algorithm, the start position of the matches is updated as k + 1 − L, which requires non-
trivial conversion (e.g., an additional data structure holding the mapping information from genetic
positions to physical positions is needed) if the given cutoff long match length L is in genetic
distance format. The site distance track index of x-PBWT-Query algorithm facilitates the usage of
the algorithm in real applications. In most real world scenarios, genetic maps are used to measure
distance in chromosomes; thus, genetic length is used to represent the cutoff long match length
L. In such case, it is very straightforward to have genetic maps directly applied to the distance
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Figure 2: x-PBWT-Query Site Distance Track Index Example (L = 2).

track variable i in x-PBWT-Query algorithm, to be able to query the panel easily using the genetic
distance cutoff length.

The time complexity of the proposed x-PBWT-Query algorithm is O(nm) in worst case scenario,
where n is the number of sites and m is the number of haplotypes. On average case, its time
complexity is O(n+ |output|), where |output| ∈ O(nm) is the number of the output IBD segments.
This is equivalent to the time complexity of Durbin’s finding all set-maximal matches from a new
sequence algorithm (Durbin, 2014), Naseri et al.’s PBWT-Query algorithm (Naseri et al., 2019a),
and Sanaullah et al.’s single sweep long match query algorithm (Sanaullah et al., 2021), as Durbin’s
procedure of finding all set-maximal matches from a new sequence, dominating the time complexity,
is part of these algorithms. The empirical evaluation on the average time complexity of such
procedure being O(n + |output|) is documented and the result is confirmed (Naseri et al., 2019a).
The time complexity of the proposed long match query algorithm independent from the number
of haplotypes m makes the algorithm scalable to gigantic biobank-sized or even population-scaled
panels.

2.2 RaPID-Query

The drawback of PBWT-based long match query algorithm is not allowing mismatch sites when
searching for shared IBD segments. It is common that an IBD segment contains few mismatch
sites due to the event of genotyping error, gene conversion, or mutation. To have the proposed
long match query algorithm allowing mismatch sites in IBD segment, the concept of random pro-
jections, originally proposed in RaPID (Naseri et al., 2019b), is brought into the new long match
query algorithm and composes the random projection-based IBD detection (RaPID) query method,
referred as RaPID-Query. Similar to RaPID, RaPID-Query divides the panel into windows and for
each window a site is sampled randomly on the weight of the site frequency, to form a low resolu-
tion panel. RaPID-Query generates multiple low resolution panels and then, the x-PBWT-Query
algorithm is run on each low resolution panel to find exact matched segments. The next step is
to combine result segments from all the runs. A new IBD segment merging method tailored to
querying is proposed. Different from RaPID, the proposed merging method is scalable to large
number of detected IBD segments as there is no intermediate files output to the disk, eliminating
the situation that poor disk I/O performance hampers the run time. Finally, the x-PBWT-Query
algorithm is run on the original resolution panel to get the IBD segments in full resolution. The
full resolution IBD segments are used to refine the boundaries of low resolution IBD segments,
with the cases of stitching IBDs if their distance in chromosome region is within the allowed gap
gmax. Figure 3 shows the entire RaPID-Query workflow. The left section shows the pre-process
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Figure 3: RaPID-Query Workflow.

part of the RaPID-Query method. The population panel and associated PBWT panels and their
sub panels are calculated in advance. The right section shows the query search part of the RaPID-
Query method. The associated sub queries are generated based on the provided individual query
and search is performed quickly thanks to all the pre-processed panels and sub panels.

2.2.1 Query with Random Projection

The first part of the method is to produce matches for the query allowing mismatch sites. Assuming
long matches with minimum match cutoff length L are to be found on a panel with total number
of n sites and m haplotypes for a query haplotype with the same n sites. During the pre-process
stage, the PBWT panels (i.e., prefix array p, divergence array d, and block indicator related arrays
u and v) as well as the minor allele frequencies of each site are calculated based on the input site
panel. Then, the random projection approach is used to create down-sampled site panels from
the original site panel. The site panel is equally divided into ⌈ n

w⌉ sections, where each section’s
window size is w. The sub index is sampled from the index of the site panel, one site index per
section, by using weighted random sampling. The probability of each site index getting selected
is determined by the minor allele frequency of the site in the section. The larger the minor allele
frequency the site has, the more chance of such site is getting selected. The sub index is formed
with ⌈ n

w⌉ site indices. For each random projection run, one sub index is needed. Thus, there are
r sub indices generated in the pre-process stage where r is the number of random projection runs.
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Each sub index is correlated to a sub panel. Next, the sub PBWT panels are created for each sub
panel and ready for the queries. In the query search stage, r sub queries are generated by mapping
the input query site panel to the sub indices. Then, x-PBWT-Query algorithm is applied on each
sub query and correlated sub panel and sub PBWT panels, to output the detected matches. The
detected matches are rescaled from the resolution window size to the original panel and query size.
Specifically, a low resolution match (id, [h′, t′]) found from the low resolution panel with the window
size w, is rescaled to the original resolution as (id, [wh′, w(t′ + 1) − 1]) (or (id, [h, t])), where id is
the haplotype identification number who has the match with the query haplotype, h′ (or h = wh′)
is the head or start position of the match and t′ (or t = w(t′ + 1)− 1) is the tail or end position of
the match, inclusively. Figure S1 shows an example of query with random projection runs.

2.2.2 IBD Segment Identification

The second part of the method is to merge and refine the detected matches found from x-PBWT-
Query results. To identify IBDs from the detected matches, firstly, the detected matches are
grouped by the end position of the match. Secondly, the fragmented IBDs are identified as the
match having the c-th smallest start position in each group, and the other matches are discarded.
Thirdly, the candidate IBDs are formed by merging the fragmented IBDs, if two fragmented IBDs
have overlap. The candidate IBD is formed as the union of the two fragmented IBDs. Lastly, the
candidate IBDs are refined by comparing to the exact matched IBDs from the original resolution
run using x-PBWT-Query algorithm. The boundaries of candidate IBD who has overlap with the
exact matched IBD is extended or trimmed according to the overlapped exact-matched IBD. If
the distance between two candidate IBDs is within the maximum gap threshold gmax, the IBD is
formed from stitching the two candidate IBDs. This is the special case of IBD boundary correction.
Figure 4 is an IBD identification example of a haplotype pair with c = 2 and gmax = 2cM . It shows
there are six groups of detected matches (i.e., G1-G6) after grouping the end position of the match.
Then, five matches having the second smallest start position in each group, are identified as the
fragmented IBDs (i.e., G1-G2, G4-G6). The match in G3 is discarded as there is no match having
the second smallest start position existing in the group. Then, the fragmented IBDs are merged if
they have overlap across the groups. In the example, three candidate IBDs are formed: one from
group G1, one from group G2, and the other one from the union of three fragmented IBDs from
group G4-G6 since they have overlaps. Finally, the three candidate IBDs are refined into two IBD
segments: the candidate IBDs from group G1 and G2 are stitched together, as the gap between
them in chromosome region is less than 2 cM; the candidate IBD from the group G6 is trimmed
on both ends, to be aligned with the boundaries of the overlapped exact matched IBD segment.

To group the end positions of the matches from the random projection runs, each detected
matches (id, [h, t]) is efficiently stored in an array of hash tables. In particular, a PBWT bucket
data structure Ba is introduced to store and merge detected matches from the queries among
random projected panels. Ba is an array of size n, whose index is t, indicating the end position
of the match. It stores information of all matches found ending at position t inclusively, which is
a hash table data structure whose key is the matched haplotype id and value is a list H storing
the start position h and count, indicating the number of identical matches found, for all candidate
matches found having the same haplotype id and ending at the same position t.

The way to collect all matches found from PBWT queries results is to collect matches per site,
starting from site 0 to site n−1 from all random projection runs in the same resolution group. The
matches found from all runs at site t are collected and stored in PBWT bucket Ba, before each
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Figure 4: Merge and Refine Example of a Haplotype Pair (c = 2, gmax = 2cM). Groups containing
no fragmented or candidate IBD segments are omitted.
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PBWT query moves to next site. See Algorithm S3. For each newly found match (idnew, [hnew, t])
from the runs, first it is merged with existing matches ending at the same current site t in bucket
Ba: the new match is inserted in Ba if it is not found; otherwise, for existing matches, if the match
interval of the new match encompasses the match interval of an existing match in Ba for the same
sample, the existing match’s count value is incremented by one. Second, a search needs to be
performed to merge the new match with existing matches ending at previous sites (i.e., site value
is less than t). The search range is from the starting position of the longest match found at site t
to its ending position t (i.e., the coverage is [hminat t, t)). Since all matches are rescaled and stored
in original size bucket Ba (which contains n site slots), they can be found only in every w site
slots. When searching from site t back to site hminat t, instead of checking every site, each time the
search can jump window size length w distance. This can avoid unnecessary searches. The search
starts from site t− w to search the matches met the criteria, and the next group of matches to be
searched is located on w distance away from the current one. The search criteria is similar as the
one searching matches ending at t: if the interval of the new match encompasses the interval of the
existing matches, their count values are incremented.

The complexity of collecting matches from runs on randomly projected panels in the same
resolution level is bounded by the total number of matches from all runs and the number of search
times to find and merge match with existing matches. For the part of merging matches ending at
site t, there are constant operations to fetch matches from the list storing match starting positions h
in H, since in most cases there is only a small number of matches found per site. The maximum size
of the list is r, which is a constant number, as for each run it is not possible to found a match ending
at the same position twice. If Clow is a set containing all matches found from the random projected
low resolution panels, the time complexity of the part of merging matches ending at site t is the
number of matches found from all runs, i.e. O(|Clow|). For the part of merging matches ending at
site less than t, the complexity depends on the number of search times to find and merge match
with existing matches, i.e., the sum of distances that the search performed backwards at each site.
For each site t, such number is (t−w)−hminat t

w . Thus, for all sites, this number is
∑n−1

t=0
(t−w)−hminat t

w .
Let l = t − hminat t denote the length of the longest match found at site t. The number of search
times can be written as

∑n−1
t=0

l−w
w , which indicates the time complexity of collecting matches from

runs in random projected low resolution panels is O(max( l
wn, |Clow|)). The space complexity of

collecting matches from runs in same resolution panels is O(n + |Clow|), as the PBWT bucket Ba

is an array of size n containing matched haplotypes id and starting positions h, whose space is
bounded by the total number of matches found from all runs, |Clow|.

The fragmented IBDs are identified from the detected matches by filtering out the false positive
matches. This step only requires a simple traversal on PBWT bucket Ba which stores all detected
matches. Algorithm S4 shows the detail of the filtering. The algorithm traverses Ba while checking
the count value of each match. If the count value is less than the number of count success value
c, the match is considered as a false positive and removed from Ba. After the traversal, all false
positive matches are filtered out and the remaining matches in Ba are potential matches. The
time complexity of filtering out false positive matches is O(|Clow|), as this algorithm traverses each
match exactly one time. The space complexity is O(n+ |Clow|).

The candidate IBDs are formed by merging overlapped fragmented IBDs in Ba. The overlapped
fragmented IBDs are considered as two fragmented IBDs: (id, [h1, t1]) and (id, [h2, t2]), if and only
if t1 ≥ h2 or t2 ≥ h1. Algorithm S5 checks fragmented IBDs in the order of their ending positions
(i.e. from site 0 to n − 1) and merges or appends them if any overlapped segments are found.
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For each fragmented IBD, the algorithm checks all other fragmented IBDs ending at the same
site t as well as those ending at site less than t, to find if they meet the criteria to be merged or
appended. Firstly, it checks fragmented IBDs ending at site t: for each fragmented IBDs stored in
H, only match (id, [hminat t, t]) is kept since it encompasses all other fragmented IBDs ending at
site t. All other fragmented IBDs are removed from H. Secondly, it checks fragmented IBDs ending
at site less than t: it visits sites backwards from t − w site to hminat t − 1 for every w sites. Site
hminat t−1 is a boundary case (i.e., the fragmented IBD’s ending position is adjacent to the current
fragmented IBD’s starting position). If such fragmented IBD is found, the current fragmented IBD
is appended to the found fragmented IBD as one. If a fragmented IBD (id, [hprev, tprev]) is found
within the range [hminat t, t], the fragmented IBD (id, [hminat t, t])’s starting position is update as
min(hminat t, hprev). The fragmented IBD (id, [hprev, tprev]) is removed from H.

The complexity of merging overlapped fragmented IBDs is bounded by the total number of frag-
mented IBDs in Ba and the number of search times to find and merge overlapped fragmented IBDs.
For the part of merging fragmented IBDs ending at site t, keeping fragmented IBD (id, [hminat t, t])
and removing all other fragmented IBDs costs O( nw ). For the part of merging fragmented IBDs

ending at site less than t, the traversal from t−w site to hminat t − 1 costs
∑n−1

t=0
t−hminat t

w number
of search times. Using the same notation as previously described: l = t − hminat t, which is the
length of the longest fragmented IBD found at site t, the time complexity of the step is O( l

wn).
Though hminat t may get updated as hprev, if a fragmented IBD (id, [hprev, tprev]) is found at site
tprev and hprev < hminat t, the search stops after the update. Since site tprev is processed before
site t, either no fragmented IBD, or just one fragmented IBD (id, [hprev, tprev]) exist. If it exists,
the starting position of the fragmented IBD hprev is updated previously as well and no other h
value smaller than hprev exists prior to site tprev that such fragmented IBD has any overlaps with
the fragmented IBD (id, [hminat t, t]). Thus, the time complexity is O(max( l

wn, |Clow|)). Same as
previous, the space complexity of the algorithm is O(n+ |Clow|).

The IBDs are called from the refinement of the candidate IBDs with the guidance of the exact
matched IBDs from the run on full resolution panel. A refine-on-the-fly approach is used: while
running the long match query on full resolution panel, if an exact matched IBD is found, and if it
has overlap with a candidate IBD, it is used to refine such candidate IBD; otherwise it is discarded.
Algorithm S7 shows the detail of the refinement algorithm. The start and end boundary of the
calling IBD lines up with the exact matched IBD found from the run on full resolution panel,
who has overlapped segment with the candidate IBD found from runs on low resolution panels.
Additionally, the algorithm is allowed to have a gap gmax in a calling IBD. Similar to the maximum
gap length idea that Hap-IBD uses (Zhou et al., 2020a), such gap is considered as genotyping error,
mutation, or gene conversion. This is to rectify the small gap on the IBD by stitching two candidate
IBDs whose distance is within the gap distance gmax on a chromosome region, when such gap is
not picked up by random projection runs. The length of the IBD to be reported needs to be at
least L after the refinement.

To efficiently refine the candidate IBDs, a PBWT bucket data structure Bm is used to store and
refine the candidate IBDs originally found from random projection runs in low resolution panels.
Bm is a hash table data structure whose key is the matched haplotype id and value is a stack S
storing the location of the candidate IBD found from runs in low resolution panels (i.e. (h, t)) in an
ascending order of the start position h, and the location of the IBD segment to be reported, resulted
from the last exact matched IBD found from the run in full resolution panel (i.e. R = (hR, tR)).
Algorithm S6 shows the conversion of the candidate IBD form from Ba to Bm with a sorted order
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of the candidate IBD locations in a linear fashion.
If Clow is a set containing all candidate IBDs found in random projected low resolution panels

and Cfull is a set containing all exact matched IBDs found in full or original resolution panel, the
time complexity of the refinement algorithm is O(

∑
ci∈Cfull

|{cj |cj ∈ Clow, and ci.id == cj .id}|);
however, the candidate IBDs found from runs in low resolution panels are sorted by their locations
in Bm, and the exact matched IBDs found from the run in full resolution panel appear following
the order of the site index, the time complexity is not a Cartesian product of the two sets. Instead,
the actual time complexity is O(max(n, |Clow|+ |Cfull|)) as each match is evaluated only once. The
space complexity is O(n+ |Clow|) as the exact matched IBDs found from the run in full resolution
are not stored during the refinement.

3 Results

To test out the performance of RaPID-Query method, sets of experiments are performed on simu-
lated data and real-world data. The experiments on the simulated dataset show the feasibility of
IBD segment detection using RaPID-Query method. The experiments on the real-world dataset
prove the practicability of using RaPID-Query method to perform IBD segment based genealogical
searches. The machine used for the experiments has Intel Xeon Gold 5215 2.50 GHz processor with
3 terabytes of RAM.

3.1 Dataset

A 2,000-haplotype sequencing dataset was simulated to test the performance of RaPID-Query
method. The simulation used the out-of-Africa demographic model (Gutenkunst et al., 2009) via
msprime v1.0.1 (Kelleher et al., 2016) with the parameters provided by stdpopsim library (Adrion
et al., 2020). The chromosome 20 genetic map in GRCh38 coordinates from deCODE genetics (Hall-
dorsson et al., 2019) was used as the recombination map. The mutation rate was set to 1.38e-08
as it was the same constant rate in simulated dataset tested by the state-of-the-art all-vs-all IBD
detection method: Hap-IBD (Zhou et al., 2020a). This mutation rate also falls within the most
recent estimated mutation rate 95% confidence interval: [1.02e-8, 1.56e-8] (Tian et al., 2019). The
simulated dataset consists 1,000 individuals, sampled from the European population. The sites
with multi-allelic values or minor allele frequency less than or equal to 1% were filtered out from
the original dataset, yielding total 92,296 bi-allelic sites. An 0.04% genotyping error was added
to the dataset as it is the average error rate in TOPMed sequencing dataset (Taliun et al., 2021).
The ground truth of IBD segment was identified as the contiguous segment where the two individ-
uals have the same most recent common ancestor (MRCA) in the simulated coalescent trees. By
adopting the same efficient process as Browning et al. did (2013), the trees were sampled per 5,000
genome position and the minimum genetic length of a true IBD segment calling is 1 cM.

To show the detected IBD segments from RaPID-Query are robust for genealogical search,
the UK biobank SNP-array genotyping dataset (Bycroft et al., 2018) was used as the real-world
testbed. All autosomal chromosomes containing 487,409 individuals with 658,719 sites were used
to show that the IBD segments have the power of separating different degrees of relationships. The
UK biobank dataset contains the ground truth of the relatedness of individuals up to third degree,
measured as part of the UK biobank study and presented in the form of the kinship coefficient. The
estimation of such kinship coefficient is generated by the kinship coefficient, Kinship-based INference
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for Genome-wide association studies (KING) software (Manichaikul et al., 2010). The actual degree
of relatedness is determined by the ranges where the kinship coefficient resides in: first degree:
(0.177, 0.354], second degree: (0.0884, 0.177], and third degree: (0.0442, 0.0884] (Manichaikul
et al., 2010).

To demonstrate the robustness of distinguishing the different degrees of relatedness of individ-
uals up to fourth degree using the detected IBD segments from RaPID-Query, 22 chromosomes
were simulated. The simulated dataset was created by an in-house simulation program mimicing
the UK biobank SNP-array genotyping dataset. 1,000 unrelated individuals from the UK Biobank
were randomly selected and the population size at each generation was set to 1,000. The genetic
data of the last four generations comprising 4,000 individuals including their relationships were
extracted. To make the simulated dataset more realistic, an 0.13% genotyping error was added to
the simulated dataset as it is the mean discordance error rate in UK biobank SNP-array genotyping
data (Bycroft et al., 2018).

3.2 Power and Accuracy

The power and accuracy of RaPID-Query is demonstrated by two measurements: false negative rate
and false positive rate. In this set of experiments, RaPID-Query with different sets of refinement
parameters were examined against the x-PBWT-Query method. The refinement parameter, indi-
cating the cutoff genetic length of exact match IBDs run in original resolution panel, was used as the
suffix of the RaPID-Query method name (e.g., RaPID-Query-0.5 indicates the match cutoff length
in original resolution panel is 0.5 cM). The other parameters were inherited from RaPID (Naseri
et al., 2019b) and the values were set on an empirical basis. The results of all 2,000 haplotype
queries were merged and averaged, in order to compare the results to the non-query-based all-vs-all
state-of-the-art method Hap-IBD (Zhou et al., 2020a). The parameters of each methods used for
the performance analysis are in Table 1.

Method Parameters

x-PBWT-Query -d 2.0 -lm 100
RaPID-Query-0.5 -w 13 -r 5 -c 1 -d 2.0 -lm 200 -dh 0.5 -lmh 100 -dg 2.0
RaPID-Query-1.0 -w 13 -r 5 -c 1 -d 2.0 -lm 200 -dh 1.0 -lmh 100 -dg 2.0
RaPID-Query-2.0 -w 13 -r 5 -c 1 -d 2.0 -lm 200 -dh 2.0 -lmh 100 -dg 2.0
Hap-IBD (v1.0) min-seed=2.0 min-extend=1.0 min-output=2.0 max-gap=1000 min-

markers=100 min-mac=2

Table 1: Parameters used for performance analysis of simulated dataset with minimum 2 cM IBD
segment length and minimum 200 markers

3.2.1 False Negative Rate

The measurement of false negative rate is defined as the average proportion of true IBD segments
not having been covered by reported IBD segments, i.e., the sum of proportions of true IBD
segments not overlapped with reported IBD segments over the number of true IBD segments:
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Figure 5: False Negative Rates. True IBD segments with length ≥ 2.5 cM were assigned into bins
of 2.5–5, 5–7, 7–9, 9–12, 12–15, 15-18, and ≥ 18 cM according to their genetic length. The false
negative rate is the proportion of true IBD segments in a bin that are not covered by any reported
IBD segment ≥ 2 cM.

1

|IT |
∑
it∈IT

1

|it|
∑
st∈it

[st /∈ {ir ∈ IR}, where ir.si = it.si], (1)

where IT is true IBD set, it is true IBD, st is site of true IBD, IR is reported IBD set, ir is reported
IBD, and si is the sampled individual ID.

Figure 5 shows the false negative rates of four 1-vs-all IBD detection methods: x-PBWT-Query,
RaPID-Query-0.5, RaPID-Query-1.0, RaPID-Query-2.0, and one all-vs-all IBD detection method:
Hap-IBD. Overall, as the genetic length of true IBD increases, the false negative rate decreases. The
x-PBWT-Query method has the worst false negative rate as it does not allow mismatches. It misses
some of the IBD segments which are not exact matches and caused by genotyping errors, mutations,
or gene conversions. All other methods have better false negative rates as they allow mismatches
during the IBD calling. For RaPID-Query methods, the smaller the refinement parameter value is,
the better the false negative rate the method has. The refinement parameters 0.5, 1.0, and 2.0 in
figure are the cutoff genetic length of exact match IBDs run in original resolution panel. In this
example, RaPID-Query-0.5 has the best false negative rate as it detects the largest number of exact
match IBDs, which helps extending and stitching the candidate IBDs. The false negative rate of
Hap-IBD is between that of RaPID-Query-1.0 and RaPID-Query-2.0 for all the cases, indicating the
false negative rate of RaPID-Query is competitive to the state-of-the-art all-vs-all IBD detection
method. If the cutoff genetic length of IBD is 7 cM or above, all RaPID-Query methods showing
in Figure 5 has very small false negative rate (i.e., less than 10%). This shows RaPID-Query is
outstanding from the power of IBD segment detection perspective when performing genealogical
searches.
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3.2.2 False Positive Rate

The measurement of false positive rate is defined as the average proportion of reported IBD segments
not being covered by true IBD segments, i.e., the sum of proportions of reported IBD segments not
overlapped with true IBD segments over the number of reported IBD segments:

1

|IR|
∑
ir∈IR

1

|ir|
∑
sr∈ir

[sr /∈ {it ∈ IT}, where ir.si = it.si], (2)

where IR is reported IBD set, ir is reported IBD, sr is site of reported IBD, IT is true IBD set, it
is true IBD, and si is the sampled individual ID.

Figure 6 show the false positive rates of four 1-vs-all IBD detection methods: x-PBWT-Query,
RaPID-Query-0.5, RaPID-Query-1.0, RaPID-Query-2.0, and one all-vs-all IBD detection method:
Hap-IBD. Overall, as the genetic length of reported IBD increases, the false positive rate decreases.
Though the false positive rates of all five methods are close in almost all cases, there is difference
among the methods. The x-PBWT-Query method has the best false positive rate as it does not
allow mismatches. Other methods may detect inexact match IBD segments which could be false
positive ones. For RaPID-Query methods, the larger the refinement parameter value is, the better
the false positive rate the method has. The refinement parameters 0.5, 1.0, and 2.0 in figure are
the cutoff genetic length of exact match IBDs run in original resolution panel. In this example,
RaPID-Query-2.0 has the best false positive rate as it detects the smallest number of exact match
IBDs, which prevents over-extending the candidate IBDs resulted from the random projection runs.
The false positive rate of Hap-IBD is similar to that of RaPID-Query-0.5 except it is slightly better
than RaPID-Query-0.5 method on 2-5 and 15-18 cM ranges of the cutoff genetic length of reported
IBDs. This indicates that the false positive rate of RaPID-Query is competitive to the state-of-
the-art all-vs-all IBD detection method. If the cutoff genetic length of IBD is 7 cM or above, all
RaPID-Query methods showing in Figure 6 has very small false positive rate (i.e., less than 2%).
This shows RaPID-Query is outstanding from the accuracy of IBD segment detection perspective
when performing genealogical searches.

3.3 Run Time

The run time of RaPID-Query was tested with different sets of refinement parameters (same used
in correctness experiment) with x-PBWT-Query on the UK biobank SNP-array genotyping chro-
mosome 20 dataset, containing 974,818 haplotypes with 17,197 sites (Bycroft et al., 2018). The
GRCh37 human genome assembly from HapMap Phase II project (Consortium. and centres: Per-
legen Sciences., 2007) were used to determine the length of IBDs detected from each autosomal
chromosome, as the positions of the UK biobank SNP-array genotyping calls are in GRCh37 align-
ments. For each query method, 400 haplotype queries were run with 7 cM and 700 sites as the
cutoff IBD segment length.

Table 2 shows the average CPU time of one query against a large panel for RaPID-Query-0.5,
RaPID-Query-1.0, RaPID-Query-2.0, and x-PBWT-Query method. x-PBWT-Query is the fastest
method among all, as it is not involved in any multiple runs and merges as RaPID-Query method
does. For RaPID-Query method, the value of the refinement parameter is inversely proportional to
the average query time. This is expected as RaPID-Query needs more time to refine the detected
IBD segments as the required refinement precision increases. Even so, the RaPID-Query-0.5 method
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Figure 6: False Positive Rates. Reported IBD segments with length ≥ 2 cM were assigned into
bins of 2–5, 5–7, 7–9, 9–12, 12–15, 15-18, and ≥ 18 cM according to their genetic length. The false
positive rate is the proportion of reported IBD segments in a bin that are not covered by any true
IBD segment ≥ 1.5 cM.

Method
Average
CPU Time
(millisecond)

Standard
Deviation

Average
Wall Time
(millisecond)

Standard
Deviation

RaPID-Query-0.5 839.63 166.26 864.47 153.69
RaPID-Query-1.0 211.73 64.77 219.46 57.09
RaPID-Query-2.0 39.58 20.06 48.61 24.05
x-PBWT-Query 11.80 8.02 18.32 10.10

Table 2: Computation times of 400 queries against UK biobank chromosome 20 dataset with
minimum 7 cM IBD segment length and minimum 700 markers

whose refinement precision is up to 0.5 cM is fast: it only takes 839.63 milliseconds on average to
complete a query and write the resulted IBD segments to a file.

3.4 RaPID-Query for Genealogical Analysis

To show the detected IBD segments from RaPID-Query are robust for genealogical search, a
similar analysis of sum-of-IBD-length-based relatedness degree separation (Naseri et al., 2019a)
was conducted on UK biobank and simulated datasets. For UK biobank dataset, the queries
contain 200 randomly-selected individuals having at least third degree of relatedness with each
other, and 1,000 randomly-selected unrelated individuals (excluding those 200 individuals hav-
ing at least third degree of relatedness with each other). For the simulated dataset, the
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Figure 7: Probability Distributions of Sum of Length of IBDs on UK Biobank Dataset. (A) x-
PBWT-Query. (B) RaPID-Query-2.0.

queries are 200-randomly-selected individuals. The genealogical search minimum cutoff length
of an IBD calling for both datasets is 7 cM and 700 markers, as it is the conventional min-
imum match threshold values currently used by major direct-to-consumer (DTC) companies
such as 23andMe (https://customercare.23andme.com/hc/en-us/articles/212170958-DNA-
Relatives-Detecting-Relatives-and-Predicting-Relationships). RaPID-Query-2.0 was
used since from previous experiments, it was the fastest method with comparable false negative
and false positive rates among the methods.

Method
1st Degree versus

2nd Degree
2nd Degree versus

3rd Degree
3rd Degree versus

Unrelated

x-PBWT-Query 92.29 96.13 99.83
RaPID-Query-2.0 98.27 97.28 100.00

Table 3: x-PBWT-Query versus RaPID-Query-2.0: Area Under Curve (%) of Sum of Length of
IBDs on UK Biobank Dataset

Figure 7 shows the probability distributions of total length of IBDs between individual pairs
on UK biobank dataset. The probability distributions of four degrees (first-degree, second-degree,
third-degree, and unrelated) in the results from x-PBWT-Query method (Figure 7A) and from
RaPID-Query-2.0 method (Figure 7B) are distinguishable. The probability distributions resulted
from x-PBWT-Query method have smaller means and larger standard deviations than those re-
sulted from RaPID-Query-2.0 method (See Table S1). This tells that RaPID-Query-2.0 identifies
more robust IBDs than that of x-PBWT-Query, as RaPID-Query-2.0 allows mismatched sites,
which makes the reported IBDs more close to the true IBDs. On the other hand, with no sup-
port on tolerating mismatched sites, x-PBWT-Query misses many IBD segments which flattens
the probability distributions of total length of IBDs between individual pairs and makes them all
shifted towards right in x axis.

To quantify the relatedness degree separation result, the area under the receiver operating char-
acteristic (ROC) curve (AUC) values between each distribution pairs were calculated. The AUC
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Figure 8: Probability Distributions of Sum of Length of IBDs on Simulated Dataset. (A) x-PBWT-
Query. (B) RaPID-Query-2.0.

Method
1st Degree
versus

2nd Degree

2nd Degree
versus

3rd Degree

3rd Degree
versus

4th Degree

4th Degree
versus
Unrelated

x-PBWT-Query 100.00 99.85 97.59 99.24
RaPID-Query-2.0 100.00 99.87 98.42 99.69

Table 4: x-PBWT-Query versus RaPID-Query-2.0: Area Under Curve (%) of Sum of Length of
IBDs on Simulated Dataset

values of sum of length of IBDs on UK biobank dataset are shown in Table 3 (The ROC curves
are in Figure S2). RaPID-Query-2.0’s AUC value between first- and second-degree relationships is
98.27%, and the AUC values between second- and third-degree relationships and third-degree and
unrelated relationships are 97.28% and 100.00%, respectively. This indicates that IBD segments
identified by RaPID-Query-2.0 is capable of being used to infer up-to-third-degree familial relat-
edness between any individual pair in large real-world biobank. Additionally, it is observed that
all AUC values calculated from the sum of length of IBDs using RaPID-Query-2.0 are better than
those using x-PBWT-Query, which means RaPID-Query-2.0 method performs better relatedness
degree separation than x-PBWT-Query method does.

The high-quality IBD segments from RaPID-Query-2.0 is able to separate the fourth-degree
distribution from others well in simulated dataset. Figure 8 shows the probability distributions of
total length of IBDs between individual pairs on simulated dataset. The probability distributions of
five degrees (first-degree, second-degree, third-degree, fourth-degree, and unrelated) in the results
from x-PBWT-Query method (Figure 8A) and from RaPID-Query-2.0 method (Figure 8B) are
distinguishable.

The fourth-degree distribution is differentiated using the sum of length of IBDs from RaPID-
Query result from other distributions. Similar to the test performed on UK biobank dataset, the
AUC values in Table 4 (The ROC curves are in Figure S3) between each distributions were calcu-
lated, in order to quantify the degree relatedness separation. For RaPID-Query-2.0 method, the
AUC value between third- and fourth-degree relationships is 98.42%, and the AUC value between
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fourth-degree and unrelated relationships is 99.69%. This indicates that RaPID-Query-2.0 also has
the ability to differentiate up-to-fourth-degree relationships, thanks to the output high-quality IBD
segments having allowed mismatched markers and refined boundaries. The AUC values calculated
from the result using x-PBWT-Query method is able to separate fourth-degree from third-degree
and unrelated relationships but having lower AUC values than those calculated from RaPID-Query-
2.0 method. Also, the probability distributions resulted from x-PBWT-Query method have rela-
tively smaller means than those resulted from RaPID-Query-2.0 method (See Table S2). This
means it is more confident to utilize the IBD segments identified from RaPID-Query-2.0 method
than that from x-PBWT-Query method for degree of relationship separations.

From the result, it is also noticed that RaPID-Query is very fast and memory-efficient for
querying autosomal chromosomes of the entire UK biobank dataset. Excluding the panel pre-
processing time, the average CPU time of an individual haplotype query of RaPID-Query-2.0
method is 2.76 seconds with 1.04 standard deviation. The average wall time is 3.05 seconds with
1.17 standard deviation. Naseri et al.’s PBWT-Query and L-PBWT-Query methods with 700
SNPs takes 20 seconds and 6 seconds on average per query for the UK biobank dataset (excluding
the panel computing and loading time) (Naseri et al., 2019a). The highest peak of memory size
RaPID-Query-2.0 method used to hold the pre-processed panels in memory is 1.2 terabytes, as for
the PBWT-Query and L-PBWT-Query it is 2.4 terabytes and 4.7 terabytes, respectively (Naseri
et al., 2019a). This shows RaPID-Query-2.0 method outperforms PBWT-Query and L-PBWT-
Query from both the time and space perspectives. RaPID-Query has the potential power of being
scalable to population-scale cohorts with feasible query time and memory usage.

4 Discussion

RaPID-Query has the ability of detecting high-quality IBD segments efficiently for a given individual
against a population panel. It is shown that the false negative (or power) rate and the false positive
(or accuracy) rate of RaPID-Query are comparable to the state-of-the-art all-vs-all IBD detection
method. The query search computation time is extraordinary compared to the previous methods,
as one haplotype query takes around three seconds to identify IBD segments in 22 autosomal
chromosomes of entire UK biobank dataset, using the conventional genealogical search threshold.

The inferred IBD segments from RaPID-Query are available for further downstream analysis,
such as relationship inference. It is shown that the IBD segments are high-grade and the sum
of length of those IBDs is able to categorize at least 97% individual pairs by the relationship up
to 4th degree. There is a potential that the quality relationship inference for higher degrees is
reachable, if the inference method utilize not only the sum of length of IBD segments, but the
combination of the number, the lengths, or the locations of IBD segments, or even demographic
data as Erlich et al. used in their long-range familial search pipeline (Erlich et al., 2018). The
multi-step IBD-segment-based relationship inference methods, for instances, CREST (Qiao et al.,
2021), DRUID (Ramstetter et al., 2018), ERSA (Li et al., 2014), IBDkin (Zhou et al., 2020b),
PONDEROSA (Williams et al., 2020), may benefit from RaPID-Query if they perform their analysis
based on some high-quality IBD segments produced by RaPID-Query. If multiple individuals are
needed for pedigree constructions or machine learning models during the inference, it is easy to run
RaPID-Query on a parallel querying basis as each query is independent.
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Code Availability

The RaPID-Query program is available at https://github.com/ucfcbb/RaPID-Query.
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