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Recent advances in synthetic biology have enabled the design of genetic feedback control circuits
that could be implemented to build resilient plants against pathogen attacks. To facilitate the proper
design of these genetic feedback control circuits, an accurate model that is able to capture the vital
dynamical behaviour of the pathogen-infected plant is required. In this study, using a data-driven
modelling approach, we develop and compare four dynamical models (i.e. linear, Michaelis-Menten,
standard S-System and extended S-System) of a pathogen-infected plant gene regulatory network
(GRN). These models are then assessed across several criteria, i.e. ease of identifying the type of
gene regulation, the predictive capability, Akaike Information Criterion (AIC) and the robustness
to parameter uncertainty to determine its viability of modelling the pathogen-infected plant GRN.
Using our defined ranking score, our analyses show that while the extended S-System model ranks
highest in the overall comparison, the performance of the linear model is more consistent throughout
the comparison, making it the preferred model for this pathogen-infected plant GRN.

I. INTRODUCTION

One of the common fungal pathogens that infects plant
is the Botrytis cinerea. When infection occurs, the in-
teractions between the pathogen and the host plant of-
ten lead to the host plant succumb to diseases. This is
because pathogen often disrupts the host defense mecha-
nism through secretion of a range of proteins, small RNAs
and metabolites to aid their colonisation [1–4]. Advances
in the area of molecular biology have provided plant
synthetic biologists means of improving plant resilience
through the use of synthetic feedback control circuits (see
e.g. [5]) to restore the regulation that is affected by the
pathogen attack [6]. Pathogen affected genes involved in
defence tend to have their expression levels compromised,
leading to their reduced functional ability [7, 8]. The syn-
thetic feedback control circuits would sense the changes
in the expression level of pathogen affected genes, where
the genes cis-regulatory elements are modified resulting
in changes in their regulations and expression levels (see
[9] and references therein) and regulate appropriate tran-
scription factor to allow the compromised expression lev-
els to be controlled thereby enabling plant to recover their
defence functionality.

To facilitate the design of these synthetic feedback con-
trol circuits, an accurate dynamical model depicting the
gene regulatory network (GRN) involved in the plant de-
fense mechanism is required. In our previous study [6],
equipped with the temporal data of gene expressions [10]
and the knowledge of the interacting genes involved in
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plant defence [9], a linear dynamical model is developed
using a data-driven modelling approach to model the
pathogen-infected plant GRN with good accuracy and
subsequently used to design and develop a framework of
engineering resilience plant using synthetic genetic feed-
back control circuits. In this study, as a follow up to
[6], we aim to answer the following question: “When us-
ing the data-driven modelling approach, given the tempo-
ral data and knowledge about the pathogen-infected plant
GRN interaction, is the linear model the most viable
model to facilitate the design of synthetic feedback control
and if not what is the alternate candidate model?”
Since the advancement in the area of Systems Biology,

GRN modelling has been extensively studied (see the re-
view paper by [11] and references therein). According to
[11], most of the models described in those studies can
be categorised into four main classes in the order of in-
creased complexity — part list model (e.g. description
of the GRN component), topology model (e.g. directed
graph model), control logic model (e.g. Boolean function
model) and dynamical model (e.g. differential equation
model). The models developed here are often based on
first principles, i.e. using the biological understanding of
the interacting components.
With the access to high throughput data at molecu-

lar level becoming available, attention turns to another
branch of modelling approach called reverse engineering
[12, 13], where models are developed in the attempt to
fit those data using various methods such as correlation-
based method, Bayesian networks, regression analysis,
information theoretical approaches, Gaussian graphical
models, dynamic differential equations, etc [14–17]. In
a reverse engineering approach, usually there is no as-
sumption about the model structure and the interacting
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components. The development in this area often par-
allels the development of GRN network inference algo-
rithms, where the types and directions of regulation be-
tween components are inferred directly from data (see the
review paper [18] and references therein). As a note, in
the area of systems and control engineering [19], the re-
verse engineering approach is also known as system iden-
tification or data-driven modelling.

Here, we would like to make several remarks to provide
readers the main scope of this study. First, this study is
not about comparing network inference algorithms, hence
the discussion on this topic is beyond the scope of this
study. Interested readers can see the following review
papers [20, 21] for more details. Second, unlike typical
reverse engineering (data-driven modellling) approaches
that assume almost no prior knowledge about the GRNs
and the model structures, here we have some knowledge
about the interacting genes and we have a set of candi-
date model structures of interest to be compared. Thus,
our ‘network inference’ approach will be simpler with the
focus on identifying the regulation type. Third, our study
is system specific, i.e. a pathogen-infected plant GRN,
and the main goal is to answer the key question posted
above, i.e. the suitability of the linear dynamical model
[6] in modelling a pathogen-infected plant GRN.

To the best of our knowledge, the only comparative
study of different dynamical models for plant-specific
GRN has been carried out in [22], where the authors com-
pared several dynamical models for the GRN involved in
plant flowering time. Different from that study, our study
focuses on the data-driven modelling approach and uses
different quantitative metrics for model comparison. In
our comparative analysis, in addition to the linear model
given in [6], we consider the Michaelis-Menten model and
two S-System based models. The choice of these three
models are motivated by their capabilities in modelling
GRN (see e.g. [23–25]).

The manuscript is organised in the following manner.
In Section II, we present the pathogen-infected plant
GRN used as our case study. The main results on the
comparative analysis of the four GRN models are pre-
sented and discussed in details in Section III. Finally,
the discussion and conclusions are provided in Section
IV.

II. SYSTEM DESCRIPTION

The plant GRN involved in the defence against
pathogen attack and used in this study is adapted from
[10], where a subnetwork of nine genes — hereinafter
termed 9GRN [6] — has been identified to be involved in
the defence against Botrytis cinerea, as shown in Fig. 1.
In Fig. 1, while the direction of regulation between genes
in 9GRN is known, the type of regulation (i.e. activa-
tion or inhibition) is not entirely known. Among these
nine genes, seven of them are directly affected by the
pathogen, as indicated by the yellow hexagon. CHE and

ATML1 are part of the circadian clock genes as their os-
cillatory profiles are influenced by external light, as indi-
cated by the red lightning. Moreover, the gene CHE has
been identified to be an important gene in the plant de-
fence mechanism and when it is affected by the pathogen,
its expression level would decrease thereby reducing its
defence capability [9, 10]. Therefore, it is imperative that
the expression level of CHE being kept high and thus the
role of the synthetic feedback control circuitry is to en-
sure its expression level stay high when under pathogen
attack.

III. COMPARATIVE ANALYSIS OF THE 9GRN
MODELS

A. Comparison criteria

In this comparative study, the four dynamical models
of 9GRN will be evaluated across the following criteria.

• Criterion I: Ease of identifying regulation type.

• Criterion II: Predictive capability.

• Criterion III: Quality of data fit using Akaike
weights based on Akaike Information Criterion
(AIC).

• Criterion IV: Robustness to parameter uncertain-
ties.

B. Model structures for 9GRN

The general structure for all these four models are
given as follows:

Linear model: This linear model is the one used in
[6].

dXi

dt
=

nP
i∑

j=1

αi,jXj − βiXi +BS,i + ciW + γiLI (1)

where Xi is the expression level of ith gene, nP
i is the

number of genes involved in regulating Xi, α is the
production rate, β is the degradation rate, BS is the
gene basal level while c and γ parameterised the external
input from pathogen W and light LI , respectively. For
more details on how each of the terms in (1) are derived,
see [6].

Standard S-System model: The standard S-System
model developed from the field of biochemical system
theory was initially proposed in [26] to model metabolic
pathways. Over the course of its development (see e.g.
[27, 28] and references therein), this model has been
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FIG. 1: Plant (Arabidopsis) gene regulatory network (termed 9GRN) involved in the defence response to Botrytis cinerea
adapted from [6]. The yellow hexagon symbol represents genes that have been identified to be directly affected by Botrytis
cinerea. Red lightning symbol represents genes that are light regulated. The directional arrows indicate the influence of one
gene to another despite its regulation type unknown.

used to model GRN with good accuracy [29] and it has
the following form.

dXi

dt
= αi

n+m∏
j=1

X
gi,j
j − βi

n+m∏
j

X
hi,j

j (2)

where α is the production rate, β is the degradation
rate, n and m are respectively the total number of
dependent and independent variables and gi,j and hi,j

are exponents associated with the production and degra-
dation processes, respectively. Note that the standard
S-System model structure does not have provision to
account for gene basal level and the external input, and
these variables are incorporated directly as part of the
independent variables.

Extended S-System model: This model was proposed in
[25] to individually account for the effect of gene basal
expression and external input, instead of being part of
the independent variables, and was shown to accurately
describe the plant circadian system compared to the
standard S-System model. The extended S-System
model has the following form.

dXi

dt
= αi

nP
i∏

j=1

X
gi,j
k −

nD
i∑

j=1

βi,jXi

(
n∏

k=1

X
hi,j,k

k

)
+

nE
i∑

j=1

γi,jUi,j

(3)
where α, β and γ are the reaction rate constants
associated with production, degradation and external
input regulation (e.g light, perturbation, basal level,
etc), respectively. Like the standard S-System, gi,j
represents the exponent related to production while
hi,j represents the exponent related to degradation.
nP
i , nD

i and nE
i are the number of genetic component

involved in the respective production, degradation and

external input regulation of Xi. Ui,j encapsulates the
effect of those aforementioned external regulations onXi.

Michaelis-Menten model: Conventionally, this model
has been widely used to model GRN (see e.g. [30, 31]
and references therein) and it has the following form.

dXi

dt
=

nP
i∑

j=1

αi,j [fA(Xj ,W,LI) + fR(Xj ,W,LI)]−βiXi+BS,i

(4)
where like before, α and β are the production and degra-
dation rate, respectively, BS is the basal level, fA and
fR are respectively, the activator and inhibitor type
of regulation. Both of them have different forms and
they are usually modelled as fA = Xq/(Kq + Xq) and
fR = 1/(Kq + Xq), where K is the Michaelis-Menten
kinetic constant and q is the Hill coefficient. Note that
here, the regulations are modelled as a summation of suc-
cessive regulations and they could also be modelled as a
product of successive regulations.
One immediate observation from these four model

structures is that the Michaelis-Menten model structure
requires the knowledge of the regulation type when de-
riving the ordinary differential equations (ODE) for each
gene, thus making this model not suitable for reverse en-
gineering [32]. If the regulation type is unknown, extra
steps (discussed in Section III C) are required to con-
struct the best fitting Michaelis-Menten model structure.
Since the Michaelis-Menten model requires extra steps in
identifying the regulation types, it can often incur addi-
tional computational load.
On the other hand, for the linear and the two S-System

based models, the sign of the production rate αi,j (for lin-
ear model) and the exponent associated with the produc-
tion rate gi,j (for S-System based model) estimated from
data can directly inform us the type of regulation for each
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gene, where a positive value denotes activation while a
negative value denotes inhibition. For the S-System mod-
els, there are also approaches being developed that can
be used to estimate those parameters in an efficient and
fast manner [33]. Moreover, for the linear and extended
S-System models, the positive or negative regulation of
the external inputs can be also be inferred through the
sign of the estimated parameters (i.e., c’s and γ’s, re-
spectively).

C. Detailed ordinary differential equations (ODEs)
model of 9GRN

We use subscripts L, SS, ES, and MM in the model
parameters to represent the linear, standard S-System,
extended S-System and Michaelis-Menten models,
respectively. In order to avoid overloading of variables,
the following numbers are used to denote the genes in
9GRN. 1: ORA59, 2: MYB51, 3: LOL1, 4: AT1G79150,
5: ANAC055, 6: a-ERF-1, 7: ATML1, 8: CHE and 9:
RAP2.6L.

Linear model : The corresponding ODEs following
(1) are given as follow, which is the same linear model
used in [6],

dG1

dt
= αL,1,1G2 + αL,1,2G5 + αL,1,3G6 − βL,1G1 +BL,1

dG2

dt
= −βL,2G2 +BL,2 + cL,2W

dG3

dt
= −βL,3G3 +BL,3 + cL,3W

dG4

dt
= αL,4,1G8 + αL,4,2G9 − βL,4G4 +BL,4 + cL,4W

dG5

dt
= αL,5,1G9 − βL,5G5 +BL,5 + cL,5W

dG6

dt
= −βL,6G6 +BL,6 + cL,6W

dG7

dt
= αL,7,1G9 − βL,7G7 +BL,7 + cL,7W + γL,7LI

dG8

dt
= αL,8,1G3 + αL,8,2G4 + αL,8,3G7 − βL,8G8 +BL,8

+ γL,8LI

dG9

dt
= αL,9,1G5 − βL,9G9 +BL,9 + cL,9W (5)

Standard S-System model : Following (2), the correspond-
ing ODEs for 9GRN are given as follow.

dG1

dt
= αSS,1G

gSS,1,1

2 G
gSS,1,2

5 G
gSS,1,3

6 − βSS,1G1

dG2

dt
= αSS,2W

gSS,2,1 − βSS,2G2

dG3

dt
= αSS,3W

gSS,3,1 − βSS,3G3

dG4

dt
= αSS,4G

gSS,4,1

8 G
gSS,4,2

9 W gSS,4,3 − βSS,4G4

dG5

dt
= αSS,5G

gSS,5,1

9 W gSS,5,2 − βSS,5G5

dG6

dt
= αSS,6W

gSS,6,1 − βSS,6G6

dG7

dt
= αSS,7G

gSS,7,1

9 W gSS,7,2L
gSS,7,3

I − βSS,7G7

dG8

dt
= αSS,8G

gSS,8,1

3 G
gSS,8,2

4 G
gSS,8,3

7 L
gSS,8,4

I − βSS,8G8

dG9

dt
= αSS,9G

gSS,9,1

5 W gSS,9,2 − βSS,9G9 (6)

Note again that the two external variables W , which
represents the effect of Botrytis cinerea inoculation and
LI , which represents the effect of light are considered as
the independent variables.

Extended S-System model: Following (3), we arrive at
the following ODEs for the 9GRN,

dG1

dt
= αES,1G

gES,1,1

2 G
gES,1,2

5 G
gES,1,3

6 − βES,1G1 + γES,1,1

dG2

dt
= −βES,2G2 + γES,2,1 + γES,2,2W

dG3

dt
= −βES,3G3 + γES,3,1 + γES,3,2W

dG4

dt
= αES,4G

gES,4,1

8 G
gES,4,2

9 − βES,4G4 + γES,4,1

+ γES,4,2W

dG5

dt
= αES,5G

gES,5,1

9 − βES,5G5 + γES,5,1 + γES,5,2W

dG6

dt
= −βES,6G6 + γES,6,1 + γES,6,2W

dG7

dt
= αES,7G

gES,7,1

9 − βES,7G7 + γES,7,1 + γES,7,2W

+ γES,7,3LI

dG8

dt
= αES,8G

gES,8,1

3 G
gES,8,2

4 G
gES,8,3

7 − βES,8G8 + γES,8,1

+ γES,8,2LI

dG9

dt
= αES,9G

gES,9,1

5 − βES,9G9 + γES,9,1 + γES,9,2W

(7)

As a remark, despite the regulation type is unknown,
the ODEs for these three models can still be written
down as depicted in (5), (6) and (7), as the regulation
type can be inferred through the sign of the estimated
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parameters. Also, for the S-System based models, we set
hi,j = 1 to reduce the amount of parameters that need
to be estimated.

Michaelis-Menten model: Unlike the previous three
models, the ODEs of the Michaelis-Menten model can
only be written down when the type of regulation is
known. To facilitate the derivation of these ODEs, we
need to employ additional steps to infer those regulation
types.

GRN network inference and parameter estimation us-
ing Michaelis-Menten ODEs can be a challenging prob-
lem, as repeatedly solving the ODEs via numerical inte-
gration can be computationally expensive. In this study,
we employ our recently proposed parametric gradient-
matching method (see Supplementary Text Section S1.3,
Algorithm I and [34]) as the GRN inference approach,
which incorporates dynamics information and computa-
tional efficient. It is an inference approach based on para-
metric Michaelis-Menten nonlinear ODEs representation
of a GRN [35]. The approach significantly reduced the
computational cost of repeatedly solving the candidate
ODEs via a two-step gradient matching. It first employs
a Gaussian process to interpolate each time-course gene
expression data. Then, the parameters of the ODEs are
optimised by minimising the difference between interpo-
lated derivatives and the right-hand-side of the ODEs. In
such a way, the ODEs do not need to be solved explicitly,
thereby reducing the computational cost. For more de-
tails of the method, see [34, 35]. We note that there are
copious of other similar methods to identify regulation
type of the Michaelis-Menten model in a GRN (see e.g.
[36, 37]). As the main goal of this work is to perform
comparative analysis of the GRN models and not on the
network inference algorithm, we will treat the identified
regulation type from our network inference algorithm as
the correct regulation for our comparative analyses. The
summary of the identified regulation types is given in
Table I.
With that, the corresponding ODEs are given as follow.

dG1

dt
=

αMM,1,1G
2
2

K2
MM,1,1 +G2

2

+
αMM,1,2

K2
MM,1,2 +G2

5

+
αMM,1,3

K2
MM,1,3 +G2

6

− βMM,1G1 +BMM,1

dG2

dt
=

αMM,2,1W
2

(K2
MM,2,1 +W 2)

− βMM,2G2 +BMM,2

dG3

dt
=

αMM,3,1W
2

(K2
MM,3,1 +W 2)

− βMM,3G3 +BMM,3

dG4

dt
=

αMM,4,1G
2
8

K2
MM,4,1 +G2

8

+
αMM,4,2

K2
MM,4,2 +G2

9

+
αMM,4,3

(K2
MM,4,3 +W 2)

− βMM,4G4 +BMM,4

dG5

dt
=

αMM,5,1G
2
9

K2
MM,5,1 +G92

+
αMM,5,2W

2

(K2
MM,5,2 +W 2)

− βMM,5G5 +BMM,5

dG6

dt
=

αMM,6,1W
2

(K2
MM,6,1 +W 2)

− βMM,6G6 +BMM,6

dG7

dt
=

αMM,7,1

K2
MM,7,1 +G2

9

+
αMM,7,2

(K2
MM,7,2 +W 2)

+
αMM,7,3L

2
I

(K2
MM,7,3 + L2

I)

− βMM,7G7 +BMM,7

dG8

dt
=

αMM,8,1G
2
3

K2
MM,8,1 +G2

3

+
αMM,8,2G

2
4

K2
MM,8,2 +G2

4

+
αMM,8,3G

2
7

K2
MM,8,3 +G2

7

αMM,8,4L
2
I

(K2
MM,8,4 + L2

I)
− βMM,8G8 +BMM,8

dG9

dt
=

αMM,9,1G
2
5

K2
MM,9,1 +G2

5

+
αMM,9,2W

2

(K2
MM,9,2 +W 2)

− βMM,9G9 +BMM,9 (8)

In all the four models, the infection of Botrytis cinerea
is modelled as a step function with gradual increase from
time 48 to 72 hours, i.e. the time inoculation occurs.
Mathematically, this is modelled as

W =


0 0 ≤ t < 48
1
24 t− 2 48 ≤ t ≤ 72

1 t > 72

(9)

For the light regulated genes, these genes are affected
by the duration of photoperiod of light. In [10], the ex-
periment was carried out under 16 hours of light and
8 hours of dark. The resulting genes in response to this
photoperiod duration behave in a sinusoidal manner with
its peak between 8 to 10 hours at the first instance of
light. In view of this, the effect of light is modelled as
a sinusoidal signal that peaks at around 9 hours at the
first stance of light and its expression is given by

LI = sin

(
2πt

TP
+ ϕ

)
+BL (10)

where BL = 1.0001 is the expression base level, ϕ = π/6
radian is the phase shift and TP = 24 hours is the period
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TABLE I:

Identified regulation types for interaction within 9GRN following the parametric gradient-matching approach. The (+) and
(-) signs indicate the activation and inhibition regulation types respectively. The signs for W and LI indicate that this gene is
positively or negatively regulated by those external inputs (see Fig. 1).

Number Gene Regulation Types
1 ORA59 MYB51 (+), ANAC055 (-), a-ERF-1 (-)
2 MYB51 W (+)
3 LOL1 W (+)
4 AT1G79150 CHE (+), RAP2.6L (-), W (-)
5 ANAC055 RAP2.6L (+), W (+)
6 a-ERF-1 W (+)
7 ATML1 RAP2.6L (-), W (-), LI (+)
8 CHE LOL1 (+), AT1G79150 (+), ATML1 (+), LI (+)
9 RAP2.6L ANAC055 (+), W (+)

of the sinusoid. The reason for setting BL = 1.0001 is to
avoid LI becoming zero, which can be problematic when
it is used in modelling 9GRN using standard S-System.

D. Parameter estimation

The data used in this study is taken from [6]. For the
linear and two S-System based models, the parameters of
the corresponding models were fitted to the experimental
data set by minimising the weighted mean squared error
(WMSE) between the simulated and experimental data,
i.e. by finding

Θ̂ =Θ W(G(t), Ĝ(t,Θ)) (11)

where

W(G(t), Ĝ(t,Θ)) =
1

nG

1

nT

nG∑
i=1

nT∑
j=1

(
Gi(tj)− Ĝi(tj ,Θ)

Ai

)2

(12)
with

Ai = max
1≤j≤nT

Gi(tj). (13)

where G represents the gene component, t denotes the
time index, nG = 9 is the number of gene components
and nT = 48 is the number of data point used. Given
that the amplitude of different gene components is differ-
ent, to allay any bias during the optimisation procedure
for model parameter fitting, we introduce the weights
Ai in (12) where we normalise each time series to its
maximum value. The MATLAB function fminsearch
that employs Nelder-Mead simplex algorithm was used to
minimise (11). The estimated parameters for these three
models are given in Tables S1 to S3. Note that the esti-
mated model parameters of the linear model is somewhat
different than the one provided in [6]. This is because in
this study, instead of directly using the estimated pa-
rameters from [6], they are used as the initial value for

the optimisation to determine whether any further im-
provement in terms of the WMSE can be achieved. The
estimated parameters given in Table S1 are very close to
the one estimated in [6] suggesting a high confidence level
in the estimated parameters for the linear model.
The parameters associated with the Michaelis-Menten

model are given in Table S4. These parameters have
been estimated together with the inference algorithm
(see Supplementary Text, Section S1.3) via the gradient-
matching method (see [34] and its Supplementary Mate-
rial for more details).
The identified regulation types for these three models

are given in Table II. We have also included the regula-
tion types inferred from Michaelis-Menten model in this
table for ease of comparison. In general, there is a general
consensus on the identified regulation types shown in Ta-
ble II apart from genes ORA59, LOL1 and AT1G79150.
Specifically, for gene ORA59, only the inferred regula-
tion type for a-ERF-1 when using the Michaelis-Menten
model is different from the other three models. For
ORA59, the time series shows an increasing trend, which
is consistent with the increasing trend of a-ERF-1, sug-
gesting a higher possibility of a positive regulation, which
agrees with the three models rather than the Michaelis-
Menten model. For gene LOL1, there is difference in
the inferred pathogen regulation type with the linear
and standard S-System models identified negative reg-
ulation, while extended S-System and Michaelis-Menten
models identified positive regulation. Lastly, for gene
AT1G79150, the inferred regulation types for RAP2.6L
and pathogen are different across all four models. A de-
tail look at the time series data for these genes LOL1
and AT1G79150 (Fig. S1) suggests that the difficulty
in identifying these regulation types is attributed to the
almost plateau nature of these two gene expression levels.
Using the identified parameters given in Tables S1 to

S4, we compared the predictive capability of the models
with the experimental data on a set of data that is not
used in parameter estimation exercise and the result are
shown in Fig. S1. As a quantitative measure, we cal-
culated the WMSE, using (12), and they are shown in
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TABLE II:

Identified regulation types based on estimated parameters of 9GRN using linear (L), standard S-System (SS) and extended
S-System models (ES). The (+) and (-) signs indicate the activation and inhibition regulation types, respectively. The signs
for W and LI indicates that this gene is positive/negative regulated by those external inputs (see Fig. 1). The regulation
type for Michaelis-Menten model (MM) shown in Table I is also listed for ease of comparison. Identified regulation types that
are different are highlighted in grey.

Number Gene Regulation Types

1 ORA59 L: MYB51 (+), ANAC055 (-), a-ERF-1 (+)

SS: MYB51 (+), ANAC055 (-), a-ERF-1 (+)

ES: MYB51 (+), ANAC055 (-), a-ERF-1 (+)

MM : MYB51 (+), ANAC055 (-), a-ERF-1 (-)

2 MYB51 L: W (+)
SS: W (+)
ES: W (+)
MM : W (+)

3 LOL1 L: W (-)

SS: W (-)

ES: W (+)

MM : W (+)

4 AT1G79150 L: CHE (+), RAP2.6L (-), W (+)

SS: CHE (+), RAP2.6L (-), W (-)

ES: CHE (+), RAP2.6L (+), W (+)

MM : CHE (+), RAP2.6L (-), W (-)

5 ANAC055 L: RAP2.6L (+), W (+)
SS: RAP2.6L (+), W (+)
ES: RAP2.6L (+), W (+)
MM : RAP2.6L (+), W (+)

6 a-ERF-1 L: W (+)
SS: W (+)
ES: W (+)
MM : W (+)

7 ATML1 L: RAP2.6L (-), W (+), LI (+)
SS: RAP2.6L (-), W (+), LI (+)
ES: RAP2.6L (-), W (+), LI (+)
MM : RAP2.6L (-), W (-), LI (+)

8 CHE L: LOL1 (+), AT1G79150 (+), ATML1 (+), LI (+)
SS: LOL1 (+), AT1G79150 (+), ATML1 (+), LI (+)
ES: LOL1 (+), AT1G79150 (+), ATML1 (+), LI (+)
MM : LOL1 (+), AT1G79150 (+), ATML1 (+), LI (+)

9 RAP2.6L L: ANAC055 (+), W (+)
SS: ANAC055 (+), W (+)
ES: ANAC055 (+), W (+)
MM : ANAC055 (+), W (+)

Table III.
The results shown in Fig. S1 and Table III shows that

the all four models are able to pick up the general trend
of the data well. Specifically, the linear and two S-System
models perform really well with relatively smaller total
WMSE compared to the Michaelis-Menten model. For
the Michaelis-Menten model, there are several instances
where the model fall short in terms of realising the correct
amplitude levels (e.g. ORA59 and MYB51 ), which is
also reflected in the individual WMSE shown in Tables
S5 and S6.

To further test the performance of these models, we
compare qualitatively the dynamics of these four models

against mutant data set, where two different genes, i.e.,
∆nac and ∆rap2.6l have been mutated. Fig. 3 shows the
predictive capability of the four models against the mu-
tant data. In general, all models pick up the correct trend
of the mutant behaviours albeit the two S-System mod-
els have difference in the amplitude. For instance, gene
ORA59 from the extended S-System model has higher
expression level under both knockdown mutants. Simi-
larly, gene RAP2.6L from standard S-System model has
lower expression level under ∆anac055. Nevertheless, all
the models are able to predict the mutant behaviours
qualitatively well. Readers who are interested in the
quantitative mutant analysis can refer to Supplementary
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FIG. 2: Comparison of the models against experimental data set that is not used in the parameter estimation exercise. Solid
grey with ‘square’: Experimental data. Solid blue: Linear model. Solid red: Michaelis-Menten model. Solid green: Standard
S-System model. Solid purple: Extended S-System model.

TABLE III:

Average total WMSE for both ‘training’ and ‘validation’ data sets for 9GRN, which is calculated by taking the average sum
of the individual WMSE given in Tables S5 and S6. The ‘training’ data set refers to the data that is used in parameter
estimation exercise, while the ‘validation’ data set refers to the data that is not used in the parameter exercise.

Model Average Total WMSE Average Total WMSE
(training) (validation)

Linear 0.00267 0.00543
Michaelis-Menten 0.00614 0.00784
Standard S-System 0.00359 0.00606
Extended S-System 0.00256 0.00516

Text.

E. Assessing model quality using Akaike weight
based on Akaike Information Criterion (AIC)

While the WMSE and the mutant analysis provide re-
spectively the quantitative and qualitative approaches of
the performance of the model, these approaches however
do not reflect fully the quality of fit given the different
model structures employed and the number of parame-
ters used. In order to quantify the relative quality of

the model fits to the experimental training data obtained
with the four models considered, we employed the widely-
used Akaike Information Criterion (AIC), which calcu-
lates the best approximating model to a given dataset
with respect to Kullback-Leibler information loss [38, 39].
For a given model, the AIC is defined as

AIC = −2 ln(L̂) + 2KΘ, (14)

where ln(L̂) is the maximised log-likelihood and KΘ is
the number of model parameters. Consider that the
optimal parameter estimates for all four 9GRN models
were acquired through the minimisation of weighted least
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FIG. 3: Comparison of the models against mutant experimental data set. For the simulation of the mutant, we reduce the
production rate associated with the knockdown gene by 20%. Solid grey with error bar: Experimental data. Solid blue: Linear
model. Solid red: Michaelis-Menten model. Solid green: Standard S-System model. Solid purple: Extended S-System model.

squares cost function, it can be shown that [40]

ln(L̂) =− nGnT

2
ln(2π + 1)− nT

nG∑
i=1

ln(Ai)

− nGnT

2
ln(W(G(t), Ĝ(t,Θ))), (15)

with nG is the number of genes, nT is the number of data
points in the time series, Ais as defined in (13) are the

cost function weights and W(G(t), Ĝ(t,Θ)) as defined in
(12).

By denoting AICi as the AIC value of the ith model,
these four 9GRN models are ranked by their AIC differ-
ences calculation, i.e.

∆i(AIC) = AICi − min
1≤i≤4

AICi, (16)

and finally, the corresponding Akaike weights can be cal-
culated as follow:

wi(AIC) =
exp

(
− 1

2∆i(AIC)
)∑4

i=1 exp
(
− 1

2∆i(AIC)
) . (17)

We can interpret this Akaike weight, wi(AIC) as the
probability that the ith model is the best from the per-
spective of minimising K-L information loss, given the

set of candidate models and the data. In addition, the
strength of evidence that favours model i over model j is
quantified by the ratio wi(AIC)/wj(AIC) [38–41].
Finally, since nG, nT and Ai in (15) are fixed across

the respective GRN models, the expression of the AIC
value (i.e., (14)) can be further simplified to

AIC = nGnT ln(W(G(t), Ĝ(t,Θ))) + 2(KΘ + 1). (18)

where (18) is then used to compute the AIC differences
∆i(AIC) and Akaike weights wi(AIC) of a given 9GRN
model.
The AIC criterion in Table S9 indicates that the two

most viable candidate models (in the sense of K-L diver-
gence) are the extended S-System model and the linear
model with their Akaike weight of wES(AIC) = 0.9836
and wL(AIC) = 0.0164, respectively. Between these two
models, the ratio of wES(AIC)/wL(AIC) ≈ 60 suggests
that the extended S-System model is 60 times more likely
to be the viable model candidate compared to the linear
model. On the other hand, the Akaike weights also ex-
clude the Michaelis-Menten and the standard S-System
models as the viable models given their Akaike weights
are close to zero.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.03.479002doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.03.479002
http://creativecommons.org/licenses/by-nd/4.0/


10

TABLE IV:

Ranking model fits to experimental data based on AIC weights for 9GRN. The notation L, MM , SS, ES, denote the linear,
Michaelis-Menten, Standard S-System and Extended S-System models, respectively. Here nG = 9, nT = 48, KΘ is the number
of parameters in the model, W(G(t), Ĝ(t,Θ)) is the WMSE best fit to the data set used for parameter estimation, ∆i(AIC) is
the AIC differences and wi(AIC) is the Akaike weights for each model.

Model L MM SS ES
KΘ 38 58 38 44

W(G(t), Ĝ(t,Θ)) 0.00267 0.00614 0.00359 0.00256
∆i(AIC) 8.182 397.506 134.696 0
wi(AIC) 0.0164 4.14×10−89 5.55 ×10−30 0.9836

F. Robustness of the models to parameter
uncertainties

In practice, the estimated parameters of the model are
subjected to uncertainties (e.g. intrinsic noise, modelling
error, etc). To test the robustness of these four models,
we perform a global sensitivity analysis, where all the
parameters of the model are simultaneously varied in a
random manner in each simulation, In this study, we as-
sume that the uncertainties account for the parameters
to vary ±30% (see e.g. [42–44]) from its nominal value.
To ensure an unbiased sampling of the parameter values,
we adopted the Latin Hypercube Sampling approach (see
e.g. [45, 46]) to randomly generate a parameter set that
is within ±30% of the original value of each parameter
for each simulation.

In the Latin Hypercube Sampling approach, each
model parameter is first discretised into Ns evenly spaced
intervals from the defined lower and upper bounds. As
we are varying the parameter within ±30%, this results
in Ns evenly spaced interval between 0.7× to 1.3× the
nominal parameter. Here, we choose Ns = 1000, and this
results in a total number of (1000×KΘ) randomly com-
bined parameter sets, where KΘ is the number of param-
eter in each of the four models. We run a total number
of 10000 simulations for each of the four models, where
in each simulation, we sample only once from this total
number of randomly combined parameter sets. Due to
the non-repetitive nature of this sampling approach, not
only the biased sampling can be averted, an extensive
sampling within the model parameter range of interest
can also be covered [45].

Following [22], we compute the Mean Relative Error
(MRE) given by

MRE =
1

nG

nG∑
i=1

nT∑
j=1

∣∣∣∣∣Gi(tj)− Ĝi(tj ,Θ)

Gi(tj)

∣∣∣∣∣ (19)

as a quantitative metric to evaluate the model response
to parameter uncertainties using the same notation as
(12). To determine the robustness of the models, we col-
late the number of simulations (over 10000), where the
MREs are within 4× the nominal MRE value. The choice
of 4× is based on the observation over 10000 simulations
that the performance of the models are deemed accept-

able. To compare the robustness of the model, a model
is considered more robust than the other if the number
of simulations within 4× nominal MRE value is higher
in the former than the latter.
Table V shows the MRE values for all four models.

Defining NSIM as the number of simulation for each
model where the MRE values are within 4× nominal
MRE value. The results show that the Michaelis-Menten
and the extended S-System models has the largest and
smallestNSIM values, respectively suggesting these mod-
els respectively being relatively the most and least robust
to parameter uncertainty. Also, we notice that the NSIM

values for the two S-System based models are compara-
tive smaller, which is expected given that the exponent
term tends to be sensitive to uncertainties [47].
To see how the NSIM values are distributed, we plot

the histogram in Fig. S2, and the histogram shows that
the majority of the MRE values are distributed close to
the nominal MRE value indicating these models are more
robust than anticipated. To further investigate this, we
plot the lower and upper bound of each model simulated
using the parameter sets within NSIM that produce the
largest and smallest MRE value and these plots are shown
in Figs. S3 to S6. Interestingly, majority of the genes
are robust to parameter uncertainty where their uncer-
tainty bounds are narrow apart from a handful of genes
(e.g. ORA59, ANAC055 and CHE ), where we observe
a wider uncertainty bounds. Moreover, despite having
the largest NSIM value, the Michaelis-Menten model has
four genes with wide uncertainty bounds compared to the
same four genes for the other three models. This suggests
that while the larger NSIM in Michaelis-Menten model
is most probably attributed to the genes with narrow
uncertainty bound, it comes at the expense of reduced
robustness in other genes such as CHE, which has the
widest uncertainty bound.

IV. DISCUSSION AND CONCLUSION

In this study, we have compared four dynamical mod-
els of 9GRN obtained using a data-driven modelling ap-
proach in terms of four criteria, namely their ease of iden-
tifying regulation type, predictive capability, quality of
data fit based on AIC and robustness to parameter un-
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TABLE V:

Nominal MRE for each model and the number of simulation across 10000 that has the MRE values within 4× the nominal
MRE value. The notation L, MM , SS, ES, denote the linear, Michaelis-Menten, Standard S-System and Extended S-System
models, respectively. NSIM denotes the number of MRE within 4× nominal MRE value

Model L MM SS ES
Nominal MRE 0.0523 0.0704 0.0516 0.0611
NSIM 2285 9271 1082 731

certainties.
The linear and the two S-System based models have a

general model structure that can facilitate the identifica-
tion of the regulation types directly from data through
the sign of the estimated parameters. In contrast, due to
the requirement of different functions for different reg-
ulation types for the Michaelis-Menten model (Section
III B), additional steps are required to ensure the most
viable regulation types when identifying them from data,
making this model the least favoured in terms of Cri-
terion I. Furthermore, despite the identified regulation
types given in Table II showing a consensus, when com-
paring the difference in the identified regulation types,
the linear and two S-System based models have more
common agreement compared to the Michaelis-Menten
model for e.g. in gene ORA59.
In terms of the model predictive capability, the linear

and extended S-System models rank higher in terms of
their smaller WMSE value both in the training and val-
idation data set compared to the standard System and
Michaelis-Menten models (Table III) suggesting Crite-
rion II is in favour of these two models. In terms of mu-
tant analysis, between the linear and extended S-System
models, the former qualitatively better predicts the mu-
tant behaviours (Fig. 3) than the latter.

For Criterion III, the analysis of AIC weights (Table
S9) suggests the linear and extended S-System models are
the two most viable candidate models compared to the
standard S-System and Michaelis-Menten models. Nev-
ertheless, the extended S-System model is 60 times more
likely to be the candidate model compared to the linear
model given its larger AIC weight, wES(AIC), which sug-
gests the extended S-System in the most favoured model
for Criterion III.

For the last criterion, the analyses using Latin Hyper-
cube Sampling and MRE (Table V) indicate that the
Michaelis-Menten model has the largest NSIM , suggest-
ing this model is relatively robust against parameter un-
certainty compared to the other three models. Interest-
ingly, when analysing the histogram of the MRE distri-
butions (Fig. S2) and the lower and upper bounds uncer-
tainty plots (Figs. S3-S6), the width of the uncertainty
bounds are smaller and similar across the linear and the
two S-System based models. On the other hand, despite
the Michaelis-Menten model having narrow uncertainty
bounds across most of the genes in 9GRN, some genes
(e.g. CHE and ORA59 ) have the widest uncertainty
bound across all four models. This suggests that the large

NSIM of the Michaelis-Menten model are attributed to
the narrow bounds of most genes but at the expense of
wide bounds on certain genes like CHE.
Table VI summarises the performance of all four mod-

els across the four criteria. For Criteria II to IV, we
provide the associated ranking in each criterion with ‘1’
being the most favoured model and ‘4’ being the least
favoured model based on the metrics used to compare
them. We then calculated the Total Rank Score (TRS),
which is the sum of the ranking number given in bracket
with the smallest and largest scores represent the most
and least favoured models, respectively.
The extended S-System model scores the smallest

TRS, followed closely by the linear model, while the
Michaelis-Menten model scores the largest TRS. While
the linear model scores a lower TRS compared to the ex-
tended S-System model, the linear model performs con-
sistently across all criteria with rankings of ‘2’ compared
to the extended S-System model. Based on this consis-
tency, we surmise that the linear model is a more vi-
able candidate model for constructing this 9GRN using
a data-driven modelling approach.
The finding from our comparative analysis is somewhat

consistent with the finding from [22], where in that study,
the standard S-System model is found to be a more vi-
able model compared to the Michaelis-Menten and mass-
action model for describing plant flowering time regula-
tory network. Between the standard and extended S-
System models in our study, our analysis shows that the
latter model outperforms the former model across the
given criteria. This is expected given that the extended
S-System model considers the external input as being a
separate term instead of grouping them as part of the
dependent variables. This thus provides more degree of
freedom for the external input to influence the model dy-
namics, which could improve the accuracy of the model
[25].
Our finding that the least viable model being the

Michaelis-Menten model may seem surprising given its
wide usage in modelling GRN. In a review work by [48],
it has been reported that the Michaelis-Menten rate law
has been often misused without ensuring the valid op-
erating condition in many previous studies. The same
review (and references therein) and our previous studies
[25, 49] also highlighted issues pertaining to the iden-
tifiability of the Michaelis-Menten parameters. These
two points accentuated the underlying challenge in us-
ing Michaelis-Menten model, which could possibly be the
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TABLE VI:

Summary of the model performance across four criteria. For Criteria II to IV, the model is ranked in bracket with ‘1’ being
the most favoured model and ‘4’ being the least favoured model according to the metric used in the comparison. The notation
L, MM , SS, ES, denote the linear, Michaelis-Menten, Standard S-System and Extended S-System models, respectively. For
Criterion II, the notation ‘Tra.’ and ‘Val.’ represent training and validation, respectively. The Total Rank Score (TRS) is the
sum of the ranking number across Criteria II to IV given in the bracket.

Criterion L MM SS ES
I Easy due to its Difficult due to extra steps Easy due to its Easy due to its

general model required to determine general model general model
structure the relevant function structure structure

II Tra. WMSE = 0.00267 (2) Tra. WMSE = 0.00601 (4) Tra. WMSE = 0.00359 (3) Tra. WMSE = 0.00256 (1)
Val. WMSE = 0.00543 (2) Val. WMSE = 0.00768 (4) Val. WMSE = 0.00606 (3) Val. WMSE = 0.00516 (1)

III wL(AIC) = 0.0164 (2) wMM (AIC) ≈ 0 (4) wSS(AIC) ≈ 0 (3) wES(AIC) = 0.9836 (1)
IV NSIM = 2285 (2) NSIM = 9271 (1) NSIM = 1082 (3) NSIM = 731 (4)

TRS 8 13 12 7

reason for its poor viability. One may potentially argue
that the choice of network inference algorithm to obtain
the Michaelis-Menten models (such as the one used in
this study) may influence the analysis and the results.
As such, we derive an alternate Michaelis-Menten model
with the regulation type following the linear model and
found that despite showing some improvement in Crite-
ria II and III, the overall performance of the model is still
ranked behind the linear and extended S-System model
(see Tables S8 and S9).

Returning to our main question posed for this study
— “In using the data-driven modelling approach, what is
the most viable model given the temporal data and knowl-
edge about the 9GRN interaction”? While traditionally
Michaelis-Menten model has been the model of choice due
to its biological relevance (see e.g. [32]), our compara-
tive analysis seems to tip the balance towards the linear
model being the preferred choice of model for 9GRN sug-
gesting the linear model used for genetic control design
suggested in [6] is a viable one. Our results also sug-
gest that both linear and the extended S-System models
are good alternatives for modelling GRN as compared to
the commonly used Michaelis-Menten model, which is in
agreement with previous studies (see e.g. [22, 29]).
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SUPPORTING INFORMATION

S1. EXTENDED METHODS

A. Total Mean Square Error Calculation for
Mutant Analysis

The mutant analysis given in Figure 3 of the main
text shows that all models are able to predict the general
trend of the mutant behaviour well in qualitative man-
ner, which is encouraging given that these mutant data
independent data set that are not used in parameter es-
timation exercise.
Nonetheless, we compute the Total Mean Square Error

(TMSE) for the mutant analysis to provide some form of
quantitative analysis in order to provide model ranking
as shown in Table 6 of the main text. Note that the
calculation of TMSE is purely for model ranking purpose.
The TMSE can be calculated in the following manner

TMSE =
1

NT

GN∑
i=1

NT∑
t=1

(GWT,i(t)− ĜWT,i(t,Θ))2

+
1

NT

GN∑
i=1

NT∑
t=1

(G∆rap2.6l,i(t)− Ĝ∆rap2.6l,i(t,Θ))2

+
1

NT

GN∑
i=1

NT∑
t=1

(G∆anac055,i(t)− Ĝ∆anac055,i(t,Θ))2

(S1)

where GN ∈ {ORA59, ANAC055, a-ERF-1, CHE,
RAP2.6L}, NT is the total number of data point, G

represents the data set, Ĝ represents the predicted
data from model and the subscripts WT , ∆rap2.6l and
∆anac055 represent the Wild Type, RAP2.6L mutant
and ANAC055 mutant, respectively. The calculated
TMSE are shown in Table S7.

B. Alternate Michaelis-Menten Model

To determine whether the network inference algorithm
would affect the performance of the Michaelis-Menten
model structure, we consider an alternate Michaelis-
Menten model structure where its regulation types follow
the linear model. With that, the corresponding ODEs are
given below and the estimated parameters following the
parameter estimate approach given in main text is given
in Table S10.
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dt
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C. Network Inference Algorithm for
Michaelis-Menten Model Structures

The following summarised algorithm has been used
in this study to identify the regulation type of the
Michaelis-Menten model structure for 9GRN. For more
details, see Dony et al. (2019).

Algorithm I: GRN inference with parametric-gradient
matching:

1. Gene expression time-course data interpolation
with Gaussian Processes (GP).

2. Gene expression data derivatives computation with
GP.

3. Optimise the parameters of all possible ODE mod-
els (network topologies) using gradient-matching.

4. Model selection. Compute the edge weighting for
each type of regulatory interaction, based on BIC
criterion and the likelihood (or distance) of each

gene with respect to their possible parents. There-
fore, the best network topology and types of regu-
latory interactions can be determined.

5. Evaluate the overall performance of the GRN in-
ference. The Area Under the Precision-Recall
(AUPR) curve is calculated based on the BIC
weights of every edge in the network.

S2. SUPPLEMENTARY FIGURES AND TABLES
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FIG. S1: Comparison of the models against experimental
data set that was used in the parameter estimation exercise.
Solid grey with ’square’: Experimental data. Solid blue:
Linear model. Solid red: Michaelis-Menten model. Solid
purple: Extended S-System model. Solid green: Standard
S-System model.

FIG. S2: Histogram of the MRE values across 10000
simulations where the MRE values are within 4× the
nominal MRE value.
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FIG. S3: Upper and lower bound of the linear model shown in shaded red that is subjected to parameter uncertainties. The
upper and lower bound are taken from the number of simulation where the MRE values are within 4× the nominal MRE
value.
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FIG. S4: Upper and lower bound of the Michaelis-Menten model shown in shaded red that is subjected to parameter
uncertainties. The upper and lower bound are taken from the number of simulation where the MRE values are within 4× the
nominal MRE value.
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FIG. S5: Upper and lower bound of the extended S-System model shown in shaded red that is subjected to parameter
uncertainties. The upper and lower bound are taken from the number of simulation where the MRE values are within 4× the
nominal MRE value.
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FIG. S6: Upper and lower bound of the standard S-System model shown in shaded red that is subjected to parameter
uncertainties. The upper and lower bound are taken from the number of simulation where the MRE values are within 4× the
nominal MRE value.

TABLE S1: Estimated parameters of 9GRN using linear model

Number Gene Parameter
1 ORA59 αL,1,1 = 14.4341, αL,1,2 = -0.7477, αL,1,3 = 23.6810

βL,1 = 40.8322, BL,1 = 18.8299
2 MYB51 βL,2 = 0.6765, BL,2 = 5.6837, cMY B = 1.2546
3 LOL1 βL,3 = 0.0508, BL,3 = 0.5048, cLOL = -0.1108
4 AT1G79150 αL,4,1 = 0.8174, αL,4,2 = -0.7887, βL,4 = 2.3792

BL,4 = 23.4766, cL,4 = 0.9019
5 ANAC055 αL,5,1 = 26.8670, βL,5 = 29.4074, BL,5 = 0.0493

cL,5 = 74.3481
6 a-ERF-1 βL,6 = 0.2106, BL,6 = 1.9492, cL,6 = 0.8220
7 ATML1 αL,7,1 = -0.6137, βL,7 = 1.2522, BL,7 = 18.4637

cL,7 = 0.0043, γL,7 = 0.5599
8 CHE αL,8,1 = 19.9698, αL,8,2 = 3.4368, αL,8,3 = 20.0840

βL,8 = 39.8432, BL,8 = 13.822, γL,8 = 18.3422
9 RAP2.6L αL,9,1 = 0.4282, βL,9 = 0.7130, BL,9 = 2.8232

cL,9 = 0.0412

TABLE S2: Estimated parameters of 9GRN using standard S-System model

Number Gene Parameter
1 ORA59 αSS,1 = 1.4005, gSS,1,1 = 0.8899, gSS,1,2 = -0.0087

gSS,1,3 = 0.3271, βSS,1 = 2.1743
2 MYB51 αSS,2 = 0.5605, gSS,2,1 = 0.0264, βSS,2 = 0.0531
3 LOL1 αSS,3 = 1.6419, gSS,3,1 = -0.0294, βSS,3 = 0.1880
4 AT1G79150 αSS,4 = 26.3739, gSS,4,1 = 0.3699, gSS,4,2 = -0.1299

gSS,4,3 = 0.0029, βSS,4 = 4.5064
5 ANAC055 αSS,5 = 0.7015, gSS,5,1 = 1.4538, gSS,5,2 = 0.0162

βSS,5 = 1.8916
6 a-ERF-1 αSS,6 = 0.5229, gSS,6,1 = 0.2218, βSS,6 = 0.0194
7 ATML1 αSS,7 = 26.6802, gSS,7,1 = -0.4408, gSS,7,2 = 0.0106

gSS,7,3 = 0.0063, βSS,7 = 0.9128
8 CHE αSS,8 = 1.4648, gSS,8,1 = 0.1150, gSS,8,2 = 0.8517

gSS,8,3 = 0.1936, gSS,8,4 = 0.0145,βSS,8 = 1.9145
9 RAP2.6L αSS,9 = 2.0164, gSS,9,1 = 0.5845, gSS,9,2 = 0.0058

βSS,9 = 0.7586
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TABLE S3: Estimated parameters of 9GRN using extended S-System model

Number Gene Parameter
1 ORA59 αES,1 = 1.0174, gES,1,1 = 0.6482, gES,1,2 = -0.2417

gES,1,3 = 0.8272, βES,1 = 1.8866, γES,1,1 = 1.0577
2 MYB51 βES,2 = 1.0694, γES,2,1 = 9.0585, γES,2,2 = 1.9728
3 LOL1 βES,3 = 0.0498, γES,3,1 = 0.4994, γES,3,2 = -0.1328
4 AT1G79150 αES,4 = 3.2664, gES,4,1 = 0.7837, gES,4,2 = 0.0692

βES,4 = 2.3804, γES,4,1 = -0.7803, γES,4,2 = 0.1912
5 ANAC055 αES,5 = 1.0481, gES,5,1 = 1.0618, βES,5 = 1.0110

γES,5,1 = -2.5859, γES,5,2 = 2.3646
6 a-ERF-1 βES,6 = 0.2740, γES,6,1 = 2.5325, γES,6,2 = 1.0798
7 ATML1 αES,7 = 29.7754, gES,7,1 = -0.3429, βES,7 = 0.6780

γES,7,1 = -6.6253, γES,7,2 = 0.0047, γES,7,3 = 0.0074
8 CHE αES,8 = 1.7845, gES,8,1 = 0.1761, gES,8,2 = 0.0675

gES,8,3 = 0.7054, βES,8 = 1.6321, γES,8,1 = 2.1995
γES,8,2 = 0.7091

9 RAP2.6L αES,9 = 1.6086, gES,9,1 = 0.6335, βES,9 = 0.8880
γES,9 = 1.9096, γES,9,2 = 0.2511

TABLE S4: Estimated parameters of 9GRN using Michaelis-Menten model

Number Gene Parameter
1 ORA59 αMM,1,1 = 11.8091, KMM,1,1 = 28.3570, αMM,1,2 = 19.9999

KMM,1,2 = 7.1364, αMM,1,3 = 0.0007, KMM,1,3 = 59.9998
βMM,1 = 0.1281, BMM,1 = 1.44 ×10−7

2 MYB51 αMM,2,1 = 0.2512, KMM,2,1 = 2.1185, βMM,2 = 0.0036
BMM,2 = 7.51 ×10−8

3 LOL1 αMM,3,1 = 0.0001, KMM,3,1 = 45.5060, βMM,3 = 0.0013
BMM,3 = 1.50 ×10−8

4 AT1G79150 αMM,4,1 = 3.4162, KMM,4,1 = 59.6685, αMM,4,2 = 2.9314
KMM,4,2 = 59.9955, αMM,4,3 = 19.9999
KMM,4,3 = 0.0070, βMM,4 = 0.0969, BMM,4 = 0.6850

5 ANAC055 αMM,5,1 = 0.9872, KMM,5,1 = 0.8517, αMM,5,2 = 19.9999
KMM,5,2 = 0.0015, βMM,5 = 0.0565, BMM,5 = 0.2100

6 a-ERF-1 αMM,6,1 = 0.2921, KMM,6,1 = 0.4117, βMM,6 = 0.0473
BMM,6 = 0.4344

7 ATML1 αMM,7,1 = 19.5411, KMM,7,1 = 37.7639, αMM,7,2 = 4.1968
KMM,7,2 = 2.3587, αMM,7,3 = 19.9999, KMM,7,3 = 0.0022
βMM,7 = 0.0970, BMM,7 = 0.0224

8 CHE αMM,8,1 = 20.0000, KMM,8,1 = 16.6919, αMM,8,2 = 19.9999
KMM,8,2 = 46.6901, αMM,8,3 = 19.1290, KMM,8,3 = 59.9999
αMM,8,4 = 1.2370, KMM,8,4 = 56.2074, βMM,8 = 0.1340
BMM,8 = 1.09 ×10−7

9 RAP2.6L αMM,9,1 = 8.8399, KMM,9,1 = 9.3971, αMM,9,2 = 2.6810
KMM,9,2 = 16.0920, βMM,9 = 0.2026, BMM,9 = 1.2665

TABLE S5: WMSE for each individual in 9GRN using the data that is used in parameter estimation exercise. The sum of the
individual WMSE yields the average total WMSE given in Table 3 in the main text.

Model Gene WMSE Gene WMSE Gene WMSE
Linear ORA59 0.00488 MYB51 0.00274 LOL1 0.00300

AT1G79150 0.00110 ANAC055 0.00441 a-ERF-1 0.00239
ATML1 0.00132 CHE 0.00228 RAP2.6L 0.00199

Michaelis-Menten ORA59 0.01666 MYB51 0.00852 LOL1 0.00412
AT1G79150 0.00186 ANAC055 0.00697 a-ERF-1 0.00550
ATML1 0.00228 CHE 0.00433 RAP2.6L 0.00382

Standard S-System ORA59 0.00548 MYB51 0.00396 LOL1 0.00354
AT1G79150 0.00165 ANAC055 0.00493 a-ERF-1 0.00428
ATML1 0.00258 CHE 0.00348 RAP2.6L 0.00244

Extended S-System ORA59 0.00468 MYB51 0.00268 LOL1 0.00297
AT1G79150 0.00122 ANAC055 0.00363 a-ERF-1 0.00229
ATML1 0.00122 CHE 0.00249 RAP2.6L 0.00181
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TABLE S6: WMSE for each individual in 9GRN using the data that is not used in parameter estimation exercise. The sum
of the individual WMSE yields the average total WMSE given in Table 3 in the main text.

Model Gene WMSE Gene WMSE Gene WMSE
Linear ORA59 0.01145 MYB51 0.00499 LOL1 0.00466

AT1G79150 0.00223 ANAC055 0.00960 a-ERF-1 0.00554
ATML1 0.00298 CHE 0.00354 RAP2.6L 0.00385

Michaelis-Menten ORA59 0.01526 MYB51 0.00739 LOL1 0.00676
AT1G79150 0.00263 ANAC055 0.01298 a-ERF-1 0.00804
ATML1 0.00387 CHE 0.00531 RAP2.6L 0.00688

Standard S-System ORA59 0.01269 MYB51 0.00527 LOL1 0.00497
AT1G79150 0.00250 ANAC055 0.00987 a-ERF-1 0.00649
ATML1 0.00421 CHE 0.00441 RAP2.6L 0.00410

Extended S-System ORA59 0.01130 MYB51 0.00477 LOL1 0.00456
AT1G79150 0.00253 ANAC055 0.00834 a-ERF-1 0.00522
ATML1 0.00295 CHE 0.00316 RAP2.6L 0.00362

TABLE S7: The TMSE of mutant analysis calculated using Eq. (S1).

Model TMSE
Linear 1404.83
Michaelis-Menten 1753.05
Standard S-System 1263.18
Extended S-System 1285.56

TABLE S8: Average total WMSE for both ‘training’ and ‘validation’ data sets for 9GRN, with alternate Michaelis-Menten
model, which the regulation types follow the linear model

Model Average Total WMSE Average Total WMSE
(training) (validation)

Linear 0.00267 0.00543
Michaelis-Menten 0.00614 0.00784
Alternate Michaelis-Menten 0.00285 0.00531
Standard S-System 0.00359 0.00606
Extended S-System 0.00256 0.00516

TABLE S9: Ranking model fits to experimental data based on AIC for 9GRN with alternate Michaelis-Menten model, which
the regulation types follow the linear model. The notation L, MM , AMM , SS, ES, denote the linear, Michaelis-Menten,
Alternate Michaelis-Menten, Standard S-System and Extended S-System models, respectively. Here nG = 9, nT = 48, KΘ is
the number of parameters in the model, W(G(t), Ĝ(t,Θ)) is the WMSE best fit to the data set used for parameter estimation,
∆i(AIC) is the AIC differences and wi(AIC) is the Akaike weights for each model.

Model L MM AMM SS ES
KΘ 38 58 58 38 44

W(G(t), Ĝ(t,Θ)) 0.00267 0.00614 0.00285 0.00359 0.00256
∆i(AIC) 8.182 397.506 74.266 134.696 0
wi(AIC) 0.0164 4.14×10−89 7.34×10−17 5.55 ×10−30 0.9836
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TABLE S10: Estimated parameters of 9GRN using alternate Michaelis-Menten model, where the regulation types follow the
linear model.

Number Gene Parameter
1 ORA59 αMM,1,1 = 41.5309, KMM,1,1 = 23.5156, αMM,1,2 = 26.3578

KMM,1,2 = 6.1352, αMM,1,3 = 39.5894, KMM,1,3 = 7.9278
βMM,1 = 3.1652, BMM,1 = 0.0595

2 MYB51 αMM,2,1 = 0.59623, KMM,2,1 = 0.3299, βMM,2 = 0.2967
BMM,2 = 2.5195

3 LOL1 αMM,3,1 = 1.7311, KMM,3,1 = 1.5207, βMM,3 = 0.1412
BMM,3 = 0.6472

4 AT1G79150 αMM,4,1 = 23.2089, KMM,4,1 = 9.0294, αMM,4,2 = 0.0090
KMM,4,2 = 14.9596, αMM,4,3 = 0.1659
KMM,4,3 = 2.0759, βMM,4 = 1.8107, BMM,4 = 4.8233

5 ANAC055 αMM,5,1 = 197.1760, KMM,5,1 = 30.9143, αMM,5,2 = 1.4599
KMM,5,2 = 0.3304, βMM,5 = 1.9775, BMM,5 = 0.8868

6 a-ERF-1 αMM,6,1 = 1.1915, KMM,6,1 = 0.6445, βMM,6 = 0.2183
BMM,6 = 2.0356

7 ATML1 αMM,7,1 = 356.8399, KMM,7,1 = 0.1801, αMM,7,2 = 0.1556
KMM,7,2 = 1.3908, αMM,7,3 = 1.2922, KMM,7,3 = 1.9739
βMM,7 = 0.9991, BMM,7 = 6.2548

8 CHE αMM,8,1 = 76.5103, KMM,8,1 = 27.8720, αMM,8,2 = 72.6592
KMM,8,2 = 29.2936, αMM,8,3 = 54.2288, KMM,8,3 = 30.6393
αMM,8,4 = 0.4525, KMM,8,4 = 1.4687, βMM,8 = 2.6524
BMM,8 = 8.7780

9 RAP2.6L αMM,9,1 = 17.8568, KMM,9,1 = 20.3954, αMM,9,2 = 0.6174
KMM,9,2 = 0.8200, βMM,9 = 1.1531, BMM,9 = 7.8983
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