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Abstract
Graph Neural Networks (GNNs) and Transformer
have emerged as dominant tools for AI-driven drug
discovery. Many state-of-the-art methods first pre-
train GNNs or the hybrid of GNNs and Trans-
former on a large molecular database and then fine-
tune on downstream tasks. However, different from
other domains such as computer vision (CV) or
natural language processing (NLP), getting labels
for molecular data of downstream tasks often re-
quires resource-intensive wet-lab experiments. Be-
sides, the pre-trained models are often of extremely
high complexity with huge parameters. These often
cause the fine-tuned model to over-fit the training
data of downstream tasks and significantly deterio-
rate the performance. To alleviate these critical yet
under-explored issues, we propose two straightfor-
ward yet effective strategies to attain better gener-
alization performance: 1. MolAug, which enriches
the molecular datasets of down-stream tasks with
chemical homologies and enantiomers; 2. Wor-
dReg, which controls the complexity of the pre-
trained models with a smoothness-inducing regu-
larization built on dropout. Extensive experiments
demonstrate that our proposed strategies achieve
notable and consistent improvements over vanilla
fine-tuning and yield multiple state-of-the-art re-
sults. Also, these strategies are model-agnostic and
readily pluggable into fine-tuning of various pre-
trained molecular graph models. We will release
the code and the fine-tuned models.

1 Introduction
Pre-trained language models (PLMs) have foundamen-
tally changed the landscape of natural language processing
(NLP) [Devlin et al., 2019], which have established new
state-of-the-art results for a large variety of NLP tasks. In-
spired by their proliferation, tremendous efforts have been de-
voted to molecular graph pre-training which can exploit abun-
dant knowledge of unlabelled molecular in the database [Hu
et al., 2020]. For the pre-training stage, existing works
train the encoder with various pretext tasks in absence of la-
bels [Rong et al., 2020]. For the second fine-tuning stage,
researchers adapt the pre-trained models to the downstream
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Figure 1: Training (solid lines) and testing (dashed lines) curves
of various fine-tuning strategies on SIDER and Tox21 datasets.
‘vanFT’ refers to vanilla fine-tuning. The over-fitting issue of vanilla
fine-tuning impede the performance improvements while our pro-
posed MolAug, WordReg or their combination can alleviate this is-
sue.

tasks via replacing the top layer of the pre-trained models by
a task specific sub-network, and then continuing to train the
new model with the limited data of the downstream task.

Despite the fruitful progress in the strategies for pre-
training, the fine-tuning stage remains under-explored for pre-
trained molecular graph models. There are two crucial is-
sues impede the improvements of performance during fine-
tuning: (1) insufficient labeled data for downstream tasks.
Different from other domains that have abundant labeled data,
getting high-quality labels for molecular data often requires
resource-intensive wet-lab experiments [Xia et al., 2021a].
(2) the pre-trained models are often of extremely high com-
plexity with tens millions of parameters [Rong et al., 2020;
Li et al., 2021b], which posses the capability of memorizing
the limited samples and lead to poor generalization [Mohri
et al., 2012; Haoming et al., 2020]. As shown in Figure 1,
we conduct vanilla fine-tuning on one of the state-of-the-art
pre-trained molecular models MPG [Li et al., 2021b]. The
over-fitting issue poses hurdle to the further improvements on
various datasets. To mitigate this issue, existing fine-tuning
methods in other domains often rely on hyper-parameter tun-
ing heuristics. For example, Howard and Ruder [Howard
and Ruder, 2018] follow a heuristic learning rate schedule
and gradually unfreeze the layers of the pre-trained language
model to improve the fine-tuning performance, which require
significant tuning efforts. The other line of works propose
various regularizations to control complexity of pre-trained
models. Specifically, SMART [Haoming et al., 2020] intro-
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duces a regularization, which encourages the output of the
model not to change much, when injecting an adversarial per-
turbation to the input. However, this strategy is not suitable
for pre-trained graph models because synthesizing adversar-
ial samples for molecular graphs online is time-consuming
for its high complexity. Recently, Child-Tuning [Xu et al.,
2021b] is proposed to strategically mask out some gradients
of network during the backward process. Albeit effective, it
suffers a heavy computational overhead because it requires
to search for suitable masks for each parameter in the pre-
trained models. Now, we are naturally motivated to ask fol-
lowing question: Can we devise more suitable strategies for
effective and generalizable fine-tuning on pre-trained molec-
ular graph models?

To fully harness the power of pre-trained molecular graph
models, we propose two strategies for better fine-tuning: Mo-
lAug and WordReg. MolAug is molecular graph augmenta-
tion with chemical enantiomers and homologies which share
the similar (or identical) physical (permeability, solubility,
etc.) or chemical (toxicity, etc.) properties with themselves.
WordReg is a novel smoothness-inducing regularization built
on dropout. To the best of our knowledge, we are the first to
study the fine-tuning stage of the pre-trained molecular graph
models, which is important while being neglected. We sum-
marize our contributions here:

• We propose new data augmentations for molecular graph
data, which introduce variations while not altering the
physical or chemical properties of molecules too much.

• We propose a novel smoothness-inducing regulariza-
tion built on dropout that can effectively control the
high complexity of the pre-trained models. Also, it is
domain-agnostic and we study its effects in fine-tuning
pre-trained models of NLP and CV in the appendix.

• Through extensive experiments on 3 drug discovery sub-
tasks (11 datasets in total) including molecular property
prediction, drug-drug interaction prediction and drug-
target interaction prediction, we observe consistent and
notable improvements over vanilla fine-tuning and yield
multiple new state-of-the-art results.

2 Related work
2.1 Molecular Representation Learning
Molecular Representation Learning refers to represent
molecules in the vector space. Initially, the traditional chem-
ical fingerprints such as ECFP [Rogers and Hahn, 2010] en-
code the neighbors of atoms in the molecule into a fix-length
vector. With the proliferation of deep learning, [Duvenaud
et al., 2015] first introduce convolutional neural networks
to learn neural fingerprints of molecules. Subsequently,
some researchers feed the SMILES (a line notation for de-
scribing the structure of chemical species using short ASCII
strings) into RNN-based models to obtain molecular repre-
sentations. In order to fulfill the topology information of
molecular graphs, some recent works [Kearnes et al., 2016;
Xiong et al., 2020] attempt to apply GNNs to molecular
representation learning. Besides, MPNN [Gilmer and oth-
ers., 2017] and its variants DMPNN [Yang et al., 2019],

CMPNN [Song et al., 2020], CoMPT [Chen et al., 2021] uti-
lize a message passing framework to better capture the inter-
actions among atoms. However, they still require expensive
annotations and barely generalize to unseen molecules, which
pose hurdle to the practical applications.

2.2 Pre-training on Graphs
To address the fundamental challenges of extremely scarce
labeled data and out-of-distribution generalization in graphs
learning, tremendous efforts have been devoted to pre-
training on graphs recently. One line of these works follow
the contrastive paradigm [Zhu et al., 2021b; Zhu et al., 2021a;
Xia et al., 2021b]. For molecular pre-training, GraphCL [You
et al., 2020] and its variants [You et al., 2021; Susheel et
al., 2021; Xia et al., 2022] embeds augmented versions of
the anchor molecular graph close to each other and pushes
the embeddings of other molecules apart. The other line of
works adopt generative pretext tasks. Prototypical examples
are GPT-GNN [Hu and others., 2020] which introduces a
self-supervised attributed graph generation task to pre-train
GNNs so that they can capture the structural and semantic
properties of the graph. For molecular graph pre-training,
Hu et al. [Hu et al., 2020] conduct attribute and structure
prediction at the level of individual nodes as well as entire
graphs. To capture the rich information in molecular graph
motifs, GROVER [Rong et al., 2020] and MGSSL [Zhang et
al., 2021] propose to predict or generate the motifs. Analo-
gously, MPG [Li et al., 2021b] learns to compare two half-
graphs (each decomposed from a graph sample) and discrim-
inate whether they come from the same source. Despite the
progress in molecular graph pre-training, few efforts have
been devoted to the fine-tuning except for a recent work [Han
and others., 2021] that adaptively selects and combines vari-
ous auxiliary tasks with the target task in the fine-tuning stage
to improve performance, which is impractical because auxil-
iary tasks are often unavailable during fine-tuning.

3 Methodology
3.1 MolAug: Molecular Graph Augmentations

with Chemical Enantiomers and Homologies
Initially, GraphCL [You et al., 2020] augments molecular
graph data in the form of naive random corruption (e.g., drop-
ping bonds, dropping atoms and etc.). However, these aug-
mentations may alter molecular graph semantics completely
even if the perturbation is weak. For example, dropping a
carbon atom in the phenyl ring will alter the aromatic sys-
tem and result in an alkene chain, which will drastically
change the molecular properties. Besides, MoCL [Sun et
al., 2021] attempts to incorporate domain knowledge into
graph data augmentation via replacing valid substructures in
molecular graph with bioisosteres that share similar proper-
ties. However, bioisosteres are used to modify some molec-
ular properties as expected (e.g, reduce toxicity) in drug de-
sign [Mannhold et al., 2012], which may introduce incorrect
supervision for molecular properties prediction such as toxi-
city prediction. We compare MolAug with these augmenta-
tions in section 4.5.
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(a) L-alanine (b) D-alanine (c) Phenol (d) 2-methylphenol

Figure 2: Illustration of MolAug. L-alanine (a) and D-alanine (b) is a pair of enantiomers; Phenol and 2-methylphenol is a pair of homologies.
Gray, red, blue and white balls denote Carbon (C), Oxygen (O), Nitrogen (N) and Hydrogen (H) atoms respectively.

To alleviate these issues, we resort to chemical enantiomers
and homologies. As shown in Figure 2 (a) and (b), an enan-
tiomer is one of two stereoisomers that are mirror images of
each other that are non-superposable, much as one’s left and
right hands are mirror images of each other that cannot appear
identical simply by reorientation. Despite the structural dif-
ference, enantiomers share the identical chemical and physi-
cal properties with each other in most cases and thus being a
more suitable alternative for molecular graph augmentations
in molecular properties prediction. In practice, we can obtain
chemical enantiomers of a molecule by changing the chiral-
ity type which is provided in the atom (node) feature. Be-
sides, as shown in Figure 2 (c) and (d), chemical homolo-
gies are a series of compounds differing from each other by
a repeating unit, such as a methylene bridge, which share the
same chemical properties with each other. Therefore, chem-
ical homologies can serve as an ideal way of augmentation
when predicting molecular chemical properties. For each
molecule x and its label y in the dataset D of down-stream
task, we can obtain its various augmented versions with op-
eration MolAug(·) which can be enantiomers, homologies or
their combinations. Now, we can formulate the loss of fine-
tuning with MolAug as,

LM = E
(x,y)∼D

(l (y, fθ (x)) + µ1l (y, fθ(MolAug(x)))),

(1)
where µ1 is a trade-off parameter controlling the impact of
MolAug and l is the loss function of downstream task. We
can also obtain various augmentations for each molecule dur-
ing each iterations with MolAug, which we study in sec-
tion 4.6. Apart from pretrain-then-finetune paradigm, Mo-
lAug can also work well in training from scratch, which we
validate in the appendix.

3.2 WordReg: Smoothness-inducing
Regularization Built on Dropout

Existing fine-tuning strategies [Haoming et al., 2020; Xu et
al., 2021b; Aghajanyan et al., 2021] in NLP enforce the out-
put of the model not to change much, when injecting per-
turbations to the input or model parameters. In other words,
they encourage the model to be insensitive to perturbations,
and thus effectively control its capacity [Mohri et al., 2012].
Compared with these strategies, WordReg imposes the pertur-
bations on the neurons which is more efficient than perturb-
ing the input or huge model parameters. Besides, as shown in

Spectral subgradient

Figure 3: Illustration of WordReg. We obtain the worst-case drop
mask vector mw (corresponding to mr) via solving a BQP problem
with spectral subgradient-based method.

Figure 3, WordReg obtains the worst-case dropout via maxi-
mizing the divergence between the outputs with two different
dropout which is task-dependent and can introduce stronger
regularization than random dropout (validated in Figure 6).
Formally, consider the pre-trained neural networks fθ(x,m)
that takes sample x as input when fine-tuning on downstream
task. m is a mask vector denoting which neuron of the pre-
trained model should be dropped. More specifically, for the
i-th unit mi of vector m, mi = 1 indicates that the neuron
should be dropped while mi = 0 illustrates that the neuron
should be preserved during dropout. To start, we introduce
mr to denote the mask vector of random dropout of vanilla
training. With the dropout ratio σ ∈ [0, 1] preseted, we can
define the constraint on m as,

Rm =
{
m | m ∈ {0, 1}N , ∥m∥0 = ⌊σN⌋

}
, (2)

where ∥ · ∥0 is the ℓ0 norm, N is the number of neurons in the
model. Therefore, we can obtain the worst-case mask vector
mw by solving an optimization problem,
mw = argmax

m∈Rm

E
(x,y)∼D

DKL (fθ(x,mr)||fθ(x,m)) , (3)

where DKL is Kullback–Leibler divergence. With Taylor ex-
pansion, we can approximate the optimal solution as,

mw ≈ argmax
m∈Rm

1

2
mTHm, (4)

H = E
(x,y)∼D

∇2DKL (fθ(x,mr)||fθ(x,m))

∣∣∣∣
m=0

, (5)

H is the Hessian matrix of the loss DKL at m = 0
which is a N × N semi-positive definite matrix. Obvi-
ously, this is a Binary Quadratic Programming (BQP) prob-
lem, which is NP-hard but admits an approximate solution to
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mw. Here, we propose a novel method to solve this prob-
lem efficiently based on the spectral subgradient [Boyd et al.,
2003]. Firstly, we convert {0, 1}-constraint on m of Rm to
{−1, 1}-constraint on n via defining n = 2m− 1. Then we
introduce a new variable n̂ with N + 1 dimensions,

n̂i =

{
1, if i = N + 1;

ni, otherwise.
(6)

Then we can rewrite constraint Rm as a new constraint Rn̂

on n̂,

Rn̂ =
{
n̂ | n̂ ∈ {±1}N+1, eT n̂ = c

}
, (7)

where c = 2⌊σN⌋−N+1 and e ∈ RN+1 is an all-one vector.
By these transformations, we can reformulate the BQP in Eq
(5) as a new BQP in terms of n̂, where the constraint term
n̂ ∈ {±1}N+1 can be rewrited as n̂2

i = 1. We then introduce
a Lagrange multiplier λi for each constraint n̂2

i = 1 and λ0

for the constraint eT n̂ = c. Now, we can formulate the dual
problem of the original BQP as,

min
λ,λ0

d (λ, λ0) , (8)

with

d (λ, λ0) = max
∥n̂∥2=N+1

n̂T [L+ diag(λ)]n̂− eTλ− cλ0

= (N + 1)λmax − eTλ− cλ0

(9)
where

L =

(
H He+ 1

2λ0e
eTH + 1

2λ0e
T 0

)
∈ RN+1×N+1

, and λmax is the largest eigenvalue of L + diag(λ). The
eigenvector of unit norm umax corresponding to λmax can be
derived via approximated by using a single-step power iter-
ation instead of conducting naive eigenvalue decomposition.
Then, the maximum n̂∗ can be derived,

n̂∗ =
√
N + 1umax. (10)

The dual problem Eq.(8) can be solved by the gradient de-
scent method over iterations. We show the gradient of d w.r.t
λ and λ0 as follows,

∇λd = (N + 1)u2
max − e, (11)

∂d

∂λ0
=

1

2
(N + 1)uT

max

(
0 e
e 0

)
umax − c, (12)

where u2
max denotes an element-wise square of umax. During

fine-tuning the pre-trained models with WordReg, over each
mini-batch, we compute the above gradient to make an one-
step update of the Lagrange multipliers λ and λ0 along the
descending direction, before the maximum n̂∗ is taken with
the updated multipliers. Finally, both ±n̂∗ are optimal and
we should choose the one closer to n̂N+1 = 1 as required.
Note that we seek the worst-case dropout mask layer-by-layer
instead of applying it to an entire network as a whole. This
can make the WordReg computationally efficient as well as
prevent too many neurons from being dropped at a few layers.

With the worst-case dropout mask vector mw obtained, we
can formulate the loss of fine-tuning with WordReg as,

LW = E
(x,y)∼D

(l (y, fθ (x))+µ2DKL (fθ(x,mr), fθ(x,mw))),

(13)
where µ2 is a trade-off parameter controlling the impact of
WordReg, which we study in section 4.6.
Remark: There are also some regularizations ELD [Ma
et al., 2017] and FD [Zolna et al., 2018] built on dropout.
WordReg differs from them in two aspects: (1) WordReg
introduces the worst-cast dropout, which is task-dependent
and possess stronger regularization ability than their random
drop; (2) ELD and FD are designed to reducing the gap be-
tween training (sub-model with dropout) and inference (full
model without dropout) while WordReg controls the gap be-
tween sub-model with different dropouts.

3.3 Combining MolAug and WordReg
Additionally, we can conduct fine-tuning with MolAug and
WordReg simultaneously. Formally, we specify the loss func-
tion of combining MolAug and WordReg in Eq (14).

LM+W = E
(x,y)∼D

(l (y, fθ (x)) + µ1l (y, fθ(MolAug(x)))

+ µ2DKL (fθ(x,mr), fθ(x,mw))).
(14)

The pseudo codes can be found in the appendix.

4 Experiments
4.1 Experimental Setup
Base Pre-trained Molecular Graph Models. We adopt re-
cent proposed pre-trained molecular graph models MPG [Li
et al., 2021b] as the base model and fine-tune it with our pro-
posed strategies. We also adopt MGSSL [Zhang et al., 2021]
and GraphLog [Xu et al., 2021a] as our base models to val-
uate that our strategies can be plugged into the fine-tuning of
various pre-trained molecular graph models.
Fine-tuning Tasks and Datasets. Following previous
works, we use 8 benchmark datasets from the Molecu-
leNet [Wu et al., 2018] to perform molecular property predic-
tion. To keep fair, we adopt the scaffold splitting method with
a ratio for train/validation/test as 8:1:1 as previous works.
We apply a grid search procedure to obtain the best hyper-
parameters with validation set. More details of the hyper-
parameters and datasets are deferred to the appendix. The
experiments on drug-drug interaction prediction and drug-
target interaction prediction can be found in the appendix.
Baselines. We adopt two types of baselines:

• Training from scratch: TF Roubust [Rogers and Hahn,
2010] is a DNN-based multitask framework taking the
molecular fingerprints as the input. GCN [Kipf. and
Welling, 2017], Weave [Kearnes et al., 2016] and
SchNet [Schuett et al., 2017] are three graph convolu-
tional models. MPNN and its variants DMPNN, MGCN,
CMPNN and CoMPT have been introduced in the re-
lated work. AttentiveFP [Xiong et al., 2020] is an exten-
sion of the graph attention network.
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Table 1: The performance comparison (higher is better for classification task, lower is better for regression task). Relative Improvement
refers to the absolute improvement over MPG base model divided by the original results of MPG. We adopt it as a unified description of
improvements for both classification and regression. The methods marked with ‘*’ means the original papers follow a different data splitting
with MPG, we fine-tune their public pre-trained models with the splitting as MPG and report the results here. The numbers in brackets are
the standard deviation and the ones underlined are the previous best results. ‘−’ means the methods are too time-consuming or original
implementations do not admit regression task without non-trivial modifications.

Task Classification (ROC-AUC) Regression (RMSE)
Dataset BBBP SIDER ClinTox BACE Tox21 ToxCast FreeSolv ESOL

# Molecules 2039 1427 1478 1513 7831 8575 642 1128
ECFP [Rogers and Hahn, 2010] 0.783(0.050) 0.630(0.019) 0.673(0.031) 0.861(0.024) 0.760(0.009) 0.615(0.017) 5.275(0.751) 2.359(0.454)

TF Robust [Ramsundar and others., 2015] 0.860(0.087) 0.607(0.033) 0.765(0.085) 0.824(0.022) 0.698(0.012) 0.585(0.031) 4.122(0.085) 1.722(0.038)
GraphConv [Kipf. and Welling, 2017] 0.877(0.036) 0.593(0.035) 0.845(0.051) 0.854(0.011) 0.772(0.041) 0.650(0.025) 2.900(0.135) 1.068(0.050)

Weave [Kearnes et al., 2016] 0.837(0.065) 0.543(0.034) 0.823(0.023) 0.791(0.008) 0.741(0.044) 0.678(0.024) 2.398(0.250) 1.158(0.055)
SchNet [Schuett et al., 2017] 0.847(0.024) 0.545(0.038) 0.717(0.042) 0.750(0.033) 0.767(0.025) 0.679(0.021) 3.215(0.755) 1.045(0.064)

MPNN [Gilmer and others., 2017] 0.913(0.041) 0.595(0.030) 0.879(0.054) 0.815(0.044) 0.808(0.024) 0.691(0.013) 2.185(0.952) 1.167(0.430)
DMPNN [Yang et al., 2019] 0.919(0.030) 0.632(0.023) 0.897(0.040) 0.852(0.053) 0.826(0.023) 0.718(0.011) 2.177(0.914) 0.980(0.258)

MGCN [Lu et al., 2019] 0.850(0.064) 0.552(0.018) 0.634(0.042) 0.734(0.030) 0.707(0.016) 0.663(0.009) 3.349(0.097) 1.266(0.147)
AttentiveFP [Xiong et al., 2020] 0.908(0.050) 0.605(0.060) 0.933(0.020) 0.863(0.015) 0.807(0.020) 0.579(0.001) 2.030(0.420) 0.853(0.060)

TrimNet [Li et al., 2021a] 0.892(0.025) 0.606(0.006) 0.906(0.017) 0.843(0.025) 0.812(0.019) 0.652(0.032) 2.529(0.111) 1.282(0.029)
CMPNN [Song et al., 2020] 0.927(0.017) 0.616(0.003) 0.902(0.008) 0.856(0.012) 0.806(0.016) 0.681(0.008) 2.007(0.442) 0.798(0.112)
CoMPT [Chen et al., 2021] 0.938(0.021) 0.634(0.030) 0.934(0.019) 0.859(0.016) 0.817(0.014) 0.693(0.025) 1.855(0.578) 0.774(0.058)

Mol2Vec [Jaeger et al., 2018] 0.876(0.030) 0.601(0.023) 0.828(0.023) 0.841(0.052) 0.805(0.015) 0.690(0.014) 5.752(1.245) 2.358(0.452)
N-GRAM [Liu et al., 2019] 0.912(0.013) 0.632(0.005) 0.855(0.037) 0.876(0.035) 0.769(0.027) − 2.512(0.190) 1.100(0.160)

SMILES-BERT [Wang et al., 2019] 0.959(0.009) 0.568(0.031) 0.985(0.014) 0.849(0.021) 0.803(0.010) − 2.974(0.510) 0.841(0.096)
HU.et.al.∗ [Hu et al., 2020] 0.915(0.040) 0.614(0.006) 0.762(0.058) 0.851(0.027) 0.811(0.015) 0.714(0.019) − −

GraphCL∗ [You et al., 2020] 0.906(0.028) 0.629(0.037) 0.865(0.017) 0.872(0.023) 0.826(0.037) 0.728(0.025) − −
JOAO∗ [You et al., 2021] 0.895(0.033) 0.634(0.011) 0.869(0.022) 0.863(0.021) 0.818(0.021) 0.733(0.006) − −

AD-GCL∗ [Susheel et al., 2021] 0.918(0.025) 0.651(0.020) 0.884(0.032) 0.881(0.017) 0.826(0.031) 0.742(0.012) − −
GraphLog∗ [Xu et al., 2021a] 0.902(0.007) 0.648(0.015) 0.875(0.009) 0.873(0.022) 0.823(0.017) 0.738(0.0021) − −
MGSSL∗ [Zhang et al., 2021] 0.933(0.009) 0.656(0.011) 0.906(0.019) 0.889(0.006) 0.828(0.015) 0.740(0.018) − −
GROVER [Rong et al., 2020] 0.940(0.019) 0.658(0.023) 0.944(0.021) 0.894(0.028) 0.831(0.025) 0.737(0.010) 1.544(0.397) 0.831(0.120)

MPG [Li et al., 2021b] 0.922(0.012) 0.661(0.007) 0.963(0.028) 0.920(0.013) 0.837(0.019) 0.748(0.005) 1.269(0.192) 0.741(0.017)
MPG + MolAug 0.958(0.022) 0.672(0.025) 0.968(0.017) 0.928(0.07) 0.849(0.022) 0.760(0.010) 0.976(0.028) 0.699(0.052)

MPG + WordReg 0.975(0.015) 0.676(0.010) 0.991(0.012) 0.946(0.014) 0.857(0.010) 0.762(0.010) 0.988(0.130) 0.664(0.048)
MPG + MolAug + WordReg 0.978(0.016) 0.685(0.012) 0.986(0.021) 0.932(0.016) 0.862(0.011) 0.763(0.008) 0.934(0.093) 0.695(0.039)

Relative Improvement +6.1% +3.6% +2.9% +2.8% +3.0% +2.0% +26.4% +10.4%

• Pretrain-then-finetune: We also compare with sev-
eral pre-trained models with vanilla fine-tuning:
Mol2Vec [Jaeger et al., 2018], N-Gram [Liu et al.,
2019], SMILES-BERT [Wang et al., 2019], GROVER,
Hu et.al, MPG and several graph contrastive learning
methods as introduced in the related work.

4.2 Comparisons with State-of-the-art Results
We first fine-tune the state-of-the-art pre-trained molecular
graph model MPG with MolAug, WordReg and their com-
binations respectively. The results are reported in Table 1
which provides the following observations: (1) MolAug and
WordReg consistently perform better than vanilla fine-tuning
on MPG. The overall relative improvement is 7.2% (3.4%
on classification tasks and 18.4% on regression tasks) ; (2)
Equipped with MolAug, WordReg or their combinations,
MPG yields new state-of-the-art results on molecular prop-
erty prediction; (3) The combination of MolAug and Wor-
dReg brings a 26.4% relative improvement over MPG on a
small dataset FreeSolv with only 642 labeled molecules. This
confirms that our strategies can alleviate the over-fitting is-
sues which is often severer in small-scaled datasets.

4.3 Comparisons with Other Fine-tuning Methods
Due to the fact that there is no fine-tuning methods specially
designed for pre-trained molecular graph models, we con-
sider some start-of-the-arts fine-tuning strategies in other do-
mains. As can be observed in Table 2, generally, existing

Table 2: Comparison with other fine-tuning methods. The running
time is evaluated on the same device (Tesla V100 GPU). We provide
more details and results in the appendix.

Methods BBBP SIDER
ROC-AUC Time (s) ROC-AUC Time (s)

Vanilla Fine-tuning (Base model) 0.922(0.012) 654.6(7.9) 0.661(0.007) 327.6(5.2)
SMART [Haoming et al., 2020] 0.959(0.009) 9583.3(26.2) 0.673(0.005) 8927.5(31.1)
R3F [Aghajanyan et al., 2021] 0.931(0.008) 3876.5(35.6) 0.659(0.013) 2930.5(16.7)
Adaptive Fine-tuning [Han and others., 2021] 0.944(0.012) 8051.2(8.2) 0.653(0.012) 6982.3(15.9)
ChildTuning [Xu et al., 2021b] 0.952(0.005) 8541.4(24.8) 0.668(0.017) 7358.6(22.8)
MolAug 0.958(0.027) 789.8(15.1) 0.672(0.019) 405.6(5.7)
WordReg 0.975(0.015) 1659.8(10.1) 0.676(0.010) 1436.3(20.3)
MolAug + WordReg 0.978(0.016) 2322.4(16.8) 0.685(0.012) 1791.68(14.9)

fine-tuning techniques can also bring improvements for Pre-
trained molecular graph models. Compared with them, Mo-
lAug and WordReg are more suitable for pre-trained molec-
ular graph models because they can avoid heavy tunning or
heavy computational overhead of other fine-tuning methods
and achieve the best performance among them.

4.4 Improving the Performance of Various
Pre-trained Molecular Graph Models

To validate that MolAug and WordReg are model-agnostic,
we fine-tune other pre-trained molecular graph models in-
cluding MGSSL and GraphLog (see in the appendix for
the limited space) with our MolAug and WordReg. Fig-
ure 4 shows the comparisons between our strategies and
vanilla fine-tuning on the pre-trained model MGSSL. Ob-
viously, our strategies outperform vanilla fine-tuning across
various datasets, which validates that MolAug & WordReg
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Figure 4: MolAug and WordReg’s performance (compared with
vanilla fine-tuning) on another pre-trained model MGSSL.

can also improve the performance when fine-tuning various
pre-trained molecular graph models.

4.5 Ablation Study
Ablation Study for MolAug. In this section, we substitute
MolAug with general graph augmentations including nodes
drop (ND), edges perturbation (EP) in GraphCL [You et al.,
2020] and domain knowledge-enriched molecular graph aug-
mentations (DK) in MoCL [Sun et al., 2021]. Besides, we
also consider chemical enantiomers (Enan.) and homologies
(Homo.) of MolAug in isolation. The results demonstrated
in Figure 5 illustrate that general graph augmentations and
DK bring negative or limited improvements over vanilla fine-
tuning, which may alter molecular property completely. Be-
sides, using Enan. and Homo. in isolation is not the optimal
alternative. Instead, the combinations of these two ingredi-
ents of MolAug achieve the best performance.
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Figure 5: Comparisons between MolAug and existing molecular
graph augmentations. The improvements refer to the improvements
over vanilla fine-tuning.

Ablation Study for WordReg. We substitute the worst-
case dropout with random dropout to study its influence. As
shown in Figure 6, WordReg outperforms the random dropout
across various drop ratios, which validates that looking for the
worst-case dropout is necessary and effective. Figure 6(a) is
symmetrical because both two dropouts are random.

4.6 Hyper-parameters Analysis
Worst-case dropout ratio. We have study dropout ratio in
Figure 6(b). Obviously, WordReg can achieve brilliant per-
formance when the two dropout ratios are in a reasonable
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Figure 6: Comparisons between WordReg and random dropout reg-
ularization. The experiments are conducted with MPG base model
on SIDER dataset. Here σ0 and σ are dropout ratio of vanilla train-
ing (fine-tuning) and worst-case drop, respectively.
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Figure 7: Hyper-parameters Analysis.

range (0.1-0.3). Besides, WordReg tends to perform better
when the two dropout ratios are close or identical.

Augmentations times of MolAug. As shown in Fig-
ure 7(a), more augmentations for each molecule at each it-
eration bring improvements. However, the performance is
prone to be steady when the augmentations times are up to
3. On the other hand, more augmentations times will lead to
unnecessary computational overhead.

Trade-off parameters µ1, µ2. Figure 7(b) shows an differ-
ent influence between µ1 and µ2. For µ1, the accuracy will
be improved and then tend to converge with its value increas-
ing, which illustrates that MolAug can also work well even
if its trade-off parameter is oversized. In contrast, for µ2, the
accuracy sees a dramatical drop, which can be imputed to its
over-powerful regularization.

5 Conclusions and Future Work
We propose two effective strategies, MolAug & WordReg,
for fine-tuning pre-trained molecular graph models to allevi-
ate the over-fitting issues. The empirical results suggest that
our strategies can advance the performance of vanilla fine-
tuning on various pre-trained models and outperform state-
of-the-arts results by a large margin. Also, we validate that
our strategies are superior to existing fine-tuning techniques.
Interesting direction for future work is applying our strategies
to other molecule-related tasks such as molecule generation.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.03.479055doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.03.479055


References
[Aghajanyan et al., 2021] Armen Aghajanyan, Akshat Shri-

vastava, Anchit Gupta, Naman Goyal, Luke Zettlemoyer,
and Sonal Gupta. Better fine-tuning by reducing represen-
tational collapse. In ICLR, 2021.

[Boyd et al., 2003] Stephen Boyd, Lin Xiao, and others.
Subgradient methods. 2003.

[Chen et al., 2021] Jianwen Chen, Shuangjia Zheng, and
others. Learning attributed graph representation with com-
municative message passing transformer. IJCAI, 2021.

[Devlin et al., 2019] Jacob Devlin, Ming-Wei Chang, and
others. Bert: Pre-training of deep bidirectional transform-
ers for language understanding. NAACL, 2019.

[Duvenaud et al., 2015] David Duvenaud, Dougal Maclau-
rin, and others. Convolutional networks on graphs for
learning molecular fingerprints. NIPS, 2015.

[Gilmer and others., 2017] Justin Gilmer and others. Neural
message passing for quantum chemistry. ICML, 2017.

[Han and others., 2021] Xueting Han and others. Adaptive
transfer learning on graph neural networks. In KDD, 2021.

[Haoming et al., 2020] Jiang Haoming, He Pengcheng, and
. others. Smart: Robust and efficient fine-tuning for pre-
trained natural language models through principled regu-
larized optimization. ACL, 2020.

[Howard and Ruder, 2018] J. Howard and S. Ruder. Univer-
sal language model fine-tuning for text classification. In
ACL, 2018.

[Hu and others., 2020] Ziniu Hu and others. Gpt-gnn: Gen-
erative pre-training of graph neural networks. KDD, 2020.

[Hu et al., 2020] Weihua Hu, Bowen Liu, and others. Strate-
gies for pre-training graph neural networks. ICLR, 2020.

[Jaeger et al., 2018] Sabrina Jaeger, Simone Fulle, and oth-
ers. Mol2vec: Unsupervised machine learning approach
with chemical intuition. J CHEM INF MODEL, 2018.

[Kearnes et al., 2016] Steven Kearnes, Kevin McCloskey,
and others. Molecular graph convolutions: Moving be-
yond fingerprints. J Comput Aid Mol Des, 2016.

[Kipf. and Welling, 2017] N. Thomas Kipf. and M. Welling.
Semi-supervised classification with graph convolutional
networks. ICLR, 2017.

[Li et al., 2021a] Pengyong Li, Yuquan Li, and others. Trim-
net: learning molecular representation from triplet mes-
sages for biomedicine. BIB, 2021.

[Li et al., 2021b] Pengyong Li, Jun Wang, and others. An ef-
fective self-supervised framework for learning expressive
molecular global representations to drug discovery. BIB,
2021.

[Liu et al., 2019] Shengchao Liu, Mehmet Demirel, and oth-
ers. N-gram graph - simple unsupervised representation
for graphs, with applications to molecules. NeurIPS, 2019.

[Lu et al., 2019] Chengqiang Lu, Qi Liu, and others. Molec-
ular property prediction: A multilevel quantum interac-
tions modeling perspective. AAAI, 2019.

[Ma et al., 2017] Xuezhe Ma, Yingkai Gao, and others.
Dropout with expectation-linear regularization. 2017.

[Mannhold et al., 2012] Raimund Mannhold, Hugo Kubinyi,
and others. Bioisosteres in medicinal chemistry. 2012.

[Mohri et al., 2012] Mehryar Mohri, Afshin Rostamizadeh,
and others. Foundations of machine learning. 2012.

[Ramsundar and others., 2015] B. Ramsundar and others.
Massively multitask networks for drug discovery. 2015.

[Rogers and Hahn, 2010] David Rogers and Mathew. Hahn.
Extended-connectivity fingerprints. J chem inf, 2010.

[Rong et al., 2020] Yu Rong, Yatao Bian, and others. Self-
supervised graph transformer on large-scale molecular
data. NIPS, 2020.

[Schuett et al., 2017] T. K. Schuett, Kindermans, and others.
Schnet: A continuous-filter convolutional neural network
for modeling quantum interactions. NIPS, 2017.

[Song et al., 2020] Ying Song, Shuangjia Zheng, and oth-
ers. Communicative representation learning on attributed
molecular graphs. In IJCAI, 2020.

[Sun et al., 2021] Mengying Sun, Jing Xing, and others.
Mocl: Contrastive learning on molecular graphs with
multi-level domain knowledge. KDD, 2021.

[Susheel et al., 2021] Susheel, Pan Li, and others. Adversar-
ial graph augmentation to improve graph contrastive learn-
ing. 2021.

[Wang et al., 2019] Sheng Wang, Yuzhi Guo, and others.
Smiles-bert - large scale unsupervised pre-training for
molecular property prediction. BCB, 2019.

[Wu et al., 2018] Zhenqin Wu, Bharath Ramsundar, and oth-
ers. Moleculenet: a benchmark for molecular machine
learning. Chemical science, 2018.

[Xia et al., 2021a] Jun Xia, Haitao Lin, Yongjie Xu, Lirong
Wu, Zhangyang Gao, Siyuan Li, and Stan Z. Li. Towards
robust graph neural networks against label noise, 2021.

[Xia et al., 2021b] Jun Xia, Lirong Wu, Jintao Chen,
Ge Wang, and Stan Z Li. Debiased graph contrastive learn-
ing. arXiv preprint arXiv:2110.02027, 2021.

[Xia et al., 2022] Jun Xia, Lirong Wu, , Jintao Chen, Bozhen
Hu, and Stan Z. Li. SimGRACE: A Simple Framework for
Graph Contrastive Learning without Data Augmentation.
In Proceedings of The Web Conference 2022. Association
for Computing Machinery, 2022.

[Xiong et al., 2020] Zhaoping Xiong, Dingyan Wang, and
others. Pushing the boundaries of molecular representa-
tion for drug discovery with graph attention mechanism. J
Med Chem, 2020.

[Xu et al., 2021a] Minghao Xu, Hang Wang, and others.
Self-supervised graph-level representation learning with
local and global structure. ICML, 2021.

[Xu et al., 2021b] Runxin Xu, Fuli Luo, and others. Raise
a child in large language model: Towards effective and
generalizable fine-tuning. EMNLP, 2021.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.03.479055doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.03.479055


[Yang et al., 2019] Kevin Yang, Kyle Swanson, and others.
Analyzing learned molecular representations for property
prediction. J CHEM INF MODEL, 2019.

[You et al., 2020] Y. You, T. Chen, and others. Graph con-
trastive learning with augmentations. In NeurIPS, 2020.

[You et al., 2021] Yuning You, Tianlong Chen, and others.
Graph contrastive learning automated. ICML, 2021.

[Zhang et al., 2021] Zaixi Zhang, Qi Liu, and others. Motif-
based graph self-supervised learning for molecular prop-
erty prediction. NeurIPS, 2021.

[Zhu et al., 2021a] Yanqiao Zhu, Yichen Xu, Qiang Liu, and
Shu Wu. An empirical study of graph contrastive learning.
2021.

[Zhu et al., 2021b] Yanqiao Zhu, Yichen Xu, Feng Yu,
Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive
learning with adaptive augmentation. In Proceedings of
the Web Conference 2021, pages 2069–2080, 2021.

[Zolna et al., 2018] Konrad Zolna, Devansh Arpit, and oth-
ers. Fraternal dropout. In ICLR, 2018.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.03.479055doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.03.479055

	Introduction
	Related work
	Molecular Representation Learning
	Pre-training on Graphs

	Methodology
	MolAug: Molecular Graph Augmentations with Chemical Enantiomers and Homologies
	WordReg: Smoothness-inducing Regularization Built on Dropout
	Combining MolAug and WordReg

	Experiments
	Experimental Setup
	Comparisons with State-of-the-art Results
	Comparisons with Other Fine-tuning Methods
	Improving the Performance of Various Pre-trained Molecular Graph Models
	Ablation Study
	Hyper-parameters Analysis

	Conclusions and Future Work

