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3.3 S1 circuit response to background inputs with short term plasticity (no thalamocortical
connections)

We simulated the response of the S1 cortical circuit to background inputs but including short term
plasticity (STP) in its local synaptic connections (Fig. 6A). Adding STP resulted in the emergence of
synchronous bursting within the S1 cortical column at approximately 1 Hz frequency (compare S1
raster in Figs. SA and 6A). The spontaneous synchronous bursts first appeared in L5, and then spread
to all S1 cells within 100 ms. Fig. 6B shows an amplified raster plot of L4-L6 with 70 ms of activity
at the time when spontaneous synchronous bursts started. Fig. 6C shows example voltage traces of
cortical and thalamic neurons, illustrating the spike synchrony of S1 and the thalamic bursts.

Figure 6. NetPyNE S1 circuit response to background inputs with short-term plasticity (STP). (A)
Spiking raster plot of S1 with STP. S1 and thalamus were not interconnected; only intracortical connections
were included. (B) Amplified spiking raster plot (A) showing the 70 ms around the time when synchronous
bursts first occur in L5 (black) and then propagate to L6 (red) and L4 (blue). (C) Example traces from (A)
showing spike synchrony across cortical populations and thalamic bursts. Rasters in A show 2.5 seconds after
steady state was reached.

3.4 S1 and thalamic circuit response with bidirectional thalamic connectivity and cortical short
term plasticity

We then simulated the full circuit with bidirectional connections between S1 and thalamus and STP
in the thalamus to S1 connections (Fig. 7A). The full cortico-thalamo-cortical circuit exhibited
overall increased activity with S1 oscillations around 6 Hz frequency, and strong thalamic oscillatory
activity at the same frequency. Oscillations were now synchronized across all S1 and thalamic
populations. Fig. 7B shows the voltage traces of several cortical and thalamic neurons, illustrating the
spike synchrony of S1 and thalamic populations. Finally, in the Fig. 7C we compare the mean firing
rate for all SI and thalamic populations with (red bars) and without (cyan bars) bidirectional
thalamocortical connectivity. All 55 model populations now exhibited physiological firing rates.
Adding bidirectional thalamocortical connectivity resulted in a modest increase of the overall mean
firing rate, from 4.96 Hz to 5.29 Hz, with more pronounced increases in the average firing rates of L1
and L2/3 inhibitory populations.
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Figure 7. NetPyNE S1 and thalamic circuit response with bidirectional thalamic connectivity and
cortical STP. (A) Spiking raster plot of the fully connected circuit model, including bidirectional
connections between S1 and thalamus (shows 2.5 seconds of simulation after steady state was reached).
Oscillations at ~6 Hz were now synchronized across all S1 and thalamic populations. (B) Example traces from
(A) during 800 ms showing spike synchrony across cortical and thalamic populations. (C) Comparison of
mean firing rates of each of the 55 S1 and 6 thalamic m-types with (S/-TH connected) and without (S/-TH
disconnected) bidirectional thalamocortical connectivity (compare rasters in Figs. 7A and 6A, respectively).

4 Discussion

We provided here the first large-scale S1 model that is accessible to the wider community, building
on the details of the prior state-of-the-art BBP S1 model. The model closely reproduced the original
cell morphologies and electrophysiological responses for the 207 morpholectric (me) cell types, with
5 examples for each, totaling 1035 cell models (Fig. 1); the spatial distribution of these cells across
layers; and the connectivity properties of the 1941 pathways, including synaptic dynamics and
short-term plasticity (Figs. 2,3). After tuning, the simulations produced reasonable dynamics with
rates and activity patterns corresponding to in vivo measures of cortical activity (Figs. 5,6). There
was no direct comparison to the full network dynamics of the original BBP model since original
simulation data was not available. However, firing rates and overall 1 Hz underlying oscillation when
using STP is comparable to that seen in the original model version paper (Markram et al. 2015); Fig
11). We also extended the model by adding thalamic circuits, including 6 distinct thalamic
populations with intrathalamic, thalamocortical and corticothalamic connectivity derived from
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experimental data (Fig. 4). The addition of the thalamic circuit resulted in distinct activity patterns
and synchronous activity across cortical and thalamic populations (Fig. 7).

The S1 model now joins other NetPyNE cortical simulations: generic cortical circuits (Romaro et al.
2021), auditory and motor thalamocortical circuits (Sivagnanam et al. 2020; Dura-Bernal, Neymotin,
et al. 2022; Dura-Bernal, Griffith, et al. 2022), as well as simulations of thalamus (Moreira et al.
2021), dorsal horn of spinal cord (Sekiguchi et al. 2021), Parkinson's disease (Ranieri et al. 2021) and
schizophrenia (Metzner et al. 2020). These large cortical simulations can be extremely
computer-intensive, which is a major motivation for NetPyNE’s facilities that allow one to readily
simplify the network by swapping in integrate-and-fire or small-compartmental cell models, or by
down-scaling to more manageable sizes. The optimization on CPUs and the ability to run across
GPUs in CoreNEURON is another key NetPyNE feature enhancing runnability. In the present case,
the original S1 model is largely inaccessible, despite the cooperation of its designers, since it requires
specialized tools, workflows, and training. Nonetheless, most of the data required to replicate it is
available via the NMCP, which we ourselves used to implement the NetPyNE version.

We made 2 significant changes in our port to NetPyNE. First, we did not replicate the stochastic K
channels that appear in 3.6% of the neurons, making our port somewhat simpler than the original.
This channel required writing custom code and made simulations slower, but it could be added to the
model in a future iteration. Second, we have not utilized the original cell-to-cell connection mappings
that were obtained by BBP from direct microscopic observations of overlap between pre-synaptic
axonal fields and post-synaptic dendritic fields (so-called Peter’s principle). In the original BBP S1
model, the use of cell-to-cell connections necessarily limited the simulation to use precisely the
original models cell morphologies, cell positions and scales. It also required storing and loading large
files of connection data. We therefore replaced this connection framework with one based on
connection probability based on cell type (including layer), inter-cell distance, and dendritic pattern
of post-synaptic locations. Although saving somewhat on space, there is a time-space tradeoff since
this requires further calculations on start-up. Despite these limitations, we had excellent agreement
with both cell model matching and connection density matching.

We were able to get substantial speedup (>2x) for both model setup and run using CoreNEURON
despite only using CPUs with no GPU at this time. The differences in firing seen with NEURON vs
CoreNEURON are expected due to vectorisation of the compute kernels in CoreNEURON and
potential differences due to different solvers when using NMODL with sympy. Further differences
are to be expected once this is extended to GPUs (Kumbhar et al. 2019; Jézéquel, Lamotte, and Said
2015).

Our new port of the S1 model provides a quantitative framework that can be used in several ways.
First, it can be used to perform in silico experiments to explore somatosensory processing under the
assumption of various coding paradigms or brain disease (Amsalem et al. 2020; Metzner et al. 2020;
Ranieri et al. 2021). Second, drug effects can be directly tested in the simulation (Neymotin et al.
2016) -- this is an advantage of a multiscale model with scales from molecule to network, which is
not available in simpler models that elide these details. Third, the model constitutes a unified
multiscale framework for organizing our knowledge of S1 which serves as a dynamical database to
which new physiological, transcriptomic, proteomic, and anatomical data can be added. This
framework can then be utilized as a community tool for researchers in the field to test hypotheses and
guide the design of new experiments.
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