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ABSTRACT  

The progress made in directed differentiation of stem cells has shown that understanding human 

pancreas development can provide cues for generating unlimited amounts of insulin-producing beta 

cells for transplantation therapy in diabetes. However, current differentiation protocols have not been 

successful in reproducibly generating functional human beta cells in vitro, partly due to incomplete 

understanding of human pancreas development. Here, we present detailed transcriptomic analysis of 

the various cell types of the developing human pancreas, including their spatial gene patterns. We 

integrated single cell RNA sequencing with spatial transcriptomics at multiple developmental timepoints 

and revealed distinct temporal-spatial gene cascades in the developing human pancreas. Cell trajectory 

inference identified endocrine progenitor populations and novel branch-specific genes as the 

progenitors differentiate towards alpha or beta cells, indicating that transcriptional maturation occurred 

over this developmental timeframe. Spatial differentiation trajectories indicated that immature Schwann 

cells are spatially co-located with endocrine progenitors and contribute to beta cell maturation via the 

L1CAM-EPHB2 pathway. Our integrated approach enabled us to identify heterogeneity and multiple 

lineage dynamics within the mesenchyme, showing that it contributed to the exocrine acinar cell state. 

Finally, we have generated an interactive web resource for interrogating human pancreas development 

for the research community. 
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INTRODUCTION 

The pancreas is a multicellular organ composed of exocrine and endocrine compartments. The exocrine 

pancreas contains acinar and ductal cells that secrete digestive juices, while the endocrine pancreas 

contains alpha, beta, delta, epsilon and pancreatic polypeptide cells that co-operatively regulate 

glucose homeostasis. Despite the critical roles of the pancreas in nutrient digestion and glucose 

homeostasis, the dysfunction of which results in pancreatitis, pancreatic cancers and diabetes affecting 

more than half a billion people worldwide (Bray et al., 2018; Ouyang et al., 2020; Saeedi et al., 2019), 

the mechanisms underlying how the individual cell types develop in humans remain unclear.  

Understanding pancreas developmental trajectories can provide essential knowledge for generating 

unlimited amounts of insulin-producing beta cells, for example, from stem cells for cell replacement 

therapies of type 1 diabetes, and much work has been expended in recent years to define effective 

differentiation protocols (D’Amour et al., 2006; Pagliuca et al., 2014; Russ et al., 2015; Veres et al., 

2019). However, current differentiation strategies, which are mainly based on recapitulating gene 

cascades identified in mouse pancreas development, do not reproducibly produce fully functional 

human beta cells in vitro (Nair et al., 2019; Rezania et al., 2014; Russ et al., 2015; Zhu et al., 2016). 

This is not surprising as human islet development occurs over a longer time-span than in mice and 

inter-species differences have been reported, such as in the islet cytoarchitecture, and the presence of 

a single wave of endocrine differentiation and delayed expression of key differentiation genes in humans 

(Nair and Hebrok, 2015; Villasenor et al., 2008). A clearer understanding of human pancreatic 

endocrinogenesis is therefore required, and some progress has recently been made in this through 

single cell RNA sequencing (scRNA-seq). Thus, different progenitor populations have been identified 

in the very early stages of pancreas development (7 and 10 post conception week; PCW) (Gonçalves 

et al., 2021) and significant differences in lineage differentiation between developing mouse and human 

pancreas have recently been identified (Yu et al., 2021). 

However, while scRNA-seq provides a snapshot of gene expression profiles at an unprecedented scale, 

gene information in relation to spatial cell context is lost since tissue dissociation is required. Spatial 

transcriptomics gives positional gene patterns and provides spatial attributes of cells within the tissue 

context. In this study we have therefore utilised both high throughput scRNA-seq and spatial 

transcriptomics of human fetal pancreases at multiple developmental stages followed by data 

integration to define the cellular heterogeneity and spatial developmental landscape of human pancreas 
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develoment. This approach has allowed us to chararacterise and spatially resolve multiple human 

pancreatic cell populations at different developmental stages, including their cell-cell interactions, and 

we have identified novel gene candidates that regulate progenitor cell differentiation. By estimating 

pairwise similarity in transcriptional profiles among cells, we have uncovered spatial differentiation 

trajectories in situ, which enabled us to identify, for the first time, the importance of Schwann cells and 

mesenchymal cells in the differentiation of human endocrine progenitors and acinar cells, respectively.  

 

RESULTS 

scRNA-seq analysis of whole human pancreases at 12-20 PCW 

We combined scRNA-seq with 10x Visium spatial transcriptomics to systematically characterise the 

developing landscape of the human pancreas, as indicated in Fig 1A. For scRNA-seq, whole 

pancreases from 12 individual embryos spanning 7 developmental time points (12, 13, 14, 15, 18, 19 

and 20 PCW) were dissociated, and live-sorted single cells were multiplexed with antibody-

oligonucleotide conjugates that bind to the ubiquitous surface markers b2M and CD298 (Stoeckius et 

al., 2018), which are expressed by the developing human pancreas (Suppl. Fig 1A-1F). We sequenced 

the cells using the 10x Chromium protocol and retained 24,080 high quality cells following stringent 

filtering for downstream analysis (12pcw: 4099, 13pcw: 7168, 14pcw: 3530, 15pcw: 1664, 18pcw: 2171, 

19pcw: 3827, 20pcw: 1621; Suppl. Fig 1G-1I). Unsupervised clustering of our scRNA-seq data revealed 

distinct populations of acinar, ductal, endocrine, endothelial, erythroblast, immune, mesenchymal and 

Schwann cells (Fig 1B & 1C), which we identified by differential expression of established markers (Fig 

1D & 1E). For example, acinar cells were identified by expression of CPA1, endocrine cells by CHGA, 

mesenchyme by COL3A1, immune cells by RAC2, ductal cells by CFTR, endothelial cells by ADGRL4, 

erythroblasts by HBB and Schwann clusters by CRYAB expression (Fig 1 D & 1E). 
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Fig 1: Single cell sequencing of the developing human pancreas.  

A) Schematic showing study design for spatiotemporal analysis of human pancreas development.  

B) UMAP embedding showing different annotated cell clusters in the developing human pancreas at 

12-20 PCW.   
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C) UMAP embedding of the developing pancreas transcriptomes showing the different gestational ages 

(PCW). 

D) Feature plots of selected marker genes for the major cell clusters.  

E) Dotplot showing marker gene distributions across the different cell populations. 

 

Spatial map of the developing human pancreas 

It can be seen from Figure 1B and 1C that our scRNA-seq analysis revealed the presence of multiple 

pancreatic cell types within the developing human pancreas at the early stages of the second trimester. 

To spatially localise them and profile the gene expression dynamics of the cells in their morphological 

context, we performed 10x Visium spatial transcriptomics on 8 pancreas sections retrieved at 12, 15, 

18 and 20 PCW using replicate tissue sections that were approximately 100µm apart from each other. 

We sequenced the samples to a median depth of 177.5 x 106 reads (interquartile range 116.9-294.4 x 

106), which yielded a mean of 1692 genes per spot and 3395 unique molecular identifiers (UMIs) per 

spot (Suppl. Fig 2). Pre-processing and analysis of gene expression signatures in Seurat (Hafemeister 

and Satija, 2019) revealed 3-9 cell clusters (3 clusters at 12 PCW, 8 clusters at 15 PCW and 9 clusters 

each at 18 and 20 PCW), which correlated to distinct spatial locations within the tissues (Fig 2A). 

Annotation using marker genes indicated that some clusters contained multiple cells, as expected of 

the ~55µm spatial resolution available when using 10x Visium. Using this approach we were able to 

stratify populations of endocrine cells (showing high expression of the islet hormones GHRL, SST and 

GCG), pancreatic/endocrine progenitors (expressing NKX6-1, SOX9 and HES1) (Seymour et al., 2007), 

endothelial cells (expressing VWF and ANGPT2), ductal/acinar (expressing CFTR and HES6), acinar 

(expressing HES6) and mesenchymal cells (expressing COL3A1 and VIM) (Fig 2B, 18 PCW samples). 

We then identified spatially proximal cells at 18PCW (Dries et al., 2021) and found that spatial 

neighbourhoods were shared by acinar and endocrine cells, by endocrine, ductal, acinar and pancreatic 

progenitors, and also by endothelial and mesenchymal cells, suggesting that these neighbouring cell 

populations are more likely to interact together (Fig 2C). We denoted interactions between cells of the 

same or different cell types as homo- or hetero-typic, respectively. Mesenchyme-mesenchyme pairs 

had the highest cell proximity score, indicating highly enriched cell-cell interactions, while endocrine 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.04.478971doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.04.478971
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

cells and endothelial cells were predicted to preferentially undergo the highest number of homotypic 

interactions (Fig 2C). Spatial proximity profiling also indicated that the highest heterotypic interactions 

occurred between endocrine cells and pancreatic progenitors, with substantial interactions also 

predicted between ductal/acinar cells and pancreatic progenitors and also between acinar cells and 

endocrine cells (Fig 2C). We created spatial networks among the different cell types by connecting 

neighbouring cells through a Delaunay triangulation implemented in Giotto (Dries et al., 2021) and we 

defined a hub region as an area with the highest number of neighbouring cells expressing the same 

gene. This allowed us to identify spatially variable genes driving spatial trends across the pancreas, 

which correlated to distinct hub regions at 15PCW (Fig 2D and 2E) that became less prominent at 

20PCW as the pancreas expands and the cells intermingle (Fig 2F and 2G). Thus, it can be seen at 15 

PCW that there was co-localisation of expression of CLPS, which codes for the acinar protein colipase, 

and INS (Fig 2E), indicating that at this stage of development the exocrine and endocrine pancreas are 

not yet defined by the distinct anatomy that is observed post-natally. However, by 20 PCW the acinar 

and endocrine cells were spatially separated and discrete clusters of INS-expressing cells were evident, 

which most likely reflects the presence of islets scattered within the pancreas (Fig 2G). The majority of 

the spatially correlated genes that we identified are established canonical markers of the endocrine 

(INS, GCG, PCSK1N), mesenchyme (COL1A1, COL3A1) and acinar cell populations (CEL, CPA1) 

(Suppl. Fig 3A-3C), but other novel spatially correlated genes were also identified. For example, acyl-

CoA thioesterase 7 (ACOT7) and ATP1A1 were spatially correlated with Schwann cell populations, 

DCN, ADAM33 and COX6A1 with the mesenchyme and ACTA2 with endothelial cells (Suppl. Fig 3D 

and 3E). 
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Fig 2: Spatial transcriptomics and cell-cell proximity map of the developing human pancreas.  
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A) UMAP embedding and spatial projection of clusters on tissue slides at 12 PCW, 15PCW, 18PCW 

and 20PCW. 

B) Marker gene distribution and manual annotation of clusters at 18PCW. 

C) Heatmap (left) and bar chart (right) showing spatial proximity enrichment or depletion of cell type 

pairs and cell-cell interactions at 18PCW. 

D) Spatial grid containing cells based on their spatial locations at 15PCW.  

E) CLPS and INS gene expression at 15PCW showing exocrine and endocrine cells are not yet fully 

separated.  

F) Spatial grid containing cells based on their spatial locations at 20PCW.  

G) CLPS and INS gene expression indicating that exocrine and endocrine cells are spatially separated 

at 20PCW.  

 

Cell type deconvolution of the spatially resolved developing human pancreas transcriptome 

While the spatial transcriptomics analysis provided novel information on cell-cell proximity in the human 

pancreas at different stages of development (Fig 2), the 55µm spot diameter of 10x Visium 

transcriptomics does not allow single cell resolution. We therefore combined our 10x Visium data with 

scRNA-seq data to characterise developing human pancreatic cell types at each spatial voxel, an 

approach that has recently been used to map the human endometrium (Garcia-Alonso et al., 2021) and 

the developing chicken heart (Mantri et al., 2021). We first integrated our scRNA-seq data (Fig 1) with 

a recently published dataset on the developing human pancreas at 8-19 WPC (Yu et al., 2021) using 

regularised negative binomial regression (Hafemeister and Satija, 2019) to increase the temporal 

resolution (Suppl. Fig 4A). To distinguish the two datasets, we refer to the integrated data as ‘combined 

scRNA-seq’. Following filtering and quality control, we retained 53,204 cells from 8 to 20 PCW. We 

found a strong correlation between the two datasets (r=0.8) (Suppl. Fig 4B) and combining the data 

allowed us to identify the clusters we had already found in our scRNA-seq dataset (Fig 1), but with 

improved resolution (Suppl. Fig 4C-4E). We deconvoluted the cell type composition at each spatial spot 

of the 10x Visium samples by projecting the combined scRNA-seq and spatial transcriptomics data into 
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a common latent space and then we identified anchor cells that shared suffficient neighbourhood by 

canonical correlation analysis (Stuart et al., 2019). This allowed the transfer of cell annotations in the 

scRNA-seq data to the spatial transcriptomics data, thereby identifying alpha, beta, delta, endocrine 

progenitors, acinar, ductal, endothelial, Schwann, immune and mesenchymal cells in situ (Suppl. Fig 

5). We then incorporated the cell type predictions into a deep-learning based method (Pham et al., 

2020) to visualise the cell composition within each spatial voxel and predict cell proportions at each 

stage of development (Fig 3). As expected, we found an expansion in epithelial cells as the pancreas 

develops (e.g. a 175% increase in acinar cells at 20 PCW compared to 12 PCW) and a corresponding 

decrease in the proportion of mesenchymal cells (Fig 3A-D). Mesenchymal cells were mostly located 

at the pancreas periphery and most of the cell types existed in hub regions at 12 PCW, which was more 

prominent at 15 PCW (Fig 3A and 3B). For example, distinct regions of acinar, immune, mesenchyme, 

endocrine/endocrine progenitors and Schwann cells were evident at 15 PCW (Fig 3B), while by 20 PCW 

the cells were distributed throughout the pancreas, the bulk of which were acinar (Fig 3D). Among the 

endocrine cells, alpha cells were more than twice as abundant as beta cells at 12 PCW but at 15, 18 

and 20 PCW there were comparable proportions of these two cell types. As adult human islets contain 

~55% beta cells and ~38% alpha cells (Cabrera et al., 2006) it is likely that there is further expansion 

in beta cell numbers as gestation extends beyond 20 PCW. At all developmental stages that we 

interrogated, immune cells were spatially co-located with mesenchymal and endothelial cells but not 

with the endocrine cells (Fig 3A-D), while Schwann cells were in close spatial proximity to mesenchymal 

cells and endocrine progenitors at 15 PCW (Fig 3A and 3B). 
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Fig 3: Cell-type map of the developing human pancreas.  

Cell type prediction overlay on ST spots and donut charts showing the proportion of cells inferred from 

scRNA-seq at  

A) 12 PCW,  

B) 15PCW,  

C) 18PCW and  

D) 20PCW. Scale bar at all stages = 2mm. 

 

Lineage dynamics within the endocrine compartment 

Having identified the various cell types in our scRNA-seq and ST datasets, we next focused on gene 

expression trajectory analysis of the endocrine cells. Reclustering the endocrine component of our 

scRNA-seq data led to identification of 12 sub-clusters (Suppl. Fig 6A) and using differentially expressed 
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genes and canonical markers we identified 3 endocrine progenitor populations (NEUROG3+), 4 beta 

cell populations (INS+), 2 delta cell clusters (SST+), and a cluster each for alpha (GCG+, which was 

also positive for PPY cells), and epsilon (GHRL+) cells (Suppl. Fig 6B and 6C). The three endocrine 

progenitor (EP) clusters were distinguished based on their gene expression: we denoted those with 

very high NEUROG3 expression as NEUROG3hi, those with low NEUROG3 and low insulin expression 

as NEUROG3low/INSlow, suggestive of cells in transition towards beta cells, and those with very low 

expression of several islet hormones as polyhormonal (INSlow/GCGlow/SSTlow/GHRLlow) (Fig 4A). We 

then sought to identify lineage relationships among the endocrine progenitor sub-clusters using time-

series trajectory analysis (Tran and Bader, 2020), which showed that the three EP populations were 

found earlier in the inferred developmental timescale and were mostly from 12 and 13 PCW, as 

expected (Fig 4B). The trajectory analysis also predicted that cells in the NEUROG3hi cluster were 

destined to transition to one of the beta cell clusters containing equal proportions of early- (12 and 13 

PCW) and late-stage beta cells (18 PCW), while late-stage beta and delta cells (18-20PCW) and mid-

stage alpha cells (14 and 15 PCW) were predicted to differentiate from NEUROG3low/INSlow EP 

populations (Fig 4B). The late-stage beta cells showed increasing expression of the maturity markers 

MAFA and UNC3 (Salinno et al., 2019; van der Meulen et al., 2012) (Suppl. Fig 6D). Some epsilon cells 

were clustered within an intermediate cluster along the NEUROG3low/INSlow EP trajectory as they 

transitioned to beta or delta cells (Fig 4B), possibly suggesting the multipotent nature of epsilon cells in 

development (Arnes et al., 2012). We then used Monocle 3 pseudotime analysis (Cao et al., 2019; 

Trapnell et al., 2014) to investigate whether we could recapitulate the trajectory predictions made using 

the time-series trajectory method. Monocle 3 identified an EP population with low NEUROG3 and low 

INS expression (Fig 4C), similar to NEUROG3low/INSlow EP (Fig 4B), and cells in this population also 

had low GCG expression. The cells also expressed important transcription factors known to be involved 

in endocrine pancreas development such as NEUROD1, insulin gene enhancer protein ISL1 and PAX6 

(Fig 4D). In addition, genes that have been implicated in development of other tissues were also 

identified, such as insulin like growth factor binding protein like 1 (IGFPBL1), prothymosin alpha (PTMA) 

and G protein subunit gamma 8 (GNG8) (Emmanouilidou et al., 2013; Fujino et al., 2007; Gonda et al., 

2007; Kriegebaum et al., 2010) (Fig 4D). The Monocle analysis indicated that the EP cells later split 

into two branches, the first of which was of beta cell lineage while the second branch contained both 

alpha and beta cells (Fig 4C). We investigated branch-dependent gene expression as the 
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NEUROG3low/INSlow EP cells differentiated into alpha or beta cell lineages, and identified novel branch-

specific genes in addition to established markers (Fig 4D), indicating that transcriptional maturation 

occurred over this developmental timeframe. To determine whether a similar endocrine progenitor 

trajectory exists in situ we identified cells that were positive for both NEUROG3 and INS at 20 PCW 

(Fig 4Ei) and ran spatial trajectory inference (Pham et al., 2020). This allowed us to explore progression 

towards endocrine cells (Fig 4Eii), and we identified genes that were upregulated or downregulated 

along the spatial trajectory (Fig 4Eiii). Known marker genes of endocrine cells such as chromogranin A 

and B (CHGA, CHGB), transthyretin (TTR) (Su et al., 2012), glucagon (GCG), somatostatin (SST), 

insulin (INS) and proprotein convertase subtilisin/kexin type 1 inhibitor (PCSK1N) were positively 

correlated with the spatial trajectory while the pancreatic progenitor surface marker glycoprotein 2 (GP2) 

(Cogger et al., 2017) and the acinar-related genes SPINK1, CLPS, CPA1 and PRSS1 were 

downregulated, indicating a transition of the progenitors to a more terminally differentiated endocrine 

state. 
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Fig 4: Identification of cell types and trajectory inference within the endocrine cluster. 

A) UMAP embedding showing annotated sub-clusters of the endocrine cells. 

B) Time-series trajectory inference of the EPs showing predicted transitions and lineage decisions 

into other endocrine cell types.  
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C) Pseudotime analysis in Monocle 3 showing predicted bifurcation of NEUROG3low/INSlow 

endocrine progenitors into beta and alpha cell lineages. 

D) Heatmap showing branch-specific genes as endocrine progenitors differentiate towards beta 

and alpha cells. 

Ei) H&E image of 20 PCW pancreas showing cells positive for INS and NEUROG3. 

      Eii) Pseudo-space-time analysis of an INS+/NEUROG3+ cluster showing trajectory directions 

      Eiii) Top transition markers that are either positively correlated (blue) or negatively correlated with 

the spatial trajectory in Eii). 

 

Role of Schwann cells in endocrine cell development 

After examining the lineage dynamics within the endocrine cluster, we next investigated the contribution 

of non-endocrine cells to endocrine specification. We focused on Schwann cells as they were spatially 

co-located with endocrine progenitor cells at 15 PCW (Fig 3B), suggesting that intercellular 

communications between these cells could contribute to endocrine cell differentiation. We identified five 

sub-clusters in our scRNA-seq data which all expressed the Schwann cell marker CRYAB (Suppl. Fig 

7A and 7B). We annotated clusters 0, 1 and 4 as Schwann cell precursors (SCP) based on expression 

of the stem cell marker SOX2 (Liu et al., 2015) and cadherin 19 (CDH19) (Takahashi and Osumi, 2005), 

while cluster 3 was defined as an immature Schwann cell (iSC) population as it specifically expressed 

GAP43 (Jessen and Mirsky, 2005)  (Suppl. Fig 7B). Cluster 2 expressed genes encoding myelin protein 

zero (MPZ) and proteolipid protein 1 (PLP1) (Suppl. Fig 7C) and gene ontology analysis of cluster 2 

identified that these cells were associated with myelination and axon development (Suppl. Fig 7D) so 

they were designated myelinating Schwann cells (mSC).  

Given the close proximity of Schwann cells with endocrine progenitors during human pancreas 

development (Fig 5A) we therefore investigated cell-cell connectivity (Raredon et al., 2021) in our 

scRNA-seq data to identify ligand-receptor pairs that may participate in paracrine signaling between 

these populations. We identified multiple ligand-receptor pairs between Schwann and endocrine 

progenitors (Fig 5B) and focused on the L1 cell adhesion molecule (L1CAM)-ephrin B2 (EPHB2) 

interaction, as L1CAM was the most highly predicted ligand and its expression was specific to Schwann 

cells where it was restricted to the iSC populations (Suppl. Fig 7C), while EPHB2 was expressed by 
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endocrine progenitors and ductal cells (Suppl. Fig 7E). We mapped the expression of L1CAM-EPHB2 

to our spatial transcriptomics data at 15 PCW (Pham et al., 2020) and identified that local hot spots of 

L1CAM-EPHB2 interactions occurred at the interface between Schwann cells and endocrine 

progenitors (Fig 5C). These observations are consistent with Schwann cells being spatially co-located 

with endocrine progenitors and contributing to beta cell maturation via the L1CAM-EPHB2 pathway. 

We also used partition-based graph abstraction (PAGA) (Wolf et al., 2019), which shows unbiased 

lineage relationships based on gene expression among cell clusters, to investigate whether Schwann 

cells and endocrine progenitors shared lineage relationships. This analysis indicated that cluster 3 

Schwann cells (Suppl. Fig 8A and 8B) shared connected edges with cluster 9 endocrine cells, 

containing endocrine progenitors, beta and delta cells (Suppl. Fig 8C) and these cell populations were 

close to each other within the reduced dimensionality space at 15 PCW (Suppl. Fig 8D). As expected, 

a diffusion pseudotime plot (Haghverdi et al., 2016) indicated that Schwann cells were transcriptionally 

earlier among all the clusters, so we set them as the root of the trajectory (Suppl. Fig 8E). We then 

performed spatial trajectory inference (Pham et al., 2020) on the Schwann cell cluster, and observed 

that endocrine cells were placed at the other end of Schwann cell trajectory (Fig 5D), with transition 

markers that were upregulated (blue) or downregulated (red) along the trajectory (Fig 5E). We 

performed gene set enrichment analysis (Kuleshov et al., 2016) on the upregulated transition markers 

and found significant enrichment (p<0.0001) of transcription factors involved in endocrine specification 

such as RFX6, PAX6, PDX1, ISL1 and NKX2-2 (Fig 5F). Transcription factors enriched in the gene sets 

that were downregulated or negatively correlated with the trajectory (i.e. genes whose expression was 

high in Schwann cells and low in endocrine cells) included SOX2, involved in stemness (Schaefer and 

Lengerke, 2020) and POU3F1, a neuronal fate gene (Zhu et al., 2014), suggesting that cells along the 

Schwann-endocrine trajectory are likely to lose their stemness and neuronal commitment. At 20 PCW, 

where endocrine cells were more terminally differentiated compared to 15 PCW, Schwann cells were 

no longer spatially co-localised with endocrine progenitors or other endocrine cells (Fig 5H). 
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Fig 5: Role of Schwann cells in endocrine specification.  

A) scRNA-seq cell type prediction overlay on ST spots at 15 PCW. The zoomed in box shows spatial 

proximity of Schwann cells and endocrine cells.  

B) Ligand-receptor pairs predicted from scRNA-seq for Schwann-endocrine progenitor signalling.  

C) Spatial mapping of L1CAM-EPHB2 pairs in situ at 15 PCW.  

D) Visualisation of spatial trajectory between Schwann (clade 9) and endocrine clusters (clade 17).  

E) Top 30 transition markers that are positively correlated (blue) or negatively correlated (red) with the 

spatial trajectory between Schwann and endocrine clusters. 

F) Gene set enrichment analysis of transcription factors greater than three fold enriched in the positively 

correlated transition markers 

G) Manhattan plot showing -log10(p values) for transcription factor co-expression with the gene sets 

that were negatively correlated with the spatial trajectory. 
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H) Visualisation of Schwann and endocrine cell clusters at 20 PCW indicating that the cells are no 

longer spatially co-localised. 

 

Mesenchymal heterogeneity in the developing human pancreas 

Despite the important structural and biochemical roles that the mesenchyme plays in mouse pancreas 

organogenesis (Hibsher et al., 2016; Landsman et al., 2011), little is known about mesenchymal cell 

heterogeneity in the developing human pancreas. We therefore re-clustered the mesenchyme (10834 

cells) and identified 17 transcriptionally distinct sub-clusters, all of which expressed the mesenchymal 

genes COL1A1, COL3A1 and VIM (Fig 6A & 6B). We annotated the clusters based on expression of 

known marker genes. Thus, clusters 0, 1, 2 and 4 were designated mesothelial cells based on 

expression of the Wilms' tumour gene, WT1 (Ariza et al., 2018; Armstrong et al., 1993) and IGFBP2 

(Namvar et al., 2018); clusters 12 and 15 were vascular smooth muscle (VSM) cells since they 

expressed alpha smooth muscle actin ACTA2 and transgelin TAGLN (Li et al., 1996; Majesky et al., 

2011); cluster 13 was proliferative mesenchyme as defined by strong expression of STMN1 and MKi67; 

while cluster 14 belongs to the hematopoietic lineage based on expression of HBB. Cluster 4 was also 

positive for the osteogenic marker CLEC11A (Yue et al., 2016) and it is likely to have differentiated from 

mesothelial cells.  

We identified that cluster 11 was enriched for the acinar genes colipase (CLPS) and serine protease 

inhibitor Kazal-type 1 (SPINK1) (Fig 6C). Given the co-expression of CLPS and SPINK1 within this 

mesenchyme cluster, we hypothesised an association between the mesenchyme and acinar 

maturation. Time-series trajectory analysis indicated that IGFBP2-expressing cluster 1 mesothelial cells 

represented an early cell state in the lineage, consisting mainly of cells at 12 and 13 PCW, and these 

cells transitioned to become cluster 15 VSM cells that expressed ACTA2 (Fig 6D). This is consistent 

with mesothelial cells being well-established precursors for VSM (Que et al., 2008; Wilm et al., 2005) 

and they have also been proposed to contribute to the VSM lineage in mouse pancreas (Byrnes et al., 

2018). Clusters 8 and 10 strongly expressed the pan-mesenchymal marker COL3A1 and they were 

predicted to differentiate into multiple lineages including cluster 12 VSM, cluster 14 hematopioetic cells, 

cluster 4 osteogenic precursors and spermidine-expressing cluster 5 cells. The analysis placed the 

CLPS- and SPINK1-expressing cluster at the exit of a trajectory (Fig 6D), suggesting a likely lineage 
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relationship between the mesenchyme and acinar cell populations. We therefore investigated lineage 

dynamics between mesenchymal and acinar cells in situ using our spatial transcriptomics data. This 

indicated that at 18 and 20 PCW mesenchymal cells were mostly located at the periphery of the 

pancreas and were often in association with endothelial or immune cells, while acinar cells were 

adjacent to them (Fig 6E). Spatial trajectory analysis predicted a transition from mesenchymal to acinar 

cells at 18 PCW (Fig 6F, upper panel) and at 20 PCW (Fig 6G). We identified transition genes that were 

upregulated along the spatial trajectory from mesenchymal clades 9, 20 and 66 to acinar clades 8, 17, 

2 and 67 respectively (Fig 6F, upper panel, Table 6). Enrichment analysis (Kuleshov et al., 2016) of the 

upregulated transition genes showed significant enrichment of genes involved in Wnt/beta-catenin 

signalling, planar cell polarity and glandular epithelial cell development (Fig 6F, lower panel), indicative 

of processes involved in acinar cell development and growth (Murtaugh, 2008; Wells et al., 2007). Our 

trajectory-based differential gene expression analysis at 20 PCW also identified that mesenchymal 

genes including COL3A1, COL1A2 and MGP were downregulated while expression of the acinar genes 

CPA1 and CEL was increased (Fig 6H). 
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Fig 6: Heterogeneity and lineage predictions of the mesenchyme in the developing human pancreas. 

A) UMAP plot showing sub-clusters of the mesenchyme compartment. 

B) Heatmap showing differentially expressed genes in the mesenchyme 17 sub-clusters. 

C) Dotplot showing expression of marker genes across the clusters. 

D) Time-series trajectory inference showing lineage predictions within the mesenchyme. 

E) Visualisation of acinar and mesenchymal cell clusters at 18 and 20 PCW. 

F) Visualisation of mesenchymal-acinar trajectories with tissue localisation at 18 PCW. Pseudo-

space-time analysis indicated three mesenchymal sub-clusters (clades 20, 66, 9) leading to 

four acinar sub-clusters (clades 17, 2, 67 and 8). The lower panel indicates a -log10(p-value) 

plot of gene ontology (GO) enrichment analysis on the positively correlated genes along the 

mesenchymal-acinar trajectories. GO pathways with p<0.05 are coloured blue. 

G) H&E image of a 20 PCW pancreas showing that mesenchymal and immune cells are spatially 

co-located within a cluster (upper panel). Visualisation of mesenchymal-acinar trajectories with 

tissue localisation at 20 PCW. Pseudo-space-time analysis indicated one mesenchymal cluster 

(clade 12) leading to multiple acinar sub-clusters (clades 1, 26, 50, 85 and 149) (lower panel). 

H) Top transition markers that are positively correlated (blue) or negatively correlated (red) with 

the mesenchymal-acinar spatial trajectories. 

 

Discussion 

Co-ordinated interactions between different cells at critical time windows is essential for organogenesis, 

yet our understanding of how the diverse human pancreatic cell types interact during development is 

limited. Using scRNA-seq and spatial transcriptomics, we identified and localised endocrine, acinar, 

ductal, endothelial, immune, Schwann and mesenchymal cell types in human fetal pancreas at 12-20 

gestation weeks. To improve the temporal resolution of our scRNA-seq, we integrated it with a recently 

published dataset on the developing human pancreas (Yu et al., 2021) and used the combined data to 

deconvolute the cell types in our 10x Visium samples. Our data revealed varying proportions of 

pancreatic cell types, with mesenchymal cells decreasing in number over developmental time coupled 

to a corresponding increase in epithelial cell populations. We uncovered heterogeneity within the 

endocrine, Schwann and mesenchyme compartments with predicted lineage relationships among the 
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sub-populations. Major strengths of our study are the availability of fetal pancreases over the relatively 

wide developmental range of 12-20 PCW and our combination of scRNA-seq and spatial 

transcriptomics over this time-course. This has enabled us, for the first time, to reconstruct 

developmental trajectories occurring in situ, and to delineate the contribution of the mesenchyme and 

Schwann cells in the differentiation towards acinar and endocrine lineages, respectively. 

It has been suggested that neural crest cells, the precursors of Schwann cells, directly differentiate into 

islet cells in mice (Pearse and Polak, 1971), but rats that lack Schwann cells progenitors do not fail to 

develop an endocrine pancreas (Pictet et al., 1976). Nonetheless, the plasticity of Schwann cell 

precursors in pancreas development is not fully appreciated and they have been implicated in cell 

specification in other tissues (Perera and Kerosuo, 2021). We have shown here that a Schwann cell 

subset, the immature Schwann cells, express L1CAM and are located in spatial proximity to endocrine 

progenitors, with local hotspots of L1CAM-EPHB2 interactions. We therefore propose that the 

pancreatic immature Schwann cells contribute to maturation of endocrine progenitor cells via L1CAM-

EPHB2 signalling, and this may be important in improving beta cell mass since neural crest cell/beta 

cell co-transplantation has been shown to increase beta cell proliferation and improve normoglycaemia 

in diabetic mice (Olerud et al., 2009).  

We have also uncovered underappreciated heterogeneity within the mesenchyme, which is reminiscent 

of the diversity of mouse pancreas mesenchyme (Byrnes et al., 2018). Notably, we identified an acinar 

cluster within the mesenchyme that was placed at the end of the trajectory of a pan-mesenchymal 

COL3A1+ cluster. A similar mesenchyme-acinar trajectory was predicted in situ from our spatial 

transcriptomics data, and we identified significant enrichment of gene ontologies involved in acinar cell 

differentiation, such as positive regulation of canonical Wnt-beta-catenin signalling, planar cell polarity 

and glandular epithelial cell development (Murtaugh, 2008; Wells et al., 2007). This points to the 

importance of the mesenchyme in appropriate differentiation of acinar cells in the developing human 

pancreas, which is in agreement with a previous study where mouse exocrine pancreas failed to 

develop in the absence of pancreatic mesenchyme (Gittes et al., 1996).  

In summary, we have characterised and spatially resolved multiple human pancreatic cell populations 

at multiple developmental stages. We have identified sub-populations of human endocrine progenitors, 

novel genes that may direct their differentiation to beta or alpha cell lineage, and the influence of 
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pancreas microenvironment on endocrine progenitor differentiation. Our data also identified the roles 

of Schwann precursor cells and mesenchymal cells in the differentiation of endocrine progenitors and 

acinar cells, respectively. We have also provided an interactive web resource 

(www.humanpancreasdevelopment.org)  to explore the multi-dimensional data presented in this study. 

Further exploration of the endocrine lineage relationships and functional roles of the branch-dependent 

genes along the beta cell lineage will be important in optimising protocols to generate functional beta 

cells in vitro. 
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MATERIALS AND METHODS 

RESOURCE AVAILABILITY 

Lead contact  

Further information and request for reagents should be directed to and will be fulfilled by the lead 

contact, Professor Shanta Persaud (shanta.persaud{@}kcl.ac.uk). We did not generate any unique 

reagents from this study. 

 

Data and code availability 

The raw data used for this study will be deposited on GEO and accession numbers will be provided. 

Single-cell RNA sequencing and spatial transcriptomics data were analysed using publicly available 

software. All R and python scripts will be uploaded at https://github.com/olaniru/human-fetal-pancreas. 

 

EXPERIMENTAL MODELS AND SUBJECT DETAILS  

Human samples 

Human embryonic and fetal pancreases were obtained from the MRC-Wellcome Trust Human 

Development Biology Resource, London, with appropriate ethical approval. Samples were transferred 

immediately after provision in cold Lebowitz medium (L-15) to KCL and processed immediately. 

 

METHOD DETAILS 

Human fetal pancreas scRNA-seq dissociation protocol  

On the day of retrieval, pancreases were rinsed in ice-cold PBS and any extra-pancreatic tissues were 

dissected out before they were inflated with 1mg/ml collagenase from Clostridium histolyticum (C2674). 

The tissues were digested at 37oC for 5 min (12-14 PCW) or 10 min (15-20 PCW), gently disrupted by 

pipetting with a wide-bore Rainin pipette and incubated in trypsin/EDTA for an additional 5 min at 37oC. 

Enzyme action was stopped with 10% FBS in RPMI medium and the samples were filtered through a 

30µm mesh before being centrifuged at 1100rpm for 5min. Cell pellets were resuspended in RPMI 

containing 10% FBS. Cell number and viability were determined using a Countess II automated cell 

counter. At least 400,000 cells per pancreas with viability of 94±2% were carried forward for hash-tag 

staining. We initially investigated whether hash-tag (HTO) conjugation is feasible in the developing 

human pancreas by staining for the ubiquitous surface markers b2M and CD298 to which the 
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oligonucleotide-tagged antibodies bind (Stoeckius et al., 2018). ~450,000-2,000,000 cells were 

incubated for 10min in human TruStain FcX (10%v/v) to block non-specific binding before being 

exposed to varying concentrations (0.25, 0.5, 1.0 and 2µg/µl) of PE b2M/PE CD298 (BioLegend, mixed 

1:1) for 30 min in the dark at 4oC, then washed with cold PBS containing 0.04% BSA. 0.1ng/µl DAPI 

was added and FACs sorting on a BD FACSAria 3 was used to determine the percentage of live 

b2M/CD298-positive cells. Subsequently, HTO staining was carried out with 0.5µg of b2M and CD298 

antibody-conjugated oligonucleotides (Total-seq B Hastags 4, 6 and 8; BioLegend) with ~500,000-

750,000 isolated single cells. For each scRNA-seq run, about 60,000 live cells were sorted into RPMI 

containing 5% FBS (4oC)  before proceeding to 10x Chromium library preparation and sequencing. 

 

10x Chromium scRNA-seq library preparation and raw sequence data processing 

We used the 10x Genomics single cell RNA sequencing 3’ v3 chemistry for generating our scRNA-seq 

data. Isolated single cells at multiple gestational stages were stained individually with Totalseq B HTOs, 

pooled together into 4 batches (12, 13 and 13 PCW; 12, 14 and 19 PCW; 13, 14 and 19 PCW; 15, 18 

and 20 PCW) and 20,000 cells from each batch were loaded on the 10x chip. Single cell mRNA and 

antibody (HTO) libraries were prepared according to the manufacturer’s protocol and paired-end 

sequencing was carried out on an Illumina NextSeq 2000, except for batch 15, 18 and 20 PCW which 

was sequenced on a HiSeq 2500. Generation of FASTQ files and alignment of raw sequencing reads 

with GRCh38 human genome reference data were carried out using CellRanger (version 6.0.0, 10x 

Genomics).  

 

Hashed sample de-multiplexing 

We first filtered the HTO antibody UMI count matrices to retain only those containing 10x cellular 

barcodes. We then used the HTODemux function in Seurat to separate the pooled samples into their 

individual components, as previously described (Stoeckius et al., 2018). We obtained a subset of the 

UMI count matrix and HTO count matrix using cellular barcodes contained in both matrices, which were 

log normalised and clustered using the clara k-mediod function. A negative binomial distribution was 

then fit to each cluster, with a default positive threshold of 99th percentile. This threshold was used to 

determine whether the cells were positive or negative for the hashtag: cells positive for more than one 

hashtags were classed as doublets and were removed from analysis. We also performed genetic 
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demultiplexing (Huang et al., 2019) and observed nearly 100% concordance with the de-hashing 

algorithm in Seurat.  

 

10x scRNA-seq data analysis 

Output from Cellranger for the four scRNA-seq batches were loaded into Seurat (version 4.0.2) and 

merged. After filtering out low quality reads using nUMI > 500, nGene > 250, log10GenesPerUMI > 0.75 

and mitoRatio < 0.25 thresholds, the Seurat objects were normalised individually by regularised 

negative binomial regression (SCTransform) to correct for batch effect and other technical variabilities 

(Hafemeister and Satija, 2019). The data were integrated using the IntegrateData function after 

selecting the most variable features which were used to extract integrating anchors using 

FindIntegrationAnchors. We then performed principal component analysis and used the first 20 

dimensions to compute a Uniform Manifold Approximation and Projection (UMAP) (Becht et al., 2018).  

By FindNeighbors and FindClusters commands in Seurat, cells were clustered in a graph-based 

approach by the Louvain algorithm. Wilcoxon rank sum tests were performed to identify differentially 

expressed genes in each cluster using the FindAllMarkers function in Seurat. The clusters were 

annotated based on marker gene expression as endocrine (INS, GCG, SST, PAX6), acinar (CPA1, 

PRSS1, CLPS), ductal (SLC4A4, CFTR, ANXA4), mesenchymal (COL3A1, DCN, VIM), immune 

(RAC2, LYZ, TRAC), endothelial (VWF, ADGRL4, ANGPT2), Schwann (CRYAB, CDH19, SOX10) and 

erythroblasts (HBB, HBG2, HBA1). 

 

Subclustering of clusters of interest 

Endocrine, mesenchymal and Schwann clusters were first individually isolated using the Subset 

function in Seurat and re-analysed as described above (10X sc-RNA-seq data analysis). Endocrine 

subclusters were annotated with marker genes INS, GCG, SST, PYY, GHRL and NEUROG3, 

mesenchymal subclusters were annotated with COL3A1, COL1A1, WT1, IGFBP2, ACTA2, TAGLN, 

HBB, CLEC11A  and MKi67 while Schwann subclusters were identified as Schwann cell precursors 

(SOX2 and CDH19), immature Schwann cells (GAP43) and myelinating Schwann cells (MPZ, PLP1). 

 

Integration of scRNA-seq data with previously published 10x Chromium data 
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The scRNA-seq generated in this study were integrated with 10x Chromium data from a previous study 

on human fetal pancreas development (Yu et al., 2021), which was accessed from 

(https://ngdc.cncb.ac.cn/omix) with accession number OMIX236. To allow direct comparison with our 

data we only extracted data for the whole pancreas and excluded datasets that had been enriched for 

epithelial cells. We preprocessed each dataset by SCTransform and used the most variable features to 

identify integration anchors, which were then passed to the IntegrateData function to return a Seurat 

object containing an integrated expression matrix for all cells. The data were jointly analysed and 

visualised by UMAP. The clusters were annotated using marker genes as described above (10X sc-

RNA-seq data analysis). 

 

Spatial transcriptomics and raw sequence data processing 

Spatial transcriptomics was carried out using the 10x Genomics Visium platform. 10μm tissue sections 

from OCT-embedded fresh frozen human pancreases at 12, 15, 18 and 20 PCW were mounted onto 

Visium Spatial slides and the sections were permeabilised for 30min to release mRNAs, which bind to 

the spatially barcoded-oligos present in the underlying spots and reverse transcribed, according to the 

manufacturer’s protocol. Libraries prepared from the cDNAs were sequenced on the Illumina NextSeq 

2000 platform at >50,000 reads per spot generating >400M reads per section. Spaceranger software 

(version 3.1.0, 10x Genomics) was used to align and obtain raw counts from each of the spots on the 

Visium spatial transcriptomics slides against the GRCh38 human genome reference data. 

 

10x Visium spatial transcriptomics data analysis 

The spatial transcriptomics raw gene expression matrix, together with spatial location of spots and 

tissue H&E images, were used to create a Seurat object with a Load10X_spatial function. After 

normalisation by SCTransform, we performed principal component analysis and reduced the 

dimensions to the top 20 principal components. Marker gene detection and differential gene expression 

were carried out using the FindAllMarkers function in Seurat. Genes that varied with locations in situ 

were identified using the FindSpatiallyVariableFeatures function, using default settings.  

 

Spatial transcriptomics deconvolution and visualisation 
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To spatially map the different developing human pancreas cells in situ, the combined scRNA-seq 

datasets were integrated with 10x Visium spatial transciptomics data using the anchor-based integration 

pipeline in Seurat, which allowed the transfer of cell-type annotations from scRNA-seq to spatial 

trancriptomics. The cell type predictions from Seurat were loaded into a python package stLearn (Pham 

et al., 2020), where the cell types in every spatial spot were annotated and visualised as donut charts.  

 

Spatial co-localisation of receptor-ligand pairs 

To investigate cell-cell interactions between endocrine progenitors and Schwann cells, we first 

annotated cell type diversity within each spot using cell type predictions in Seurat. We then identified 

significant ligand-receptor pairs between neighbouring spots using CellPhoneDB (Efremova et al., 

2020), as implemented in stLearn. Ligand-receptor hotspots were defined as spatial regions containing 

high numbers of interacting cells and high ligand-receptor co-expression. 

 

Spatial transcriptomics analysis using the Giotto package 

To create a spatial network and identify spatial co-expression patterns, we reanalysed the raw spatial 

gene expression matrix with Giotto (Dries et al., 2021), and retained only spots that overlapped with the 

tissue area. We removed genes of low expression and low quality spots using filterGiotto with default 

parameters. Following normalisation, we identified highly variable genes which were used to perform 

PCA analysis and shared-nearest neighbour identities were computed using the first 10 principal 

components. We performed Leiden clustering at a resolution of 0.4 to identify clusters of spots. We 

identified spatial co-expression modules and created spatial networks using the functions 

detectSpatialCorGenes and createSpatialNetwork, respectively.  

 

scRNA-seq cell-cell communication analysis 

To infer cell-cell communication and identify ligands and receptors involved in endocrine progenitor/ 

Schwann cell interactions, we used the Connectome v1.0.1 package (Raredon et al., 2021). Using the 

CellCellScatter function, we identified the top signalling ligand-receptor pairs between endocrine 

progenitors and Schwann cells. 

 

Monocle 3 pseudotime trajectory analysis 
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Trajectory inference with Monocle 3 (Cao et al., 2019) was carried out on the endocrine Seurat subset. 

We set NEUROG3-positive cells as the root of the trajectory and identified differentially expressed 

genes across the trajectories using the Moran’s I test as implemented in Monocle 3. 

 

Time-series trajectory analysis  

Using gestational stages as time input, we used Tempora (Tran and Bader, 2020) to identify cell type 

relationships at different stages of pancreas development. Already processed Seurat objects were 

loaded and pathway enrichment profiles of the clusters were calculated using gene set variation 

analysis (Hänzelmann et al., 2013). Using the top 6 principal components, trajectories were built based 

on the clusters’ pathway enrichment profiles and visualised as piecharts showing the proportion of cells 

at multiple time points and arrows connecting each piechart were used to show lineage relationships. 

 

Gene ontology enrichment analysis 

Gene lists generated from the above-described analyses were used as inputs for gene ontology 

enrichment analysis, which was carried out on a web-based platform, Enrichr  (Kuleshov et al., 2016).

 

Spatial trajectory analysis  

To investigate cellular trajectories in situ, we reprocessed the raw spatial data following documented 

protocols in stLearn (Pham et al., 2020). Following Louvain clustering, we performed global and local 

pseudo-space-time trajectory analysis in stLearn which incorporates PAGA (Wolf et al., 2019) and a 

diffusion pseudotime method (Haghverdi et al., 2016) to reconstrust trajectories using changes in 

transcriptional states between clusters of interest. Genes that were differentially upregulated or 

downregulated along the trajectories were determined by Spearman’s rank correlation with a threshold 

of 0.3.  
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Supplementary Figure 1: Demultiplexing and quality control of single cell RNA sequencing 
batches.  
A) Flow cytometry analysis of CD298 and b2M expression in human fetal pancreas at 14 PCW. The 

table shows the percentage of CD298+ and b2M+ cells at different gestation stages (12-16 PCW). 

B) t-distributed stochastic neighbourhood embedding (tSNE) of cells from hashtag (HTO) 

demultiplexing of a pool of single cells from 12, 13 and 13 PCW into their individual components. AHH4, 

AHH6 and AHH8 are the Total-seq B Hastags 4, 6 and 8 respectively. 
C) tSNE visualisation of cells from a 12,14 and 19 PCW pool using the HTO de-hashing algorithm. 
D) tSNE visualisation of cells from a 13,14 and 19 PCW pool using the HTO de-hashing algorithm. 
E) Genotype demultiplexing by Vireo (Huang et al., 2019) showed 98% concordance with HTO re-

assignments of the single cells from the same pool of cells from 13, 14 and 19 PCW samples. The de-

hashing method predicted a doublet rate of 12% while the number of unassigned cells (doublets and 

negatives) went down to 6.1% (415 cells) with genotye demultiplexing.  
F) Genotype demultiplexing of single cells from a pool of 15, 18 and 20 PCW cells into their individual 

components. 
G)  Quality control metrics for the four batches of scRNA-seq performed in this study using 10x 

Chromium 3’ v3. 

H)  Pre-filtering visualisation of the correlation between number of genes detected and the number of 

UMI per cell coloured by the fraction of mitochondrial reads. 

I) Post-filtering visualisation of the correlation between number of genes detected and the number of 

UMI per cell coloured by the fraction of mitochondrial reads. Low quality reads were filtered out using 

the following thresholds: nUMI > 500, nGene > 250, log10GenesPerUMI > 0.75 and mitoRatio < 0.25. 
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Supplementary Figure 2: Summary of 10x Visium spatial transcriptomic data 

A) Quality control metrics for the eight pancreas sections processed using 10x Visium. 

B) Spatial gene expression distribution across two pancreas sections (left and right) at 12 PCW,  

and at 

C) 15 PCW 
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D) 18 PCW 

E) 20 PCW 

 

 

 
 
 
Supplementary Figure 3: Spatially correlated genes in human pancreas development 

A) Examples of mesenchyme canonical markers which were also identified as spatially variable genes. 

B) Examples of acinar canonical markers which were also identified as spatially variable genes. 
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C) Examples of endocrine markers which were also identified as spatially variable genes. 

D) Heatmap showing spatial gene co-expression in the developing pancreas at 15 PCW. Three of the 

identified spatial co-expression modules are shown with different colours on top of the heatmap. To the 

right of the heatmap are examples of genes within the modules. 

E) Examples of identified spatial genes within the acinar, mesenchymal, endothelial and endocrine 

regions at 18 PCW. 
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Supplementary Figure 4. Analysis of the combined scRNA-seq data from this study and Yu et 

al., 2021 

A) UMAP embedding showing integration of the two scRNA-seq datasets of the developing human 
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pancreas at 8-20 PCW.  

B) Genes versus UMI plot showing a strong correlation between the merged scRNA-seq datasets. 

C) UMAP embedding showing the annotated cell clusters in the combined scRNA-seq data. 

D) UMAP embedding showing the different gestational stages and the number of cells per stage. 

E) Stacked violin plot showing differentially expressed genes across the annotated clusters. 
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Supplementary Figure 5: Cell type prediction of spatial samples using cell annotations from the 

combined scRNA-seq data  

A) Predicted localisation of mesenchymal, acinar, beta and alpha cells in a 12 PCW pancreas. 

B) Predicted localisation of mesenchymal, acinar, endocrine progenitors and Schwann cells at 15 
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PCW. 

C) Predicted localisation of mesenchymal, acinar, beta, alpha, immune and Schwann cell  

populations at 18 PCW.  

D) Predicted localisation of mesenchymal, acinar, beta, alpha, immune and Schwann cells at 20 

PCW. 

 

 

 

 

Supplementary Figure 6: Identification of cell types within the endocrine compartment 

A) UMAP embedding showing 11 subclusters from the reclustering of the endocrine cells.  

B) Heatmap showing differentially expressed genes in the 11 endocrine subclusters. 

C) Violin plots showing expression of key islet genes within each subcluster. 

D) Violin plot showing expression of the beta cell maturity markers MAFA and UNC3 at different 

gestational stages. 
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Supplementary Figure 7: Identification of Schwann cell populations in developing human 

pancreas at 12-20 PCW. 

A) UMAP embedding showing five Schwann cell subclusters. 

B) Feature plots showing expression of select Schwann markers. 
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C) Dot plot depicting marker genes used to identify Schwann cell subclusters.  

D) Gene ontology analysis showing biological functions regulated by genes that are more than 3-

fold differentially expressed in Schwann cell subcluster 2. 

E) Dot plot showing that L1CAM expression is specific to the Schwann cell populations while 

EPHB2 is expressed by ductal and endocrine progenitors. 

 

 

 

 

Supplementary Figure 8: Global trajectory analysis at 15 PCW 

A) stLearn clustering revealed 10 cell clusters at 15 PCW. Clusters 3 and 9 were annotated as 

Schwann and endocrine populations, respectively. 

B) Cell type predictions inferred from scRNA-seq data showing the different cell types at 15 PCW.  

C) PAGA trajectory inference plot showing connections between the clusters. 

D) Clustering and E) diffusion pseudotime places Cluster 3 (Schwann cells) as the root of the 

trajectory since it is earliest in the computed pseudo-time.  
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