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ABSTRACT 24 

Adult neurogenesis persists in mammals in the neurogenic zones where newborn 25 

neurons are incorporated into existing neuronal circuits. Relevant molecular elements 26 

of the neurogenic niches include the family of Cell Adhesion Molecules (CAM), which 27 

participate in signal transduction and regulate radial glial progenitor’s (RGPs) survival, 28 

division and differentiation. The Neural Cell Adhesion Molecule 2 (NCAM2) is expressed 29 

in brain development and in adult stages, and controls dendrite arborisation and 30 

synaptic formation and maintenance during development. Nevertheless, the role of 31 

NCAM2 in neurogenesis and lineage progression is not well understood. Here we 32 

analyse the functions of NCAM2 in the regulation of RGPs in adult neurogenesis in the 33 

dentate gyrus and during corticogenesis, by using different lentiviral-mediated genetic 34 

approaches to modulate its expression, both in vivo and in vitro. First, we characterized 35 

the expression of NCAM2 among the main actors of the neurogenic process revealing 36 

different levels of NCAM2 amid the progression of RGPs and the formation of juvenile 37 

neurons. Further, we show that overexpression of NCAM2 arrest infected cells in a RGP-38 

like state, with characteristic morphological, immunocytochemical and electron 39 

microscopy features. In contrast, NCAM2 overexpression in embryonic cortical 40 

progenitors does not seems to alter cell fate, but causes transient migration deficits.  41 

These results reveal a differential role of NCAM2 in the regulation of adult and 42 

embryonic RGPs, and specifically, a significant implication of NCAM2 in the regulation 43 

and progression of RGPs during adult neurogenesis in the hippocampus.   44 
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INTRODUCTION 45 

In mammals, active neurogenesis is preserved during adulthood in specific niches 46 

(Altman and Das 1965) by remaining radial glia progenitors (RGPs) in the subventricular 47 

zone (SVZ) of the lateral ventricles and in the subgranular zone (SGZ) of the hippocampal 48 

dentate gyrus (DG) (Gonçalves et al. 2016; Gage 2019; Ghosh 2019; Kumar et al. 2019; 49 

Denoth-Lippuner and Jessberger 2021). Adult neurogenesis recapitulates the 50 

developmental processes including proliferation, neuronal fate specification, migration, 51 

differentiation, synaptogenesis, and functional integration into preexistent circuits. It 52 

has been shown that neurogenesis in the adult brain plays an important role in memory 53 

and learning processes (Zhao et al. 2008; Bergmann et al. 2015; Kumar et al. 2019). 54 

 RGPs are located in specialized microenvironments or neurogenic niches where 55 

they are subjected to multiple signaling pathways that control its maintenance, 56 

proliferation and lineage progression. Those extrinsic and intrinsic cues include 57 

cytokines, trophic and growth factors, neurotransmitters, epigenetic mechanisms as 58 

well as physiological and pathological variables (Yao et al., 2016; Zhang & Sheng et al., 59 

2015; Zhang, 2018; Zhao et al., 2008). Cell adhesion molecules (CAMs) have also been 60 

revealed as essential components of these microenvironments. They not only sustain 61 

the cytoarquitechture of the niche but also provides a link between the extracellular and 62 

the intracellular domains of RGPs participating in signal transduction.  Therefore, CAMs 63 

are important for self-renewal and proliferation of RGPs, and for neuronal 64 

differentiation and migration (Bian 2013; Morante-Redolat and Porlan 2019).  65 

The mammalian neural cell adhesion molecule (NCAM) family is composed of 66 

two members, NCAM1 and NCAM2, sharing a similar structure of 5 immunoglobulin 67 

domains and 2 fibronectin type III domains, but presenting different expression 68 

patterns, post-transcriptional modifications, and molecular interactions (Pébusque et al. 69 

1998; Makino and McLysaght 2010; Parcerisas, Ortega‐gascó, et al. 2021). NCAM1 has 70 

been extensively studied and it has been described to play a role in neuronal migration, 71 

neurite development, synaptogenesis, and also in neurogenesis by regulating embryonic 72 

and adult neural stem cells (NSCs) (Kiselyov et al. 2003; Bonfanti 2006; Angata et al. 73 

2007a; Boutin et al. 2009; Francavilla et al. 2009). NCAM2 has two different isoforms: 74 
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NCAM2.1, with a cytoplasmatic domain, and NCAM2.2, which is GPI-anchored (Von 75 

Campenhausen et al. 1997; Alenius and Bohm 2003). In the central nervous system 76 

(CNS), the functions of NCAM2 have been mainly linked to the regulation of the 77 

formation and maintenance of axonal and dendritic biology compartments in the 78 

olfactory system (Alenius & Bohm, 2003; Kulahin & Walmod, 2010; Parcerisas, Ortega-79 

Gascó, Pujadas, et al., 2021; Winther et al., 2012), and to the control of neural 80 

polarization, neurite outgrowth, dendrite development, and synapse formation and 81 

maintenance in the cortex and hippocampus through a complex panel of interactors 82 

(Leshchyns’Ka et al., 2015; Parcerisas et al., 2020; Sheng et al., 2015; Parcerisas, Ortega‐83 

gascó, et al., 2021). Interestingly, NCAM2 has been associated with different pathologies 84 

including Down syndrome, autism, and Alzheimer’s disease  (JP et al., 2011; 85 

Leshchyns’Ka et al., 2015; Paoloni-Giacobino et al., 1997; Parr et al., 2006; Scholz et al., 86 

2016; Winther et al., 2012).  Regarding neurogenesis, Ncam2 has been detected in 87 

single-cell RNAseq studies that characterize the genetic profiles of qNSCs and their 88 

immediate progeny (Shin et al. 2015; Morizur et al. 2018). However, its role in RGP 89 

biology during neurogenesis remains unknown.   90 

In the present study, we characterize the NCAM2 pattern of expression in the 91 

adult hippocampal neurogenic area and analyze the role of NCAM2 in the regulation of 92 

RGP biology during corticogenesis and in adulthood. To gain further insight into the 93 

importance of NCAM2 in the abovementioned processes, we used different biological 94 

and genetic tools including hippocampal viral injections, in utero electroporations and 95 

in vitro neurosphere cultures. Together, our results indicate that regulated NCAM2 96 

expression levels are crucial for proper adult neurogenesis in addition to its relevant role 97 

during brain development. Moreover, we suggest that NCAM2 participates in the fine 98 

regulation of quiescency in hippocampal RGPs, a mechanism that could help explaining 99 

some pathologies that have been linked to NCAM2 such as Alzheimer's disease which 100 

bear a complex phenotype including altered neurogenesis.  101 

102 
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MATERIALS AND METHODS 103 

Animals 104 

All experimental procedures were carried out following the guidelines of the Committee 105 

for the Care of Research Animals of the University of Barcelona, in accordance with the 106 

directive of the Council of the European Community (2010/63 y 86/609/EEC) on animal 107 

experimentation. The experimental protocol was approved by the local University 108 

Committee (CEEA-UB, Comitè Ètic d’Experimentació Animal de la Universitat de 109 

Barcelona) and by the Catalan Government (Generalitat de Catalunya, Departament de 110 

Territori i Sostenibilitat).  111 

Antibodies and reagents  112 

The following commercial primary antibodies were used for immunohistochemistry: 113 

Anti-ChFP (ab167453, Abcam, 1:300); Anti-DCX (A8L1U, Cell Signaling, 1:500) Anti-GFP 114 

(A11122, Invitrogen, 1:2000); Anti-GFAP (Z033401, DAKO, 1:2000); Anti-MAP2 115 

(MA1406, Sigma, 1:2000); Anti-NCAM2 (AF778, R&D Systems, 1:750); Anti-Nestin 116 

(MAB353, Chemicon, 1:100), Anti-NeuN (MAB377, Merck, 1:1000); Anti-Sox2 (ab97959, 117 

Abcam, 1:500), Anti-Tbr2/EOMES (23345, Abcam, 1:100). Alexa Fluor fluorescent 118 

secondary antibodies were from Invitrogen. To counterstain nuclei, the tissue and cells 119 

were incubated in 2-(4-amidinophenyl)-1H -indole-6-carboxamidine (DAPI, D-6564, 120 

Sigma, 1:1000). Biotinylated-secondary antibodies were from Vector Labs; streptavidin-121 

biotinylated/HRP complex and ECL were from GE Healthcare. The HRP-labeled 122 

secondary antibodies used for western blot were from DAKO. Diaminobenzidine reagent 123 

(DAB) and Eukitt mounting media were from Sigma-Aldrich. Mowiol was from 124 

Calbiochem.  125 

Plasmids 126 

The plasmids ShNcam2, pCNcam2.1 and pCNcam2.2 used were described in Parcerisas 127 

et al, 2020. The cDNA of Ncam2.1 was amplified from the pCNcam2.1 with 5’-128 

ACCATGAGCCTCCTCCTCTCC-3’ and 5’-CTGACCAAGGTGCTGAAACT-3’and cloned into 129 

pWPI (Plasmid #12254, Addgene) within PmeI site to obtain the pWPI-NCAM2.1. The 130 

cDNA of Ncam2.2 was amplified with 5’-ACCATGAGCCTCCTCCTCTCC-3’ and 5’-131 

TCTCTGATCAGGGAGTACCA-3’ and cloned into pWPI (Plasmid #12254, Addgene) within 132 

PmeI site to obtain the pWPI-NCAM2.2.  133 
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Production and intrahippocampal injection of retrovirus 134 

The production and intrahippocampal injection of virus was performed as previously 135 

described (Parcerisas et al., 2020; Teixeira et al., 2012). Briefly, viral vectors were 136 

produced by transient transfection of HEK293T cells with calcium phosphate. Virus were 137 

concentrated by ultracentrifugation and resuspended in PBS.  138 

 For intrahippocampal injections, 8-week-old mice were anaesthetized with 139 

ketamine/xylazine mixture and placed on a heating blanket. They were positioned in a 140 

Kopf stereotaxic frame and a midline scalp incision was made. The scalp was reflected 141 

by hemostats to expose the skull, and bilateral burr holes were drilled. Viruses were 142 

then injected (1.5 l of viral stock solution per site) into the left and right dentate gyrus 143 

over 20 min using a 5 µl Hamilton syringe. The micropipette was left in place for an 144 

additional 5 min. The coordinates used for the injections (in mm from Bregma and mm 145 

depth below the skull) were as follows: caudal 2.0, lateral 1.6, depth 2.2. 146 

Histological staining and electron microscopy 147 

Animals were anaesthetized and perfused for 20 min with PBS 4% paraformaldehyde 148 

(PFA). The brains were then removed, post-fixed overnight with PBS 4% PFA, 149 

cryoprotected with PBS-30% sucrose and frozen. Coronal sections (30 m) were 150 

obtained with a cryostat and immunohistofluorescence or immunohistochemistry were 151 

performed on free-floating sections. Samples were blocked with PBS containing 10% 152 

normal horse serum (NHS) and 0.2% gelatin; and incubated at 4◦C overnight with PBS-153 

5% NHS primary antibodies. For immunohistofluorescence, sequential incubation was 154 

carried out using a secondary antibody (Alexa Fluor, Invitrogen), and the sections were 155 

mounted with Mowiol (Calbiochem). The images were acquired with confocal 156 

microscopy (Spectral Confocal SP2 Microscope, Leica; Spectral Confocal SP8, Leica and 157 

Carl Zeiss LSM880, Zeiss). For immunohistochemistry, sequential incubation was carried 158 

out using biotinylated secondary antibodies (2 h at room temperature) and streptavidin-159 

HRP (1:400; 2 h at room temperature) was performed in PBS-5% NGS; bound antibodies 160 

were visualized by reaction using DAB and H2O2 as peroxidase substrates; the sections 161 

were dehydrated and mounted (Eukitt). Images were acquired with AF6000 microscope 162 

(Leica) and Olympus Bx61 microscope (Olympus). 163 
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For electron microscopy, sections were cryoprotected in 25% saccharose and 164 

freeze-thawed (3×) in methylbutane. The sections were then washed in 0.1 M phosphate 165 

buffer (PB; pH 7.4), blocked in 0.3% bovine serum albumin-C (BSA), and incubated with 166 

a primary chicken anti-GFP antibody (1:200; Aves Labs, Tigard, OR, USA) for 72 h at 4◦C. 167 

The sections were washed in phosphate buffer (PB), blocked in 0.5% BSA and 0.1% cold-168 

water fish-skin gelatin (Electron Microscopy Sciences, Hatfield, PA, USA) for 1 h, and 169 

subsequently incubated with a colloidal gold-conjugated secondary antibody (1:50; goat 170 

anti-chicken IgG gold UltraSmall, Electron Microscopy Sciences) for 24 h at room 171 

temperature. The sections were then washed in PB and 2% sodium acetate. Silver 172 

enhancement (Aurion R-gent Silver enhancer kit, Electron Microscopy Sciences) was 173 

performed following the manufacturer's directions, and the sections were washed again 174 

in 2% sodium acetate. To stabilize the silver particles, the samples were immersed in 175 

0.05% gold chloride (Sigma) for 10 min at 4◦C, washed in sodium thiosulfate, washed in 176 

PB, and then postfixed in 2% glutaraldehyde for 30 min. The sections were incubated in 177 

1% osmium tetroxide and 7% glucose and then washed in deionized water. 178 

Subsequently, sections were partially dehydrated in 70% ethanol and incubated in 2% 179 

uranyl acetate in 70% ethanol in the dark for 2.5 h at 4◦C. Brain slices were further 180 

dehydrated in ethanol followed by propylene oxide and infiltrated overnight in 181 

Durcupan ACM epoxy resin (Fluka, Sigma-Aldrich, St. Louis, USA). The following day, 182 

fresh resin was added, and the samples were cured for 72 h at 70◦C. Following resin 183 

hardening, 1.5-µm semi-thin sections were selected under light microscopy based on 184 

their immunolabeling and detached from glass-slides by repeated freezing and thawing 185 

in liquid N2. Ultra-thin sections were obtained at 60–70 nm from selected semi-thin 186 

sections. Photomicrographs were obtained using a FEI Tecnai G2 Spirit (FEI Europe, 187 

Eindhoven, Netherlands) using a digital camera Morada (Olympus Soft Image Solutions 188 

GmbH, Münster, Germany). 189 

In utero electroporation 190 

In utero microinjection and electroporation were performed at E14.5 as described (Simó 191 

et al. 2010; Parcerisas et al. 2020b), using timed pregnant CD-1 mice (Charles River 192 

Laboratories). Briefly, DNA solutions were mixed in 10 mM Tris (pH 8.0) with 0.01% Fast 193 

Green. Needles for injection were pulled from Wiretrol II glass capillaries (Drummond 194 
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Scientific) and calibrated for 1 µl injections. Forceps-type electrodes (Nepagene) with 5-195 

mm pads were used for electroporation (five 50-msec pulses of 45 V at E14.5). Brains 196 

were collected at E19.5/P0 or P5, dissected, and successful electroporations identified 197 

by epifluorescence microscopy. Positive brains were fixed in 4% formalin in 0.1 M 198 

phosphate buffer saline (PBS) and cryoprotected in 30% sucrose/PBS overnight at 4◦C. 199 

Brains were frozen in O.C.T compound before fourteen-micrometer-thick brain cross-200 

sections were obtained with cryostat and placed on slides. Sections were antigen-201 

retrieved by immersion of the slides in 0.01 M sodium citrate buffer, pH 6.0 at 95◦C for 202 

20 min. Sections were blocked for 2 h with 10% normal goat serum, 10 mM glycine, and 203 

0.3% Triton X-100 in PBS at room temperature. Primary antibodies (anti-GFP and anti-204 

ChFP) were incubated overnight at 4◦C. Slides were washed four times for 10 min in 205 

0.1% Triton X-100/PBS. Secondary antibodies were added for 2 h at room 206 

temperature and the slides were washed as before and coverslipped with Prolong 207 

Gold anti-fade reagent (Molecular Probes). Most images were obtained with 208 

epifluorescent illumination and a 10× objective (Leica 760 or AF6000). Positions of 209 

GFP- or ChFP-positive neurons were recorded from several sections per embryo. Data 210 

were collected from the lateral part of the anterior neocortex. For a BIN10 211 

quantification, the cortex was divided into ‘BINs’ as follows: the distance from the pial 212 

surface to the bottom of the SVZ was measured and divided into 10 equal-sized BINs. 213 

The percentage of GFP- or ChFP-labeled neurons in each BIN for each embryo was 214 

then calculated. Graphs plot the mean and standard error of % neurons in each BIN for 215 

the N embryos in a group.  216 

Neurospheres culture  217 

Neurospheres cultures were derived from 7-8 postnatal day (P7-P8) mice following the 218 

modified protocol described by Walker & Kempermann, 2014. Briefly, the SVZ of the 219 

lateral ventricles and the SGZ of the hippocampus were dissected in PBS. After trypsin 220 

(GIBCO) and DNAse (Roche diagnostic) treatments, the tissue was dissociated with 221 

gentle sweeping. Cells were counted and plated in non-adherent 24 well plates in 222 

Neurobasal medium containing 2% B27 supplement (GIBCO), penicillin/streptomycin 223 

(Life technologies) and Glutamax (Life technologies), 20 ng/ml EGF, 20 ng/ml bFGF and 224 
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2 g/ml heparin. Cells were incubated at 37◦C with 5% CO2 and subcultured every 2-3 225 

days.  226 

 For the growth analysis, neurospheres from the SGZ were dissociated with 227 

trypsin and infected at passage 2 with viruses (pWPI, pWPI-NCAM2.1, pWPI- NCAM2.2, 228 

ShNcam2 or ShCnt). GFP positive cells were selected by flow cytometry (BD FACSAria 229 

Fusion), plated in non-adherent 24-well plates and analyze during 5 consecutive days. 230 

High content image acquisition was performed with an Automated Wide-field Olympus 231 

IX81 Microscope (Olympus Life Science Europe, Waltham, MA) and a 4x UPlan FL N 232 

objective. ScanR Acquisition software version 2.3.0.5 was used to automatically record 233 

adjacent fields of view taking 20 (5 x 4) z-stacks (8 slices with a z-step of 200 nm) per 234 

well, with 10% of overlap to enable automatic image stitching. Neurosphere size was 235 

quantified by means of 3 different Fiji macros. In brief, tailor-made macros were used 236 

to project each z-stack, to stitch these projections and to quantify the size of each 237 

neurosphere.  238 

Image analysis 239 

All images were processed and quantified using the ImageJ software (NIH).  240 

Statistical analysis 241 

Statistical analysis was carried out using the Prism 8 software. Significance between two 242 

experimental groups was analysed using the unpaired Student’s t-test. Differences 243 

between groups in distribution of cells in corticogenesis were assessed by two-way 244 

ANOVA followed by Bonferroni’s comparison post hoc test. To determine differences 245 

between more than two groups in the adult neurogenesis characterization experiments, 246 

one way ANOVA was used. Post-hoc comparisons were performed by Tukey’s test and 247 

significance level was set at P>0.05: *P<0.05, **P<0.01, and ***P<0.001. To determine 248 

differences between two groups, Student’s t-test and significance level was set at 249 

P>0.05: *P<0.05, **P<0.01, and ***P<0.001. Statistical values are presented as mean ± 250 

standard error of the mean (SEM).    251 
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RESULTS 252 

Differential expression pattern of NCAM2 in the dentate gyrus 253 

Since cell adhesion molecules are important structural elements of the neurogenic 254 

niches we first characterize the expression of NCAM2 in the different populations of cells 255 

at the DG of P45 mice by immunofluorescence. Dentate RGPs undergo several 256 

morphological and electrophysiological changes while expressing different markers 257 

through the neurogenic process to finally give rise to mature neurons. To identify type I 258 

progenitors we used the GFAP/Sox2 or Nestin markers while Tbr2 was selected to mark 259 

type II proliferative progenitors (Kempermann et al., 2015). In addition, we detected 260 

neuroblasts or immature neurons with antibodies against DCX; and mature neurons 261 

labelling NeuN. As NCAM2 is a membrane protein, the general pattern of NCAM2 262 

staining show clear staining in the delineating cells bodies and the dendrites of neurons. 263 

Confocal microscopy analysis reveal strong NCAM2 signal in GFAP/Sox2 or Nestin 264 

positive cells with the typical morphology of type I progenitors (i.e: triangular cell body 265 

located in the SGZ and a unique dendrite extended into the molecular layer) (Fig. 1A-B). 266 

Contrariwise, images suggest that NCAM2 expression in Tbr2 positive cells is low, 267 

although it is difficult to determine the expression of NCAM2 and Tbr2 in the same cells 268 

due to the localization of both proteins (Fig. 2C). Among the DCX positive cells 269 

population, we found different phenotypes with differences in NCAM2 staining. While 270 

some DCX positive cells display faint or undetected NCAM2 staining, other cells present 271 

higher levels of the protein (Supplementary Fig. 1A). Lastly, mature granule cells that 272 

express NeuN also present NCAM2 labelling, as expected (Supplementary Fig. 1B). 273 

 Therefore, the characterization of the expression pattern of NCAM2 in the 274 

dentate gyrus of the hippocampus suggests a differential expression of the protein in 275 

the main actors of the neurogenic process: while both RGPs and mature neurons express 276 

appreciable NCAM2 staining the intermediate type II-III progenitors may have a 277 

minimum in NCAM2 expression.   278 
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NCAM2 modulates adult neurogenesis in the hippocampus 279 

With the purpose to study the potential role of NCAM2 in adult neurogenesis, we 280 

modulate the expression of the NCAM2 protein in the hippocampal neurogenic region. 281 

We stereotaxically injected transduced the DG of 8 week-old mice with 282 

NCAM2.1/NCAM2.2-overexpressing or ShNCAM2-silencing lentiviruses, which bear 283 

preferential infectivity on progenitor cells or neuroblasts. We analyzed the transduced 284 

DGs 4 weeks after surgery. Mice injected with control viruses exhibited the 285 

characteristic morphology of dentate granule cells (i.e. round soma in the granule cell 286 

layer, and apical dendrites ramifying in the molecular layer and covered by dendritic 287 

spines) (Fig.2A, first panel). Similar results were found in mice injected with ShNCAM2 288 

viruses, indicating that the downregulation of NCAM2 does not alter the formation, 289 

survival, or maturation of new adult-born neurons in the DG. (Fig. 2A, second panel). 290 

Conversely, we found that many cells infected with NCAM2.1 and NCAM2.2 291 

overexpressing viruses did not exhibit the typical morphology of maturing granule cells 292 

but a RGP-like phenotype (i.e. triangular cell bodies located in the inner GL, with a 293 

unique, short radial process spanning the GL and ramifying profusely in the inner 294 

molecular layer) (Fig. 2A, third and fourth panel). Some infected cells, however, 295 

resembled type II progenitors or neuroblasts (i.e. irregular soma with short processes 296 

oriented tangentially or rounded soma with a short apical dendrite oriented towards the 297 

molecular layer) or immature granule cells. Enrichment in RGP-like phenotype 298 

apparently was more prominent upon NCAM2.2-overexpression.  299 

To further characterize the phenotype of NCAM2 overexpressing cells, we 300 

performed fine structure analysis of GFP-labelled cells, identified by GFP-immunogold 301 

electron microscopy (Fig. 2B). Confirming our optical microscopy results, most control 302 

infected cells at the injection site corresponded to dentate granule cells which were 303 

closely apposed in the granule layer (GL). These cells showed a typical round-shaped 304 

soma, most of it occupied by the nucleus, which displayed chromatin aggregates. The 305 

cytoplasm was comprised by a thin space with a few long cisternae of endoplasmic 306 

reticulum and abundant free ribosomes. Nevertheless, we also observed GFP-positive 307 

cells in the SGZ. Among them, we identified RGPs and type II cells or neuroblasts. As 308 

previously described (Seri et al. 2004), RGPs were recognized as cells with a large cell 309 
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body with a major radial process that penetrates the granular layer extending thin 310 

lateral processes between granule neurons. They present a round or triangular nucleus, 311 

electron lucent cytoplasm, irregular contour and intermediate filaments in their 312 

cytoplasm. On the other hand, type II cell (or neuroblast) features include a smooth 313 

contour, dark scant cytoplasm, abundant polyribosomes and a less developed 314 

endoplasmic reticulum than granule cells. Interestingly, NCAM2.1/NCAM2.2-315 

overexpressing GFP-positive cells were mainly detected in the SGZ and, according to 316 

their fine structure, could be identified RGPs (Fig. 2B). 317 

Cell autonomous overexpression of NCAM2 retains adult-born DG cells in a RGP-like 318 

phenotype 319 

To better understand the events triggered by the expression of NCAM2 isoforms, 320 

animals injected with control and NCAM2 overexpressing viruses were sacrificed at 321 

different time points including earlier stages (3 days, 1 week, 2 weeks and 4 weeks) (Fig. 322 

3A). As a starting point, animals were sacrificed 3 days after injection. Although the 323 

infection is not strictly restricted to progenitor cells, as expected , the majority of the 324 

infected cells exhibit a RGPs morphology 3 days post-injection in all the experimental 325 

conditions (Consiglio et al. 2004; Jandial et al. 2008) (Fig. 3B).  Focusing on posterior 326 

time points, most cells infected with control vectors at 1 week post-injection showed a 327 

morphology typical of immature granule cells that appeared progressively more mature 328 

at 2 and 4 weeks post-injection. In contrast, the shapes of NCAM2.1- and NCAM2.2-329 

overexpressing cells remained constant overtime, with most of the labeled cells 330 

exhibiting an RGP-like cell morphology, while others exhibited intermediate 331 

progenitors- or neuroblast-like phenotypes (Fig. 3B).  332 

The phenotype of cells infected with the viral vectors was additionally 333 

characterized evaluating the expression of specific cell markers at the different time 334 

points analyzed. The triple immunostaining of GFP/Sox2/GFAP was used to determine 335 

the proportion of RGPs within the pool of infected cells (Fig. 4A-B). At 3 days after 336 

injection most of control-infected cells were Sox2/GFAP double positive (Fig. 4C). 337 

Similarly, also NCAM2.1- and NCAM2.2-infected cells were mostly positive for both 338 

markers at 3 days post infection (Fig. 4C). Analyzing the evolution of GFP-/Sox2-/GFAP-339 

positive progenitors in the control conditions we observed a significant and progressive 340 
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decline in the number of progenitors over time (Fig. 4C-D). In contrast, in the animals 341 

infected with NCAM2.1 or NCAM2.2 overexpressing viruses, we noticed a much less 342 

marked decrease in the proportion of those progenitors along the time-course, thus 343 

suggesting an arrest of the cells in the progenitor stage (Fig. 4C-D). We confirmed that 344 

most NCAM2.1- and NCAM2.2-overexpressing cells morphologically characterized as 345 

neuronal progenitor cells expressed the neuronal progenitor markers GFAP and Sox2 at 346 

1 week after injection (Fig. 4A,C). Additionally, quantification of the percentage of 347 

GFP/Sox2/GFAP revealed a maintenance of high proportion of GFAP/Sox2 positive cells 348 

in both NCAM2.1 and NCAM2.2 overexpressing conditions also at 2 weeks and 4 weeks, 349 

being more pronounced in the case of NCAM2.2 isoform (Fig. 4C). 350 

The impact of NCAM2 overexpression in the process of neurogenesis was 351 

complemented quantifying the number of DCX positive cells at 2 and 4 weeks after viral 352 

transduction (Fig. 5A). According to the expected evolution of the neurogenic events, 353 

we observed a high percentage of DCX positive cells at 2 weeks after injection followed 354 

by a decrease at 4 weeks (Fig. 5C). The above-mentioned decline is not detected when 355 

NCAM2.1 or NCAM2.2 are overexpressed and we found a persisting number of DCX 356 

positive cells from 2 to 4 weeks after transduction. Finally, the number of NeuN mature 357 

neurons 4 weeks post-injection was also analyzed (Fig. 5B). In agreement with the 358 

previous data, we found a trend to show reduced percentages of NeuN positive neurons 359 

in the overexpression conditions at 4 weeks post-induction, reaching statistically 360 

significance for the NCAM2.2 isoform compared to controls (Fig. 5D).  361 

 This time-course analysis suggests that the observations at 4 weeks post-362 

injection time on overexpression of NCAM2 are not attributable to a de-differentiation 363 

of immature neurons, but rather to a temporarily arrest of the RGP-like phenotype in 364 

the SGZ that leads to a delay in the formation of new neurons.   365 
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NCAM2 overexpression do not arrest embrionary RGPs 366 

Since our results point out to an important role of NCAM2 in the regulation of adult RGPs 367 

and NCAM1 is involved both in adult and embryonic neurogenesis (Angata et al. 2007b; 368 

Boutin et al. 2009), we next sough to study the potential role of NCAM2 in RGPs during 369 

embryonic stages.  We performed in utero electroporation experiments using isoform-370 

specific overexpressing vectors (i.e. NCAM2.1 and NCAM2.2). Embryos were 371 

electroporated at E15 (using GFP or ChFP as reporter genes) and brains were analysed 372 

at P0 and P5, by counting the distribution of electroporated neurons across cortical 373 

layers. Interestingly, we found a moderate non-significant of cells located in the 374 

neurogenic areas, VZ and the intermediate zone (IZ), in cortices electroporated with 375 

NCAM2 isoforms (Fig. 6A). However, we observed alterations in the migration of 376 

neurons when modulating NCAM2 expression. Our previous study (Parcerisas et al., 377 

2020) showed that both NCAM2 isoforms are expressed in the developing cortex and 378 

that its expression is necessary for correct neuronal migration, since NCAM2 knock-379 

down leads to neuronal mispositioning. In the present analysis, we observed that at P0, 380 

most E15-born control neurons were present in the upper portion of the cortical plate 381 

and displayed a typical immature pyramidal neuron shape, with a main apical dendrite 382 

directed towards the marginal zone (Fig. 6A-E). In the case of E15-born NCAM2.2-383 

overexpressing neurons, we observed an altered distribution with a significant reduction 384 

of neurons in the upper portion of the cortical plate (Bin 10) (Fig. 6A-B). E15-born 385 

NCAM2.1-overexpressing neurons also had a tendency to allocate below bin 10 (Fig. 6A-386 

B). A synergistic effect was found when embryos were electroporated with both 387 

isoforms (NCAM2.1+NCAM2.2) simultaneously (Fig. 6A-B). Additionally, in contrast with 388 

NCAM2 depletion, NCAM2 overexpression apparently  does not disrupt normal dendritic 389 

arborization at this stage. 390 

 In contrast, at P5, E15-electroporated neurons displayed a similar distribution in 391 

both for control and NCAM2-overexpressing conditions, with most neurons being 392 

located in the lower part of layer II-III (Fig. 6C-D). Our results suggest that NCAM2.1 and 393 

NCAM2.2 overexpression statistically not affect the proliferation, survival and 394 

differentiation of RGPs during embryonic stages but leads to transient migratory deficits.  395 

NCAM2 expression levels affect the growth of hippocampal-derived neurospheres 396 
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The implications of NCAM2 in adult neurogenesis were further investigated in vitro using 397 

neurospheres. Hippocampal NSCs were obtained from P6/7 mice and grown as 398 

neurospheres in medium containing EGF and bFGF. Neurospheres were dissociated and 399 

cells were infected with Control, ShNCAM2, NCAM2.1, or NCAM2.2-overexpressing 400 

viruses all of them co-expressing GFP as a reporter gene. GFP-positive cells were 401 

selected by flow cytometry, plated in 24 well plates and analyzed by ScanR microscopy 402 

to measure the individual area of a total of 100-300 growing neurospheres per condition 403 

during 5 consecutive days (Fig. 7A). Whereas the downregulation of NCAM2 led to the 404 

formation of larger neurospheres, compared to controls, neurospheres derived from 405 

NCAM2.1- or NCAM2.2-overexpressing cells tended to be smaller (Fig. 7B-C). Focusing 406 

the analysis on day 3, we observed a different distribution of the neurospheres 407 

according to their area. The descriptive analysis of the frequency distributions shows 408 

that the mean and median values of the distribution are lower in the NCAM2.1 and 409 

NCAM2.2 overexpressing neurospheres than in controls; and higher in the ShNCAM2 410 

condition (Fig. 7D-E).  411 

These findings further support the notion that NCAM2.1 and NCAM2.2 are 412 

involved in the regulation of NSCs proliferation.   413 
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DISCUSSION 414 

The present work provides a deeper understanding on the relevant functions of NCAM2 415 

during embryonic development and adult neurogenesis. Our results suggests that 416 

NCAM2 levels regulate the RGP-to-immature neuron transition in the adult DG.  In 417 

contrast, our data indicate that correct NCAM2 levels are not necessary for cortical 418 

neurogenesis, but relevant for cortical migration. 419 

The injection of lentivirus to modulate the expression of NCAM2 in the 420 

progenitor cells of the SGZ in the hippocampus reveals a compelling role of NCAM2 in 421 

the regulation of neural progenitors. While the depletion of NCAM2 had minor effects, 422 

the overexpression of NCAM2 seems to arrest cells into an RGP-like phenotype and 423 

delay the formation of new granule cells, as characterized by morphology, 424 

immunohistochemical markers, and ultrastructure. However, when analyzing the 425 

effects of NCAM2 overexpression in the regulation of embryonic RGPs, we did not find 426 

clear evidences of any alterations in the survival, proliferation or differentiation of 427 

progenitor cells. We found that NCAM2 upregulation results in an early and transiently 428 

altered neuron distribution, suggesting a delay in their migration during cortical 429 

development.  Our previous results also showed that the downregulation of NCAM2 led 430 

to an alteration of cortical migration leading to mislocalization of layer II-III fated 431 

neurons and altered morphology (Parcerisas et al., 2020). Neuronal migration is a key 432 

process in corticogenesis, the disruption of which is associated to many diseases 433 

including autism and schizophrenia (Hussman et al., 2011; Petit et al., 2015; Scholz et 434 

al., 2016). The mechanism underlying the effects of NCAM2 are not known. The 435 

interaction of NCAM2 with microtubule-associated proteins, such as MAP1B, that also 436 

participate in the regulation of neuronal migration has also been described (González-437 

Billault et al., 2005; Kawauchi & Hoshino, 2008; Parcerisas et al., 2020; Parcerisas, 438 

Ortega‐gascó, et al., 2021). 439 

Focusing on the functions of NCAM2 in neurogenesis, our data suggest different 440 

roles of NCAM2 during adult and embryonic stages.  In spite of the embryonic origin of 441 

adult RGPs, adult and embryonic progenitors are subject to distinct regulation (Urbán 442 

and Guillemot 2014; Berg et al. 2018; Daniel Berg et al. 2019). While embryonic RGPs 443 

have a highly proliferative rate necessary for the rapid growth of neural tissues (Urbán 444 
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et al., 2019; Urbán 2014); adult RGPs are mostly found in a quiescent state, a mitotic-445 

dormant phase with a low rate of metabolic activity but with a high sensitivity to 446 

environment signals (Urbán et al., 2019).  The quiescence of RGPs is actively maintained 447 

and the regulation of the transition from quiescence to activation is crucial to preserve 448 

a pool of RGPs throughout life. Adult RGPs are found in neurogenic niches, specialized 449 

microenvironments composed by different cellular types, ECM molecules, soluble 450 

factors and cell surface molecules (Bian, 2013). Neurogenic niches are crucial for the 451 

regulation of RGPs properties and to maintain the quiescence/activation balance 452 

(Llorens-Bobadilla and Martin-Villalba, 2017; Basak et al., 2018; Kalamakis et al., 2019) 453 

as they convey the different physiological stimuli (Fabel and Kempermann 2008; Wang 454 

et al. 2011; N and F 2014; Ding et al. 2020) that induce the activation of quiescent RGPs. 455 

Cell adhesion molecules are key elements of the neurogenic niches. They are 456 

important for sustaining the architecture of the niche but also participate in signal 457 

transduction regulating stem cells, survival, proliferation, migration or differentiation. 458 

As a matter of fact, different cell adhesion molecules such as cadherin/protocadherins, 459 

VCAM1, L1CAM or NCAM1 have been identified playing a distinct role in the neurogenic 460 

niches (K. Angata et al., 2007; Bian, 2013; Boldrini et al., 2018; Bonfanti, 2006; Dihné et 461 

al., 2003; Karpowicz et al., 2009; Marthiens et al., 2010; Morante-Redolat & Porlan, 462 

2019; Morizur et al., 2018; Shin et al., 2015). Specifically, it has been described that cell 463 

adhesion molecules could be important regulators of the quiescence/activation balance. 464 

The genetic profiles of RGPs showed an enriched expression of genes involved in cell-465 

microenvironment interaction and cell-cell adhesion, and genes linked to cell membrane 466 

(Artegiani et al., 2017; Basak et al., 2018; Ding et al., 2020; Dulken et al., 2017; 467 

Hochgerner et al., 2018; Llorens-Bobadilla et al., 2015; Morizur et al., 2018; Shin et al., 468 

2015). Upon activation, RGPs proliferate and progress to rapid amplifying intermediate 469 

progenitors or type II cells. A decrease in the expression of some cell adhesion molecules 470 

seems to be necessary for the activation of quiescent RGPs, their transition to 471 

intermediate progenitors and the proliferation of these progenitors (Morizur et al., 472 

2018; Shin et al., 2015; Codega et al., 2014; Xie et al., 2020).  A similar expression pattern 473 

has been presented in this study when immunodetecting NCAM2 in the SGZ 474 

populations. The proposed pattern of NCAM2 expression along dentate neurogenesis 475 
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cell types, supported by single cell RNA (Shin et al., 2015), confirms high NCAM2 476 

expression in type I progenitors and low levels in intermediate progenitors. In fact, the 477 

expression pattern of Ncam2 gene during the early neurogenic events is similar to other 478 

genes related to the maintenance of stem cells quiescence (e.g: NPas3 or Aqp4) (Shin et 479 

al., 2015; Urbán et al., 2019) presenting high levels of expression in qNSCs that 480 

progressively decrease during their activation and transition to intermediate 481 

progenitors (Shin et al. 2015; Morizur et al. 2018) (Supplementary Fig. 2, Fig. 9). Once 482 

the precursor cell phase is completed, the levels of NCAM2 seem to experiment a 483 

progressive increase in the newborn DCX positive maturing neurons reaching high levels 484 

of expression in NeuN neurons. The increase of NCAM2 could be explained by the 485 

relevance of the protein for dendrite development, axon formation and synaptogenesis 486 

(Alenius & Bohm, 2003; Kulahin & Walmod, 2010; Winther et al., 2012, Parcerisas et al., 487 

2020).  488 

The levels of NCAM2 seems to be important for the regulation of RGPs 489 

behaviour. In fact, our data show how changes in NCAM2 levels modifies the normal 490 

course of the neurogenic events. The upregulation of NCAM2 dramatically decrease the 491 

generation of newborn neurons. Diverse underlying mechanisms could explain these 492 

findings. The upregulation of NCAM2 could affect the survival of the newborn cells, 493 

induce the de-differentiation of developing neurons or either alter the differentiation of 494 

the newborn neurons. However, considering the expression pattern of the protein and 495 

the relevance of cell adhesion molecules in the regulation of RGPs (Codega et al. 2014; 496 

Morizur et al. 2018; Xie et al. 2020), our main hypothesis is that NCAM2 is important for 497 

the regulation and maintenance of RGPs quiescence. Considering that the 498 

overexpression of NCAM2 induces the retention of progenitor cells into a RGP state, we 499 

should expect that the downregulation of the protein promote the activation of RGPs to 500 

increase proliferation. In contrast, after inducing NCAM2 depletion in the hippocampus 501 

of injected mice, we did not detect an increase in the number of newly produced 502 

neurons. The underlying cause for this inconsistency might rest on the limitations 503 

imposed by the lack of uniformity in the infection of cells, preventing quantitative 504 

analyses of the number of new neurons generated. In order to overcome these 505 

limitations, we further investigated the effect of NCAM2 in vitro using a neurosphere 506 

assay. We observed that the downregulation of NCAM2 expression in progenitor cells in 507 
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vitro increases the growth of neurospheres while overexpression of NCAM2 isoforms 508 

decreases the area of the neurospheres. The effects of NCAM2 in the proliferation of 509 

NSCs in vitro has previously been observed in progenitor cells that form the spinal cord 510 

(Deleyrolle et al. 2015) and supports the data obtained in the present study.  511 

Taking these results together, we postulate that the regulation of NCAM2 512 

expression levels is necessary for the maintenance of RGPs quiescence and the 513 

activation of proliferation. High levels of NCAM2 arrest cells in a quiescent state while 514 

the downregulation of ncam2 allows RGPs to exit quiescence and enter the cell cycle to 515 

proliferate and differentiate (Fig. 9). The temporary retention of cells in the progenitor 516 

stages would led to a delay in the neurogenic events postponing the generation and 517 

maturation of granule cells although other explanations may contribute (e.g. changes in 518 

cell survival or differentiation to other cell types). Further research is needed to 519 

understand the mechanisms by which NCAM2 regulates RGPs quiescence, cell 520 

proliferation, and differentiation in adulthood. One hypothesis is that NCAM2 could 521 

interact with growth factor receptors such as the epidermal growth factor receptor 522 

(EGFR) or the fibroblast growth factor receptor (FGFR). Growth factors are important 523 

regulators of the activation of quiescent RGPs; for example, active RGPs in the SVZ could 524 

be identified by the expression of EGFR (Aguirre et al., 2010; Urbán et al., 2019). It has 525 

been described that NCAM2 binds to FGFR and EGFR (Deleyrolle et al. 2015; Rasmussen 526 

et al. 2018), and the interaction of other cell adhesion molecules, such as L1CAM or 527 

NCAM1, with FGFR has also been reported (Kulahin et al. 2008; Francavilla et al. 2009). 528 

Moreover, it has been shown that the overexpression of NCAM1 reduces baseline levels 529 

of EGFR, enhancing the EGF-induced receptor down-regulation, and that the depletion 530 

of NCAM2 increases the levels of the ErbB2 growth factor receptor (Povlsen et al. 2008; 531 

Deleyrolle et al. 2015). Another possibility is that NCAM2 expression could cause 532 

cytoskeletal rearrangements, which are known to influence the neurogenetic process 533 

(Compagnucci et al., 2016; Parcerisas et al., 2020; Parcerisas, Ortega‐gascó, et al., 2021). 534 

 Neurogenic niches are complex microenvironments where RGPs receive and 535 

interact with multiple signals. Cell adhesion molecules are key elements for the 536 

transduction of the signals and the regulation of stem cells behavior.  Our work provides 537 

evidence for a significant function of NCAM2 in the regulation of RGPs during adult 538 
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neurogenesis. Furthermore, we reveal the importance of NCAM2 expression in the 539 

regulation of neuronal migration and differentiation during the corticogenesis process 540 

in the embryonic development. Overall, the present study contribute to a better 541 

understanding of the implications of NCAM2 during neuronal development and adult 542 

plasticity.    543 
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ABBREVIATIONS 570 

 571 

CAM Cell adhesion molecules 

CNS Central nervous system 

DAB Diaminobenzidine 

DAPI 2-(4-amidinophenyl)-1H -indole-6-carboxamidine 

DG Dentate gyrus 

EGF Epidermal growth factor 

EGFR Epidermal growth factor receptor 

FGF Fibroblast growth factor 

FGFR Fibroblast growth factor receptor 

GFAP Glial Fibrillary acidic protein 

GFP Green Fluorescent Protein 

GL Granule layer 

GPI Glycosylphosphatidylinositol 

H Hilus 

HRP Horseradish peroxidase 

IZ Intermediate zone 

L1CAM L1 cell adhesion molecule 

MAP2 Microtubule-associated protein 2 

ML Molecular layer 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide 

NCAM1 Neural cell adhesion molecule 1 

NCAM2 Neural cell adhesion molecule 2 

NGS Normal goat serum 

NHS Normal horse serum 

NSC Neural stem cell 

PB Phosphate buffer 

PBS Phosphate buffer saline 

PFA Paraformaldehyde 

RGP Radial glial progenitor 

SGZ Subgranular zone 

Sox2 Sry-related HMG box transcription factor 

SVZ Subventricular zone 

VCAM1 Vascular cell adhesion molecule 1 
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FIGURE LEGENDS 773 

Figure 1. Expression pattern of NCAM2 in the hippocampus progenitor cells. 774 

A) Immunohistochemical characteritzation of NCAM2 expression in GFAP/Sox2 775 

progenitor cells in P45 mice hippocampus.  Arrowheads label NCAM2/GFAP/Sox2 776 

positive cells. B) NCAM2 expression in Nestin positive cells in the subgranular zone of 777 

P45 mice. Arrowheads label NCAM2/Nestin cells. C) Double immunostaining of NCAM2 778 

and Tbr2 at P45. Arrowheads label Tbr2 positive cells that present low NCAM2 signal. 779 

ML: molecular layer; GL: granule layer; H: hilus. Scale bar: A) 50 μm, B,C) 20 μm.  780 

Figure 2. NCAM2 overexpression modulates adult neurogenesis in the hippocampus.  781 

A) Representative images of GFP positive cells from the dentate gyrus of mice injected 782 

with control, ShNCAM2, or NCAM2 overexpressing viruses (NCAM2.1 and NCAM2.2) at 783 

4 weeks after injection. Control and ShNCAM2 positive cells show a granule cell 784 

morphology while RGP-like phenotype was observed in many cells infected with 785 

NCAM2.1 or NCAM2.2 overexpressing viruses. Scale bar: 50 µm. B) GFP immunogold 786 

electron microscopy images of animals infected with control, NCAM2.1 OE or NCAM2.2 787 

OE viruses and sacrificed 4 weeks post-surgery. Control images show densely GFP-788 

labelled granule cells and RGPs. In NCAM2.1 and NCAM2.2 OE mice, the number of 789 

labelled granule cells is dramatically decreased. Nevertheless, RGPs located in the SGZ 790 

still appear labelled with GFP. GC: granule cell; RGP: radial glia progenitor. Scale bar: 2 791 

µm. 792 

Figure 4. Immunohistochemical characterization of NCAM2 overexpressing progenitor 793 

cells.  794 

A) Immunostaining of GFP positive cells with GFAP and Sox2 RGPs markers from animals 795 

sacrificed 1 week post-injection. B) Immunostaining of GFP positive cells with GFAP and 796 

Sox2 RGPs markers from animals sacrificed 4 weeks post-injection. C-D) Time course 797 

quantification of the GFP/Sox2/GFAP positive cells in mice injected with control, 798 

NCAM2.1 OE or NCAM2.2 OE viruses at 3 days, 1 week, 2 weeks and 4 weeks post-799 

injection. N=2-3 animals, 5-10 slices per animal. Data are presented as mean ± SEM; dots 800 

represent average values for individual animals (5-10 slices per animal, 20-50 cells per 801 

animal); N=2-3 animals per group at 3 days (control) 1, 2 and 4 weeks post-injection; 802 
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ANOVA, Tukey’s comparison post-hoc test; * P<0.05, ** P<0.01, *** P<0.001, **** 803 

P<0.0001. In light gray bars, representation of NCAM2.1 and NCAM2.2 groups at 3 days 804 

post-injection (N=1 animals per group, qualitative study excluded form statistical 805 

analysis). In Fig. 4D, gray * differences between Control and NCAM2.1; black * 806 

differences between Control and NCAM2.2; • differences between NCAM2.1 and 807 

NCAM2.2. Arrowheads label GFP/Sox2/GFAP positive GFP-cells. ML: molecular layer; GL: 808 

granule layer; H: hilus. Scale bar: A, B) 20 µm.  809 

Figure 5. Immunohistochemical characterization of NCAM2 overexpressing neurons.  810 

A) Immunostaining of GFP positive cells with DCX as a markers for neuroblasts (type III 811 

progenitors) and immature neurons from animals sacrificed 4 week post-injection. B) 812 

Immunostaining of GFP positive cells with NeuN as a markers for mature neurons from 813 

animals sacrificed 4 week post-injection. C) Quantifications of GFP/DCX positive cells in 814 

mice injected with control, NCAM2.1 OE or NCAM2.2 OE viruses at 2 and 4 weeks post-815 

injection. N=2-4 animals per group, 5-6 slices (>50 cells per animal in the controls; 15-30 816 

cells per animal in the NCAM2 OE conditions). D) Quantification of GFP/NeuN positive 817 

cells in animals injected with control, NCAM2.1 OE or NCAM2.2 OE 4 weeks after 818 

transduction. N=4 animals per group, 5 slices per animal (>50 cells per animal). Data are 819 

presented as mean ± SEM; differences between experimental groups ANOVA, Tukey’s 820 

comparison post-hoc test; ** P<0.01; differences between time points Student’s t-test; 821 

* P<0.05. Arrowheads label DCX or NeuN positive GFP-cells; arrows label NeuN negative 822 

GFP-cells. ML: molecular layer; GL: granule layer; H: hilus. Scale bar: A, B) 20 µm.  823 

Figure 6. NCAM2 overexpression do not arrest embrionary RGPs but affects neuronal 824 

migration. 825 

A) Representative images from the reporter gene GFP in electroporated neurons in 826 

cortical sections from P0 mice. E15-born neurons were electroporated with control (left 827 

panel) and overexpression vectors. Sections were counterstained with DAPI. B) 828 

Distribution of transfected cells within cortical layers was quantified at P0 by dividing 829 

cortical thickness in 10 BINs. Data are presented as the ratio of neurons with somas 830 

located in each BIN. Overexpression of NCAM2.2 isoform or simultaneous expression of 831 

both isoforms (NCAM2.1+NCAM2.2) induce a reduced proportion of cells in the upper 832 

BIN. N=5-8 animals electroporated with control or overexpression constructs; *** 833 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 3, 2022. ; https://doi.org/10.1101/2022.02.03.478938doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.03.478938


 

32 

 

P<0.001; two-way ANOVA, Bonferroni comparison post hoc test. C) Representative 834 

images from the reporter gene GFP in electroporated neurons in cortical sections from 835 

P5 mice. E15-born neurons were electroporated with control (left panel) and 836 

overexpression vectors for both isoforms (NCAM2.1+NCAM2.2; right panel).  D) 837 

Distribution of transfected cells within cortical layers was quantified at P5 in 10 BINs. 838 

Data are presented as the ratio of neurons with somas located in each BIN. No 839 

differences were found within neuronal distribution between control and NCAM2-840 

overexpressing neurons. N=6 electroporated animals with the constructs; two-ways 841 

ANOVA, Bonferroni comparison post hoc test. E) Higher magnification of representative 842 

images from transfected neurons at P0. Neurons show normal pyramidal neuronal 843 

morphology. CP, cortical plate; IZ, intermediate zone; MZ, marginal zone; SVZ, 844 

subventricular zone;  I-VI, cortical layers. Scale bars: A,D) 50 μm; E) 10 μm. 845 

Figure 7. NCAM2 expression levels affect the proliferation of NSCs grown as 846 

neurospheres.  847 

A) Scheme showing the protocol for the obtention of post-natal mouse neurospheres 848 

from the neurogenic niches. Progenitor cells were isolated and grown as neurospheres 849 

A.1) Neurospheres where infected with control, NCASM2 overexpressing or ShNCAM2 850 

viruses, selected by flow cytometry and plated in non-adherent plates. The area of the 851 

infected neurospheres was analysed by Scan-R microscopy for 5 consecutive days. A.2) 852 

Cells were plated in adherent coverslips, infected with  control, NCAM2 overexpressing 853 

or ShNCAM2 viruses and maintained 5 days in differentiation conditions before fixation. 854 

B) Representative images of control, ShNCAM2, or NCAM2 overexpressing 855 

neurospheres after 3 days in vitro. C) Quantification of the time-course progress for the 856 

area of neurospheres for 5 consecutive days after sorting of infected cells. N= 100-300 857 

neurospheres per condition, 1 independent experiment. D) Comparison of the area of 858 

neurospheres at 3 days in vitro. E) Histograms of control, NCAM2.1 OE, NCAM2.2 OE and 859 

ShNCAM2 neurospheres distribution according to their area 3 days after FACS selection. 860 

Coloured bars label percentile 50. Data are presented as mean ± SEM; Kruskal-Wallis 861 

test, *** P<0.001. Scale bar: B) 100 µm.  862 
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Figure 8. Model of RGPs regulation by NCAM2 expression levels in the hippocampus. 863 

Schematic representation of the proposed model for NSC regulation by NCAM2 864 

expression. RGPs (Type I cells) are GFAP/Sox2/Nestin positive cells and are maintained 865 

in a quiescent state in the SGZ of the dentate gyrus. Upon activation, they generate Tbr2 866 

positive proliferating intermediate progenitors (Type 2 cells). Those transit-amplifying 867 

progenitors produce neuroblasts (Type 3 cells) that express DCX and differentiate into 868 

NeuN positive granule cells. New-born neurons mature and become functional neurons 869 

of the hippocampal circuits. This process is regulated by different intrinsic and extrinsic 870 

factors, such as growth factors. We postulate that the levels of cell adhesion molecules 871 

such as NCAM2 protein are crucial for the regulation of NSC quiescence, the activation 872 

of proliferation and for the proper neuronal differentiation and maturation in later 873 

stages (Shin et al. 2015; Morizur et al. 2018; Parcerisas et al. 2020).  874 
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