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Abstract 

Cognitive reserve (CR) has been introduced to explain individual differences in 

susceptibility to cognitive or functional impairment in the presence of age or pathology. We 

developed a deep learning model to quantify the CR as residual variance in memory 

performance using the structural MRI data from a lifespan healthy cohort. The 

generalizability of the sMRI-based deep learning model was tested in two independent 

healthy and Alzheimer’s cohorts using transfer learning framework.  

  Structural MRIs were collected from three cohorts: 495 healthy adults (initially aged 

20-80) from RANN, 620 healthy participants (age 36-100) from lifespan Human Connectome 

Project Aging (HCPA), and 941 subjects from Alzheimer’s Disease Neuroimaging Initiative 

(ADNI). Region of interest (ROI)-specific cortical thickness and volume measures were 

extracted using the Desikan-Killiany Atlas. Cognitive reserve was quantified by residuals 

which subtract the predicted memory from the true memory. Cascade neural network (CNN) 

models were used to train RANN dataset for memory prediction. Transfer learning was 

applied to transfer the T1 imaging-based model from source domain (using RANN) to the 

target domain (HCPA or ADNI). 

 The CNN model trained on the RANN dataset exhibited strong linear correlation 

between true and predicted memory based on the chosen T1 cortical thickness and volume 

predictors. In addition, the model generated from healthy lifespan data (RANN) was able to 

generalize to an independent healthy lifespan data (HCPA) and older demented participants 

(ADNI) across different scanner types. The estimated CR was correlated with CR proxies 

such education and IQ across all three datasets. 

The current findings suggest that the transfer learning approach is an effective way to 

generalize the residual-based CR estimation. It is applicable to various diseases and may 

flexibly incorporate different imaging modalities such as fMRI and PET, making it a 

promising tool for scientific and clinical purposes. 
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Introduction 

Approximately 15–20% of adults aged 65 or older suffer from significant cognitive 

decline resulting in mild cognitive impairment (MCI); among these, 11.3% adults later 

develop dementia due to Alzheimer’s disease (AD) (Association, 2021). With the lack of an 

effective treatment strategy, there is a great need to identify factors that can slow the 

progression to dementia and maintain quality of life (Zissimopoulos, Crimmins, & St Clair, 

2014). 

Cognitive reserve (CR) has been introduced to explain individual differences in 

susceptibility to cognitive or functional impairment in the presence of age or disease-related 

brain changes (Stern, 2002). Individuals with high CR have greater resilience and maintained 

normal cognitive function longer when confronted with late-life neuropathology. Typical CR 

proxy measures include years of education (Meng & D'Arcy, 2012; Stern et al., 1994), 

premorbid IQ (Alexander et al., 1997), occupational achievement, and engagement in 

cognitively and socially stimulating activities (Scarmeas & Stern, 2003). These are thought to 

protect against functional impairment by promoting the ability to better compensate for brain 

changes. However, these proxy variables of cognitive reserve is with controversy. 

Specifically, these proxy measures fail to provide the entirety of the construct, the same value 

of a proxy variable may reflect different experiences across people. In addition, most proxy 

measures only represent static cognitive reserve, and cannot be changed over time for 

adjusting the change of cognitive reserve. Lastly, these measures rely on recollection of prior 

activities which are an indirect proxy of CR. (Borenstein, Copenhaver, & Mortimer, 2006; 

Jones et al., 2011; Satz, Cole, Hardy, & Rassovsky, 2011). To address the above mentioned 

limitation, a direct measure of CR based on unbiased information is highly needed. One 

popular approach to quantify CR is to measure the residual variance between predicted 

cognitive performance based on individual’s level of brain status and neuropathology and the 

actual individual’s performance (Reed et al., 2010). This residual-based measures offer a 

more precise measurement of CR (Bocancea et al., 2021). High-reserve individuals exhibit 

higher actual measured cognitive performance than that predicted.  
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Structural magnetic resonance imaging (sMRI) has been used as a measure of the 

regional brain atrophy underlying cognitive decline and dementia (Mueller, Schuff, & 

Weiner, 2006). Previous studies using the sMRI to calculate the residual variance operational 

measure of CR showed promising results (Reed et al., 2010; Zahodne et al., 2015; Zahodne et 

al., 2013) in older participants. Currently, most research in cognitive aging has used life-span 

data (Razlighi, Habeck, Barulli, & Stern, 2017; Salthouse, 2010; Taylor et al., 2017; Tucker-

Drob, 2019). However, leveraging life-span brain and cognition data in quantifying cognitive 

reserve has not been done. 

In addition, brain imaging data from multi-sites may have high variability due to 

different MRI sequences of different scanners, thus, limiting direct application of a 

previously trained model to new datasets acquired from different sites.  

Traditional machine learning methods to mitigate the influence of variability across sites 

require a balanced sample from each site and assume the same distribution across training 

and test datasets. The performance of a predictive model declines when these assumptions are 

violated. Transfer learning is a machine learning technique that utilizes the knowledge gained 

from one task and applies it to a different but related task. It is a popular optimization 

approach that allows rapid progress or improved performance when modeling the second 

task. The sMRI obtained from various sites or scanners may represent similar brain properties 

but may exhibit different observational distributions. Thus, the transfer learning approach 

may be applied to improve the generalizability of the sMRI-based residual models.   

In this study, we proposed a CR quantification framework that leverages a single-site, 

large scale lifespan data and uses transfer learning to handle scanner and site differences. We 

first built a deep learning model to quantify the CR as residual variance in memory 

performance using the sMRI data from a healthy lifespan cohort (age 20-80). Our first goal 

was to assess whether using lifespan data of heathy individuals, which shows more variability 

in cognition function, may enable better quantification of the relationship between sMRI and 

cognitive performance. Second, to test the generalizability of the sMRI-based deep learning 

model, we utilized the transfer learning approach to fine-tune the pre-trained deep learning 

model to an independent, healthy lifespan cohort: the Human Connectome Project-Aging 

cohort (HCPA). Third, to test whether the model generated from healthy lifespan data could 
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generalize to older MCI or demented individuals, we used transfer learning again to fine-tune 

the model to fit data from participants in the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI). The ADNI datasets were acquired from different scanners and under different 

imaging conditions, so we could test whether the model is affected by different scanners. To 

validate our operationalization of CR in all three cohorts, we hypothesized that the estimated 

CR would correlate with education and IQ (i.e., a well‐established CR proxy). 

 

Method and Material 

Participants 

CR/RANN: 495 healthy adults (initially aged 20-80) were drawn from our ongoing 

studies at Columbia University Irving Medical Center: The Reference Ability Neural 

Network (RANN) study and the Cognitive Reserve (CR) study (Stern, 2009; Stern et al., 

2014). Demographic characteristics of these participants are summarized in Table 1.   

Subjects were recruited primarily by randomized market mailing. An initial telephone 

screening determined whether participants met basic inclusion criteria (i.e., right-handed, 

English speaking, no psychiatric or neurological disorders, and normal or corrected-to-normal 

vision). Potentially eligible participants were further screened in person with structured 

medical and neuropsychological evaluations to ensure that they had no neurological or 

psychiatric conditions, cognitive impairment, or contraindication for MRI scanning. Global 

cognitive functioning was assessed with the Mattis Dementia Rating Scale (Lucas et al., 

1998), on which a minimum score of 130 was required for retention in the study. In addition, 

participants who met diagnostic criteria for MCI were excluded. The studies were approved 

by the Internal Review Board of the College of Physicians and Surgeons of Columbia 

University. 

CR/RANN Memory Tasks: all participants performed Selective Reminding Task 

(SRT) (Buschke & Fuld, 1974). Three memory measures were based on sub-scores of the 

SRT: the long-term storage sub-score, continuous long-term retrieval, and the number of 

words recalled on the last trial. The z-scores of each of the three measures were computed by 
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subtracting the sample means followed by dividing by the sample standard deviation. The 

composite memory scores were computed as the average of the three z-scores. 

HCPA: 620 healthy participants with available cognitive data (age 36-100) from the 

lifespan Human Connectome Project Aging were included in this study (Bookheimer et al., 

2019). The demographic information for the participants was presented in Table 1. HCPA 

excludes participants who have been diagnosed and treated for major psychiatric disorders 

(e.g., schizophrenia, bipolar disorder) or neurological disorders (e.g., stroke, brain tumors, 

Parkinson’s Disease). To be included in the current study, the following measurements had to 

be available: 1) T1-weighted MRI scans from 3T scanner, 2) years of education and recent 

occupation, and 3) Composite episodic memory score. 

HCPA Memory Tasks: The cognitive and performance battery includes episodic memory 

measured by Picture Sequence Memory Test and Rey Auditory Verb al Learning Test 

(RAVLT). The z-scores of each of the three measures were computed by subtracting the 

sample means followed by dividing by the sample standard deviation. The composite 

memory scores were computed as the average of the three z-scores. 

ADNI: 941 subjects, including 417 normal control (CN), 378 mild cognitive impairment 

(MCI), and 146 Alzheimer’s disease (AD), were included from this study. The demographic 

information for the participants is presented in Table 1 and Table 3.  

Detailed inclusion and exclusion criteria for the ADNI study can be found 

at adni.loni.usc.edu. To be included in the current study, the following measurements had to 

be available: 1) T1-weighted MRI scans from 3T scanner, 2) years of education and recent 

occupation, and 3) Composite memory score (Crane et al., 2012). Written informed consent 

was obtained from all study participants according to the Declaration of Helsinki, and Ethical 

approval for data collection and sharing was given by the institutional review boards of the 

participating institutions in the ADNI. 

ADNI Memory Tasks: ADNI memory was measured using modern psychometric 

approaches to analyze Rey Auditory Verbal Learning Test (RAVLT, 2 versions), AD 

Assessment Schedule – Cognition (ADAS-Cog, 3 versions), Mini-Mental State Examination 

(MMSE), and Logical Memory data. The composite scores were computed based on bifactor 
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model (Crane et al., 2012). The computed data were downloaded from the ADNI website 

(UWNPSYCHSUM_03_26_20.csv). 

Image Procedures 

Neuroimaging data acquisition  

 RANN: Structural MRI scans were acquired on a 3.0T Philips Achieva scanner. T1-

weighted MPRAGE scan was acquired with a TE/TR of 3/6.5 ms and Flip Angle of 8°, in-

plane resolution of 256 × 256, field of view of 25.4 × 25.4 cm, and 165–180 slices in axial 

direction with slice-thickness/gap of 1/0 mm.  

HCPA: Structural MRI scans were acquired from all sites using 3T Siemens Prisma 

scanner, and 32-channel Prisma head coil. T1-weighted images were acquired with 3D multi-

echo magnetization prepared rapid gradient echo (MEMPRAGE) at 0.8 mm isotropic 

resolution (Harms et al., 2018). Other parameters include: TR/TI = 2500/1000, TE = 

1.8/3.6/5.4/7.2 ms, flip angle of 8 deg, FOV of 256 × 240 × 166 mm with a matrix size of 320 

× 300 × 208 slices, water excitation employed for fat suppression (to reduce signal from bone 

marrow and scalp fat), and up to 30 TRs allowed for motion-induced reacquisition. 

  ADNI: Structural MRI scans were acquired from all sites using 3T Philips, GE, and 

Siemens scanners. Since the acquisition protocols were different for each scanner, an image 

normalization step was performed by the ADNI. The imagining sequence was a 3-

dimensional sagittal part magnetization prepared of rapid gradient-echo (MPRAGE). This 

sequence was repeated consecutively to increase the likelihood of obtaining at least one 

decent quality of MPRAGE image. Image corrections involved calibration, geometry 

distortion, and reduction of the intensity of non-uniformity applied on each image by the 

ADNI. More details concerning the sMRI images is available on the ADNI homepage 

(http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/). 

Neuroimaging data processing 
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Each subject’s structural T1 scan was reconstructed using FreeSurfer v7.1.1 

(http://surfer.nmr.mgh.harvard.edu/). The accuracy of FreeSurfer’s subcortical segmentation 

and cortical parcellation (Fischl et al., 2002) has been reported to be comparable to manual 

labeling. All T1 images went through an automated quality control through MRIQC (Esteban 

et al., 2017). For the multiple available T1 images at the same visit, we selected the images 

with the best quality for further analysis. For all images that passed quality check, cross-

sectional image processing was performed using FreeSurfer Version 7.1.1 

(https://surfer.nmr.mgh.harvard.edu/). Region of interest (ROI)-specific cortical thickness and 

volume measures were extracted from the automated anatomical parcellation using the 

Desikan-Killiany Atlas (Desikan et al., 2006) for cortical and aseg atlas for subcortical ROIs. 

To test the robustness of all the models (supplementary material), we also used an alternative 

Destrieux atlas (Destrieux, Fischl, Dale, & Halgren, 2010).  

Brain memory prediction model 

 The memory prediction model was trained using the RANN dataset. An overview of the 

transfer learning method is presented in Figure 1. First, the RANN dataset was split into the 

training set (70%) and test set (30%) using a conditionally random method. The distributions 

of age and sex in the two sets were statistically identical. Cascade neural network models with 

all regional cortical thickness and volume from FreeSurfer as inputs were used to train the RANN 

dataset for memory prediction. The cascade neural network is a feedforward neural network 

involving connections from the input and every previous layer to the subsequent layer (Figure 

2). The advantage of the model is that it accommodates the nonlinear relationship between 

input and output. It has been shown to outperform the other common classical machine 

learning approaches for brain residual-based analysis, and more flexible and efficient to 

implement the transfer learning framework compared to other approaches. (Chen et al., 

2020). The hyperparameters of the model, including numbers of hidden layers, numbers of 

neurons, penalty of regularization and types of activation function, were optimized through 

random search. The loss function of model optimization was specified as mean square error 

function optimized using gradient descent algorithm with an adaptive learning rate and 
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constant momentum. A 10-fold cross-validation procedure was conducted within the training 

set to estimate the memory prediction model performance. To quantify model performance, 

metrics including Pearson’s correlation coefficient (rho), mean absolute error (MAE) and 

Cohen’s f2 between the predicted and true memory were calculated. 

Transfer learning 

 To transfer the T1 imaging-based model from source domain (using RANN) to the target 

domain (HCPA or ADNI), we first randomly divided the whole HCPA or ADNI dataset into 

the tuning pool and test sets (tuning set 70%, test set 30%). The subset of the tuning pool was 

randomly selected to re-train the pre-trained model.  

In the refined optimization procedure of the transfer learning, the optimal tuning sample, 

the regularization ratio (0 to 1), the loss function (i.e. mean square error), and the choice which 

layers were frozen (if the layer of the pre-trained model was frozen, the parameters in that layer 

were not updated in the fine-tuning process) were tested. The transfer learning process was 

optimized using an agile optimization process because it facilitated rapid prototyping and broad 

searching. After the tuning procedure, the transferred model was applied to the test set for 

model performance evaluation. We compared the performance of transfer learning approach 

with the TLCO, which is used for re-training the pre-trained memory prediction model by using 

a combination of the tuning and training sets with the site indicator. We optimized the tunning 

process by adopting an agile optimization method that exploit a time-saving optimizer called 

scaled conjugate gradient (SCG) algorithm for fast optimization and the hyperparameter 

settings emulated as those of the training process in the target domain. We compared the 

performance of the optimized transfer learning with tuning procedure with the model applied 

pre-trained model without tuning. Since ADNI data was collected from multiple sites and 
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multiple scanners, for the secondary analysis, we applied the transfer learning by the scanner 

manufacturers: GE, Siemens and Philips. The data in the three target domains were divided in 

to the tuning-pool and test sets (Siemens: tuning pool N=377, test set N=160; GE: tuning pool 

N=164, test set N=68; Philips: tuning pool N=124, test set N=48). Then, transfer learning was 

performed in the same pattern separately for three datasets. The transfer learning with cotrain 

(TLCO) method was used to compare the performance with transfer learning. TLCO integrated 

both training set from source domain and tunning set from target domain to tune the pre-trained 

CNN model. The TLCO approach accounts for intersite differences through statistical variance 

analysis. It employs statistical models to regress out site-specific differences by using statistical 

covariates. This approach requires the source domain data to be accessible and the data size 

from different sites to be balanced. The code of the transfer learning is available at 

https://github.com/XiZhu-CU/Transfer-Learning-Submission. 

Quantification of cognitive reserve 

 After establishing the memory prediction model, a person’s predicted memory 

performance could be obtained. Structural brain features along with age and sex were 

included in the model as predictors (Reed et al., 2010). Race was not included in the model as 

a predictor because more than 93% of our targeted sample (ADNI) is non-Hispanic white. 

The impact of race on the model performance is presented in supplementary material. In 

addition, the estimated intracranial volume (eTIV) was extracted from each subject and used 

as a predictor. Cognitive reserve was quantified by residuals which subtract the predicted 

memory from the true memory. To validate our brain-based CR quantification, we performed 

correlation analyses between the residuals and several proxies of CR including education, 

occupation and IQ. For RANN and ADNI, we used National Adult Reading Test (NART) IQ, 

which reflects the crystallized intelligence. Occupational attainment variables (data, people, 
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things) reflect the specific demands of an occupation. All RANN and ADNI findings were 

corrected for multiple comparison at p<0.01 (5 measures). Similarly, for HCPA, the NIH 

Toolbox was administrated provided the Crystallized composite scores which reflects the 

intelligence. The Crystallized Composite score is derived from performance on the Reading 

Recognition and the Picture Vocabulary tasks (Heaton et al., 2014). The HCPA findings were 

corrected for multiple comparison at p<0.025 (2 measures). 

Results 

Demographic Characteristics 
Demographic and clinical characteristics are presented in Table 1. All three datasets 

significantly differed in age, sex, and education. Participants were older in ADNI compared 

with RANN and HCPA. Education was higher in HCPA subjects, compared with RANN or 

ADNI. IQ was not significantly different between CRNN and ADNI. 

Training memory prediction modeling in the RANN dataset 
 The cascade neural network model (Figure 2) using 10-fold cross-validation on the 

RANN training set demonstrated significant linear correlation between true and predicted 

memory based on the chosen T1 cortical thickness and volume predictors for both training set 

(rho=0.6076, MAE=0.5856, Cohen’s f2=0.58) and independent test set (rho=0.3886, 

MAE=0.6980, Cohen’s f2=0.18) (Figure 3). After random search, the model performance 

improved in training set (rho=0.5578, MAE=0.5792, Cohen’s f2=0.45) and test set 

(rho=0.3963, MAE=0.6888, Cohen’s f2=0.19). 

There was significant correlation of NART IQ with residuals for training set (NART IQ: 

rho=0.154, p-value =.004, Cohen’s f2=0.01). There was significant correlation between the 

residuals and both NART IQ (NART IQ: rho=0.169, p-value =.003, Cohen’s f2=0.03) and 

education (rho=0.2069, p-value=0.01, Cohen’s f2=0.04) for test set. Residuals were not 

associated with data, people or things. 

 

Transfer learning to HCPA 
The best model trained using RANN dataset (pre-trained model) was used in this 

analysis. First, we tuned the model using tuning set from target domain (HCPA). We found 
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linear correlation and low MAE between true and predicted memory for tuning set 

(rho=0.4909, MAE=0.4101, Cohen’s f2=0.32) and test set (rho=0.4062, MAE=0.4107, 

Cohen’s f2=0.20). When we directly applied pre-trained model without tuning, the 

performance dropped in test set (rho=0.3099, MAE=0.5358, Cohen’s f2=0.11) (Figure 4). 

Second, the transfer learning with cotrain (TLCO) approach uses both training set from 

source domain (RANN) and tunning set from target domain (HCPA) to further tune the pre-

trained model. The TLCO performed comparable with the transfer learning approach (Tuning 

set: rho=0.3872, MAE=0.4318, Cohen’s f2=0.18; Test set: rho=0.4474, MAE=0.3867, 

Cohen’s f2=0.25). 

There was significant correlation of both IQ and education with residuals of the transfer 

learning model for both tuning set (IQ: rho=0.227, p-value <.001, Cohen’s f2=0.05; 

education: rho=0.255, p-value=0.0015, Cohen’s f2=0.07); IQ: rho=0.3612, p-value <.001, 

Cohen’s f2=0.15; education: rho=0.2798, p-value<.001, Cohen’s f2=0.09). 

 

Transfer learning to ADNI 
    1. Primary analysis 

 We found strong linear correlation and low MAE between true and predicted memory for 

tuning set (rho=0.7385, MAE=0.4935, Cohen’s f2=1.2) and test set (rho=0.7117, 

MAE=0.5435, Cohen’s f2=1.03). When we directly applied the pre-trained model without 

tuning, performance dropped in test set (rho=0.5485, MAE=0.9259, Cohen’s f2=0.43) (Figure 

5). The TLCO performed comparable with the transfer learning approach (Tuning set: 

rho=0.7187, MAE=0.5158, Cohen’s f2=1.1; Test set: rho=0.6684, MAE=0.5967, Cohen’s 

f2=0.81). 

 There was significant correlation between IQ, education, and residuals of the transfer 

learning model for both tuning set (IQ: rho=0.2025, p-value < .001, Cohen’s f2=0.04; 

education: rho=0.1698, p-value=0.0032, Cohen’s f2=0.03) and test set (IQ: rho=0.366, p-

value < .001, Cohen’s f2=0.15; education: rho=0.255, p-value < .001, Cohen’s f2=0.07). 

 We further assessed the correlation of IQ and education with residuals separately within 

each diagnosis group (CN, MCI and AD). Correlations of NART IQ and education with 
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residuals are presented in Table 4. Significant correlation between IQ and residuals was 

found in all three groups, while the significant correlation between education and residuals 

was found in CN and MCI. 

    2. Secondary analysis 

 We found strong linear correlation and low MAE between true and predicted memory in 

the Siemens, GE and Philips respectively for tuning set (Siemens: rho=0.6488, 

MAE=0.0.5349; GE: rho=0.7813, MAE=0.4700, Cohen’s f2=1.57; Philips: rho=0.8264, 

MAE=0.3850, Cohen’s f2=2.15) and test set (Siemens: rho=0.5909, MAE=0.5163, Cohen’s 

f2=0.54; GE: rho=0.6558, MAE=0.5932, Cohen’s f2=0.75; Philips: rho=0.5785, 

MAE=0.7179, Cohen’s f2=0.50). Using the transfer learning approach, the performance of the 

RANN pre-trained model could be reproduced in each target domain with a smaller amount 

of tuning data (Figure 6). The transfer learning approach always outperformed the TLCO. 

The results are shown in Table 3.   

 Significant and positive correlations between NART IQ, education and residuals were 

demonstrated in both tuning and test sets (Table 5).  

Discussion 

In this study, we built a deep learning model to quantify the CR as residual variance in 

memory performance using the sMRI data from a healthy lifespan cohort (age 20-80). 

Importantly, our study demonstrates that the pre-trained model constructed using the healthy 

lifespan data (RANN) from a single-site and a single sequence was able to generalize to two 

target datasets acquired with different age ranges, imaging protocols, and clinical status. 

These included healthy lifespan Human Connectome Project-Aging cohort (HCPA) and older 

MCI and demented participants from Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

across different scanner types. By tuning the models with relatively small sample sizes and 

the same T1 brain features, optimal transferred models were obtained with satisfactory 

prediction performance in both target cohorts. The estimated CR was also validated by 

showing significant correlation with CR proxies such as education and IQ across all three 

datasets. 
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We found that the cascade neural network (CNN) model trained on the RANN data 

demonstrated a linear correlation between true and predicted memory based on the T1 

cortical thickness and volume predictors. The sMRI-based measure of CR was associated 

with CR the proxy measures of education and IQ. Previous studies have used sMRI from 

older healthy subjects (Sole-Padulles et al., 2009), older MCI, or patients with AD to quantify 

CR (van Loenhoud et al., 2017). However, patients with neurological diseases with aberrant 

cognition may lead to bias for the quantification of CR. We first demonstrated that using 

lifespan data of healthy individuals, enabled good quantification of cognitive performance. It 

is worth noting that the performance achieved by our model is also comparable to that of 

previous studies applying residual approaches on quantifying CR (Vieira, Pinaya, & 

Mechelli, 2017). 

Second, to test the generalizability of the sMRI-based deep learning model, this study 

utilized the transfer learning approach to fine-tune the pre-trained deep learning model to an 

independent, healthy lifespan HCPA data. The transfer learning approach is an efficient and 

stabilized way to generalize the T1 imaging-based memory prediction model. Compared with 

the TLCO, the tuning methods with the transfer learning approach always provided lower 

MAE and a stronger correlation between the actual and predicted memory in all results. 

Third, the model not only could generalize from healthy lifespan data to an independent 

healthy lifespan HCPA dataset, but also to an older demented participants from ADNI using 

transfer learning. Although the three datasets administrated different tests to assess memory, 

by tunning the models with relatively small sample size, prediction performance of the 

models were relatively comparable. Moreover, the models were robust across different 

scanners. When conducting retrospective multi-center imaging studies, such as ADNI, or 

applying models trained on one site to another, heterogeneous MRI data from different 

scanner hardware, and acquisition protocols will pose challenges in the evaluation and 

generalization of these trained models. Structured programs aimed at standardizing and 

harmonizing MRI acquisition in research settings (Weiner et al., 2017). However, data 

obtained in these selected frameworks might not be representative of real-world populations. 

In our work, CNN was trained, tested using the RANN dataset, then using transfer learning to 

fine-tune and test in another two datasets obtained by different MR protocols and scanners to 
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capture the full spectrum of heterogeneity among data and provide a less dataset-specific 

approach. Through further training iterations, the pre-trained CNN network adjusted for data 

bias stemming from the differences in acquisition and reconstruction between different 

scanners. In fact, our approach overcomes the caveats of previous work, which obtained data 

from single-center datasets leading to a limited reproducibility of findings (Wen et al., 2020).  

In the current study, we used a standard pipeline to process the raw MRI image and 

extracted the cortical thickness and volume measures from T1-weighed MRIs. Our ROI-

based approach shown promising and robust results for the given sample sizes. Further deep 

learning studies with larger sample size may also consider using voxel-wise whole brain 

based approach as input. Moreover, despite progress on the interpretability of deep learning, 

deep neural networks are still considered, to a large extent, as black boxes, due to the 

difficulty of interpreting their inner networks. For example, even when an model allows 

detection of patients from controls with high levels of accuracy, it can be difficult to establish 

the specific features that informed the classification decision (Cruz-Roa, Arevalo Ovalle, 

Madabhushi, & Gonzalez Osorio, 2013). However, our focus of this study was to better 

predict the memory measures, further studies may develop more interpretable deep learning 

models to better understand the underlying neural mechanism. Lastly, we only used sMRI to 

assess the feasibility for CR estimation across three studies. Future studies should consider 

adding other MRI modalities, such as, diffusion tensor imaging (DTI), PET, and CSF 

biomarkers together with sMRI to improve the power of prediction as well as the accuracy of 

the residual in estimating CR. 

Conclusions 

 In conclusion, we have shown the general feasibility of using deep learning to quantify 

cognitive reserve by leveraging lifespan healthy data. Our findings showed that 

brain/cognitive function across lifespan provided good brain-based quantification of CR. 

Moreover, transfer learning shows promises for building robust models that can be fine-tuned 

and generalized to independent healthy lifespan cohort and in patients with Alzheimer’s 

disease, also robust across different scanners with different acquisition parameters. The 

residuals (CR) were significantly associated with NART IQ and education across different 
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cohorts. The transfer learning method is applicable to various brain diseases or CR proxies 

and may flexibly incorporate different imaging modalities making it a promising tool for 

scientific and clinical purposes. 
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Figures and Tables: 
Figure 1. Overview of transfer learning methods 
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Figure 2: the initial cascade neural network model used to train CR model (top). This network 
trained using RANN dataset has seven layers (L1 to L7). The number under each layer 

represents the number of neurons in that layer. The first layer has a weight coming from the 
input and each subsequent layer has weight coming from the inputs with all previous layers. 

The last layer is the network output, called as output layer. The output layer is also connected 
directly with the input layer beside with hidden layer. The optimized CNN model after 

random search (bottom) included 5 layers.  
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Figure 3. Scatter plot for true memory (x axis) against predicted memory (y axis) in RANN 
dataset after random search. 
A) Training set; B) Test set 
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Figure 4. Scatter plot for true memory (x axis) against predicted memory (y axis) in HCPA 
dataset, while applied pretrained model from RANN. 

A) Tuning set using HCPA data; B) Test set after tuning using HCPA data; C) Test set if 
applying the pretrained model directly 
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Figure 5. Scatter plot for true memory (x axis) against predicted memory (y axis) in ADNI 
dataset, while applied pretrained model from RANN. 

A) Tuning set; B) Test set after tuning; C) Test set if applying the pretrained model 
directly 
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Figure 6. Scatter plot for true memory (x axis) against predicted memory (y axis) in ADNI 
dataset by scanner types using random searching models. 

          Tuning set             Test set after tuning          Test set before tuning 

  

   

   

 

 

 

 

 

 

 

 

 

A B C 

D E F 

G H I 

Si
em

en
s 

G
E 

Ph
ili

ps
 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.03.479059doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.03.479059


 28 

Tables: 

Table 1. Demographic Characteristics in RANN, HCPA, and ADNI Study 

  RANN HCPA ADNI p 
Total N 495 620 941   
Age       <0.001 
-       Mean(SD) 53.42 (16.90) 59.499 (15.171) 72.40 (7.21)   
-       Median(Q1,Q3) 60.00 (38.00,67.00) 58.04 (46.92,70.98) 72.00 (67.00,77.00)   
Sex, n(%)       0.0065 
-       Female 282 (57%) 358 (57.6%) 474 (50.4%)   
-       Male 213 (43.0%) 263 (42.4%) 467 (49.6%)   
Memory           <0.001 
-       Mean(SD) 0.03(0.94) 0.01 (0.72) 0.45 (0.91)   
-       Median(Q1,Q3) 0.13(-0.62,0.80) -0.34 (-0.38, 0.37) 0.53 (-0.19,1.12)   
Education       <0.001 
-       Mean(SD) 16.20 (2.35) 17.46 (2.19) 16.42 (2.53)   
-       Median(Q1,Q3) 16.00 (14.00,18.00) 18.00 (16, 19) 16 (15.00,18.00)   
IQ NART IQ Nih fluidcogcomp NART IQ 0.512 
-       N-Miss 5 2 17   
-       Mean(SD) 117.02 (8.68) 120.85 (139.17) 116.35 (11.23)   

-       Median(Q1,Q3) 119.20  
(111.92, 124.00) 

100  
(91.00, 108.00) 

119.44 
(110.76,124.40)   

People         
-       N-Miss 113 - -   
-       Mean(SD) 4.77 (2.28) - -   
-       Median(Q1,Q3) 6.00 (3.00, 6.00) - -   
Data         
-       N-Miss 113 - -   
-       Mean(SD) 1.73 (1.44) - -   
-       Median(Q1,Q3) 1.00 (1.00, 3.00) - -   
Things         
-       N-Miss 113 - -   
-       Mean(SD) 5.40 (2.40) - -   
-       Median(Q1,Q3) 7.00 (2.00, 7.00) - -   

Diagnosis, n(%)         
CN 495 (100%) 620 (100%) 417 (44.3%)   
MCI - - 378 (40.2%)   
AD - - 146 (15.5%)   
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Table 2. Demographic Characteristics in ADNI dataset across three scanners 

 GE 
(N=232) 

Philips 
(N=172) 

Siemens 
(N=537) 

Total 
(N=941) p-value 

ADNI 
Memory     0.043 

- Mean (SD) 0.38(0.95) 0.36(0.92) 0.52(0.90) 0.45(0.91)  
Diagnosis, 

n(%)     0.034 

- CN 99(42.7%) 64(37.2%) 254(47.3%) 417(44.3%)  
- MCI 87(37.5%) 77(44.8%) 214(39.9%) 378(40.2%)  
- AD 46(19.8%) 31(18.0%) 69(12.8%) 146(15.5%)  

Age     0.803 
- Mean (SD) 72.62(7.13) 72.50(6.86) 72.26(7.36) 72.40(7.21)  
Gender, n(%)     0.307 

- Female 109(47.0%) 83(48.3%) 282(52.5%) 474(50.4%)  
- Male 123(53.0%) 89(51.7%) 255(47.5%) 467(49.6%)  

PT Education     0.665 
- Mean (SD) 16.31(2.64) 16.38(2.58) 16.49(2.46) 16.42(2.53)  

NART IQ     0.365 
- N-Miss 10 5 2 17  

- Mean (SD) 115.53 (11.55) 116.05 (11.31) 116.77 (11.07) 116.35 (11.23)  
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Table 3. Model performance for ADNI datasets by scanning manufacturers using random 

searching model 

Manufacturers  Tuning 
set 
(TL) 

Test set 
before 
tuning 
(TL) 

Test set 
after 
tuning 
(TL) 

Tuning 
set 
(TLCO) 

Test set 
(TLCO) 

Siemens Rho 0.6488 0.4589 0.5909 0.7836 0.5904 
MAE 0.5349 0.8938 0.5163 0.5750 0.6244 

GE Rho 0.7813 0.5181 0.6558 0.5655 0.4636 
MAE 0.4700 0.8461 0.5932 0.6816 0.6731 

Philips Rho 0.8264 0.3138 0.5785 0.5039 0.5238 
MAE 0.3850 0.9285 0.7179 0.6406 0.6563 

 
 *transfer learning (TL), and the hybrid (TLCO) approaches 
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Table 4. Pearson’s correlation coefficient between IQ, education and residuals by group 

diagnosis in ADNI dataset 

Group  IQ p-value Education p-value 

CN Tuning set 
residuals 

0.109 0.063 0.122* 0.036 

 Test set  
residuals 

0.302** 0.001 0.304** 0.001 

MCI Tuning set 
residuals 

0.189** 0.002 0.148* 0.015 

 Test set  
residuals 

0.245* 0.011 0.112 0.244 

AD Tuning set 
residuals 

0.355** 0.001 0.093 0.366 

 Test set  
residuals 

0.215 0.138 0.003 0.986 
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Table 5. Pearson’s correlation coefficient between IQ, education and residuals by scanner 

types in ADNI dataset 

Manufacturer  IQ p-value Education p-value 

Siemens Tuning set 
residuals 

0.2364** < .001 0.2171** 0.0020 

 Test set  
residuals 

0.1933* 0.0143 0.1858* 0.0186 

GE Tuning set 
residuals 

0.2700** 0.0085 0.1999* 0.0461 

 Test set  
residuals 

0.0886 0.4791 0.3130* 0.0094 

Philips Tuning set 
residuals 

0.1996* 0.0488 0.2808** 0.0047 

 Test set  
residuals 

0.5001** <.001 0.3424** 0.0172 
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