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Abstract 17 

Endogenous retroviruses (ERVs) have played an essential role in the evolution of 18 

mammals. Many ERV-derived genes are reported in the therians that are involved in the 19 

placental development. However, the contribution of the ERV-derived genes in 20 

monotremes, which are oviparous mammals, remains to be uncovered. Here, we 21 

conducted a comprehensive search for possible ERV-derived genes in platypus and 22 

echidna genomes and identified three reverse transcriptase-like genes, named “RTOM1, 23 

2, and 3.” They were found to be clustered in the GRIP2 intron. Phylogenetic analysis 24 

revealed that RTOM1, 2, and 3 are strongly conserved between these species, and they 25 

were generated by tandem duplications before the divergence of platypus and echidna. 26 

The RTOM transcripts were specifically expressed in the testis, suggesting the 27 

physiological importance of RTOM genes. This is the first study reporting monotreme-28 

specific de novo gene candidates derived from ERVs, which provides new insights into 29 

the unique evolution of monotremes. 30 
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Endogenous retroviruses (ERVs) are remnants of retroviral genomes found in the host 32 

genomes. ERVs are retroviruses that infect the host germline cells and are integrated into 33 

the host genome (Johnson 2019). Young ERVs retain their viral open reading frames 34 

(ORFs), but gradually lose their intact ORFs due to the accumulation of mutations. 35 

However, proteins expressed from ERVs sometimes evolve as functional genes in the host 36 

(Ueda et al. 2020). A typical example is the syncytin genes, ERV-derived fusogenic genes, 37 

which are expressed in the human placenta (Mi et al. 2000; Blond et al. 2000; Blaise et 38 

al. 2003) and are required for mouse placenta formation (Dupressoir et al. 2009; 39 

Dupressoir et al. 2011). Syncytin genes have been independently acquired from different 40 

ERVs in different mammalian lineages, which is a representative example of the 41 

convergent evolution (Imakawa et al. 2015). In addition, other ERV-derived genes have 42 

also been found to be expressed in the placenta. For example, HEMO encoding a secreted 43 

envelope protein (Heidmann et al. 2017) as well as gagV1 and pre-gagV1 genes (Boso et 44 

al. 2021) are highly expressed in the human placenta. However, it is unknown whether 45 

ERV-derived genes are co-opted in monotremes that are egg-laying mammals. 46 

Comparative studies for the detection of ERV-derived genes have been conducted in 47 

mammalian genomes, including the platypus (Nakagawa and Takahashi 2016; Wang and 48 

Han 2020). For monotremes, however, only the genome sequence of one species, the 49 

platypus, was available (OANA5). and the quality was limited (Warren et al. 2008). 50 

Recently, high-quality monotreme genomes of platypus (mOrnAna1.p.v1) and echidna 51 

(mTacAcu1.pri) were sequenced using long-read sequencing technology (Zhou et al. 52 

2021), making it possible to search for conserved ERV genes in monotremes. Here, we 53 

performed a comparative analysis of the genomes of these two monotremes and found 54 

three ERV-derived genes that are specific to the monotreme lineage. 55 
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 56 

To comprehensively search for ERV genes in monotremes, we extracted ORFs from the 57 

genomes of platypus and echidna. The amino acid sequences obtained by the virtual 58 

translation of these ORFs were used as queries for the sequence search. We used the 59 

hidden Markov model (HMM) of the retroviral genes in the Gypsy Database 2.0 (GyDB) 60 

(Llorens et al. 2011) as the subject of the sequence search (supplementary table S1). We 61 

identified ORFs similar to gag, pro, pol, and env genes (fig. 1A). These ORFs are 62 

presumed to be a mixture of (1) ORFs that are evolutionarily conserved and (2) ORFs of 63 

young transposons that retain their ORFs. To exclude young ERV ORFs, we performed 64 

the clustering analysis based on the amino acid sequence identity. Since young ERVs are 65 

thought to be included in large clusters due to their mutual similarity to each other, we 66 

removed sequences that belonged to large clusters consisting of more than 10 sequences. 67 

Next, using the platypus ORFs as queries, and the echidna ORFs as the subjects, we 68 

conducted a sequence similarity search using BLASTp. We obtained nine ORF pairs with 69 

high amino acid similarity and the same synteny between platypus and echidna 70 

(supplementary table S2). For six pairs among these, we found respective homologs in 71 

the human genome, indicating that they were either ERV genes acquired in the common 72 

mammalian ancestor or host genes with high similarity to ERVs. Indeed, one of the six 73 

genes is ASPRV1 that is a known ERV-derived protease gene acquired in the common 74 

ancestor of mammals and is responsible for skin maintenance (Matsui et al. 2011). The 75 

remaining three genes were not found in the human genome. They were located tandemly 76 

in the intron of the GRIP2 gene in the opposite direction (fig. 1B). All three ORFs showed 77 

high similarity to the reverse transcriptase (RT) of spumaretrovirus in GyDB 78 

(supplementary table S3). Therefore, we designated these genes as RTOM [RT-like ORF 79 
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in Monotreme], and three genes were named as RTOM1, RTOM2, and RTOM3 in order 80 

of their location from the 5′ direction (fig. 1B). The RTOM coding sequences were 81 

searched in the genomes of 6 mammals, 2 birds, 8 reptilians, and 2 amphibians 82 

(supplementary table S4); however, significant hits were not obtained other than in 83 

platypus and echidna (BLASTn: E-value < 1E-5). Therefore, the RTOM genes could be 84 

monotreme-specific and by originated more than 55 million years ago, the divergence 85 

time of platypus and echidna (Zhou et al. 2021). 86 

 87 

We found that the gene structures of RTOM genes in the platypus genome were annotated 88 

in the RefSeq database (fig. 2A). RTOM1, 2, and 3 genes of platypus contained two 89 

introns in the 5′ UTR, and the entire RTOM ORFs are expressed as mRNA excluding a 90 

second splicing variant of RTOM3 that partially lost its ORF (fig. 2A). In echidna, 91 

RTOM2 and RTOM3 gene structures were annotated in the RefSeq transcripts; however, 92 

RTOM1 was not annotated. By conducting transcriptome assemblies of RNA-seq data of 93 

echidna tissues (supplementary table S5), we reconstructed the RTOM1 transcript (fig. 94 

2B; supplementary data S1). As a result, all echidna RTOM transcripts have two introns 95 

in the 5′ UTR, which was similar to observations for platypus. According to the alignment 96 

of the six amino acid sequences of platypus and echidna RTOM genes, RTOM2 lacks a 97 

region shared by RTOM1 and RTOM3, but the C-terminal region was conserved among 98 

the RTOM proteins without insertion or deletion (fig. 2C). To investigate the tissue-99 

specific expression of RTOM genes, we analyzed the RNA-seq data of platypus and 100 

echidna (supplementary table S5). In platypus, RTOM1, 2, and 3 were all highly expressed 101 

in the testis (fig. 2D). GRIP2 was expressed not only in the testis but also in the brain, 102 

and its expression level was lower than that of the RTOM genes. This suggests that the 103 
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RTOM expression was not a result of the GRIP2 expression. We further investigated the 104 

mapped reads using Interactive Genome Viewer (Thorvaldsdóttir et al. 2013) and found 105 

that RTOM3 showed a splicing variant with an intron in the coding region, as shown in 106 

the RefSeq transcript (supplementary fig S1). In echidna, we found that all RTOM 107 

transcripts were specifically expressed in the testis, similar to platypus. Expression of 108 

GRIP2 in echidna testis was also relatively low, strengthening the idea that the RTOM 109 

expression is independent of GRIP2 expression (fig. 2E). Given the higher expression 110 

level of RTOM2 in both platypus and echidna, this gene may play a central role of the 111 

RTOM proteins. It is still possible that the relative expression levels of three genes may 112 

change according to tissues and developmental stages that were not examined in this study. 113 

 114 

To obtain insights into the viral origin of the RTOM genes, we performed a BLASTp 115 

search of the amino acid sequence of platypus RTOM1 against the NCBI virus database. 116 

We found that retrovirus Pol proteins from various distinct lineages, namely 117 

gammaretrovirus, deltaretrovirus, epsilonretrovirus, and spumaretrovirus, are similar to 118 

the RTOM1 proteins (BLASTp: E-value < 1E-20). In all hits, the retroviral Pol proteins 119 

showed high similarity to the latter half of RTOM1 (about 370-607aa). Domain search 120 

against the Pfam database (Mistry et al. 2021) in the HMMER web service (Finn et al. 121 

2011) revealed that the latter half of RTOM1 and RTOM3 contain RT domains (fig. 3A; 122 

supplementary fig. S2). A phylogenetic tree was constructed from the RT regions of the 123 

RTOM proteins and the retroviral Pol proteins (fig. 3B). The RTOM proteins appear to 124 

be more related to class III retroviruses, including spumaviruses or spumavirus-related 125 

MuERV-L (Llorens et al. 2009). The tree topology suggested that RTOM1 emerged at 126 

first, and RTOM2 and RTOM3 were then generated by tandem gene duplications before 127 
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the divergence of platypus and echidna (fig. 3C). In the non-RT region of RTOM1 128 

(approximately 1-369aa), no significant hits for retroviruses were obtained (fig. 3A). We 129 

performed a BLASTp search for all non-redundant proteins in the GenBank database for 130 

the non-RT region of RTOM1; however, no similar proteins were found except for 131 

RTOM2 and 3 (E-value < 0.05). Therefore, the non-RT region of the RTOM genes dons 132 

not seem to be derived from ERV genes or conserved host genes. Considering the 133 

structural divergence of the non-RT region, such as deletion of RTOM2 and splicing 134 

variant of platypus RTOM3 (fig. 2C), the RT region is a core domain of the RTOM 135 

proteins, and the non-RT region may provide functional modifications specific to each 136 

RTOM protein. 137 

 138 

During the 187-million-years history after diverging from monotremes (Zhou et al. 2021), 139 

therians have acquired many ERV genes and evolved their unique features, especially the 140 

placenta (Imakawa and Nakagawa 2017). Our work revealed that monotremes also 141 

domesticated ERV genes. The functional inference of the RTOM proteins is difficult as 142 

co-opted RT genes, such as RTOMs, have not been reported in other vertebrates to the 143 

best of our knowledge. One possibility is that RTOM proteins may function as restrictive 144 

factors against ERVs and retrotransposons. For example, gag-derived Fv1 (Best et al. 145 

1996) and env-derived Fv4 (Ikeda and Sugimura 1989) inhibit retroviral infection in mice. 146 

It is possible that the RT domains in the RTOM genes compete with retrotransposition as 147 

antagonists. Another possibility is that RTOM proteins are involved in physiological 148 

functions unique to monotremes. In future studies, it would be important to clarify which 149 

cells, viz. germ cells or somatic cells, in testis express the RTOM genes. Further studies 150 

pertaining to RTOM1, 2, and 3 in platypus and echidna will expand our understanding of 151 
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ERV co-option during the evolution of mammals. 152 

 153 

Materials and Methods 154 

Identification of conserved ERV genes 155 

The platypus genome (mOrnAna1.p.v1, GCF_004115215.1) and the echidna genome 156 

(mTacAcu1.pri, GCF_015852505.1) were used for the ERV gene screening (please see 157 

fig. 1). The 240-nt ORF flanked by stop codons were retrieved using the getorf program 158 

in the European Molecular Biology Open Software Suite (Rice et al. 2000). For HMM-159 

based sequence search, hmmscan was used (Expected threshold: 1E-5) in HMMER3 160 

v3.2.2 (Eddy 2011). ORFs were clustered using CD-HIT v4.8.1 (Li and Godzik 2006) 161 

with 50% amino acid identity. The sequence search for platypus ORFs against echidna 162 

ORFs was conducted using BLASTp v2.10.0+ with an e-value < 1E-50 (Camacho et al. 163 

2009). Hits with a bitscore > 400 were retrieved and checked the synteny was checked 164 

using the UCSC genome browser (https://genome.ucsc.edu/index.html). 165 

 166 

Expression analysis 167 

RNA-seq data of platypus (20 samples from 6 tissues) (Marin et al. 2017) and echidna 168 

(11 samples from 7 tissues) (Zhou et al. 2021) were used (supplementary file S5). Low-169 

quality reads were trimmed and filtered using fastp v0.19.5 with default options (Chen et 170 

al. 2018). The filtered reads were mapped to the each reference genome using HISAT2 171 

v2.1.0 (Pertea et al. 2016). Based on the 11 RNA-seq sequencing data mapped on the 172 

echidna genome, we obtained the echidna RTOM1 transcript by conducting transcriptome 173 

assembly using Stringtie2 v2.1.6 with “--merge” option (Kovaka et al. 2019). We added 174 

the coordinates of the echidna RTOM1 transcript (supplementary data S1) to the RefSeq 175 
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gene coordinates. We then calculated the expression levels for 20 platypus and 11 echidna 176 

RNA-seq samples using the Stringtie2 program with default options (Kovaka et al. 2019). 177 

 178 

Phylogenetic analysis 179 

Representative retroviral Pol amino acid sequences were retrieved from the GyDB 180 

collection 181 

(https://gydb.org/index.php/Alignment?alignment=POL_retroviridae_Biology_Direct_4182 

_41_2009&format=txt) (Llorens et al. 2009). A multiple alignment was generated using 183 

MAFFT v7.487 (Katoh and Standley 2013), and poorly aligned regions were removed 184 

using trimAl v1.4.rev15 (Capella-Gutiérrez et al. 2009). A phylogenetic tree was 185 

constructed using IQ-TREE2 v2.0.8 (Minh et al. 2020) with 1000 replicates of ultrafast-186 

bootstrap (Hoang et al. 2018). The tree was visualized using FigTree v1.4.4 187 

(http://tree.bio.ed.ac.uk/software/figtree/). 188 

 189 

  190 
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Figure legends 297 

 298 

FIG. 1. Identification of RTOM1, 2, and 3. (A) Schematic representation of the in silico 299 

screening for conserved ERV-derived genes in platypus and echidna. (B) Genomic 300 

context of RTOM1, 2, and 3. 301 
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 302 

FIG. 2. Expression of RTOM1, 2, and 3. (A) Schematic representation of the RefSeq 303 

transcripts of the RTOM genes in platypus. (B) Schematic representation of the 304 

reconstructed RTOM1 transcript and RefSeq transcripts of the RTOM2 and 3 genes in 305 

echidna. (C) Multiple alignment of the amino acid sequences of RTOM proteins. The 306 

amino acid sequence of echidna RTOM1 was obtained from the genomic ORF. 307 

“RTOM3A_plasypus” and “RTOM3B_platypus” are protein isoforms derived from 308 

DC

BA

RTOM1_platypus  MESQEQEIEIEYRVGQSFGRFSLRPSRPYTRPKAKTWVVFKIWVRGYPTPEGDSRQDKAK
RTOM1_echidna   MESQEREIEIEYRVGQTSGRFSLRPSRPYTPPKAKTWVVFKIWVRGSPNPEGNSKQDKAK
RTOM2_platypus  MESQESEFEIEYLVGQTAGTTSEEPSGSYAPPEDQAWLVLRIWVEGARDLEGNSKPDEAK
RTOM2_echidna   MEFQESEFEIEYLVGQTAGTTSEEPSGSYAPLEDQAWLVLRIWVEGARDLEGNSKPDEAK
RTOM3A_platypus MASQEQEFEVEYLVGQTVSSCSVINLRPDDPPKVKTWVVVKVWVKGTCDLEGNSKQDKAK
RTOM3B_platypus MASQEQEFEVEYLVGQTVSSCSVINLRPDDPPK---------------------------
RTOM3_echidna   MEPQEQEFEMEYCVGQTVDSCSVINLRPDDPPKVKTWVVVKVWVKGTRDLEGNSKQDKAK

*  ** *:*:** ***: .  *     .    :                           

RTOM1_platypus  AITMQALAEGLHDLWRKLDGKDFLVETLTSHTLSEEDMNLTGERGGTSKGWGYIVTKEWI
RTOM1_echidna   AITMQALAEGLHDLWRKLDGKDFLVETLTSHNLSEEDMNLTGERVGTSKGWGYIVTKEWI
RTOM2_platypus  GVAIQALAEGLHDLWRKLEGKDFWIETISSYNLAEVDRNWMEKRVGLSRGWGYIVNKRWK
RTOM2_echidna   GIAIQALAEGLHDLWRRLEGNDFWIETISSYNLAEVDRNWMKERVRLSRGWGYIVNKRWK
RTOM3A_platypus ATALQALAEGLHDLWHTVDGKDFMVETVTSYNLDEEDMDFICKREGDSRGWGYKISKEWV
RTOM3B_platypus ------------------------------------------------------------
RTOM3_echidna   AAALQALAEGLHDLWRTLDDKDFVVETITSYILAEEDMDFIGKRWGDSRGWGYKISKQWV

RTOM1_platypus  EDPSGPRIRDPNVLQSALQSLVESIQDLWNRLDKEEKSKKPSPGDFIVENGSFSKVIPRD
RTOM1_echidna   VDPNGPRIRDPYLLQSALQSLVESIQDLWNRLDEKEKSKEPRPGDIVVENGSFSNVVPRD
RTOM2_platypus  VDPNGPIIRDPRVLRSALQTLVESIHDLWYRLGQREDSKDSRPWEFIVETGSFVDEFPDI
RTOM2_echidna   MDPNGPKIRDPHVLRSALQTLVESIHDLWYQLGQREDSKDPRPWDFIVETGSFVDEFPDI
RTOM3A_platypus ADPSGPRIRDPNVLQSALQGLVESIQDLWNRLDEKEKFKEPSPGDFIVETGSFSNVVPGD
RTOM3B_platypus -------------------GLVESIQDLWNRLDEKEKFKEPSPGDFIVETGSFSNVVPGD
RTOM3_echidna   ADPSGPRIRDPNVLQSALQGLVDNMQDLWNRLDEKEKFKEPSPRDIIVESRSFSNLVPGD

**:.::*** :*.:.*. *.. * :::**. ** . .*  

RTOM1_platypus  LMKWKGERVE-ASQVGEEGRTREWRVGSNSNRIRGLWMELAPFQALKMDTQDWWHRVVEN
RTOM1_echidna   LMKWKGKRMG-AIRVREEGETTEWRVGSNSNRIRGLWMELAPFQALKVDTQDWWHRVVEN
RTOM2_platypus  PMKGEGEME---EESGEEGD------------------------------EEWW------
RTOM2_echidna   LMNGEGEMEEDSEDSGEEGD------------------------------EEWW------
RTOM3A_platypus LMKWKGERVG-SSRVGEEGRTREWRVGSNSNRIRGLKVDLAPFQDLKVDTQDWCHRLAEN
RTOM3B_platypus LMKWKGERVG-SSRVGEEGRTREWRVGSNSNRIRGLKVDLAPFQDLKVDTQDWCHRLAEN
RTOM3_echidna   LMKWKEEKVG-ASRVGEEGETREWRVRSNSHRIRGLKMALVPFQALEVDTQDWCHILAEN

*: : :         ***                               ::*       

RTOM1_platypus  EQSPWNSVVEMRLFNSVGRADPMKWTGERVGANRSGGGRVTREQRVDTSAHRIYDPEVQQ
RTOM1_echidna   EQNPWNSVVEMRLFNNVGRADPVKWTGERVRANRGGGDRVTREQKVDTSAHRICDPEVQQ
RTOM2_platypus  ------------------------------------------EKGADTNVHDIWGPGVEE
RTOM2_echidna   ------------------------------------------EQGADTDVHDICGPGVED
RTOM3A_platypus EQNPWNSVSEMGLFNSVSRADPVKWTGERVGANRGGGDRVTREQIADTNAHRICDPEVQQ
RTOM3B_platypus EQNPWNSVSEMGLFNSVSRADPVKWTGERVGANRGGGDRVTREQIADTNAHRICDPEVQQ
RTOM3_echidna   GQNPWNSVLEMGLFHSVSRADPMKRTGERVRANRGGGDRVTREQTVDTNAHSICNPEMQQ

*: .**..* * .* :::

RTOM1_platypus  LAADTTERPSLGNRPVSNDSPLKPRSLLEISKYMAIKSLEGVAGRMLNFEPLNGITEGIV
RTOM1_echidna   LAIDTAERPSLGSRPASNDSPLKPCSLLKISKYMAIKSQEGAAEGMLNFEPLKGITEGIV
RTOM2_platypus  SDIDTDEESNPEDGAVMHYSHFKALALWESPKYMTGK--KGMARGMWDFEPLNGILREIV
RTOM2_echidna   SDIDTDEESIPEDGAVMHYSHFKAFALWKNPKYMTVKSLKGMAGAMWDFEPLNGILREIV
RTOM3A_platypus LAIDLAEKLNLGNRPAVKDSPLKPGFPLKFSQNMATKSLDGMTGGMLNFEPLKGITEGIV
RTOM3B_platypus LAIDLAEKLNLGNRPAVKDSPLKPGFPLKFSQNMATKSLDGMTGGMLNFEPLKGITEGIV
RTOM3_echidna   LAIDTAERLSLGNRPVVKDSPLKPCFPPKISKYMAIKSLEGVAGGMLKFEPLMGITKGIV

*  *.    . .. : * :*.    : .: *: *  .* :  * .**** ** . **

RTOM1_platypus  PPGWEDTSEAWAHDSLDAGQMQVTPILIEGAFPPKLKQYPLPLGSIEEVVKMIYILENRG
RTOM1_echidna   PPGWEDTSEAWARDNLDAGQLQVTPIIIEGVFPPKLKQYPLPLGSIEEVVKMIHILENRG
RTOM2_platypus  PPVWEDTSEAWARDSLEADQQQVTPF----HFLPKHKWYPLLEESSEEDVQPIHILEDRG
RTOM2_echidna   PPVWEDTSETWARDSLEAGQKQVTPF----RSFPKHKLYPLLVESSEEEVMTIHILEDRG
RTOM3A_platypus PPGWEDTSKAWARDDLDVGQMQMTPIIIEGAFPPKLEQYPLPVESIEEMANVIYILKNRG
RTOM3B_platypus PPGWEDTSKAWARDDLDVGQMQMTPIIIEGAFPPKLEQYPLPVESIEEMANVIYILKNRG
RTOM3_echidna   PSGWEDTSEAWARDNLDVGQMQVTPIIIEGAFPPKLKQFPLPLESIEEMTKTIYILKNRG

*. *****::**:*.*:..* *:**:       ** : :**   * ** .  *:**::**

RTOM1_platypus  YIKPNISPSNAPVWPVKKPDGTWSFSIDYRALNRVTAPLTPVVTTYQELVDKVPGSAAWF
RTOM1_echidna   YIKPNISPSNAPVWPVKKPSGTWSFHIDYRALNRVTSPLTPMVTTYQDLVDKIPGNATWF
RTOM2_platypus  DFMPGVSPSDAPLWPAKKSRAPWSSRIDSWALSEATAQLIPMVTTYQGSEDKVPENAPWL
RTOM2_echidna   DFRPGMSPSDAPLWPVKKSCGPWSSRIDSWALSEVTARLIPMVTTYQGSVDEVPGNVPWF
RTOM3A_platypus YIKLNISPSSAPLWPVKKPNGTWSFSIDYRALNRVTARLTLVETTYQDLVDRIPVNATWF
RTOM3B_platypus YIKLNISPSSAPLWPVKKPNGTWSFSIDYRALNRVTARLTLVETTYQDLVDRIPVNATWF
RTOM3_echidna   YIKPNISPSSAPLCPVKKPDGTWSLNIDYRALNRVTARLSLVETTYQDLVDKIPGNVIWF

:  .:***.**: *.**. ..**  **  **...*: *  : ****   *.:* .. *:

RTOM1_platypus  SVLNINNWFLSIPLNPTSQPKTAFTWGKQQYCWTRLPQGFLNNVAIFHQAVRDVLAELYP
RTOM1_echidna   SVLNINNWFLSIPLDPMSQLKTAFTWGKQQYCWTRLPQGFLNNVAIFHQAVRDVLAELYP
RTOM2_platypus  PGPSTDNWFLSRPLDPFSQPKITFTWGKQRYCWTRLPWGFLHNIAIFHPAVQGVLAELYP
RTOM2_echidna   PGPSTDNWFLSRPFNPFSQPKITFSWGKQQYGWTRLPWGFLHNIAIFNSAVQGVFKDLYP
RTOM3A_platypus SVLSINNWFLSIPLDPVSQPKTAFTWGKQQYCWTRLPQGFLNNVAIFHQAVRNVLAELYP
RTOM3B_platypus SVLSINNWFLSIPLDPVSQPKTAFTWGKQQYCWTRLPQGFLNNVAIFHQAVRNVLAELYP
RTOM3_echidna   SVLSINNWFLSIPLDPVSQPKTAFTWGKQQYCWTRLPPGFLNNVAIFHQAVRDVLAELYP

.  . :***** *::* ** * :*:****:* ***** ***:*:***: **:.*: :***

RTOM1_platypus  MVAQDKNELLCWGASEEETQKVTRLIIQKLTDAGLKLDGHKVQLVQREVSFLGIKVGPCG
RTOM1_echidna   TVAQDKNELLCWGVSKEETQKATRLIIQRLKDAGLKLDGHKVQLVQREVSFLGIKVGPCG
RTOM2_platypus  RVAPDEKELLCWGVSEEKTQRVTGIIIKRLTGVGLKLDAHEAQLVQREGSFLGLKVEACK
RTOM2_echidna   RVAPDEKELLCWGVSEEKTQRVTSIIIQRLTCVGLKLDARKALLVQREGSFLGLKVGARK
RTOM3A_platypus MVAQDKNELLCWGASEDETQKLTRLIIRRLRDAGLKLDGHKVQLVQREVSFLGIRVGSFR
RTOM3B_platypus MVAQDKNELLCWGASEDETQKLTRLIIRRLRDAGLKLDGHKVQLVQREVSFLGIRVGSFR
RTOM3_echidna   MVAQDKNELLCWGISEEETRKLTRLIIQRLRDVGLKLDGHKVQLVQREVSFLGIRVGPCR

** *::****** *:::*:: * :**::*  .*****.::. ***** ****::* .  

RTOM1_platypus  WRLGPINV-------------------
RTOM1_echidna   WRLGPISV-------------------
RTOM2_platypus  WKLGPISLILINPNLASCNLPAISPTM
RTOM2_echidna   WKLGPISLIIMDPNLASCNLPAIGPTV
RTOM3A_platypus WRLGPINV-------------------
RTOM3B_platypus WRLGPINV-------------------
RTOM3_echidna   WRLGPINV-------------------

*:****.:                   
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“XM_039910408.1” and “XM_029051290.2,” respectively. The regions showing 309 

similarity to the HMM of spumaretrovirus RT domain in GyDB are indicated in red. (D 310 

and E) Tissue-specific expression of RTOM genes and GRIP2 in (D) platypus and (E) 311 

echidna. Normalized expression levels are presented as transcript per million (TPM). 312 
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 314 

FIG. 3. Evolution of RTOM1, 2, and 3. (A) Comparison between platypus RTOM1 and 315 

retroviral Pol protein. Walleye epidermal hyperplasia virus 1 is represented as an example. 316 

A region showing similarity to the Pol protein by BLASTp was designated as “RT region.” 317 

A region that did not show similarity to any retroviral genes was designated as “non-RT 318 

region.” (B) A phylogenetic tree constructed from the amino acid sequences of RT regions 319 

of the six RTOM proteins and the retroviral Pol proteins in GyDB. The multiple alignment 320 
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is available in supplementary data S2. Ultrafast-bootstrap values obtained from 1000 321 

times replication are shown in major branches. (C) Detailed representation of the clade 322 

of the RTOM genes in (B). 323 
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Supplementary Materials 325 

Supplementary fig. S1. Screenshots of Interactive Genomic Viewer of RNA-seq reads on 326 

the RTOM genes. 327 

Supplementary fig. S2. Protein domains in RTOM1, 2, and 3. 328 

Supplementary table S1. The HMM profiles in GyDB used in this study. 329 

Supplementary table S2. ERV-like ORFs shared between platypus and echidna 330 

Supplementary table S3. The GyDB HMMs hit to the RTOM genes 331 

Supplementary table S4. Species and genomes used for genes similar to the RTOM genes. 332 

Supplementary table S5. RNA-seq data used in this study. 333 

Supplementary data S1. Nucleotide sequence of the echidna RTOM1 transcript. 334 

Supplementary data S2. Alignment of representative retroviral pol genes and the RTOM 335 

genes. 336 
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 338 

Supplementally FIG. S1. Screenshots of Interactive Genomic Viewer of RNA-seq reads 339 

on the RTOM genes. The transcript tracks in blue lines display the coordinates from the 340 
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RefSeq GTF files. Thick blue lines indicate the coding sequences. Since there is no 341 

corresponding RefSeq transcript for echidna RTOM1, its gene coordinate was manually 342 

added from assembled transcripts in this study (Materials and Methods). 343 
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 345 

Supplementally FIG. S2. Protein domains in RTOM1, 2, and 3. The domain search was 346 

conducted using hmmscan in HMMER web server with default options 347 

(https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan). 348 
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