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Abstract
Motivation: Advancing technologies that quantify gene expression in space are

transforming contemporary biology research. A class of spatial transcriptomics methods

uses barcoded bead arrays that are optically decoded via microscopy and are later matched

to sequenced data from the respective libraries. To obtain a detailed representation of the

tissue in space, robust and efficient computational pipelines are required to process

microscopy images and accurately basecall the bead barcodes.

Results: Optocoder is a computational framework that processes microscopy images to

decode bead barcodes in space. It efficiently aligns images, detects beads, and corrects for

confounding factors of the fluorescence signal, such as crosstalk and phasing. Furthermore,

Optocoder employs supervised machine learning to strongly increase the number of

matches between optically decoded and sequenced barcodes. We benchmark Optocoder

using data from an in-house spatial transcriptomics platform, as well as from Slide-Seq(V2),

and we show that it efficiently processes all datasets without modification.

Availability: Optocoder is publicly available, open-source and provided as a stand-alone

Python package on GitHub: https://github.com/rajewsky-lab/optocoder
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Introduction
Single-cell RNA sequencing methods (scRNA-seq) are by now well-established and of

high-throughput, detecting thousands of genes at single-cell resolution1,2. Employing

scRNA-seq, researchers can readily investigate cellular heterogeneity, cell types and states,

and developmental processes for a variety of tissues3–5. One shortcoming of all scRNA-seq

methods, however, is tissue dissociation that results in loss of spatial context. Spatial

information is crucial to study cellular interactions in the native tissue space, to identify

spatial expression patterns, and dissect tissue organisation in 3D6–9. Such information is

essential for the investigation of disease states and progression and it is anticipated that

gene expression patterns in space and time will be key for the early detection and

interception of complex diseases10. In recent years, several efforts have been made to either

retrieve the spatial information computationally11–14, or to directly sequence gene expression

in tissue space experimentally15.

One way of acquiring spatially resolved transcriptomics experimentally is to use

hybridisation-based methods, such as MERFISH, which achieve single-cell resolution but

only for a pre-selected panel of genes16 (although this panel can be at genome-scale). In

addition to these, sequencing-based techniques that provide unbiased whole-transcriptome

spatial data have become available. Methods such as the Spatial Transcriptomics17 and the

commercially available 10x Visium18 use printed spatially barcoded RNA capture probes. In

these techniques, however, every spot in space currently aggregates multiple cells.

Seq-scope is another method in which Illumina flowcells are used to amplify barcoded

oligonucleotides, resulting in a higher resolution system19. As a pioneering single-cell

resolution platform, Slide-Seq (and Slide-SeqV2), was developed to spatially capture tissue

gene expression20,21.

In array-based methods, such as Slide-Seq, a tightly packed group of beads carrying

DNA oligos are placed on a glass or a plate, termed puck. All oligos on the same bead share

a random barcode sequence long enough to make this barcode unique for the bead. These

barcodes and their positions on the puck are first optically decoded using subsequent rounds

of hybridization to fluorescently labelled nucleotides in a microscopy setup20,21. After this

spatial registration of the beads, a tissue slice is placed on the puck. RNA is captured by the

oligos on the beads, amplified, and sequenced- including, for each captured RNA molecule,

the bead barcode. Thus, by matching these sequenced barcodes to the optically decoded

barcodes, RNA molecules can be mapped to the spatial position of the bead which captured

the respective molecules. Similar to Slide-Seq, we are currently also developing a spatial

transcriptomics platform using a spatially barcoded assay. Efficient processing and analysis

of the acquired datasets takes place in two fronts: in the processing of the sequencing data,
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for which we have developed Spacemake22; and in the processing of the microscopy

images.

Computational processing of the microscopy images to retrieve bead barcodes and

their locations is challenging and requires three main steps. First, raw images are processed

to correct problems such as misalignments across cycles and illumination errors, as well as

to detect the beads. Next, the detected beads are processed for basecalling. Several

technical issues may distort the signal, such as crosstalk caused by the overlapping laser

excitation spectrum and phasing caused by inefficient reactions resulting in lagged signals.

Finally, base calling quality is evaluated. Several base calling methods have been developed

for sequencing data by primarily modelling the above confounding factors23,24. While these

methods provide solutions for their respective objectives, there is either no public and

easy-to-use implementation, or they are not actively maintained. Hence, there is a lack of a

complete pipeline that can process microscopy images from beginning-to-end in an

easy-to-use, extensible and robust manner, specifically tailored for array-based spatial

transcriptomics assays. In addition, array-based methods require the matching of the

optically decoded barcodes to the true set obtained by high-throughput sequencing and the

above methods do not make use of such information in a generalizable way.

Here, we developed Optocoder, a computational framework to efficiently process

microscopy data during the optical sequencing of the barcodes and locations of the arrays in

our experimental pipeline. The framework is an open-source Python software package that

inputs microscopy images, processes them, corrects confounding factors, such as crosstalk

and phasing, and performs basecalling. Importantly, we developed a machine learning

based basecaller that increases the number of decoded barcodes that match to sequenced

ones. Furthermore, Optocoder employs several measures to control the quality of the

decoded barcodes at every processing step. We demonstrate Optocoder’s performance on

several datasets, including in-house and publicly available ones, showing the generalizability

of the pipeline to different data modalities. Optocoder is scalable, versatile, extendable and

can be seamlessly integrated into existing computational pipelines.

Materials and methods
Optocoder consists of three distinct modules (Fig. 1). The imaging module is used to align

the input microscopy images and detect the beads and their respective locations (Fig. 1a).

Second, the barcode bases are called by correcting confounding factors, such as spectral

crosstalk and phasing (Fig. 1b). Finally, given that a sequencing barcode set is provided, a

machine learning classifier is trained to increase the number of barcode matches between

the sequencing and the optical set (Fig. 1c). The output of every step is quality controlled

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.04.478148doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=12170766&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=162936,162714&pre=&pre=&suf=&suf=&sa=0,0
https://doi.org/10.1101/2022.02.04.478148
http://creativecommons.org/licenses/by-nc/4.0/


with several metrics to create a final report of the puck, image and base calling quality (Sup.

Fig. 1 & Sup. Fig. 2).

Figure 1: Schematic overview of Optocoder’s modules. a, Image processing is used to align

microscopy images acquired across the sequencing cycles and to detect the beads and their

coordinates on the array. b, Crosstalk and phasing effects are corrected for high-quality

basecalling. c, Machine learning is employed to further correct base calling and increase

matches between the optically decoded and sequenced barcodes.

Image processing

The image processing module is used to align the microscopy images and detect the beads

on the array. The input to Optocoder are the puck images acquired via microscopy for every

barcode base.

Bead detection

Beads are adjoining circular-shaped objects of a given radius, and we utilise Hough Circle

Transform25 to detect them from the overlay image of the last cycle (Sup. Fig. 3a, Methods).

For a given bead batch, bead sizes remain constant across experiments, so that Hough

Transform requires minimal optimisation. In case a different bead batch contains larger or
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smaller beads, the image processing module can be readily modified through adjusting the

expected bead radius parameter. Bead detection outputs the (x, y) coordinates of the beads

which are subsequently used to calculate corresponding channel intensities for each cycle.

Image alignment
The experimental apparatus can physically move between cycles of optical sequencing, thus

resulting in potential positional differences between cycles. To retain the bead identities

during the whole sequencing process, the images need to be aligned to be able to assign

correct intensities to the detected beads. To begin with, the intensities can vary across

cycles and can be very low for the last ones. We therefore first create overlay images and

then apply histogram matching for every cycle by using the last cycle as the reference frame.

Then, we use an image registration method, Enhanced Cross Correlation Maximization26,

with a Euclidean motion model to align images from all cycles to a reference and detect

warping parameters (Sup. Fig. 3b, Methods). Finally, we evaluate the registration quality for

each cycle by using the Structural Similarity Index27 (Methods).

Background Correction

Microscopy images are affected by uneven illumination and background noise that might

influence the subsequent image processing and base calling steps. To subtract this uneven

background signal, we first detect the background image for every channel separately by

using a morphological opening operation and then subtract it from the image (Methods). At

the end of the image processing module, Optocoder outputs a matrix containing the

2-dimensional coordinates for each bead on the puck and the average fluorescence intensity

for each channel.

Basecalling

In the absence of technical noise, calling bases could be performed by calling the highest

intensity channel’s corresponding nucleotide. As shown in the literature for Illumina

sequencing basecallers23,24,28–30, however, there exist confounding factors of the microscopy

readout that need to be taken into consideration for high accuracy basecalls. Similar issues

occur in the case of optical sequencing and we identified spectral crosstalk and phasing

effects as the main factors that convolute the signal in our experiments.
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Spectral crosstalk correction

Crosstalk refers to the correlation between the A-C and G-T channels due to overlapping

emission spectra of fluorophores excited in two laser microscopy setups (Fig. 2a). Optocoder

utilises an estimation method31 to detect the overlap between channels (Methods). More

specifically, the crosstalk matrix is determined by calculating the intensity overlap between

every channel. First, an informative group of bead intensities is selected for every channel

which is subsequently fitted with a regression model against the values in every other

channel. The slope of these models represent the drift of the intensities towards the other

channel and the ratio is subsequently used to correct for crosstalk, resulting in the

deconvolution of the A-C and G-T channels (Fig. 2b, Methods).

Figure 2: Optocoder efficiently ameliorates spectral crosstalk effects. a, The spectra of G-T

and A-C channels partially overlap in a two-laser microscopy setup. b, Pairwise scatterplots

of bead intensities for the puck P4 before (top) and after (bottom) crosstalk correction. Each

dot represents a bead and colouring corresponds to the highest intensity of the channel pair

plotted for each bead.

Phasing and prephasing correction

Phasing and prephasing might be caused by inefficient reactions during the nucleotide

incorporation process32. A bead typically contains millions of oligos that can capture cellular
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molecules and missing incorporation cycles can take place for several of them. Phasing

occurs when a nucleotide is incorporated in the next cycle instead of the current one during

optical sequencing, so that the signal for that bead lags behind (Fig. 3a-b). Similarly,

prephasing occurs when multiple incorporations occur within the same cycle and the

microscopy readout includes multiple nucleotides at the same time (Fig. 3c).32 Phasing and

prephasing result in convoluted signals that strongly affect basecalling quality leading to

erroneous barcodes sequences. We model such effects through probabilities that

correspond to the fraction of bead oligos that have phasing and prephasing for a given cycle

(Methods). Subsequently, we construct a matrix that represents the carry over signal among

cycles with respect to these probabilities and use it to correct for those effects as described

below.

Figure 3: Optocoder efficiently corrects for phasing and prephasing effects. a, In the

absence of (pre)phasing effects, nucleotide incorporation takes place always in the correct

cycle. b, Non-incorporation of a nucleotide in the correct cycle results in phasing. c, Multiple

nucleotide incorporations within the same cycle result in prephasing.

Combined correction step

To combine the spectral crosstalk and phasing correction, we use a simplified model of the

acquired signal similar to30 as

,𝐵
𝑖
 =  𝐶 𝑆

𝑖
 𝑃

where is a matrix containing the observed intensities of bead , is the crosstalk matrix,𝐵
𝑖

𝑖 𝐶 𝑆
𝑖

are the true intensities of bead , and is the phasing matrix (Methods). The crosstalk matrix𝑖 𝑃

is estimated from the first cycle and assumed to be consistent across cycles since it is a

physical phenomenon of the microscopy setup and not cycle dependent. For phasing,

Optocoder uses expected phasing and prephasing probabilities chosen by the user. We
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have observed that for a given bead batch and experimental protocol the amount of phasing

and prephasing are consistent across samples (Sup. Fig. 5 & Sup. Fig. 6). However, we

have also implemented a phasing parameter search function in which Optocoder determines

the best phasing parameters to maximise the number of barcode matches between the

optically decoded and the sequenced barcodes. As the intensity ranges of different channels

vary, we apply feature scaling for every channel before basecalling (Methods). Optocoder

scales channel intensities by removing the median and scaling to the interquartile range

(Robust Scaler) and also a normalised exponential function (SoftMax) is applied to each

cycle’s intensities for every bead before basecalling (Methods).

Basecalling and chastity

Having corrected for spectral crosstalk, phasing and prephasing effects, we call barcode

bases by selecting the nucleotide of the highest intensity for each cycle. We measure our

base calling confidence by computing a chastity score33

,𝐶 𝑝𝑞 =  
𝐼 𝑝𝑞

(𝑛)

𝐼 𝑝𝑞
(𝑛)

 + 𝐼 𝑝𝑞
(𝑛−1)

where and are the intensities of the channels with the highest and the 𝐼 𝑝𝑞
(𝑛)

𝐼 𝑝𝑞
(𝑛−1)

second highest values for bead in cycle .𝑝 𝑞

Machine learning

The spectral crosstalk and phasing corrections greatly improve the basecalling quality and

can be readily employed via Optocoder. In array-based spatial transcriptomics methods,

however, the true set of barcodes is known via high-throughput sequencing. This provides

an opportunity to improve our basecalling by adding a supervised machine learning step.

More specifically, we use the optically decoded barcode sequences that exactly match those

stemming from the sequencing side as a training set and we train a machine learning

classifier for each sample to learn the model parameters that can map bead intensities to

nucleotides (Fig. 4). The input features are the background corrected intensities of all cycles

after robust scaling for each bead and the model outputs nucleotide probabilities for each

cycle and for each bead barcode.

To efficiently tackle this problem we implemented several classifiers and tested their

performance on a number of datasets (Sup. Fig. 4, Methods). We achieved the highest

performance by training Gradient Boosting classifiers for each cycle. Gradient Boosting is an

additive model that combines weak tree models to improve model accuracy. As we input all
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cycle intensities to each model, models capture the effects of other cycles’s intensities as

well.

We begin with splitting the matching barcodes set into a randomised training (80%)

and validation (20%) set. The training set is used as an input into the multi-output Gradient

Boosting classifier and the validation set is used to evaluate the model’s performance for

hyperparameter optimization. The model with highest accuracy is then retained and used to

predict nucleotide bases in the set of non-matching barcodes, which is practically the test

set. We evaluate the performance in the test set by computing the number of additional

matches to the sequenced barcodes.

Figure 4: Supervised machine learning increases the number of matches between the

optically decoded and the sequenced barcode sets. a, a gradient boosting model per

imaging cycle is trained to learn and predict nucleotide bases from channel intensities. b,
Schematic overview of the strategy employed to increase barcode matches.

Quality control (QC)

We have implemented several quality controls in Optocoder. These are collectively shown in

an automatically generated QC sheet that is associated with each sample (Sup. Fig. 1 &

Sup. Fig. 2). In particular, the QC sheet starts with a plot of the raw channel intensities per
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cycle (Sup. Fig. 1a), which facilitates experimental troubleshooting in case significant cycle

deviations occur. Next, the registration accuracy score is plotted (Sup. Fig. 1b) to inspect the

quality of the acquired microscopy images per cycle.

After basecalling, the overall nucleotide distribution averaged over all barcodes is

plotted to measure the base content (Sup. Fig. 1c). To ensure that the barcode sequences

obtained after basecalling are meaningful, Optocoder calculates two measures: string

compression and Shannon entropy (Methods). The distributions of these measures are then

plotted in the QC sheet against the theoretical distributions expected for randomly uniformed

sequences (Sup. Fig. 1d,e). Large deviations from the theoretical distributions would flag low

confidence barcode sequences. Additionally, Optocoder plots these measures across puck

space, so that areas with low confidence bead barcodes may be identified to evaluate if

there are any location-specific barcode quality issues (Sup. Fig. 2c,d).

Furthermore, the distributions of chastity scores that reflect Optocoder’s confidence

on basecalling are plotted (Sup. Fig. 1f). Optocoder visualises the distributions of some of

these metrics in the array space as the spatial distribution might facilitate a better

understanding of the current experiment and also better troubleshooting. Mainly, called

bases and their spatial distribution (Sup. Fig. 2a), and the respective chastity scores (Sup.

Fig. 2b) for each cycle are plotted and saved.

Results

Performance on our data
Our array-based experimental protocol shares certain similarities with SlideSeqV221 and

generates microscopy images containing 4 channels for every imaging cycle. These

channels display specific fluorescence profiles used to call nucleotides - 4 channels for the

four bases G, T, A and C. After library preparation and high-throughput sequencing, the true

set of bead barcodes becomes available, so that we can assess Optocoder’s performance.

We benchmarked Optocoder on 4 different pucks that were prepared according to

our protocol. Each puck contained around 70,000 beads labelled by 12 bases long barcodes

and was optically sequenced under the same experimental conditions. After optical

sequencing the following material was placed on the pucks: ERCC spike-ins (P1) or sections

of E12 mouse brain (P2, P3 and P4). The prepared libraries were sequenced on an Illumina

NextSeq 500 machine and analysed with spacemake22 (Methods). The 100,000 beads with

the most sequencing reads were considered for matching.

Naive basecalling, i.e., without correcting for crosstalk or phasing, resulted in a low

number of matches for all four pucks (Fig. 5a, orange bars). Correcting for spectral crosstalk
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increased the number of matches by 10% to 20% (Fig. 5a, purple bars). As expected, this

increase was reflected by the corresponding chastity scores (Fig. 5b). After crosstalk

correction, Optocoder corrected for phasing and prephasing. This step resulted in additional

matches for all four pucks. (Fig. 5a, green bars) and a corresponding increase in the chastity

scores (Fig. 5b). We observed little to no pre-phasing in our datasets, but a strong phasing

effect (Sup. Fig. 5). The combined correction step enhanced the total number of matches by

2-fold compared to naive basecalling.

Finally, we trained machine learning models to further increase the number of

matches. A model was trained for each puck separately and was used to predict the

nucleotides of the non-matching barcode sequences. Optocoder’s machine learning step

resulted in a further 15%-32% increase of matches to the combined correction matches (Fig.

5a, pink bars). Interestingly, machine learning performance varied across the four pucks,

with the highest increase in number of matches taking place for P2, the puck with the fewest

overall matches.

In summary, Optocoder successfully corrected for crosstalk and phasing effects in

our datasets and strongly enhanced the number of matches between the decoded and the

sequenced barcodes.

Figure 5: Optocoder exhibits high performance on own-generated data. a, Optocoder

efficiently corrects for crosstalk and phasing effects, and employs machine learning, resulting

in a stark increase of the number of matched barcode sequences compared to naive

basecalling in four different pucks. b, Chastity scores consistently increase after correcting

for crosstalk and phasing effects across all four pucks.
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Performance on external data
We primarily developed Optocoder for efficiently processing spatial transcriptomics data

stemming from our in-house experimental method. Optocoder, however, is built to be

versatile and adaptable. To showcase its flexibility, we used Optocoder to analyse similar

microscopy datasets that are publicly available.

The initial Slide-Seq protocol20 uses SOLiD chemistry. The optical sequencing

images are generated via 20 ligations where 6 of them are constant bases. We applied

Optocoder to process the microscopy images associated with three pucks SSP1, SSP2,

SSP3 (Sup. Table 2). After image processing, Optocoder detected and identified   52,754 /

48,564 / 63,643 beads, respectively. We observed little-to-no phasing and prephasing effects

in the three pucks (Sup. Fig. 6). We compared the decoded barcodes against the true set of

sequences that we extracted from the associated BAM file (Methods). Matching the two

barcode sets for SSP1 after crosstalk and phasing correction resulted in 31,308 exact

matches which is ~%37 higher than the number of exact matches with Puckcaller, the

computational pipeline that was developed and accompanied the Slide-Seq protocol. For

SSP2 and SSP3, Optocoder performed similarly to Puckcaller barcodes, with -7% and +5%

difference, respectively. By training the corresponding machine learning model, Optocoder

resulted in 7% to 58% more matches compared to the baseline Puckcaller basecalling. (Fig.

6).

In addition to above, we employed Optocoder to analyse Slide-SeqV2 microscopy

datasets. This is a sequence-by-synthesis generated microscopy data and the cellular

barcodes consist of 14 nucleotides. Optocoder readily processed the microscopy images

and decoded 63,643 barcodes for the puck SSP4 (Sup. Table 2). Little-to-no phasing and

prephasing effects were also observed for that puck too (Sup. Fig. 6). Comparing the

decoded barcodes against the true set of sequenced barcodes that we obtained from the

associated BAM file (Methods) resulted in 39,188 exact matches, similar to what the authors

acquired for the same dataset. Furthermore, training the machine learning model starkly

enhanced the number of matches by ~17%, resulting in a total of 46,329 exact matches.

Taken together, the above demonstrates that Optocoder can reliably analyse different

types of datasets, such as microscopy data of different chemistry, and achieve higher

performance than existing methods.
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Figure 6: Optocoder efficiently processes published Slide-Seq and Slide-SeqV2 datasets.

The number of matches between optically decoded and Illumina sequenced barcodes is

shown for three Slide-Seq and one Slide-SeqV2 puck. In all cases Optocoder outperforms

Puckcaller, the script used by the authors in the original publications.

Discussion
Spatial transcriptomics methods such as Slide-Seq use spatially barcoded bead arrays that

are optically sequenced. We anticipate an increase in both the development of similar

methods and the utilisation of these methods in various research labs for biological insights.

In this study, we present Optocoder, a computational pipeline that efficiently processes

microscopy images for optical sequencing of bead barcodes. Optocoder is an easy-to-use,

open-source Python package and provides a complete pipeline that processes raw

microscopy images to assign bead barcodes in space. Optocoder provides functions to align

images, detect beads, correct crosstalk and phasing issues and finally call the bases.

Furthermore, we implemented a machine learning pipeline to increase the number of

barcode matches between the optically decoded and library sequencing barcodes. We have

implemented and compared four different models that are trained separately for each

sample and we show that the machine learning approach substantially increases the number

of matches.

We initially developed Optocoder for our in-house spatial transcriptomics platform

and we evaluated Optocoder on four different samples. Additionally, we have tested

Optocoder performance on Slide-Seq and Slide-SeqV2 samples and demonstrated that
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Optocoder efficiently processes different datasets and experimental setups with minimal

modifications. In particular, we showed that correcting for crosstalk and phasing effects

improved basecalling quality for our datasets, whereas for Slide-Seq datasets Optocoder

performed similarly to what was originally reported. Employing Optocoder’s machine

Learning module, however, resulted in a stark increase of barcode matches for both

in-house and Slide-Seq datasets.

One drawback of the current crosstalk and phasing correction pipeline is that it

implements a linear model and also the correction parameters are not tailored to beads.

Beads with unique phasing properties would therefore not be efficiently processed with this

approach. As a future development, implementing a more complex model that would allow

for bead specific correction parameters might be beneficial.

Improved performance with the machine learning models indicates that nonlinear

interactions are not fully captured by the crosstalk and phasing correction model. For

machine learning basecalling, one model for each sample is trained to provide a

sample-specific basecalling tool without the need for a general training set. However, this

approach requires samples that already have a high number of matches before machine

learning, so that a model can be trained accurately. For example, relatively poor machine

learning performance for SSP2 might be explained by the small size of the initial matching

set. While our current model provides a general pipeline that can be used for any new

dataset and platform, an additional general model that can be trained commonly and used

for different samples might be beneficial. Investigating what is learned by the machine

learning models can prove useful to analyse and troubleshoot the experimental reasons for

basecalling errors.

Finally, machine learning tools have been previously used for basecalling from raw

signals in different platforms such as Illumina and Nanopore to improve basecalling quality
29,34,35. In principle, the machine learning approach described here utilises matched

sequences and can be potentially extended to such platforms to further improve the

basecalling quality by using already called reads in specific contexts, such as genome

mappability.
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