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Abstract

The primary somatosensory cortex (S1) of mammals is critically important in the perception of touch
and related sensorimotor behaviors. In 2015 the Blue Brain Project developed a groundbreaking rat
S1 microcircuit simulation with over 31,000 neurons with 207 morpho-electrical neuron types, and
37 million synapses, incorporating anatomical and physiological information from a wide range of
experimental studies. We have implemented this highly-detailed and complex model S1 model in
NetPyNE, using the data available in the Neocortical Microcircuit Collaboration Portal. NetPyNE
provides a Python high-level interface to NEURON and allows defining complicated multiscale
models using an intuitive declarative standardized language. It also facilitates running parallel
simulations, automates the optimization and exploration of parameters using supercomputers, and
provides a wide range of built-in analysis functions. This will make the S1 model more accessible
and simpler to scale, modify and extend in order to explore research questions or interconnect to
other existing models. Despite some implementation differences, the NetPyNE model closely
reproduced the original cell morphologies, electrophysiological responses, spatial distribution for all
207 cell types; and the connectivity properties of the 1941 pathways, including synaptic dynamics
and short-term plasticity (STP). The NetPyNE S1 simulations produced reasonable physiological
rates and activity patterns across all populations, and, when STP was included, produced a 1 Hz
oscillation comparable to that of the original model. We also extended the model by adding thalamic
circuits, including 6 distinct thalamic populations with intrathalamic, thalamocortical and
corticothalamic connectivity derived from experimental data. Overall, our work provides a widely
accessible, data-driven and biophysically-detailed model of the somatosensory thalamocortical
circuits that can be utilized as a community tool for researchers to study neural dynamics, function
and disease.
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1 Introduction

The primary somatosensory cortex (S1) of mammals is critically important in the perception of touch
and works closely with other sensory and motor cortical regions in permitting coordinated activity
with tasks involving grasp (Petrof, Viaene, and Sherman 2015; Barthas and Kwan 2017). Moreover,
the communication of these cortical areas with the thalamus is crucial for maintaining functions, such
as sleep and wakefulness, considering that the thalamocortical (TC) circuit is essential for cerebral
rhythmic activity (O’Reilly et al. 2021). A greater understanding of S1 cortical circuits will help us
gain insights into neural coding and be of assistance in determining how disease states such as
schizophrenia, epilepsy and Parkinson's disease lead to sensory deficits or uncoordinated movement
(Petrof, Viaene, and Sherman 2015; Vázquez, Salinas, and Romo 2013; Azarfar et al. 2018;
Peña-Rangel et al. 2021).

There exists an impressive, highly-detailed model of rat S1 developed by the Blue Brain Project
(BBP) (Markram et al. 2015), incorporating anatomical and physiological information from a wide
range of experimental studies. This groundbreaking model includes over 31,000 neurons of 55
layer-specific morphological and 207 morpho-electrical neuron subtypes, and 37 million synapses
capturing layer- and cell type-specific connectivity patterns and synaptic dynamics. Simulation
results matched in vitro and in vivo experimental findings, and has been used over the years to
reproduce additional experimental results and generate predictions of the dynamics and function of
cortical microcircuits (Michael W. Reimann et al. 2015; Gal et al. 2017; Michael W. Reimann,
Horlemann, et al. 2017; Michael W. Reimann, Nolte, et al. 2017; Amsalem et al. 2020; Hagen et al.
2018). Although the BBP S1 model is state-of-the-art, certain constraints limit its reproducibility and
use by the community, as well as its extension or modification to connect to other regions or update
model features. The size and complexity of any model of this scope is daunting. Due to its scale and
complexity, the original model must be run and analyzed on large High Performance Computing
platforms (HPCs), which are not available to many users. Although the model is simulated using
NEURON (Carnevale and Hines 2006; Migliore et al. 2006) a widely used platform within the
computational neuroscience community, it also requires other custom libraries specifically designed
to facilitate this workflow. These libraries are used to build, manage simulations and analyze the
model. However, not all of these libraries and workflows are publicly available (Markram et al.
2015), making it somewhat difficult to modify the code, and scale or simplify the model for
simulation on smaller computers, overall reducing its accessibility and reproducibility (McDougal,
Bulanova, and Lytton 2016).

Here we implemented the original BBP S1 model in NetPyNE (Dura-Bernal et al. 2019) in order to
make it more accessible and simpler to scale, modify and extend. NetPyNE is a python package that
provides a high-level interface to the NEURON simulator, and allows the definition of complex
multiscale models using an intuitive declarative standardized language. NetPyNE translates these
specifications into a NEURON model, facilitates running parallel simulations, automates the
optimization and exploration of parameters using supercomputers, and provides a wide range of
built-in analysis functions. Conversion to NetPyNE also makes it easier to connect to previous
models developed within the platform, such as our primary motor cortex model (Sivagnanam et al.
2020; Dura-Bernal, Neymotin, et al. 2022), and models implemented in other tools (e.g. NEST) by
exporting to the NeuroML or SONATA standard formats. In prior work, we ported a classic model of
generic sensory cortical circuits (Potjans and Diesmann 2014) to our NetPyNE platform (Romaro et
al. 2021) in order to make it both more scalable and facilitate modification of cell models and
network parameters; the original model used integrate-and-fire neurons and we replaced these with
more complex multi-compartment neuron models.
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Although we have primarily focused on simplifying the network description, we have also made the
model more complex, and more complete, by adding the associated somatosensory thalamic circuits
and bidirectional connectivity with cortex to allow interplay of these two highly coordinated areas
(Meyer et al. 2010). The deepening of knowledge about the cortico-thalamo-cortical loop (Shepherd
and Yamawaki 2021) should contribute to investigations on rhythmic dysfunctions, such as epilepsy
and schizophrenia. But in contrast to cortical microcircuitry, few detailed models exist for the
thalamus (Hill and Tononi 2005; Iavarone et al. 2019; Izhikevich and Edelman 2008; Murray and
Anticevic 2017).

In this study we present a NetPyNE implementation of the BBP S1 model, capturing most of the
original single-cell physiology and morphology, synaptic mechanisms, connectivity and basic
simulation results. With the addition of detailed thalamic circuits we extend the results to show
synchronous activity across cortical and thalamic populations, and open the door to new
investigations on corticothalamic dynamics. The model is able to port readily across machines and
can utilize a fast, efficient implementation on CPUs and GPUs using CoreNEURON. This extension
allows the original BBP S1 model to be readily available to be used by the wider community to study
a wide range of research questions.

2 Material and Methods

2.1 Individual neuron models

To port the somatosensory microcircuit model in NetPyNE (Dura-Bernal et al. 2019), we recreated
the single neuron models using cell files from the Neocortical Microcircuit Collaboration (NMCP
https://bbp.epfl.ch/nmc-portal) (Ramaswamy et al. 2015). The full dataset comprises 207
morpholectric (me) cell types, with 5 examples for each, totaling 1035 cell models, each stored with
morphology file, descriptions of ion channels, and a NEURON HOC template to instantiate the cell,
which can be imported directly to NetPyNE (Fig 1). Neuron morphologies from the BBP S1 model
(specifically, L1_DLAC, L4_DBC, L23_PC and L6_TPC_L4) imported into NetPyNE were
visualized using the NetPyNE GUI (Fig 1A).

Benchmark testing validated physiological responses (Fig 1B-E) at 3 current clamp amplitudes
(120%, 130%, and 140% of threshold; only 120% shown). Slight differences were observed in the
cell types with a stochastic version of the K+ channel mechanism (StochKv; Fig. 1D) where we used
a deterministic version of the channel from OpenSourceBrain (Gleeson et al. 2019; Gleeson et al.
2019b). The StochKv NMODL (.mod) mechanism required additional code outside of NetPyNE in
order to update its state, and the inclusion of stochastic variables in each section of the cells
significantly increased the simulation time. In order to understand StochKv effect on cell response,
we applied a current clamp (0.1 nA, 2s) to the soma of each of the 1035 cells, and used the
Electrophys Feature Extraction Library (eFEL) (eFEL 2015) to compare BBP and NetPyNE mean
firing rate (Fig. 1F) and time to first spike (Fig. 1G) for those with and without the StochKv channel.
As expected, variability with the StochKv channel in the original model was pronounced. Although
present in 54/207 me-types, the StochKv channels are only in 3.63% of all cells. Within each m-type
(morphology) those with StochKv also correspond to a minority of e-types (electrical) types; for
example, only 32% of L4_DBC cells have e-type bIR (with StochKv channels). Given the small
proportion of cells with StochKv channels, the NetPyNE mean firing rates per m-type population
closely match those of the original BBP model (Fig. 1H).
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Figure 1. Reproduction and validation of BBP S1 cell types in NetPyNE. (A) 3D reconstructions of 4 pairs
of m-type example neurons visualized using the NetPyNE graphical user interface: inhibitory cells L1_DLAC
and L4_DBC (red), and excitatory cells L23_PC and L6_TPC_L4 (blue). (B-E) Somatic membrane potential
of the neurons in (A) under current clamp with amplitude 120% of the neuron firing threshold. NetPyNE
results (red) compared to the original BBP model results (blue). For L4_DBC_bIR cells (panel D) we used a
deterministic version of the BBP stochastic potassium channel (StochKv) resulting in divergent results; using
same deterministic channel in BBP (BBPdet, blue dotted line) restores the match to NetPyNE results. (F,G)
Comparison of BBP and NetPyNE firing rate and time to first spike in response to current-clamp with
amplitude 0.1 nA during 2 seconds for each cell type. Only some cell types with the StochKv show
differences. (H) Comparison BBP and NetPyNE mean firing rate for all m-type populations. Due to the small
number of cells with StochKv (3.6 %), NetPyNE population firing rates closely match those of BBP.

2.2 Distribution and connectivity of cortical populations

Rather than instantiating connectivity from a list of individual synapses based on anatomical overlap
of neuronal arbors (M. W. Reimann et al. 2015), we created our S1 port using probability rules for
both neuron distribution and connections. The network consisted of 31,346 cells in a cylindrical
volume 2082 μm height and radius of 210 μm as in the original model (Fig 2). Each population was
randomly distributed within its specific layer (L1, L2/3, L4, L5, or L6). The number of cells in each
one of 207 me-types was taken from the NMCP (Ramaswamy et al. 2015) the minicolumn data
available was not used to distribute cells. A 2D representation of the cell distribution within the
cylindrical volume is shown in Fig. 2A, with layer thicknesses (in μm) for L1, L23, L4, L5, and L6
set to 165, 502, 190, 525, and 700, respectively. We used the S1 connectome (Gal et al. 2017) from
NMCP, following the approach in (Michael W. Reimann, Horlemann, et al. 2017): 7 stochastic
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instances of a model microcircuit based on averaged measurements of neuron densities were used to
calculate distance-dependent probabilities of connection. In each microcircuit instance, we calculated
the connection probability for each pair of neurons based on the 2D somatic distance (horizontal
XZ-plane) for each of the 1941 pathways. To estimate the distance dependent probability, we
calculated the probability in evenly spaced intervals starting at 25 ± 25 μm, in 50 μm intervals, up to
375± 25 μm. Next, we calculated the mean probability across the 7 microcircuits in evenly spaced
intervals and used the mean values to fit the connection probability rules. We evaluated multiple
functions for each pathway and selected the one that provided the best fit to the data. Figure 2B-D
shows how this approach was used to calculate the connection probability of 3 example projections:
data from the 7 microcircuit instances (mcs; cyan circles), is averaged across microcircuits (green
diamonds) and fitted to either a single exponential (Fig. 2B, red line); an exponential with a linear
saturation rule (Fig. 2C), or a single gaussian (Fig. 2D, dashed line). Because the original S1 model
shows high variability in the number of synapses per connection, we calculated the mean values for
each pathway and used it as a parameter in our model. The result is a representative reconstruction of
the S1 column connectivity in NetPyNE, with approximately 27.6 million excitatory synapses and
9.6 million inhibitory synapses.

Using the fitted rules, we reconstructed an entire S1 column in NetPyNE and compared the two
versions using the mean number of connections. To avoid overfitting, we generated 7 different
instances using different connectivity seeds for both the NetPyNE and BBP models. The number of
connections was similar in both models for each of the 1941 pathways (Fig. 2E) and for each of the
four projection types (p-type) (EE, EI, IE, II) (Fig. 2F).
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Figure 2. Reproduction and validation of BBP S1 neuron distribution and connectivity in NetPyNE (A)
2D representation of the location of 31,346 cells in a cylinder with 2082 um height and 210 um radius, with
each subtype (different colors) randomly distributed within its layer (L1, L2/3, L4, L5, or L6). (B-D)
Probability of connection as a function of neuron pairwise 2D distance for three example pathways, each with
a different best fit function: a single exponential (B, red line), exponential with a linear saturation rule (C, red
line), and single gaussian fit (D, black dashed line). Cyan circles represent data from 7 microcircuit instances,
and green diamonds represent the mean across the 7 instances. (E-F) Comparison of the number of
connections between NetPyNE and BBP for each of the 1941 pathways (E) and 4 projection types (p-types)
(F).

2.3 Synaptic physiology

The original BBP S1 model included detailed synaptic properties (conductances, post-synaptic
potentials, latencies, rise and decay times, failures, release probabilities, etc) recapitulating published
experimental data. Short-term dynamics were used to classify synapses into the following types
(s-types): inhibitory facilitating (I1), inhibitory depressing (I2), inhibitory pseudo-linear (I3),
excitatory facilitating (E1), excitatory depressing (E2), and excitatory pseudo-linear (E3). A set of
rules were then derived from experimental data to assign an s-type to each broad class of
connections. Based on the NMCP data, there were 29 classes of connections as determined by the
combination of pre- and post-synaptic me-types. The synaptic properties, s-type and p-type for each
class of connections are summarized in Table 1. Synaptic properties included kinetic parameters:
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#
BBP

id s-type p-type gsyn (nS) τdecay (ms) U D (ms) F (ms) pre- and post-syn cell type rules

0 0 I1 II 0.83±0.55 10.40±6.10 0.16±0.100 45±21 376±253 L6:L6_(DBC-LBC-NBC-SBC)

1 3 I1 IE 0.91±0.61 10.40±6.10 0.16±0.100 45±21 376±253 SBC_cAC:Exc or L6_(NBC-LBC):L6_BPC

2 13 I1 IE 0.75±0.32 10.40±6.10 0.41±0.212 162±69 690±5 L6_MC:L6_IPC

3 1 I2 II 0.83±0.55 8.30±2.20 0.25±0.130 706±405 21±9 L1:Excitatory or Inhibitory:Inhibitory

4 4 I2 IE 0.91±0.61 8.30±2.20 0.25±0.130 706±405 21±9 SBC_dNAC:Excitatory

5 8 I2 IE 0.75±0.32 8.30±2.20 0.25±0.130 706±405 21±9 BTC-DBC-BP:Excitatory

6 9 I2 IE 0.75±0.32 8.30±2.20 0.30±0.080 1250±520 2±4 MC:Excitatory

7 10 I2 IE 0.91±0.61 8.30±2.20 0.14±0.050 875±285 22±5
LBC-NBC_(bAC cAC bNAC

dNAC):Excitatory

8 12 I2 IE 2.97±0.95 8.30±2.20 0.25±0.130 706±405 21±9 Chc:Excitatory

9 5 I3 IE 0.91±0.61 6.44±1.70 0.32±0.140 144±80 62±31
SBC_bNAC or LBC-NBC_(cNAC
dSTUT cSTUT bSTUT):Excitatory

10 11 I3 IE 0.83±0.55 36.55±0.71 0.25±0.130 706±405 21±9 NGC:Excitatory

11 114 E1 EI 0.43±0.28 1.74±0.18 0.02±0.001 194±10 507±20 Exc:(BP_cAC DBC_cAC BTC_cAC)

12 115 E1 EI 0.72±0.50 1.74±0.18 0.02±0.001 194±10 507±20
Exc:(NBC-LBC)_(cAC cIR bAC bIR

cNAC)

13 132 E1 EI 0.72±0.50 1.74±0.18 0.01±0.001 242±15 563±32 L6_TPC_L:L6_(DBC-LBC-NBC-SBC)

14 133 E1 EI 0.11±0.08 1.74±0.18 0.09±0.120 138±211 670±830 Excitatory:MC

15 116 E2 EE 0.72±0.50 1.74±0.18 0.50±0.020 671±17 17±5 Excitatory:Excitatory

16 117 E2 EI 0.43±0.28 1.74±0.18 0.50±0.020 671±17 17±5
Excitatory:[L1-BP_(cNAC

bNAC)-DBC_bAC-BTC_(bAC cNAC bIR)]

17 118 E2 EI 0.72±0.50 1.74±0.18 0.50±0.020 671±17 17±5 Excitatory:SBC-ChC

18 119 E2 EE 0.68±0.46 1.74±0.18 0.46±0.260 671±17 17±5 L23_PC:L23_PC

19 120 E2 EE 0.68±0.46 1.74±0.18 0.86±0.049 671±17 17±5 L4_Excitatory:L4_Excitatory

20 121 E2 EE 0.19±0.12 1.74±0.18 0.79±0.040 671±17 17±5 L4_SS:L23_PC

21 122 E2 EE 0.80±0.53 1.74±0.18 0.39±0.030 671±17 17±5 L5_STPC:L5_STPC

22 123 E2 EE 1.50±1.05 1.74±0.18 0.50±0.020 671±17 17±5 L5_TTPC:L5_TTPC

23 127 E2 EE 0.80±0.53 1.74±0.18 0.39±0.134 780±54 51±36 L6_IPC:L6_IPC

24 131 E2 EI 0.72±0.50 1.74±0.18 0.58±0.070 240±43 71±47 L6_IPC:L6_(DBC-LBC-NBC-SBC)

25 134 E2 EI 0.72±0.50 1.74±0.18 0.72±0.065 227±38 14±12
Exc:(NBC-LBC)_(bSTUT dNAC

bNAC cSTUT)

26 126 E3 EE 0.80±0.53 1.74±0.18 0.21±0.032 460±53 230±69 L6_TPC_L:L6_TPC_L

27 128 E3 EE 0.80±0.53 1.74±0.18 0.27±0.033 559±238 200±92 L6_IPC:L6_BPC

28 129 E3 EE 0.80±0.53 1.74±0.18 0.22±0.053 535±134 116±81 L6_IPC:L6_TPC_L

Table 1. Synaptic properties, s-type, p-type and rules for each class of connections implemented in
NetPyNE. s-type: type of short-term dynamics; p-type: type of projection; gsyn: peak conductance (ms); τdecay:
decay time (ms); U: neurotransmitter release probability; D: time constant for recovery from depression (ms);
F: time constant for recovery from facilitation (F). Values indicate mean ± standard deviation.
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peak conductance (gsyn) and decay time (τdecay); and dynamic parameters: neurotransmitter release
probability (U), time constant for recovery from depression (D; in ms) and time constant for recovery
from facilitation (F; in ms). We also included a compact description of the rules to determine what
connections belong to each class, based on the pre- and postsynaptic cell types. For clarity, we
rearranged the classes of connections by s-types in the sequence I1, I2, I3, E1, E2, and E3 (from 0 to
28), and included the original BBP class label for reference. The parameters D and F correspond to
the synapses with short term plasticity (STP), which could be optionally added to recurrent S1
connections, and connections from thalamus to S1.

The s-types for each class of connections and for each of the 1941 pathways are color-coded and
illustrated in Fig. 4A. Since pathways depend on m-types but connection classes depend on me-types
(each m-type includes multiple me-types), it is possible to have multiple s-types for the same
pathway, in those cases we simply labeled it as either I2 or E2. To implement the dynamics of each
s-type in NetPyNE we used a deterministic version of the dual-exponential synaptic model (Hennig
2013; Fuhrmann et al. 2002). Example simulations of the post-synaptic potentials for the different
s-types are shown in Fig 3B. For each example, we ran 20 simulations with 5 different post-synaptic
cells of the same me-type and 4 random synaptic distributions. Pre- and post-synaptic neurons of
specific me-types were selected to illustrate each of the six s-types (see Fig. 3 caption).
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Figure 3. Matrix of s-types for each of the 1941 pathways and simulated PSPs exemples for each s-type
in NetPyNE. (A) Color-coded s-types for each class of connections (top) and for each of the 1941 pathways
(bottom). Note that for pathways with multiple s-types only either I2 or E2 is shown. (B) Example simulations
of post-synaptic potentials to illustrate each of the six s-types. Each example shows the results of 20
simulations with 5 different post-synaptic cells (different colors) of the same me-type, and 4 random synaptic
distributions. Inhibitory s-types were simulated using pathway L23_SBC:L23_PC, which included different
s-types depending on pre-synaptic e-type: I1 for e-type cAC, I2 for e-type dNAC, and I3 for e-type bNAC (as
shown in Table 1). Excitatory s-types E1 and E2 were simulated using pathway L23_PC:L23_LBC, e-types
cAC and dNAC, respectively; and s-type E3 was simulated using pathway L6_TPC_L4:L6_TPC_L4.

2.4 Extending the model to include thalamic populations and connectivity

We extended the model to include somatosensory thalamic populations with cell type-specific
dynamics, intra-thalamic connectivity and bidirectional projections with cortex. In the original
model, thalamic inputs were modeled as spike generators that only provided feedforward inputs to
S1. Our somatosensory thalamus model is composed of the excitatory ventral posterolateral (VPL),
ventral posteromedial (VPM) and the posteromedial (POm) nuclei, and the inhibitory reticular
nucleus (RTN). We used single compartment cell models with dynamics tuned to reproduce previous
studies on the interaction between the thalamic relay and reticular cells (Destexhe et al. 1996), but
adjusted to work in large-scale networks (Moreira et al. 2021). The thalamic circuit architecture
consisted of six stacked populations as a rough approximation of the thalamic anatomical layout (Fig
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4A). The top three were inhibitory populations comprising the outer, middle and inner sectors of the
RTN, and spanning a height of 78 μm, 78 μm and 156 μm, respectively. Below these were the three
excitatory populations, VPL, VPM and POm, with heights of 156 μm, 156 μm and 312 μm,
respectively. The horizontal dimensions (XZ-plane) for all populations were 420 μm x 420 μm. Cells
were randomly distributed across each nuclei with the number of cells in each population based on
cellular density obtained from the Cell Atlas for the Mouse Brain
(https://bbp.epfl.ch/nexus/cell-atlas/) (Erö et al. 2018). Although POm was larger than VPL and
VPM, we reduced its cell density by 50%, resulting in approximately the same population size. This
lower density accounts for the proportion of coexisting, but functionally-isolated, M1-projecting
thalamocortical cells present in POm with no projections to S1 (Guo et al. 2020).

The intrathalamic connectivity was based on data of axonal and dendritic footprints for each nucleus.
The VPL and VPM are considered first-order nuclei (FO), which means they receive afferent
information from peripheral sensory organs (not modeled here) and are interconnected with cortex
(Ma 1991; Sugitani et al. 1990; Łuczyńska et al. 2003) and RTN (Lam and Sherman 2011) in a
topological fashion. On the other hand, POm is considered a higher-order (HO) nucleus, so input
arrives mainly from the cortex, in this case, from S1 L5 and L6 (O’Reilly et al. 2021; Ohno et al.
2012). The connectivity pattern of HO nuclei has not been properly characterized, but literature
reports a decreased level of organization of HO nuclei inputs to RTN (Lam and Sherman 2011), as it
sends projections to S1.

We therefore adopted three connectivity strategies. In the first, neurons from FO nuclei projected
with a column-like topological organization. We implemented this by combining a probability of
connection that decreased exponentially with the horizontal distance between the pre- and
post-synaptic cells with a decay constant proportional to the footprint radius, and which was
truncated to 0 outside of the footprint radius (this denotes the maximum distance of connection in the
XZ-plane). The following footprint diameters were derived from experimental data (or estimated in
the case of no literature reports) for the different axonal footprints of each thalamic projection:
RTN→VPL and RTN→VPM: 64.33 μm (Lam and Sherman 2007); VPL→RTN: 97.67 μm; and
VPM→RTN: 103.57 μm (Lam and Sherman 2011). The second strategy applies to RTN→RTN
connectivity and implements a sector-specific distance-dependent connectivity. More specifically,
within each RTN sector, the probability of connection decayed exponentially and was truncated to 0
based on a footprint radius of 264.63 μm (Lam, Nelson, and Sherman 2006). In strategies one and
three, the maximum distance in the Y-plane was set to 10% of the footprint radius, following the
disc-like morphology from the axonal projections of the relay cells and the dendritic trees of reticular
cells (Lam, Nelson, and Sherman 2006; Murray Sherman and Guillery 2001). The third strategy was
a divergence rule, with the number of projections from and to HO nuclei having a fixed value and
being distributed without spatial constraints. This divergence value was adjusted so that the HO
dynamics resembled that of the FO nuclei. This allowed us to replicate a column-like topological
organization in FO nuclei using single-compartment cells (Lam and Sherman 2007), and distribute
the HO connections to behave in a functionally similar fashion (Fig. 4B).

All excitatory thalamic nuclei were indirectly interconnected through their RTN projections, which
was divided into three sectors, in line with reports of preferred innervation zones by each of the
thalamic nuclei (Lam and Sherman 2011). Synapses within RTN were mediated by GABAA, from
RTN to the excitatory nuclei by a combination of GABAa and GABAb with equal weight, and by
AMPA from the excitatory nuclei to RTN and cortex (Destexhe et al. 1996). The probability and
weight of connections were the targets of parameter optimization. The matrix with the convergence
of intra-thalamic connections is shown in Fig. 4E.
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Feedback corticothalamic connectivity originated from S1 m-types L5_TTPC2 and L6_TPC_L4
(O’Reilly et al. 2021). Similar to the topological rules described above, we implemented connectivity
with convergence of 30 (i.e. number of pre-synaptic cells projecting to each post-synaptic cell), but
only if the horizontal distance between the pre- and post-synaptic neurons was lower than 50.0 μm
(Fig. 4).

Thalamocortical connectivity from VPL, POm and VPM to S1 was implemented using convergence
values estimated from previous studies (Meyer et al. 2010) (Fig. 4C). Convergence values for each of
the 55 m-types were calculated based on the weighted average of the populations in each layer. The
convergence values for inhibitory populations were multiplied by a scaling factor derived from the
original mode (~0.595). This thalamic convergence factor for inhibitory cells was estimated by
dividing the IE ratio of VPM thalamic innervation (83/775 = 0.107) by the average IE population
ratio (4,779/26,567 = 0.18). The resulting S1 column received approximately 4.95M synapses from
VPM, 4.95M from VPL, and 3.1M from POm. This is consistent with values that can be derived
from experimental studies (Meyer et al. 2010), with 4.27M synapses from VPM and, and 2.66M from
POm.

Figure 4. NetPyNE model of somatosensory thalamic populations and connectivity extending the
original S1 model. (A) Distribution of neurons across the six different thalamic populations, roughly
mimicking the thalamus anatomy (x and y axes in μm). (B) Schematic of bidirectional connectivity between
thalamic regions and cortex. Bidirectional connections between S1/RTN and first order (FO) regions VPL and
VPM are topological, whereas those with high order (HO) region POm are non-topological and implemented
using divergence rules. (C) Convergence connectivity between thalamic regions and S1 (D) RTN cells have
sector-specific distance-dependent connectivity (E) Convergence connectivity matrix across all thalamic
populations.

2.5 Background inputs

Each cell in the S1 circuit received 10 synaptic inputs from Poisson-distributed spike generators
(NetStims) to represent the global effect of spontaneous synapses, background, and other noise
sources from non-modeled brain regions projecting to S1. These stimuli were randomly distributed
randomly across all sections. The quantal synaptic conductance was calculated based on the average
quantal conductance for excitatory and inhibitory synapses. We tuned the excitatory and inhibitory
stimuli rates using grid search parameter exploration to obtain average excitatory firing rates of ~1Hz
and physiological firing rates for most S1 populations.
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2.6 Model building and simulations

We used the NetPyNE modeling tool (Dura-Bernal et al. 2019) to build, manage simulations, and
analyze results of the S1 and thalamic circuit model. NetPyNE employs NEURON (Lytton et al.
2016; Carnevale and Hines 2006; Migliore et al. 2006) as backend simulation engine, with either the
standard or CoreNEURON libraries (Kumbhar et al. 2019). The high-level Python-based declarative
language provided by NetPyNE facilitated the development of this highly complex and extensive
circuit model. This language enabled us to easily import existing morphological and biophysical
parameters of different cell types, and define complex connectivity and stimulation rules. We used
NetPyNE to explore and optimize the model parameters through automated submission and
managing of simulations on supercomputers. We also employed NetPyNE's built-in analysis
functions to plot 2D representations of cell locations, connectivity matrices, voltage traces, raster
plots and firing rate statistics. NetPyNE can also be used to export the model into the NeuroML
(Gleeson et al. 2010) and SONATA (Dai et al. 2020) standard formats.

3 Results

3.1 Reproduction of cell morphologies, physiological responses, spatial distribution and
connectivity

Cells imported into NePyNE using the files from The Neocortical Microcircuit Collaboration NMCP
(Ramaswamy et al. 2015), reproduced the morphological and electrophysiological characteristics of
the original model (Fig 1): mean firing rate and time to the first spike after a current clamp
stimulation are fitted for all the 1035 cell types. Firing dynamic differences were observed in cells
with the stochastic K channel (StochKv), but given their low proportion (3.63%), the average firing
rates of all m-type populations closely matched those in the original model (Fig. 1H).

We were able to recreate the general characteristics across the 7 BBP S1 microcircuit instances: the
31,346 cells distributed randomly by layer, and probabilistic connections are generated for each of
the 1941 pathways (Fig. 2). This network parameterization allowed us to rescale the microcolumn
and generate different instances by changing random number generator seed. Our probabilistic rules
best reproduced the original number of connections using a Gaussian fit in most projection pathways
(1303 of 1941) and an exponential fit plus a linear saturation in the remaining 638 cases (Fig. 2).

3.2 Extension to include detailed thalamic circuits

We extended the model to include the somatosensory thalamic populations with projections to S1:
RTN, POm, VPL, and VPM. The number of thalamic cells was adapted to fit a cylindrical column
with the same radius as the S1 column. This facilitated the inclusion of topological connectivity rules
between the two regions. We reproduced the firing dynamics of the different thalamic cell types using
a single compartment neuron model (Moreira et al. 2021). The connections from TC cells to S1 were
based on convergence rules derived from experimental data (Meyer et al. 2010), and synaptic
physiological mechanisms were generalized from the BBP VPM projections to S1 layers 4 and 5
(Markram et al. 2015). Feedback connections originated from S1 cell types L5_TTPC2 and
L6_TPC_L4 and targeted VPL and VPM following a topological organization, and POm in a
following a non-topological broader distribution (Fig. 4). The parameters of the thalamic circuit were
adjusted to reproduce a stable self-sustained activity with rhythmic bursting and spindle oscillations,
as well as a shift in dynamics following localized excitatory input in the relay cells (Moreira et al.
2021).
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3.3 Cortical and thalamic circuits independent response to background inputs (no
thalamocortical connections)

We first evaluated the response to background inputs of the S1 cortical circuit and the thalamus
circuit independently, i.e., without any connections between cortex and thalamus. When driven with
background inputs the S1 model generated spontaneous activity with most populations (48 out of 55)
firing within physiological rates (Fig 5). To achieve this, excitatory and inhibitory background inputs
were tuned via grid search parameter optimization (see Methods). Fig. 5 illustrates the S1
spontaneous activity results, including a spiking raster plot of all 31,346 cortical cells, examples of
voltage traces for each of the 207 me-type population, and the average firing rates for each of the 55
m-type populations. The thalamic populations, disconnected from S1 and driven by background
inputs, exhibited stable self-sustained activity with rhythmic bursting at theta ~6 Hz (Fig 5C). These
oscillations, which were most prominent in the RTNi and POm populations, emerged despite the lack
of rhythmicity in the background inputs. The thalamic circuit oscillatory dynamics are consistent
with the recurrent interactions between thalamic relay and reticular neurons described in previous
studies (Destexhe et al. 1996)

Simulations were run using NetPyNE and NEURON on a Google Cloud virtual machine with 40
cores. We compared the S1 results using the standard NEURON simulation engine vs
CoreNEURON, a state-of-the-art solver optimized for large scale parallel simulations on both CPUs
and GPUs (Kumbhar et al. 2019). Both simulation engines produced very similar firing rates for each
population, with excitatory and L1-L3 inhibitory cells showing overall lower firing rates than L4-L6
inhibitory cells. The overall average firing rate across the 2 simulated seconds was 0.95 Hz in both
cases (NEURON: 59,779 spikes; CoreNEURON: 59,749 spikes). This demonstrates the consistency
of results obtained from both simulation engines, making CoreNEURON a viable alternative to study
the S1 network. CoreNEURON was 2.4x faster to create the network and 2.2x faster to run the
simulation (Fig 5D).
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Figure 5. NetPyNE S1 and thalamus circuit response to background inputs (spontaneous activity). (A)
Spiking raster plot of the 31,346 cells in the S1 column during 1 second (the first second was omitted to allow
the network to reach a steady state). (B) Example voltage traces for each of the 207 me-types grouped by rows
into their respective 55 m-types (same time period as raster plot). (C) Spiking raster plot of the 7,266 thalamic
neurons during 1 second showing intrinsic oscillations. (D) Example voltage traces for each of the 6 thalamic
populations. (E) Mean firing rates of each of the 55 m-types for NEURON (red) vs CoreNEURON (cyan). (F)
Comparison of the time required to create the network and run the simulation on a 40-core Google Cloud
virtual machine using NEURON (red) or CoreNEURON (cyan).
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3.3 S1 circuit response to background inputs with short term plasticity (no thalamocortical
connections)

We simulated the response of the S1 cortical circuit to background inputs but including short term
plasticity (STP) in its local synaptic connections (Fig. 6A). Adding STP resulted in the emergence of
synchronous bursting within the S1 cortical column at approximately 1 Hz frequency (compare S1
raster in Figs. 5A and 6A). The spontaneous synchronous bursts first appeared in L5, and then spread
to all S1 cells within 100 ms. Fig. 6B shows an amplified raster plot of L4-L6 with 70 ms of activity
at the time when spontaneous synchronous bursts started. Fig. 6C shows example voltage traces of
cortical and thalamic neurons, illustrating the spike synchrony of S1 and the thalamic bursts.

Figure 6. NetPyNE S1 circuit response to background inputs with short-term plasticity (STP). (A)
Spiking raster plot of S1 with STP. S1 and thalamus were not interconnected; only intracortical connections
were included. (B) Amplified spiking raster plot (A) showing the 70 ms around the time when synchronous
bursts first occur in L5 (black) and then propagate to L6 (red) and L4 (blue). (C) Example traces from (A)
showing spike synchrony across cortical populations and thalamic bursts. Rasters in A show 2.5 seconds after
steady state was reached.

3.4 S1 and thalamic circuit response with bidirectional thalamic connectivity and cortical short
term plasticity

We then simulated the full circuit with bidirectional connections between S1 and thalamus and STP
in the thalamus to S1 connections (Fig. 7A). The full cortico-thalamo-cortical circuit exhibited
overall increased activity with S1 oscillations around 6 Hz frequency, and strong thalamic oscillatory
activity at the same frequency. Oscillations were now synchronized across all S1 and thalamic
populations. Fig. 7B shows the voltage traces of several cortical and thalamic neurons, illustrating the
spike synchrony of S1 and thalamic populations. Finally, in the Fig. 7C we compare the mean firing
rate for all S1 and thalamic populations with (red bars) and without (cyan bars) bidirectional
thalamocortical connectivity. All 55 model populations now exhibited physiological firing rates.
Adding bidirectional thalamocortical connectivity resulted in a modest increase of the overall mean
firing rate, from 4.96 Hz to 5.29 Hz, with more pronounced increases in the average firing rates of L1
and L2/3 inhibitory populations.
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Figure 7. NetPyNE S1 and thalamic circuit response with bidirectional thalamic connectivity and
cortical STP. (A) Spiking raster plot of the fully connected circuit model, including bidirectional
connections between S1 and thalamus (shows 2.5 seconds of simulation after steady state was reached).
Oscillations at ~6 Hz were now synchronized across all S1 and thalamic populations. (B) Example traces from
(A) during 800 ms showing spike synchrony across cortical and thalamic populations. (C) Comparison of
mean firing rates of each of the 55 S1 and 6 thalamic m-types with (S1-TH connected) and without (S1-TH
disconnected) bidirectional thalamocortical connectivity (compare rasters in Figs. 7A and 6A, respectively).

4 Discussion

We provided here the first large-scale S1 model that is accessible to the wider community, building
on the details of the prior state-of-the-art BBP S1 model. The model closely reproduced the original
cell morphologies and electrophysiological responses for the 207 morpholectric (me) cell types, with
5 examples for each, totaling 1035 cell models (Fig. 1); the spatial distribution of these cells across
layers; and the connectivity properties of the 1941 pathways, including synaptic dynamics and
short-term plasticity (Figs. 2,3). After tuning, the simulations produced reasonable dynamics with
rates and activity patterns corresponding to in vivo measures of cortical activity (Figs. 5,6). There
was no direct comparison to the full network dynamics of the original BBP model since original
simulation data was not available. However, firing rates and overall 1 Hz underlying oscillation when
using STP is comparable to that seen in the original model version paper (Markram et al. 2015); Fig
11). We also extended the model by adding thalamic circuits, including 6 distinct thalamic
populations with intrathalamic, thalamocortical and corticothalamic connectivity derived from
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experimental data (Fig. 4). The addition of the thalamic circuit resulted in distinct activity patterns
and synchronous activity across cortical and thalamic populations (Fig. 7).

The S1 model now joins other NetPyNE cortical simulations: generic cortical circuits (Romaro et al.
2021), auditory and motor thalamocortical circuits (Sivagnanam et al. 2020; Dura-Bernal, Neymotin,
et al. 2022; Dura-Bernal, Griffith, et al. 2022), as well as simulations of thalamus (Moreira et al.
2021), dorsal horn of spinal cord (Sekiguchi et al. 2021), Parkinson's disease (Ranieri et al. 2021) and
schizophrenia (Metzner et al. 2020). These large cortical simulations can be extremely
computer-intensive, which is a major motivation for NetPyNE’s facilities that allow one to readily
simplify the network by swapping in integrate-and-fire or small-compartmental cell models, or by
down-scaling to more manageable sizes. The optimization on CPUs and the ability to run across
GPUs in CoreNEURON is another key NetPyNE feature enhancing runnability. In the present case,
the original S1 model is largely inaccessible, despite the cooperation of its designers, since it requires
specialized tools, workflows, and training. Nonetheless, most of the data required to replicate it is
available via the NMCP, which we ourselves used to implement the NetPyNE version.

We made 2 significant changes in our port to NetPyNE. First, we did not replicate the stochastic K
channels that appear in 3.6% of the neurons, making our port somewhat simpler than the original.
This channel required writing custom code and made simulations slower, but it could be added to the
model in a future iteration. Second, we have not utilized the original cell-to-cell connection mappings
that were obtained by BBP from direct microscopic observations of overlap between pre-synaptic
axonal fields and post-synaptic dendritic fields (so-called Peter’s principle). In the original BBP S1
model, the use of cell-to-cell connections necessarily limited the simulation to use precisely the
original models cell morphologies, cell positions and scales. It also required storing and loading large
files of connection data. We therefore replaced this connection framework with one based on
connection probability based on cell type (including layer), inter-cell distance, and dendritic pattern
of post-synaptic locations. Although saving somewhat on space, there is a time-space tradeoff since
this requires further calculations on start-up. Despite these limitations, we had excellent agreement
with both cell model matching and connection density matching.

We were able to get substantial speedup (>2x) for both model setup and run using CoreNEURON
despite only using CPUs with no GPU at this time. The differences in firing seen with NEURON vs
CoreNEURON are expected due to vectorisation of the compute kernels in CoreNEURON and
potential differences due to different solvers when using NMODL with sympy. Further differences
are to be expected once this is extended to GPUs (Kumbhar et al. 2019; Jézéquel, Lamotte, and Saïd
2015).

Our new port of the S1 model provides a quantitative framework that can be used in several ways.
First, it can be used to perform in silico experiments to explore somatosensory processing under the
assumption of various coding paradigms or brain disease (Amsalem et al. 2020; Metzner et al. 2020;
Ranieri et al. 2021). Second, drug effects can be directly tested in the simulation (Neymotin et al.
2016) -- this is an advantage of a multiscale model with scales from molecule to network, which is
not available in simpler models that elide these details. Third, the model constitutes a unified
multiscale framework for organizing our knowledge of S1 which serves as a dynamical database to
which new physiological, transcriptomic, proteomic, and anatomical data can be added. This
framework can then be utilized as a community tool for researchers in the field to test hypotheses and
guide the design of new experiments.
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