metaPR²: a database of eukaryotic 18S rRNA metabarcodes with an emphasis on protists.

Daniel Vaulot ^{1, 2} ^(a), Clarence Wei Hung Sim², Denise Ong², Bryan Teo², Charlie Biwer³, Mahwash Jamy³, Adriana Lopes dos Santos ²

¹ UMR 7144, ECOMAP, CNRS, Sorbonne Université, Station Biologique de Roscoff, 29680 Roscoff, France
 ² Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore
 639798

³ Department of Organismal Biology (Systematic Biology), Uppsala University, Uppsala, Sweden

ORCID

- Daniel Vaulot: 0000-0002-0717-5685
- Adriana Lopes dos Santos: 0000-0002-0736-4937
- Denise Ong: 0000-0001-6053-6948
- Clarence Wei Hung Sim: 0000-0003-2190-7261
- Mahwash Jamy: 0000-0002-2930-9226

[™] Corresponding author: vaulot@gmail.com

Date: February 7, 2022

Keywords: 18S rRNA, metabarcodes, database, R, shiny, PCR, protists

Short title: $metaPR^2$ - a database of eukaryotic metabarcodes

1 Abstract

In recent years, metabarcoding has become the method of choice for investigating the composition and 2 assembly of microbial eukaryotic communities, and an increasing number of environmental datasets are 3 being published. Although unprocessed sequence files are often publicly available, processed data, i.e. 4 sequences clustered as operational taxonomic units (OTUs) or amplicon sequence variants (ASVs) are rarely 5 at hand in a comparable format. This hampers comparative studies between different environments and 6 datasets, for example examining the biogeographical patterns of specific groups/species, as well analysing 7 the micro-genetic diversity within these groups. Here, we present a newly-assembled database of processed 8 18S rRNA metabarcodes that are annotated with the PR^2 reference sequence database. This database, 9 called metaPR², contains 41 datasets corresponding to more than 4,000 samples and 73,000 ASVs. The 10 database is accessible through both a web-based interface (https://shiny.metapr2.org) and as an R package, 11 and should prove very useful to all researchers working on protist diversity in a variety of systems. 12

13 Introduction

Protists, i.e. microbial eukaryotes that are not plants, animals or fungi (Archibald et al. 2017), are one 14 of the most dominant life forms on earth, comprising up to 80% of the total eukaryotic diversity in the 15 environment (De Vargas et al. 2015; Mahé et al. 2017; Massana et al. 2015). Protists play key ecological 16 roles and are involved in primary productivity, nutrient cycling and carbon sequestration. It is thus crucial 17 to assess protist diversity and the factors that determine community composition in order to predict how 18 protists will respond to environmental change (Cavicchioli et al. 2019). While protists have historically 19 been more difficult to study due to their small size, the explosion of metabarcoding studies over the past 20 ten years have greatly expanded our knowledge of these organisms (Burki et al. 2021; Santoferrara et al. 21 2020). 22

Metabarcoding reveals the taxa present in an environment by amplifying and then massively sequencing a 23 standardised genetic marker (Santoferrara 2019; Taberlet et al. 2012). In recent years, it has become a 24 very powerful and widespread approach to investigate protist diversity in a range of environments (marine, 25 freshwater, soils, microbiomes etc.). By far, the most common marker used for eukaryotic microbes is the 26 gene coding for small ribosomal subunit RNA (18S rRNA). This gene has the advantage of being universal 27 and having well annotated reference databases such as Silva or PR^2 (Guillou et al. 2013; Quast et al. 2013) 28 which allow, for many protist groups, a precise taxonomic assignation. Within the 18S rRNA gene, several 29 variable regions have been used as barcodes, in particular the V4 region located near the middle of the 30 gene and the shorter V9 region located at its 3' end (Burki et al. 2021; Pawlowski et al. 2012). The V4 31 region in particular is currently most often used in recent studies (Lopes dos Santos et al. 2021). Over the 32 years, metabarcoding has been used to study various aspects of protist diversity. The first studies aimed 33 to simply establish the real extent of eukaryotic diversity that was underestimated with traditional clone 34 library approaches (e.g. Stoeck et al. 2009). In marine waters, metabarcoding studies extended quickly and 35 now tackle more focused questions, for example analysing the distribution of protist groups in the ocean as 36 a function of their size (De Vargas et al. 2015), the diversity of heterotrophic protists in the deep layers of 37 the ocean (Giner et al. 2020; Obiol et al. 2021), detailed biogeographic distribution of specific taxa (e.g. 38 Malviya et al. 2016; Yau et al. 2020), factors structuring marine plankton communities (Logares et al. 39 2020; Sommeria-Klein et al. 2021), and the seasonal succession of taxa (e.g. Giner et al. 2019; Lambert 40 et al. 2019). Fewer metabarcoding studies have been carried out in freshwater and soils, but that is rapidly 41 changing with some large scale studies (e.g. for soils Mahé et al. 2017). 42

⁴³ Most eukaryotic metabarcoding studies have targeted one specific environment, thereby preventing large ⁴⁴ scale comparisons. On the other hand, large metabarcoding projects using the 16S rRNA gene have

been undertaken such as the Earth Microbiome Project which encompassed more than 23,000 samples 45 of both free-living or host-associated microbes, and allowed inferences of global patterns of prokaryotic 46 diversity (Thompson et al. 2017). For eukaryotic 18S rRNA, large expeditions for sample collections have 47 been undertaken in particular for marine systems such as Tara Oceans, Ocean Sampling Day (OSD) and 48 Malaspina (De Vargas et al. 2015; Duarte 2015; Kopf et al. 2015). Many studies that performed analyses 49 on the global ocean microbiota have used one or several of these three datasets, in particular Tara Oceans 50 (e.g. Ibarbalz et al. 2019; Sommeria-Klein et al. 2021). Many more smaller-scale metabarcoding studies 51 have also been carried out, in particular for environments that have been not sampled by these expeditions, 52 such as soils or freshwater lakes and rivers (Lopes dos Santos et al. 2021). Unfortunately, it is difficult 53 to combine the data from these studies with those of the large scale expeditions for a range of reasons. 54 First, even if the unprocessed data files containing raw reads have been deposited to GenBank SRA (Small 55 Reads Archive), secondary data, i.e. clustered sequences at a certain similarity level, so-called Operational 56 Taxonomic Units (OTUs), or Amplified Sequence Variants (ASVs, Callahan et al. 2016) that do not depend 57 on a specific similarity threshold, are rarely available or, if available, hard to locate since they are stored 58 in a range of formats (DOCX, XLSX or TXT files) as supplementary files. Second, OTUs clustered with 59 different levels of similarity (e.g. 97 vs 99%) are not directly comparable: if two studies are to be combined, 60 it is necessary to perform clustering again, starting from the raw sequences. Third, taxonomic assignation 61 is often done with different reference databases, such as GenBank, Silva or PR^2 (Guillou et al. 2013; Quast 62 et al. 2013). Some studies have tried to combine sets of samples from different environments (e.g. marine, 63 freshwater and soil, Singer et al. 2021), but these efforts remain limited (for example, the Singer et al. 2021 64 only included 122 sampling sites). Thus, there is clearly a need to provide the protist research community 65 with a reference database of metabarcodes which would allow the full exploration of the available sequencing 66 data by combining existing studies across different environments. 67

In this paper, we introduce a database of metabarcodes (metaPR²) containing more than 4,150 samples 68 originating from 41 public studies, most using the V4 region of the 18S rRNA gene. In order for the 69 different metabarcodes to be directly comparable, we reprocessed all primary files (except those from the 70 Tara Oceans expedition) with the same pipeline based on the dada2 R package (Callahan et al. 2016) and 71 assigned the taxonomy of the resulting ASVs using PR^2 as a reference database (Guillou et al. 2013). We 72 have developed a web application available in several forms (website, R package, Docker container) that 73 allow to analyse, visualize and download the data. This database will be extended in the future and should 74 prove very useful to the protist research community. 75

76 Material and Methods

77 Dataset selection and metabarcode processing

Datasets were selected from published studies (Table 1). Raw sequence files and metadata were downloaded 78 from NCBI SRA website (https://www.ncbi.nlm.nih.gov/Traces/study) when available or obtained directly 79 from the investigators. Information about the study and the samples (substrate, size fraction etc...) as 80 well as the available metadata (geographic location, depth, date, temperature etc...) were stored in 81 three distinct tables in a custom MySQL database. For each study (except for the V9 Tara Oceans 82 dataset, see below), raw sequences files were processed independently de novo on the Roscoff ABIMS 83 (Analysis and Bioinformatics for Marine Science) cluster. Primer sequences were removed with cutadapt 84 (Martin 2011) using the default parameters (maximum error rate = 10%). Amplicon processing was 85 performed under the R software (R Development Core Team 2013) using the dada2 package (Callahan 86 et al. 2016). Read quality was visualized with the function plotQualityProfile. Reads were filtered using 87 the function filterAndTrim, adapting parameters (truncLen, minLen, truncQ, maxEE) as a function of 88 the overall sequence quality. Merging of the forward and reverse reads was done with the mergePairs 89 function using the default parameters (minOverlap = 12, maxMismatch = 0). Chimeras were removed 90 using removeBimeraDenovo with default parameters. For the Tara Oceans dataset, because of the very 91 high read coverage, we did not reprocess the Illumina read files and used the sequences that had been and 92 clustered with the Swarm software (Mahé et al. 2014) as detailed in de Vargas et al. (2015). ASVs with 93 similar sequences from different studies were merged together and identified with a unique 10 character 94 code which corresponds to the start of 40-character hash value of the sequence (using the R function 95 digest::sha1). Taxonomic assignation of all ASVs, including those from *Tara* Oceans, was performed using 96 97 //pr2-database.org/). ASV sequence and taxonomy, as well as abundance in each sample, were stored in 98 MySQL tables in the same database as the metadata (see above). In order to limit the size of the database, 99 we only considered ASVs that corresponded to more than 100 reads in any given studies. The number of 100 reads in each sample was normalized to 100 such that the read abundances could be expressed as % of total 101 eukaryotic reads in some visualizations (e.g. in maps, see below). We also did not consider sequences that 102 had an assignment bootstrap value lower than 75% at the supergroup level. Sequence processing scripts 103 can be found in https://github.com/vaulot/Paper-2021-Vaulot-metapr2/tree/main/R_processing. 104

105 Metabarcode analysis

Since the datasets included into metaPR² used different sets of primers (see below Table S3), we clustered 106 ASVs with 100% similarity using vsearch -cluster_fast option. ASVs within each cluster were merged 107 together, using the centroid ASV as the new ASV. In order to evaluate the similarity of ASVs to existing 108 sequences, we followed the approach of Metz et al. (2021). We compared ASVs to sequences from the PR^2 109 database (Guillou et al. 2013) version 4.14 (https://pr2-database.org/) using the vsearch -usearch_global 110 function with iddef = 2. The similarity information was stored in the MySQL database and then retrieved 111 and merged with the ASV information using an R script. Alpha and beta diversity analyses were performed 112 using the R phyloseq package (McMurdie and Holmes 2013). 113

114 Ecological function

¹¹⁵ We used the table provided in Table S2 of Sommeria-Klein et al. (2021) which defines one of 4 ecological ¹¹⁶ functions (phototroph, phagotroph, parasite, metazoa) to taxonomic groups (mostly at the class or division ¹¹⁷ level). This table was merged with the PR² taxonomy table, propagating the ecological function down to ¹¹⁸ the species level. For taxonomic groups for which the paper had not defined any function, we complemented ¹¹⁹ it based on general knowledge for protists (see Table S1)

120 **R** shiny application

All post-processing was done with the R software. The data were extracted from the MySQL database using 121 a custom script and stored in files using the R qs package that allows extremely fast loading of files (Travers 122 2021). The data are post-processed using packages dplyr and tidyr. An R shiny application was developed 123 to interact with the database using the following R packages: shiny, DT, shinyvalidate, shinyWidgets 124 and shinycssloaders (Sali and Attali 2020). Data are plotted using packages ggplot2, treemapify, leaflet, 125 leaftlet.minipie and plotly. Alpha and beta diversity analyses are performed using the phyloseq package 126 (McMurdie and Holmes 2013). The shiny application is available in 3 forms: a web-based application 127 (https://shiny.metapr2.org), an R package (https://github.com/pr2database/metapr2-shiny) or a Docker 128 container (https://hub.docker.com/repository/docker/vaulot/metapr2). The web interface is running on 129 a Google Cloud Virtual Machine with a 10 Go virtual disk and 4 Go of memory. Both the R package and 130 the Docker container can be installed on any computer. 131

Results and Discussion

¹³³ Overview of metaPR² datasets

Forty-one datasets are included in the first version of the metaPR² database (Table 1). We selected global 134 oceanic datasets (OSD, Malaspina, Tara Oceans) that have been used in numerous publications (e.g. Giner 135 et al. 2020; Ibarbalz et al. 2019; Tragin and Vaulot 2018) as well as smaller data sets in particular from 136 polar waters which have been little explored. Eleven out of the 41 datasets were sequenced using the 454 137 technology and the rest with Illumina (mostly 2×250). The vast majority of the 41 datasets used the V4 138 region of the 18S rRNA gene which is the most used metabarcode to date (Lopes dos Santos et al. 2021), 139 with only two datasets representing the V9 region (Tara Oceans and Argentinian lakes, Table 1). The 140 most common primer pairs used for V4 (Figure S1, Table S2 and S3) were those designed by Stoeck et al. 141 (2010) and modified by Piredda et al. (Piredda et al. 2017). The V4 metabarcodes varied from 309 bp to 142 672 bp and were overlapping (Figure S1).143

The metaPR² database contains more than 4,150 samples (Figure 1). These samples originate from three major ecosystems: marine, freshwater and terrestrial (mostly soil substrate) (Figure 2). Among water samples, different size fractions from pico (0.2-3 μ m) to meso (100-1000 μ m) are represented with the majority corresponding to the pico and total fractions (Figure 2). Most aquatic samples correspond to surface or euphotic layer. Location data (longitude, latitude) are available for all samples but other metadata, e.g. temperature or salinity, may be missing for some samples (Figure S2).

The number of samples per dataset is quite heterogeneous ranging from less than 10 to almost 900 for 150 Tara Oceans (Table 1). The total number of reads analysed is almost 900 million for V9 and above 220 151 million for V4. The number of reads per dataset is also highly variable ranging from about 3,000 in the 152 older studies sequenced by 454 technology to more than 1 million for Tara V9 (Table 1), which explains 153 why overall there are more reads for V9 than V4 despite only 2 datasets using V9. The total number of 154 ASVs was about 79,000. The number of ASVs in a given study ranges from less than 100 to more than 155 14,000 depending on both the number of samples and the depth of sequencing (Table 1). Since different 156 studies have used different primer sets, it is necessary to cluster ASVs with 100% similarity in their shared 157 region, leading to slight reduction of the total number of ASVs from 79,000 to 70,000 once clustered. 158 In general, sequences included in a given cluster were widely overlapping, although a few bases could be 159 different outside the overlap region, pointing to some microdiversity within these clusters (Figure S3). All 160 results presented below used the clustered ASVs that we call cASVs. 161

162 **Protist composition**

Overall, the database is dominated by Opisthokonta (Metazoa and Fungi) and Alveolata (Dinoflagellata) 163 (Figure S4). In what follows, we decided to focus on protists and on the V4 region. The focus on protists is 164 justified because the sampling strategy of most datasets was optimal for microbial eukaryotes. DNA from 165 those three divisions not included in protists (metazoa, plants and fungi) were probably unevenly sampled, 166 e.g. plant seeds in soils, multicellular organism, larval stages of metazoa in water environments. The focus 167 on the V4 datasets that contain almost 3,000 samples and 850 sites is due to that fact that the data for 168 the V9 region are dominated by the Tara Oceans dataset, which has been extensively analysed previously 169 (e.g., De Vargas et al. 2015). 170

Protist sequences represent more than 40,000 ASVs (33,000 cASVs once clustered). In terms of reads and 171 cASVs, the database is dominated by Alveolata, followed by Stramenopiles, Hacrobia, Archaeplastida and 172 Rhizaria (Figure 3). Based on number of cASVs, Rhizaria despite their lower read abundance come just after 173 the Stramenopiles. Such large number of Rhizaria unique sequences compared to read numbers has been 174 observed before, possibly linked to higher error rates in regions of the RNA molecule that form secondary 175 structures (2011). The most abundant cASVs (Figure 4A) belong to dinoflagellates (*Gyrodinium*), diatoms 176 (Minidiscus, Porosira, Fragilariopsis), cryptophytes (Geminigera, Cryptomonas), haptophytes (Phaeocystis) 177 and green algae (*Bathycoccus*, *Micromonas*). The most abundant cASVs are often also the most frequently 178 occurring (Figure 4B and C), although for example the marine picoplanktonic genus Florenciella is quite 179 frequent despite being not one of the most abundant. In contrast, the abundant small diatom Minidiscus 180 cASV is not present among the 30 most frequent cASVs. The difference in reads abundance and cASV 181 frequency among these two marine phytoplanktonic genera might be a reflection of their coastal-oceanic 182 distribution, which can be easily observed with the online platform of metaPR². Florenciella is truly 183 a ubiquitous genus, found in both coastal and oceanic samples, although often in low abundance. In 184 contrast, the nanoplanktonic diatom *Minidiscus* is mostly found in coastal environments or continental 185 platforms, where it can form sporadic blooms (Leblanc et al. 2018). 186

Comparing the metaPR² metabarcodes to reference databases such as PR², reveals that there are very few novel metabarcodes for supergroups such as Hacrobia and Archaeplastida that contain many photosynthetic taxa. In contrast, for supergroups that contain mostly heterotrophic organisms, and in particular Amoebozoa, the median similarity of metabarcodes to any reference sequence is below 90% (Figure 5A) suggesting the existence of a lot of unknown taxa. A similar observation was recently done for a restricted set of samples from a river floodplain in Argentina (Metz et al. 2021).

¹⁹³ Global trends across environments

The metaPR² database corroborates some trends that have been observed in papers with much fewer 194 samples. Singer et al. (2021) examined patterns of diversity across marine, freshwater and terrestrial (soil) 195 ecosystems based on 122 samples. Using the meta PR^2 database which contain 23 times more samples 196 we are able to establish clear differences across 5 types of ecosystems: marine, coastal, freshwater lakes 197 and rivers and terrestrial (soils). In terrestrial environments, Hacrobia are almost completely absent while 198 Amoebozoa are present but in contrast absent in all the others environments (Figure 6A). If we use the 199 ecological function, as defined for each major taxonomic group by Sommeria-Klein et al. (2021), the five 200 environments clearly differ by the abundance of parasites, small number of phototrophs and absence of 201 dinoflagellates in soils. While parasites are abundant in soils, they are not as abundant in freshwater and 202 increase from coastal to oceanic waters (Figure 6B). In terms of diversity, using the Shannon index as 203 an indicator, terrestrial ecosystems are most diverse, followed by rivers, oceanic, coastal with lakes the 204 less diverse in agreement with previous analyses (Singer et al. 2021), these differences being all significant 205 (Figure S6). Most cASVs are restricted to a single type of ecosystem with less than 2% (620 out of 206 33235) common to two or more if we consider coastal and oceanic ecosystems together (Figure 7). The 207 highest number of cASVs corresponds to marine ecosystems (coastal and oceanic), followed by terrestrial 208 and freshwater. Interestingly, both coastal and oceanic have a large number of specific cASVs with roughly 209 1/3 purely oceanic, 1/3 purely coastal and 1/3 common. It is also striking that there are very few cASVs 210 common between freshwater rivers and lakes (just above 7%). In terms of novelty, i.e. of cASVs with low 211 similarity to known sequences, terrestrial ecosystems are the least known with a median similarity below 212 95% followed by rivers, lakes, coastal and pelagic ecosystems (Figure 5B). In some way, this reflects the 213 fact that soil protists have only been recently investigated (Geisen et al. 2018). A comparison between the 214 communities structures from these different ecosystems using NMDS (Figure 8) reveals a clear gradient from 215 terrestrial ecosystems, through rivers and lakes, towards coastal and then oceanic systems. Interestingly, 216 river communities are the closest to soil communities, as they are probably enriched in terrestrial protists 217 through soil drainage. 218

219 **R Shiny application**

With a database of such size and complexity, it is necessary to create tools that allow in a first step to explore the database and then to download the data of interest (e.g. for a specific taxonomic group or environment). For this purpose, we developed an R Shiny application (Figure 9). R Shiny is an open source tool that offers numerous advantage to develop web-based applications in comparison to coding directly under languages such as JavaScript or PHP. It offers predefined components allowing the user to interact with the data (User Interface), while the Server component performs the necessary computations (e.g. filtering, summarizing the data etc. . .)in the background. Moreover, a Shiny application can be easily deployed on a server using open source tools such as Shiny Server, be packaged in a Docker container that can be downloaded on a personal computer and run locally or delivered as an R package.

The metaPR² Shiny application is structured in a number of panels, each dedicated to one type of analysis 229 (e.g. map, diversity). It is possible to select/deselect specific datasets or groups of datasets, such as all 230 oceanic datasets (Figure S8). Selection can also be done based on sample characteristics such as whether 231 samples come from DNA or RNA, the ecosystem, the type of substrate (e.g. ice, water, soil), the size 232 fraction and the depth level (Figure S9). It is possible through reactive menus to navigate the taxonomy tree 233 down to the cASV level (below the species) that potentially corresponding to cryptic or subspecies. cASVs 234 can be filtered based on the number of reads found for this cASV in the whole database (between 100 and 235 10,000). The number of total reads for a given taxonomic level can be visualized in a treemap (Figure S10). 236 For this representation, number of reads are normalized to 100 for each sample. The distribution of any 237 taxon can be visualized on a map (Figure S11). Two visualization modes are proposed for maps: either 238 a pie chart at each station with a fraction of the different taxa immediately below the level selected (for 239 example species, if genus is the level selected) or, alternatively, a colour circle indicating the dominant 240 taxon immediately below the level selected (for example the dominant species in the previous example). 241 The size of the circles is proportional to the percent of reads of the taxon selected relative to the total 242 number of eukaryotic reads. The size of the circles can be adjusted for taxa in low abundance. Another 243 representation is in the form of barplot (Figure S12), where the x-axis represents the fraction of reads per 244 taxon while the y-axis represents one of the variable from the metadata (depth level, temperature). For 245 continuous variable, bins are created. This panel can also be used for time series with different levels of 246 aggregation (year, month, day). Alpha and beta diversity (Figure S13) can be computed for a limited 247 number of samples (1,000 maximum). It is possible to query the whole set of cASV using a BLAST like 248 query and to map the resulting cASVs (Figure S14). Finally, it is possible to download datasets and 249 samples metadata as well as the cASV and the read abundance for the datasets, samples and taxa selected 250 (Figure S15). 251

The metaPR² shiny application besides being very useful for research can also be used for pedagogical purposes. MetaPR² can be used as a tool by professors and instructors in the field of microbial ecology. In the framework of the undergraduate course ES2304 - Microbes in Natural Systems at Nanyang Technological University (Singapore), the application was used to investigate the biogeography of several groups of phytoplankton (diatoms, bolidophytes, dinoflagellates, green algae) by groups of 4 students in a flippedclassroom model. Each group had to do some research on the genus it was assigned and then to analyse the distribution and diversity of key species, answering questions such as whether some species had ubiquitous distributions or controlled by latitude or temperature and whether some species appeared to contain different genotypes as reflected by the presence of several cASVs. In order to make their analysis less daunting, they only analysed the OSD, Malaspina and Tara V4 datasets. Despite the fact that they had only one week to discover the interface and produce their analyses, this hands-on experience resulted in very positive feedbacks by the students, especially regarding using the platform to look at "real-world research data".

264 Perspectives

As its sister database PR^2 which is revised every 6-12 months with the addition of novel sequences as well 265 update in taxonomy, the meta PR^2 will evolve with time to include more datasets and more samples, in 266 particular from ecosystems (e.g. extreme environments), regions (e.g. tropical and southern latitudes) and 267 substrate (microbiomes) that are still little represented. We have tabulated more than 280 metabarcoding 268 studies of protist diversity, for most of which data are available from GenBank SRA. These data will be 269 processed and incorporated into the database with probably yearly releases. The taxonomy of metaPR² 270 will evolve in parallel to that of PR^2 and we will add other functional and phenotypic traits (e.g. size, 271 mixotrophy type) as there is clear tendency to use this approach more widely for protists (Schneider et al. 272 2020). We will also develop novel functionalities for the R shiny application and package, for example 273 heatmaps and phylogenetic analyses. This will constitute a very rich resource that will help to compare 274 eukaryotic communities across habitats. 275

276 Data availability

- 277 Source code for the Shiny server is available as an R package from GitHub
- ²⁷⁸ (https://github.com/pr2database/metapr2-shiny, DOI: 10.5281/zenodo.5992354). Source code for this
- 279 paper is available from GitHub
- ²⁸⁰ (https://github.com/vaulot/Paper-2021-Vaulot-metapr2). Source code for sequence processing is avail-
- ²⁸¹ able from GitHub https://github.com/vaulot/Paper-2021-Vaulot-metapr2/tree/main/R_processing.

282 Acknowledgements

We thank Javier de Campo, Catherine Ribeiro, Ana Maria Cabello for their shiok suggestions on the shiny application. We thank the ABIMS platform of the FR2424 (CNRS, Sorbonne Université) for bioinformatics resources. The work of MJ and CB in the Burki lab was supported by a grant from Science for Life Laboratory available to F. Burki.

²⁸⁷ Author contributions statement

DV conceived the study. DV, AL, DO, BT, CB scanned the literature and metadata. DV, DO, BT, MJ, CB collected and compiled metadata from the different datasets. DV developed the database structure, the analysis scripts and the R shiny application. DV performed the metabarcode analyses. CS compiled the functional trait information. DV and AL wrote the first draft of the paper, and all co-authors edited and approved the final version.

Additional information

²⁹⁴ **Competing interests.** The authors declare no competing financial interests.

295 References cited

- Archibald, J., Simpson, A., & Slamovits, C. (2017). *Handbook of the protists*. Springer International
 Publishing.
- Behnke, A., Engel, M., Christen, R., Nebel, M., Klein, R. R., & Stoeck, T. (2011). Depicting more accurate
 pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA gene
 regions. *Environmental Microbiology*, *13*, 340–349.
- Burki, F., Sandin, M. M., & Jamy, M. (2021). Diversity and ecology of protists revealed by metabarcoding. *Current Biology*, *31*, R1267–R1280.
- Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016).
 DADA2: High-resolution sample inference from Illumina amplicon data. *Nature Methods*, *13*, 581–
 583.
- Cavicchioli, R., Ripple, W. J., Timmis, K. N., Azam, F., Bakken, L. R., Baylis, M., Behrenfeld, M. J.,
 Boetius, A., Boyd, P. W., Classen, A. T., Crowther, T. W., Danovaro, R., Foreman, C. M., Huisman,
 J., Hutchins, D. A., Jansson, J. K., Karl, D. M., Koskella, B., Mark Welch, D. B., ... Webster,
- N. S. (2019). Scientists' warning to humanity: Microorganisms and climate change. Nature Reviews
 Microbiology, 17, 569–586.
- De Vargas, C., Audic, S., Henry, N., Decelle, J., Mahé, F., Logares, R., Lara, E., Berney, C., Le Bescot, N.,
 Probert, I., Carmichael, M., Poulain, J., Romac, S., Colin, S., Aury, J. M., Bittner, L., Chaffron, S.,
 Dunthorn, M., Engelen, S., ... Velayoudon, D. (2015). Eukaryotic plankton diversity in the sunlit
 ocean. *Science*, *348*, 1261605.
- ³¹⁵ Duarte, C. M. (2015). Seafaring in the 21st century: The Malaspina 2010 circumnavigation expedition. ³¹⁶ Limnology and Oceanography Bulletin, 24, 11–14.
- Geisen, S., Mitchell, E. A. D., Adl, S., Bonkowski, M., Dunthorn, M., Ekelund, F., Fernández, L. D., Jousset, A., Krashevska, V., Singer, D., Spiegel, F. W., Walochnik, J., & Lara, E. (2018). Soil protists: A fertile frontier in soil biology research. *FEMS Microbiology Reviews*, *42*, 293–323.
- Giner, C. R., Balagué, V., Krabberød, A. K., Ferrera, I., Reñé, A., Garcés, E., Gasol, J. M., Logares,
 R., & Massana, R. (2019). Quantifying long-term recurrence in planktonic microbial eukaryotes.
 Molecular Ecology, 28, 923–935.
- Giner, C. R., Pernice, M. C., Balagué, V., Duarte, C. M., Gasol, J. M., Logares, R., & Massana, R. (2020).
 Marked changes in diversity and relative activity of picoeukaryotes with depth in the world ocean.
 ISME Journal, *14*, 437–449.

- Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., Boutte, C., Burgaud, G., de Vargas, C., Decelle, J., del Campo, J., Dolan, J. R., Dunthorn, M., Edvardsen, B., Holzmann, M., Kooistra,
- W. H. C. F., Lara, E., Le Bescot, N., Logares, R., ... Christen, R. (2013). The Protist Ribosomal Reference database (PR²): A catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. *Nucleic Acids Research*, *41*, D597–D604.
- Ibarbalz, F. M., Henry, N., Brandão, M. C., Martini, S., Busseni, G., Byrne, H., Coelho, L. P., Endo, H.,
 Gasol, J. M., Gregory, A. C., Mahé, F., Rigonato, J., Royo-Llonch, M., Salazar, G., Sanz-Sáez, I.,
 Scalco, E., Soviadan, D., Zayed, A. A., Zingone, A., ... Zinger, L. (2019). Global trends in marine
- plankton diversity across kingdoms of life. *Cell*, *179*, 1084–1097.e21.
- Kopf, A., Bicak, M., Kottmann, R., Schnetzer, J., Kostadinov, I., Lehmann, K., Fernandez-Guerra, A.,
 Jeanthon, C., Rahav, E., Ullrich, M., Wichels, A., Gerdts, G., Polymenakou, P., Kotoulas, G.,
 Siam, R., Abdallah, R. Z., Sonnenschein, E. C., Cariou, T., O'Gara, F., ... Glöckner, F. O. (2015).
- The ocean sampling day consortium. *GigaScience*, *4*, 27.

326

327

- Lambert, S., Tragin, M., Lozano, J. C., Ghiglione, J. F., Vaulot, D., Bouget, F. Y., & Galand, P. E. (2019).
 Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental
 perturbations. *ISME Journal*, *13*, 388–401.
- Leblanc, K., Quéguiner, B., Diaz, F., Cornet, V., Michel-Rodriguez, M., Durrieu De Madron, X., Bowler,
 C., Malviya, S., Thyssen, M., Grégori, G., Rembauville, M., Grosso, O., Poulain, J., De Vargas, C.,
 Pujo-Pay, M., & Conan, P. (2018). Nanoplanktonic diatoms are globally overlooked but play a role
 in spring blooms and carbon export. *Nature Communications*, *9*, 953.
- Logares, R., Deutschmann, I. M., Junger, P. C., Giner, C. R., Krabberød, A. K., Schmidt, T. S., Rubinat Ripoll, L., Mestre, M., Salazar, G., Ruiz-González, C., Sebastián, M., De Vargas, C., Acinas, S. G.,
 Duarte, C. M., Gasol, J. M., & Massana, R. (2020). Disentangling the mechanisms shaping the
 surface ocean microbiota. *Microbiome*, *8*, 55.
- Lopes dos Santos, A., Ribeiro Gérikas, C., Ong, D., Garczarek, L., Shi, X. L., Nodder, S., Vaulot, D., Gutierrez-Rodriguez, A. (2021). Phytoplankton diversity and ecology through the lens of high throughput sequencing technologies. *Advances in Phytoplankton Ecology. Applications of emerging technologies* (pp. 353–413). Elsevier.
- Mahé, F., De Vargas, C., Bass, D., Czech, L., Stamatakis, A., Lara, E., Singer, D., Mayor, J., Bunge, J.,
 Sernaker, S., Siemensmeyer, T., Trautmann, I., Romac, S., Berney, C., Kozlov, A., Mitchell, E. A.,
 Seppey, C. V., Egge, E., Lentendu, G., ... Dunthorn, M. (2017). Parasites dominate hyperdiverse
 soil protist communities in Neotropical rainforests. *Nature Ecology and Evolution*, *1*, 0091.

- Mahé, F., Rognes, T., Quince, C., de Vargas, C., & Dunthorn, M. (2014). Swarm: Robust and fast clustering method for amplicon-based studies. *PeerJ*, *2*, e593.
- Malviya, S., Scalco, E., Audic, S., Vincent, F., Veluchamy, A., Poulain, J., Wincker, P., Iudicone, D., De Vargas, C., Bittner, L., Zingone, A., & Bowler, C. (2016). Insights into global diatom distribution and diversity in the world's ocean. *Proceedings of the National Academy of Sciences of the United*
- ³⁶³ States of America, 113, E1516–E1525.
- Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet.journal*, *17*, 10.
- Massana, R., Gobet, A., Audic, S., Bass, D., Bittner, L., Boutte, C., Chambouvet, A., Christen, R., Claverie,
 J. M., Decelle, J., Dolan, J. R., Dunthorn, M., Edvardsen, B., Forn, I., Forster, D., Guillou, L.,
 Jaillon, O., Kooistra, W. H., Logares, R., ... de Vargas, C. (2015). Marine protist diversity in
 European coastal waters and sediments as revealed by high-throughput sequencing. *Environmental Microbiology*, *17*, 4035–4049.
- McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. *PLoS ONE*, *8*, e61217.
- Metz, S., Huber, P., Accattatis, V., Lopes dos Santos, A., Bigeard, E., Unrein, F., Chambouvet, A., Not, F.,
 Lara, E., & Devercelli, M. (2021). Freshwater protists: Unveiling the unexplored in a large floodplain
 system. *Environmental Microbiology*, n/a.
- ³⁷⁶ Obiol, A., Muhovic, I., & Massana, R. (2021). Oceanic heterotrophic flagellates are dominated by a few ³⁷⁷ widespread taxa. *Limnology and Oceanography*, *n/a*.
- Pawlowski, J., Audic, S., Adl, S., Bass, D., Belbahri, L., Berney, C., Bowser, S. S., Cepicka, I., Decelle, J.,
- Dunthorn, M., Fiore-Donno, A. M., Gile, G. H., Holzmann, M., Jahn, R., Jirků, M., Keeling, P. J., Kostka, M., Kudryavtsev, A., Lara, E., ... de Vargas, C. (2012). CBOL Protist Working Group: Barcoding Eukaryotic Richness beyond the Animal, Plant, and Fungal Kingdoms. *Plos Biology*, *10*, e1001419.
- Piredda, R., Tomasino, M. P., D'Erchia, A. M., Manzari, C., Pesole, G., Montresor, M., Kooistra, W. H.,
 Sarno, D., & Zingone, A. (2017). Diversity and temporal patterns of planktonic protist assemblages
 at a Mediterranean Long Term Ecological Research site. *FEMS Microbiology Ecology*, *93*, fiw200.
- Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2013).
- The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. *Nucleic Acids Research*, *41*, D590–D596.
- ³⁸⁹ R Development Core Team. (2013). R: A language and environment for statistical computing.

- Sali, A., & Attali, D. (2020). Shinycssloaders: Add loading animations to a 'shiny' output while it's recal-390 culating. 391
- Santoferrara, L., Burki, F., Filker, S., Logares, R., Dunthorn, M., & McManus, G. B. (2020). Perspec-392 tives from ten years of protist studies by High-Throughput metabarcoding. Journal of Eukaryotic 393 Microbiology, 67, 612-622. 394
- Santoferrara, L. F. (2019). Current practice in plankton metabarcoding: Optimization and error manage-395 ment. Journal of Plankton Research, 41, 571-582. 396
- Schneider, L., Anestis, K., Mansour, J., Anschütz, A., Gypens, N., Hansen, P., John, U., Klemm, K., 397 Martin, J., Medic, N., Not, F., & Stolte, W. (2020). A dataset on trophic modes of aquatic 398 protists. Biodiversity Data Journal, 8. 399
- Singer, D., Seppey, C. V., Lentendu, G., Dunthorn, M., Bass, D., Belbahri, L., Blandenier, Q., Debroas, D., 400 de Groot, G. A., de Vargas, C., Domaizon, I., Duckert, C., Izaguirre, I., Koenig, I., Mataloni, G., 401 Schiaffino, M. R., Mitchell, E. A., Geisen, S., & Lara, E. (2021). Protist taxonomic and functional 402 diversity in soil, freshwater and marine ecosystems. Environment International, 146, 106262. 403
- Sommeria-Klein, G., Watteaux, R., Ibarbalz, F. M., Pierella Karlusich, J. J., Iudicone, D., Bowler, C., & 404 Morlon, H. (2021). Global drivers of eukaryotic plankton biogeography in the sunlit ocean. Science, 405 374, 594-599. 406
- Stoeck, T., Bass, D., Nebel, M., Christen, R., Jones, M. D. M., Breiner, H. W., & Richards, T. A. (2010). 407 Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic 408 community in marine anoxic water. Molecular Ecology, 19, 21-31. 409
- Stoeck, T., Behnke, A., Christen, R., Amaral-Zettler, L., Rodriguez-Mora, M. J., Chistoserdov, A., Orsi, W., 410 & Edgcomb, V. P. (2009). Massively parallel tag sequencing reveals the complexity of anaerobic 411 marine protistan communities. BMC Biology, 7, 72. 412
- Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., & Willerslev, E. (2012). Towards next-generation 413 biodiversity assessment using DNA metabarcoding. Molecular Ecology, 21, 2045–2050. 414
- Thompson, L. R., Sanders, J. G., McDonald, D., Amir, A., Ladau, J., Locey, K. J., Prill, R. J., Tripathi, A., 415 Gibbons, S. M., Ackermann, G., Navas-Molina, J. A., Janssen, S., Kopylova, E., Vázquez-Baeza, 416
- Y., González, A., Morton, J. T., Mirarab, S., Zech Xu, Z., Jiang, L., ... Knight, R. (2017). A communal catalogue reveals Earth's multiscale microbial diversity. Nature, 551, 457-463. 418
- Tragin, M., & Vaulot, D. (2018). Green microalgae in marine coastal waters: The Ocean Sampling Day 419 (OSD) dataset. Scientific Reports, 8, 14020. 420
- Travers, C. (2021). Qs R package. Quick Serialization of R Objects. 421

417

- 422 Yau, S., Lopes dos Santos, A., Eikrem, W., Gérikas Ribeiro, C., Gourvil, P., Balzano, S., Escande, M. L.,
- Moreau, H., & Vaulot, D. (2020). *Mantoniella beaufortii* and *Mantoniella baffinensis* sp. nov. (Mamiellales, Mamiellophyceae), two new green algal species from the high arctic1. *Journal of*
- ⁴²⁵ *Phycology*, *56*, 37–51.

ID Name		Area	Ecosystem	Substrate	Samples	Technology	Reads	ASVs	Bioproject	DOI
Ocean Samp	Ocean Sampling Day - 2014 - V4 LGC	Ocean survey	coastal	water	158	Illumina	31258	6557	PRJEB8682	10.1186/s13742-015-0066-5
Ocean Samp	Ocean Sampling Day - 2015 - V4	Ocean survey	coastal	water	139	Illumina	62575	6033		10.1186/s13742-015-0066-5
Ocean Samp	Ocean Sampling Day - 2014 - V4 LW	Ocean survey	coastal	water	33	Illumina	313694	5872		10.1186/s13742-015-0066-5
Arctic Ocean,	n, Beaufort Sea, MALINA Arctic Ocean	Arctic Ocean	oceanic	water	24	454	6704	270	PRJNA202104	10.1038/ismej.2014.197
cruise - 2009										
Arctic Ocean	Arctic Ocean Central - 2012	Arctic Ocean	oceanic	ice	80	454	36628	182	PRJEB7577	10.1080/09670262.2015.1077395
Arctic Nansei	Arctic Nansen Basin - 2012	Arctic Ocean	oceanic	water	17	454	13700	328	PRJEB11449	10.1371/journal.pone.0148512
Antarctic Felc	Antarctic Feldes Bay- 2013	Southern Ocean	coastal	water	10	Illumina	13631	69	PRJNA254097	10.1007/s00300-015-1815-8
15 Tara Oceans - 2009-2012	- 2009-2012	Ocean survey	oceanic	water	868	Illumina	1069869	19975	PRJEB6610	10.1126/science.1261605
Antarctic Felc	Antarctic Feldes Bay 2015 18S V4	Southern Ocean	coastal	water	123	Illumina	48288	689	PRJNA645244	10.1038/s41598-020-80568-8
18 Antarctic Feld	Antarctic Feldes Bay 2015 18S V4 sorted	Southern Ocean	coastal	sorted phytoplankton	60	Illumina	31615	280	PRJNA645244	10.1038/s41598-020-80568-8
Baltic Sea Gu	Baltic Sea Gulf of Finland - 2012-2013	Baltic Sea	coastal	water, ice	73	Illumina	71195	933	PRJEB21047	10.3354/meps12645
20 Norway Oslo	Norway Oslo fjord - TS - 2009-2011	Atlantic Ocean	coastal	water	78	454	4822	806	PRJNA497792	10.1111/jeu.12700
34 Malaspina ex	Malaspina expedition - vertical profiles -	Ocean survey	oceanic	water	179	Illumina	78420	6075	PRJEB23771	10.1038/s41396-019-0506-9
2010-2011										
Malaspina ex	Malaspina expedition - surface - 2010-2011 Ocean survey	Ocean survey	oceanic	water	124	Illumina	194174	7059	PRJEB23913	10.1186/s40168-020-00827-8
36 Spain Blanes	Spain Blanes Time Series - 2004-2013	Mediterranean Sea	coastal	water	289	Illumina	78880	9141	PRJEB23788	10.1111/mec.14929
37 Arctic Baffin Bay - 2013	3ay - 2013	Arctic Ocean	oceanic	water	32	Illumina	36046	518	PRJNA383398	10.1038/s41598-018-27705-6
38 Arctic White S	Arctic White Sea - 2013-2015	Arctic Ocean	oceanic	ice	17	Illumina	24210	385	PRJNA368621	10.1007/s00248-017-1076-x
39 Arctic Polarst	Arctic Polarstern expedition ARK-XXVII/3 - Arctic Ocean	Arctic Ocean	oceanic	water, ice, ice-algal	45	Illumina	74029	987	PRJEB23005	10.3389/fmicb.2018.01035.
2012				aggregates						
40 Arctic Ocean	Arctic Ocean Survey - 2005-2011	Arctic Ocean	oceanic	water	36	454	7136	467	PRJNA243055	10.1128/AEM.02737-14
Chukchi Sea	Chukchi Sea - ICESCAPE - 2010	Arctic Ocean	oceanic	water	23	454	5799	259	PRJNA217438	10.1128/AEM.02737-14
42 Arctic Nares Strait - 2014	Strait - 2014	Arctic Ocean	oceanic	water	247	Illumina	36708	1533	PRJEB24314	10.3389/fmars.2019.00479
43 Baltic Sea Gc	Baltic Sea Gdansk Gulf - 2012	Baltic Sea	coastal	water	35	454	3461	267	PRJEB23971	10.1002/lno.11177
Italy Bay of Naples - 2011	laples - 2011	Mediterranean Sea	coastal	water	80	Illumina	213716	2255	PRJEB24595	10.1093/femsec/fiw200
53 European coa	European coast Biomarks 2009	coast of Europe	coastal	water, sediments	139	454	8720	1155	PRJEB9133	10.1016/j.cub.2014.02.050
69 Mariana Trench 2016 1	ch 2016 1	Mariana Trench	oceanic	water	32	Illumina	53391	2800	PRJNA451086	10.1038/s41598-018-33790-4
70 Mariana Trench 2016 2	ch 2016 2	Mariana Trench	oceanic	water	12	Illumina	15713	213	PRJNA399026	10.3389/fmicb.2018.02023
150 River Saint-C	River Saint-Charles 2016-2017	Saint-Charles River	freshwater rivers	water	145	Illumina	8498	862	PRJNA486319	10.3389/fmicb.2019.02359
183 Lake Fuxian 2015	2015	Lake Fuxian	freshwater lakes	water	17	Illumina	67202	764	PRJNA534173	10.3389/fmicb.2019.02016
185 Lake Chaohu 2014-2015	12014-2015	Lake Chaohu	freshwater lakes	water	24	Illumina	63312	666	PRJNA534176, PRJNA330896	10.1016/j.scitotenv.2019.134803
195 Lake Baikal 2013	013	Siberia	freshwater lakes	water	23	Illumina	66056	431	PRJEB24415	10.3390/microorganisms8040543
196 Lake Chevreu	Lake Chevreuse France 2012	Europe	freshwater lakes	water	12	454	8480	124	PRJNA259710	10.1111/1462-2920.12591
197 Lakes mountain 2013	ain 2013	Austria Chile Ethiopia freshwater lakes	freshwater lakes	water	19	Illumina	54102	608	PRJNA299108	10.1111/mec.13633
198 Lake Garda		Italy	freshwater lakes	water	64	Illumina	53628	628	PRJEB36925	10.3389/fmicb.2020.00789
199 Soils Neotropical	vical	Central and South	South terrestrial	soil	175	Illumina Miseq	378928	10686	PRJNA317860	10.1038/s41559-017-0091
		America								

Table 1: List of eukaryotic datasets and studies included in the metaPR2 databases. The column 'Reads' corresponds to mean number of reads per sample.

\sim
D
Ū
Γ
2
1
Ē
õ
ŭ
Ľ
J
ت :-
];]
-
e 1
e 1
e 1

ID Name	Area	Ecosystem	Substrate	Samples	Technology	Reads	Samples Technology Reads ASVs Bioproject	DOI
201 Soils Swiss	Swiss Alps	terrestrial	soil	585	Illumina	31557	9640 PRJEB30010	10.1111/jbi.13755
202 Lakes Argentina	Global	freshwater lakes	water	15	Illumina Hiseq	272112 1648 P	1648 PRJEB41211	10.1016/j.envint.2020.106262
203 Lakes Scandinavia	Scandinavia	freshwater lakes	water	87	454	3077	301	10.1093/femsec/fiw231
204 Soils Global 2012	Global	terrestrial	soil	40	454	873	120	10.1038/ismej.2012.147
205 Tara Ocean V4	Ocean survey	oceanic	water	104	Illumina	198981	9009 PRJEB6610	10.1016/j.cell.2019.10.008
206 Tara Arctic V4	Arctic Ocean	oceanic	water	28	Illumina	156105	156105 1416 PRJEB9737	10.1016/j.cell.2019.10.008

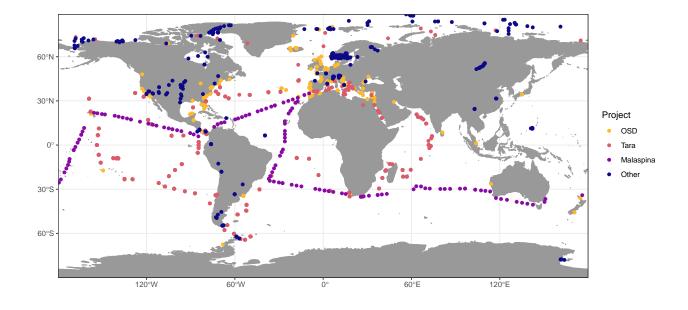


Figure 1: Map of stations included in the meta PR^2 database.

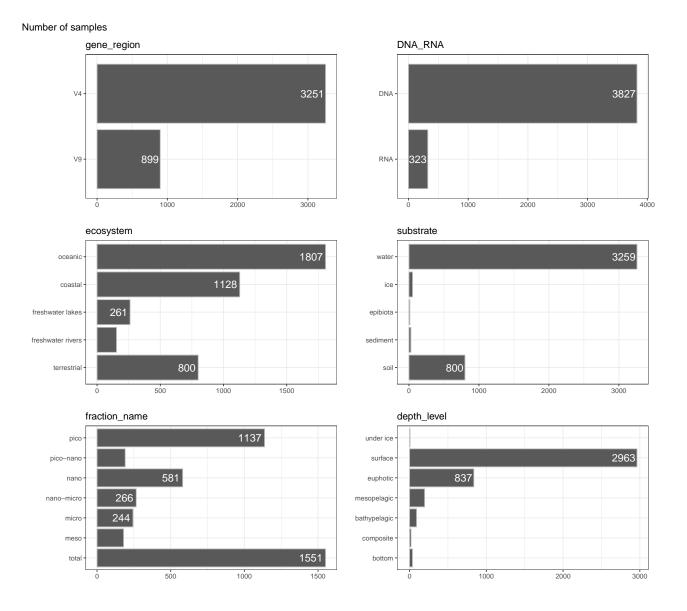
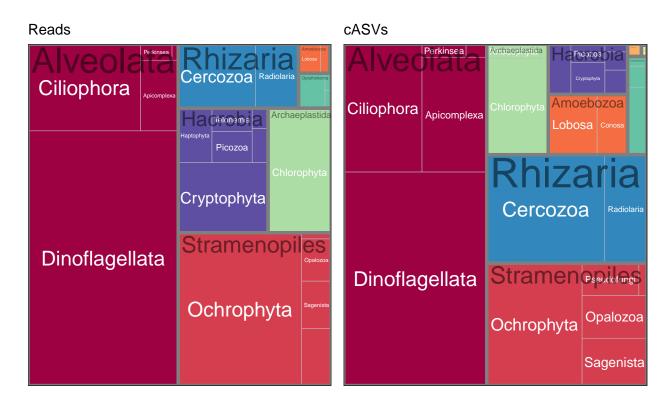



Figure 2: Distribution of samples by gene region, DNA or RNA, ecosystem, substrate, fraction name and depth level.

Figure 3: Treemaps of most abundant protist taxa (supergroup and division) for V4 datasets based on number of reads after normalization (left) or number of cASVs (right).

А

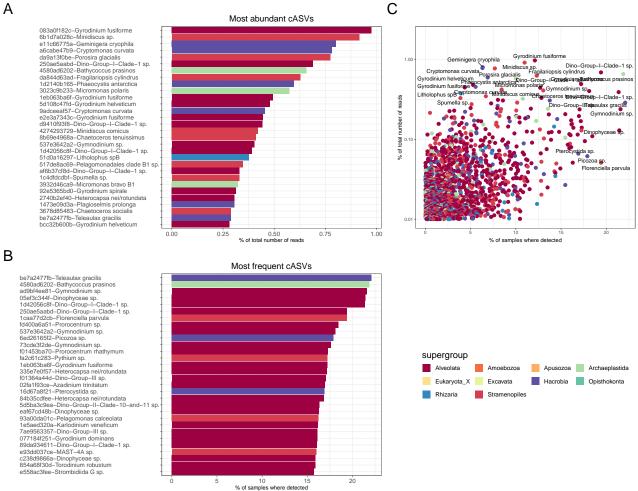
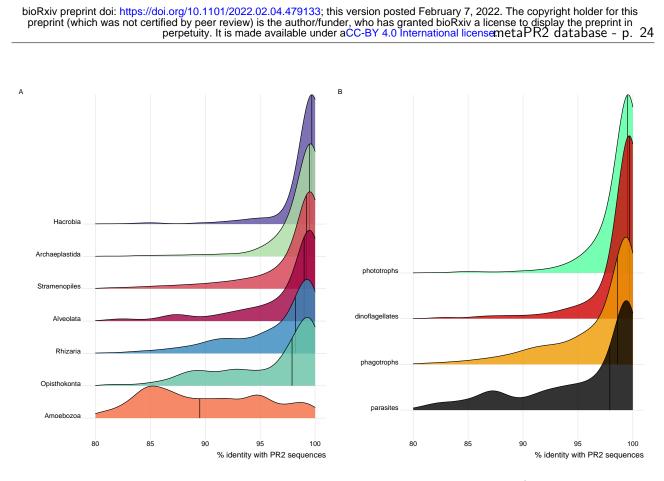
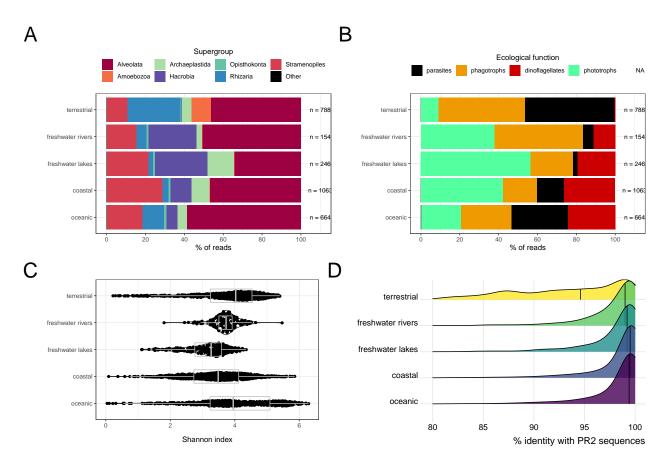




Figure 4: Protist V4 cASVs. Most abundant cASVs (after normalisation per sample). B. Most frequent cASVs. C. Relationships between cASV frequency and abundance. Each cASV is coded by a 10-letter string representing the start of the 40-character hash value of the sequence (see Material and Methods).

Figure 5: Protist V4 cASVs. Similarity of cASVs to sequences for the sequences from the PR² database as a function of supergroup (A) and of the ecological function (B).

Figure 6: Protist V4 cASVs. Composition as a function of the environment based on taxonomy (A) or on ecological function (B) and Shannon index (C). Similarity of cASVs to sequences for the sequences from the PR^2 database as a function of the environment (D).

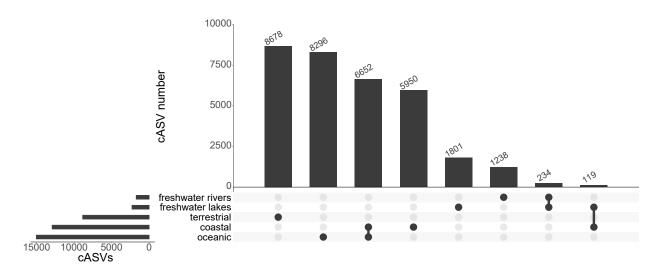


Figure 7: Protist V4 cASVs found on one or more environments (so-called "upset" plot).

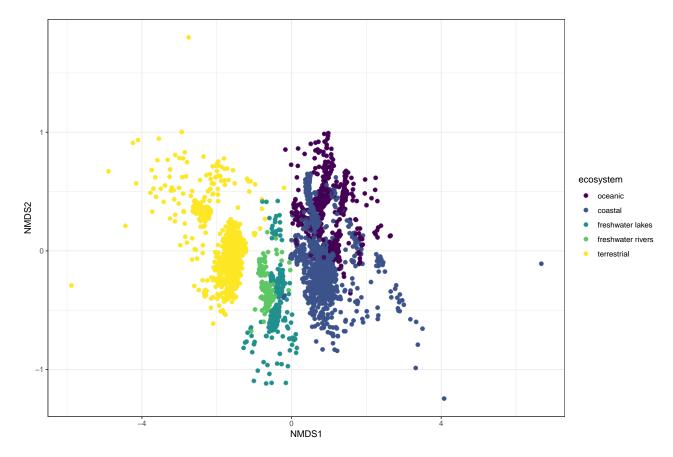


Figure 8: Protist V4 cASVs. NMDS analysis. Colour correspond to sample environment.

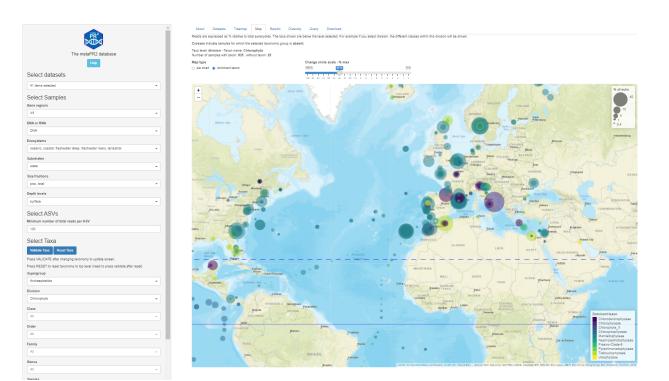


Figure 9: The meta PR^2 shiny application available at https://shiny.metapr2.org.

426 427

metaPR²: a database of eukaryotic 18S rRNA metabarcodes with an emphasis on protists.

Daniel Vaulot ^{1, 2} ^{1, 2} ⁰, Clarence Wei Hung Sim², Denise Ong², Bryan Teo², Charlie Biwer³,
 Mahwash Jamy³, Adriana Lopes dos Santos ²

- 430
- ⁴³¹ ¹ UMR 7144, ECOMAP, CNRS, Sorbonne Université, Station Biologique de Roscoff, 29680
- 432 Roscoff, France
- ⁴³³ ² Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue,
 ⁴³⁴ Singapore 639798
- ⁴³⁵ ³ Department of Organismal Biology (Systematic Biology), Uppsala University, Uppsala, ⁴³⁶ Sweden

437 ORCID

- Daniel Vaulot: 0000-0002-0717-5685
- Adriana Lopes dos Santos: 0000-0002-0736-4937
- Denise Ong: 0000-0001-6053-6948
- Clarence Wei Hung Sim: 0000-0003-2190-7261
- Mahwash Jamy: 0000-0002-2930-9226
- ^{₄₄₃} [⊠] Corresponding author: vaulot@gmail.com
- ⁴⁴⁴ Date: February 7, 2022
- Keywords: 18S rRNA, metabarcodes, database, R, shiny, PCR, protists
- ⁴⁴⁶ **Short title**: metaPR² a database of eukaryotic metabarcodes

447 Supplementary Material

Table S1: Ecological function of taxa according to Table S2 of Sommeria-Klein et al. (2021). Taxa present in the PR2 database for which ecological function was not present in Table S2 were assigned an ecological function based on the literature. Ecological function was propagated to all taxa below the taxon for which it was defined using an R script.

Taxon	Taxonomic level	Function	Reference
Acantharea	class	phagotrophs	Sommeria-Klein et al. 202
Annelida	class	metazoans	Sommeria-Klein et al. 202
Apicomplexa	class	parasites	Sommeria-Klein et al. 202
Arthropoda	class	metazoans	Sommeria-Klein et al. 202
Endomyxa-Ascetosporea	class	parasites	Sommeria-Klein et al. 202
Ascomycota	class	phagotrophs	Sommeria-Klein et al. 202
Bacillariophyta	class	phototrophs	Sommeria-Klein et al. 202
Basidiomycota	class	phagotrophs	Sommeria-Klein et al. 202
Bicoecea	class	phagotrophs	Sommeria-Klein et al. 202
Bolidophyceae	class	phototrophs	Sommeria-Klein et al. 202
Bryozoa	class	metazoans	Sommeria-Klein et al. 202
Centrohelida		phagotrophs	Sommeria-Klein et al. 202
Chaetognatha	class	metazoans	Sommeria-Klein et al. 202
Chlorarachniophyceae	class	phototrophs	Sommeria-Klein et al. 202
Chlorophyceae	class	phototrophs	Sommeria-Klein et al. 202
Chloropicophyceae	class	phototrophs	Sommeria-Klein et al. 202
Choanoflagellatea	class	phagotrophs	Sommeria-Klein et al. 202
Chordata		metazoans	Sommeria-Klein et al. 202
Chrompodellids	division	phagotrophs	Sommeria-Klein et al. 202
Chrysophyceae	class	phototrophs	Sommeria-Klein et al. 202
Chytridiomycota	class	parasites	Sommeria-Klein et al. 202
Ciliophora	division	phagotrophs	Sommeria-Klein et al. 202
Cnidaria	class	metazoans	Sommeria-Klein et al. 202
Collodaria			Sommeria-Klein et al. 202
Cryomonadida	class	phagotrophs	Sommeria-Klein et al. 202
Cryptophyta	division	phototrophs	Sommeria-Klein et al. 202
Ctenophora	class	metazoans	Sommeria-Klein et al. 202
Dactylopodida	order	parasites	Sommeria-Klein et al. 202
Dictyochophyceae	class	phototrophs	Sommeria-Klein et al. 202
Dinophyceae	class	dinoflagellates	Sommeria-Klein et al. 202
Diplonemida	order	phagotrophs	Sommeria-Klein et al. 202
Ebriida	order	phagotrophs	Sommeria-Klein et al. 202

	Table S1:	(continued)	
Taxon	Taxonomic level	Function	Reference
Echinodermata	class	metazoans	Sommeria-Klein et al. 2021
Eucyrtidium	genus	phagotrophs	Sommeria-Klein et al. 2021
Euglenida	class	phagotrophs	Sommeria-Klein et al. 2021
Foraminifera	division	phagotrophs	Sommeria-Klein et al. 2021
Haptophyta	division	phototrophs	Sommeria-Klein et al. 2021
Katablepharidophyta	division	phagotrophs	Sommeria-Klein et al. 2021
Kinetoplastea	class	parasites	Sommeria-Klein et al. 2021
Labyrinthulomycetes	class	phagotrophs	Sommeria-Klein et al. 2021
Dino-Group-I	order	parasites	Sommeria-Klein et al. 2021
Dino-Group-II	order	parasites	Sommeria-Klein et al. 2021
Dino-Group-III	order	parasites	Sommeria-Klein et al. 2021
Dino-Group-IV	order	parasites	Sommeria-Klein et al. 2021
Dino-Group-V	order	parasites	Sommeria-Klein et al. 2021
Mamiellophyceae	class	phototrophs	Sommeria-Klein et al. 2021
MAST-1	class	phagotrophs	Sommeria-Klein et al. 2021
MAST-10	class	phagotrophs	Sommeria-Klein et al. 2021
MAST-11	class	phagotrophs	Sommeria-Klein et al. 2021
MAST-12	class	phagotrophs	Sommeria-Klein et al. 2021
MAST-3	class	phagotrophs	Sommeria-Klein et al. 2021
MAST-4	class	phagotrophs	Sommeria-Klein et al. 2021
MAST-6	class	phagotrophs	Sommeria-Klein et al. 2021
MAST-7	class	phagotrophs	Sommeria-Klein et al. 2021
MAST-8	class	phagotrophs	Sommeria-Klein et al. 2021
MAST-9	class	phagotrophs	Sommeria-Klein et al. 2021
Mesomycetozoa	division	parasites	Sommeria-Klein et al. 2021
MOCH-1	class	phototrophs	Sommeria-Klein et al. 2021
MOCH-2	class	phototrophs	Sommeria-Klein et al. 2021
Mollusca	class	metazoans	Sommeria-Klein et al. 2021
Nassellaria	order	phagotrophs	Sommeria-Klein et al. 2021
Nemertea	class	metazoans	Sommeria-Klein et al. 2021
Oomycota	class	parasites	Sommeria-Klein et al. 2021
Pelagophyceae	class	phototrophs	Sommeria-Klein et al. 2021
Phaeodaria		phagotrophs	Sommeria-Klein et al. 2021
Picomonadida		phagotrophs	Sommeria-Klein et al. 2021
Platyhelminthes	class	metazoans	Sommeria-Klein et al. 2021

Table S1: (continued)

	Table 51:	(continued)	
Taxon	Taxonomic level	Function	Reference
Porifera	class	metazoans	Sommeria-Klein et al. 2021
Pyramimonadophyceae	class	phototrophs	Sommeria-Klein et al. 2021
RAD-A	class	phagotrophs	Sommeria-Klein et al. 2021
RAD-B	class	phagotrophs	Sommeria-Klein et al. 2021
RAD-C	class	phagotrophs	Sommeria-Klein et al. 2021
Rhodophyta	division	phototrophs	Sommeria-Klein et al. 2021
Spumellaria	order	phagotrophs	Sommeria-Klein et al. 2021
Streptophyta	division	phototrophs	Sommeria-Klein et al. 2021
Telonemia	division	phagotrophs	Sommeria-Klein et al. 2021
Trebouxiophyceae	class	phototrophs	Sommeria-Klein et al. 2021
Vannellida	order	phagotrophs	Sommeria-Klein et al. 2021
Amoebozoa	supergroup	parasites	Literature
Perkinsea	division	parasites	Literature
Alveolata_X	division	parasites	Literature
Dinoflagellata	division	phagotrophs	Literature
Apusozoa	supergroup	phagotrophs	Literature
Chlorophyta	division	phototrophs	Literature
Glaucophyta	division	phototrophs	Literature
Prasinodermophyta	division	phototrophs	Literature
Centroheliozoa	division	phagotrophs	Literature
Metamonada	division	parasites	Literature
Picozoa	division	phagotrophs	Literature
Choanoflagellida	division	phagotrophs	Literature
Fungi	division	parasites	Literature
Metazoa	division	metazoans	Literature
Cercozoa	division	phagotrophs	Literature
Aurearenophyceae	class	phototrophs	Literature
Chrysomerophyceae	class	phototrophs	Literature
Eustigmatophyceae	class	phototrophs	Literature
MOCH-3	class	phototrophs	Literature
MOCH-4	class	phototrophs	Literature
MOCH-5	class	phototrophs	Literature
Phaeophyceae	class	phototrophs	Literature
Ochrophyta	division	phototrophs	Literature
Pinguiophyceae	class	phototrophs	Literature

Table S1: (continued)

Taxonomic level	Function	Reference
class	phototrophs	Literature
class	phagotrophs	Literature
class	phagotrophs	Literature
class	phagotrophs	Literature
division	parasites	Literature
division	parasites	Literature
division	phagotrophs	Literature
supergroup	phagotrophs	Literature
division	parasites	Literature
supergroup	phototrophs	Literature
supergroup	parasites	Literature
division	parasites	Literature
division	phagotrophs	Literature
supergroup	phagotrophs	Literature
	class class class class class class class class class division division division supergroup division supergroup division supergroup division	classphototrophsclassphototrophsclassphototrophsclassphototrophsclassphototrophsclassphagotrophsclassphagotrophsclassphagotrophsclassphagotrophsclassphagotrophsdivisionparasitesdivisionphagotrophssupergroupphagotrophssupergroupphagotrophssupergroupparasitessupergroupparasitesdivisionparasitessupergroupphototrophssupergroupphagotrophssupergroupparasitesdivisionparasitessupergroupphototrophssupergroupparasitesdivisionparasitesdivisionparasitesdivisionparasitessupergroupparasitesdivisionparasitesdivisionparasitesdivisionparasitesdivisionparasitesdivisionparasitesdivisionparasitesdivisionparasitesdivisionparasitesdivisionparasitesdivisionparasitesdivisionparasitesdivisionparasitesdivisionparasitesdivisionparasitesdivisionparasitesdivisionparasitesdivisionparasitesdivisionparasitesdivisionparasites </td

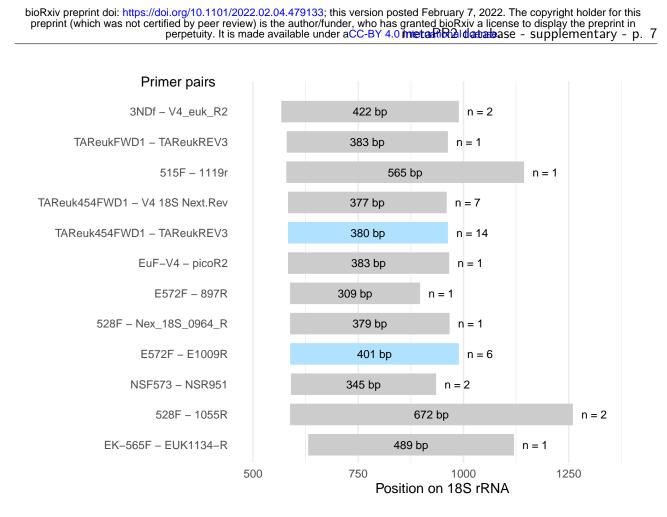

Table S1: (continued)

Table S	S2:	Eukaryotic	18S	rRNA	primers	used	for	metaPR2	datasets	with	the	number	of	datasets	(N)	where	used
(Table	1).																

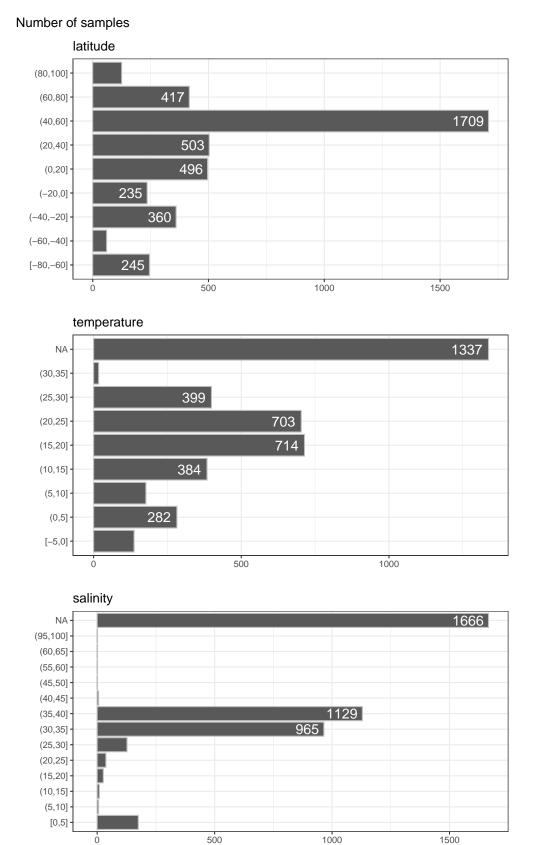
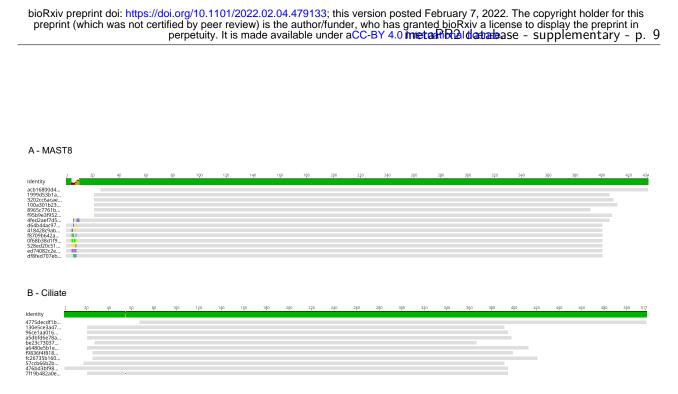
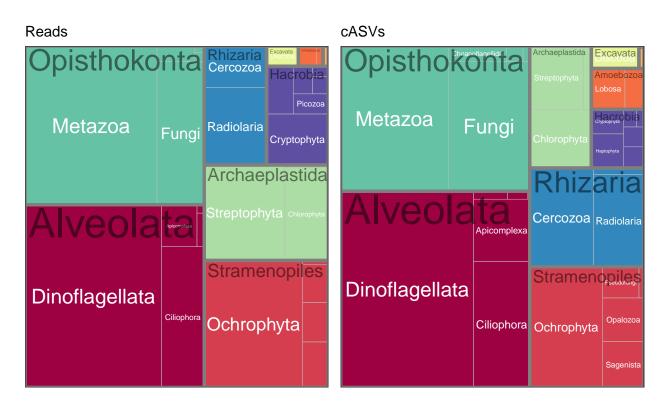
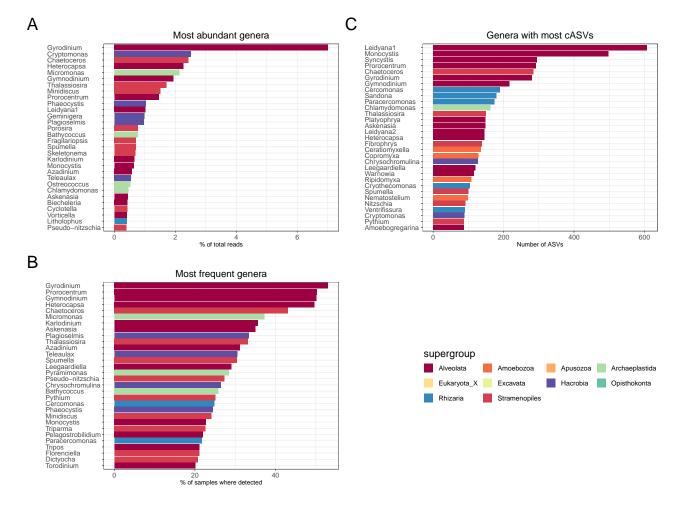

Name	Sequence	Region	Directio	n Reference	DOI	Ν
TAReuk454FWD1	CCAGCASCYGCGGTAATTCC	V4	fwd	Stoeck et al (2010)	10.1111/j.1365-294X.2009.04480).x 21
E572F	CYGCGGTAATTCCAGCTC	V4	fwd	Comeau et al. (2011)	10.1371/journal.pone.0027492	7
3NDf	GGCAAGTCTGGTGCCAG	V4	fwd	Cavalier-Smith et al. (2009)) 10.1016/j.protis.2009.03.003	2
528F	GCGGTAATTCCAGCTCCAA	V4	fwd	Cheung et al. (2010)	10.1038/ismej.2010.26	2
NSF573	CGCGGTAATTCCAGCTCCA	V4	fwd	Mangot et al. (2013)	10.1111/1462-2920.12065	2
1380F	CCCTGCCHTTTGTACACAC	V9	fwd	Amaral Zettler et al (2009)	10.1371/journal.pone.0006372	1
1389F	TTGTACACACCGCCC	V9	fwd	Amaral Zettler et al (2009)	10.1371/journal.pone.0006372	1
515F	GTGCCAGCMGCCGCGGTAA	V4	fwd	Parfrey et al. (2014)	10.3389/fmicb.2014.00298	1
528F	CCGCGGTAATTCCAGCTC	V4	fwd	Zhu et al. (2005)	10.1016/j.femsec.2004.10.006	1
EK-565F	GCAGTTAAAAAGCTCGTAGT	V4	fwd	Simon et al. (2015)	10.1111/1462-2920.12591	1
EuF-V4	CCAGCASCCGCGGTAATWCC	V4	fwd	Boscaro et al. (2017)	10.1007/s00248-016-0912-8	1
EuF-V4	CCAGCASCCGCGGTAATWCC	V4	fwd	Belevich et al. (2017)	10.1007/s00248-017-1076-x	1
TAReukFWD1	CCAGCASCYGCGGTAAT	V4	fwd	Annenkova et al. (2020)	10.3390/microorganisms8040543	1
TAReukREV3	ACTTTCGTTCTTGATYRA	V4	rev	Stoeck et al (2010)	10.1111/j.1365-294X.2009.04480).×15
V4 18S Next.Rev	ACTTTCGTTCTTGATYRATGA	V4	rev	Piredda et al. (2017)	10.1093/femsec/fiw200	7
E1009R	AYGGTATCTRATCRTCTTYG	V4	rev	Comeau et al. (2011)	10.1371/journal.pone.0027492	6
1055R	ACGGCCATGCACCACCACCAT	V4	rev	Alves-de-Souza et al (2011)	10.5194/bg-8-2125-2011	2
1510R	CCTTCYGCAGGTTCACCTAC	V9	rev	Lopez-Garcia et al. (2003)	10.1073/pnas.0235779100	2
NSR951	TTGGYRAATGCTTTCGC	V4	rev	Mangot et al. (2013)	10.1111/1462-2920.12065	2
V4_euk_R2	ACGGTATCTRATCRTCTTCG	V4	rev	Brate et al. (2010)	10.1038/ismej.2010.39	2
1119r	GGTGCCCTTCCGTCA	V4	rev	Parfrey et al. (2014)	10.3389/fmicb.2014.00298	1
897R	TCYDAGAATTYCACCTCT	V4	rev	Hugerth et al. (2014)	10.1371/journal.pone.0095567	1
EUK1134-R	TTTAAGTTTCAGCCTTGCG	V4	rev	Carnegie et al. (2003)	10.3354/dao054219	1
Nex_18S_0964_F	RGATCCCYYAACTTTCGTTCTTGA	V4	rev	Kim et al. (2016)	10.1111/1462-2920.13523	1
picoR2	AKCCCCYAACTTTCGTTCTTGAT	V4	rev	Belevich et al. (2017)	10.1007/s00248-017-1076-x	1

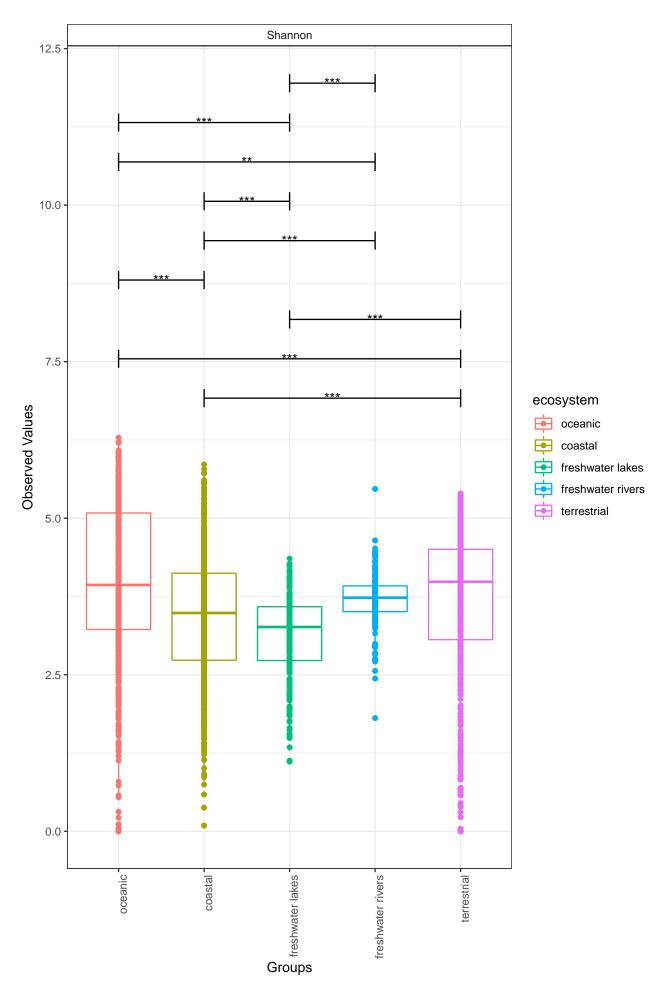
Table S3: 18S rRNA primer sets used for metaPR2 datasets with the number of datasets (N) where used (Table 1). Refer to Table S2 for sequence and reference of primers.

Primer fwd	Primer rev	Region	Ν
TAReuk454FWD1	TAReukREV3	V4	14
TAReuk454FWD1	V4 18S Next.Rev	V4	7
E572F	E1009R	V4	6
3NDF	V4_euk_R2	V4	2
528F	1055R	V4	2
NSF573	NSR951	V4	2
1380F	1510R	V9	1
1389F	1510R	V9	1
E572F	897R	V4	1
EK-565F	UNonMet	V4	1
EuF-V4	picoR2	V4	1
F515	R119	V4	1
Nex_18S_0587_F	Nex_18S_0964_R	V4	1
TAReukFWD1	TAReukREV3	V4	1

Figure S1: Amplicon size and position on the 18S rRNA gene (yeast), with the number of datasets for each V4 primer pair on the right side.

Figure S2: Distribution of samples by latitud, temperature and salinity ranges. NA corresponds to samples for which the data are not available.


Figure S3: Two examples of V4 sequence clusters ASV (cASV) for Stramenopiles MAST 8 (A) and ciliates (B).

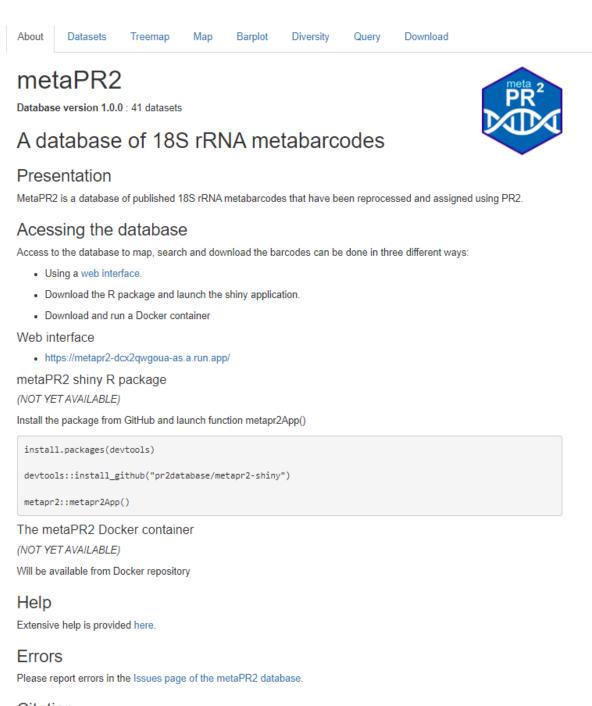

Figure S4: Treemaps of most abundant taxa (supergroup and division) for all datasets (V4 and V9) based on number of reads after normalization (left) or number of cASVs (right).

Figure S5: Protist genus analysis for for the V4 dataset after normalization. A. Most abundant genera. B. Most frequent genera. C. Genera with most cASVs.

Figure S6: Protist V4 ASVs. Shannon's diversity index as a function of the environment with significance (** p-value < 0.01, *** p-value < 0.001).

Citation

Vaulot, D. et al. (2021). metaPR2 : An interactive 18S rRNA metabarcode database. Unpublished

Maintainer

Daniel Vaulot: vaulot@gmail.com

Contributors

- · Daniel Vaulot, CNRS Roscoff, NTU-ASE Geek lab
- Adriana Lopes dos Santos, NTU-ASE Geek lab
- Clarence Sim, NTU-ASE Geek lab
- Denise Ong, NTU-ASE Geek lab
- Bryan Teo, NTU-ASE Geek lab
- Mahwash Jamy, Uppsala University Sweden
- Charlie Biwer, Uppsala University Sweden

Figure S7: Shiny panel "about".

Select datasets

1 items selected
Select All Deselect All
Antarctic_Fieldes_Bay_2013
Antarctic_Fieldes_Bay_2015_18S_V4
Antarctic_Fieldes_Bay_2015_18S_V4_sorted
Arctic_Baffin_Bay_2013
Arctic_Beaufort_Sea_MALINA_2014
Arctic_Nansen_Basin_2012
Arctic_Nares_Strait_2014
Arctic_Ocean_Central_2012
Arctic_Ocean_PS80_2012
Arctic_Ocean_Survey_2005_2011
Arctic_White_Sea_2013_2015
Baltic_Sea_2012_2013
Baltic_Sea_Gdansk_2012
Chukchi_Sea_ICESCAPE_2010
European_coast_Biomarks_2009
Italy_Naples_2011
Lake_Baikal_2013
Lake_Chaohu_2014_2015
Lake_Chevreuse_2012
Lake_Fuxian_2015
Lake_Garda
Lakes_Argentina
Lakes_mountain_2013
Lakes_Scandinavia
Malaspina_surface_2010_2011
Malaspina_vertical_2010_2011
Mariana_Trench_2016_1
Mariana_Trench_2016_2
Norway_Oslo_fjord_2009_2011
OSD_2014_V4_LGC
OSD_2014_V4_LW
OSD_2015_V4
River_Parana
River_Saint_Charles_2016_2017
Soils_Global_2012
Soils_Neotropical
Soils_Swiss
Spain_Blanes_2004_2013
Tara_Arctic_V4
Tara_Ocean_V4
Tara_Oceans_V9

uick datase	et selection.						
ataset groups							
	-	coastal 🗌	rivers 🗌 lakes 🗌 soils 🗌 arctic 🗌 anta	arctic 🗌 temperate			
how 10 🗸 e	ntries				Searc	:h:	
dataset_id 🔅	dataset_name 👙	region	paper_reference	sample_number 🔅	asv_number 🔶	n_reads_mean 🔅	selected
11	Antarctic Fieldes Bay- 2013	Southern Ocean	Luo, W. et al. Molecular diversity of microbial eukaryotes in sea water from Fildes Peninsula, King George Island, Antarctica. Polar Biol. (2015)	10	69	13631	true
16	Antarctic Fieldes Bay 2015 18S V4	Southern Ocean	Trefault, N., De la Iglesia, R., Moreno- Pino, M., Lopes dos Santos, A., G-c9-rikas Ribeiro, C., Parada-Pozo, G., Cristi, A., Mare, D., & Vaulot, D. (2021). Annual phytoplankton dynamics in coastal waters from Fildes Bay, Western Antarctic Peninsula. Scientific Reports, 11(1), 1368.	123	685	48261	true
18	Antarctic Fieldes Bay 2015 18S V4 sorted	Southern Ocean	Trefault, N., De la Iglesia, R., Moreno- Pino, M., Lopes dos Santos, A., G <e9-rikas c.,="" g.,<br="" parada-pozo,="" ribeiro,="">Cristi, A., Mare, D., & Vaulot, D. (2021). Annual phytoplankton dynamics in coastal waters from Fildes Bay, Western Antarctic Peninsula. Scientific Reports, 11(1), 1368.</e9-rikas>	60	280	31615	true
9	Arctic Nansen Basin - 2012	Arctic Ocean	Metfles, K., von Appen, WJ., Kilias, E., Nicolaus, A. & Nef8-thig, EM. Biogeography and Photosynthetic Biomass of Arctic Marine Pico-Eukaroytes during Summer of the Record Sea Ice Minimum 2012. PLoS One 11, 20 pp. (2016)	17	328	13700	true
42	Arctic Nares Strait - 2014	Arctic Ocean	Kalenitchenko D., Joli N., Potvin M., Tremblay Jcc9-, Lovejoy C. 2019. Biodiversity and Species Change in the Arctic Ocean: A View Through the Lens of Nares Strait. Frontiers in Marine Science 6:1-98-17.	247	1510	36626	true
6	Arctic Ocean Central - 2012	Arctic Ocean	Stecher, A., Neuhaus, S., Lange, B., Frickenhaus, S., Beszteri, B., Kroth, P.G. & Valentin, K. 2015, rRNA and rDNA based assessment of sea ice protist biodiversity from the central Arctic Ocean. Eur. J. Phycol. 1-96-16.	8	182	36628	true
40	Arctic Ocean Survey - 2005- 2011	Arctic Ocean	Thaler M., Lovejoy C., Sea B. 2015. Biogeography of Heterotrophic Flagellate Populations Indicates the Presence of Generalist and Specialist Taxa in the Arctic Ocean. Applied and Environmental Microbiology 81:2137<96>2148	36	467	7136	true
5	Arctic Ocean, Beaufort Sea, MALINA cruise - 2009	Arctic Ocean	Monier, A., Terrado, R., Thaler, M., Comeau, A., Medrinal, E. & Lovejov, C. 2013. Upper Arctic Ocean valer masses harbor distinct communities of heterotophic flageliates. Biogeosciences. 10 4273-69-68. Monier, A., Comite, J., Babin, M., Forest, A., Matsuoka, A. & Lovejov, C. 2014. Oceanorgaphic structure drives the assembly processes of microbial eukaryotic communities. ISME J. 9:990-96-1002.	24	270	6704	true
39	Arctic Polarstern expedition ARK- XXVII/3 - 2012	Arctic Ocean	Rapp JZ., Fern-e1>ndez-M-e9>ndez M., Bienhold C., Boetius A. 2018. Effects of Ice-Algal Aggregate Export on the Connectivity of Bacterial Communities in the Cantral Arctic Ocean. Frontiers in Microbiology 9:1035	45	978	73933	true
38	Arctic White Sea - 2013-2015	Arctic Ocean	Belevich TA, Ilyash L V, Milyutina IA, Logacheva MD., Goryunov D V., Troitsky A V. 2017. Photosynthetic Picoeukaryotes in the Land-Fast Ice of the White Sea, Russia. Microbial Ecology 1-685-16.	17	380	23990	true

Figure S8: Shiny panel "datasets".

The metaPR2 database									
Select datasets									
41 items selected									
Select Samples									
Gene regions									
V4 -									
DNA or RNA									
DNA									
Ecosystems									
oceanic, coastal, freshwater lakes, freshwater riv -									
Substrates									
water -									
Size fractions									
pico, total									
Depth levels									
surface									
Select ASVs Minimum number of total reads per ASV 1000									
Select Taxa									
Supergroup									
All									
District									
Division									
7 MI -									
Class									
All									
Order									
All									
Family									
All									
Genus									
All									
Species									
All									

Figure S9: Shiny sample selection sidebar.

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.04.479133; this version posted February 7, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.00 etailed at abase - supplementary - p. 15 About Datasets Treemap Мар Barplot Alpha diversity Beta diversity Query Download Number of reads have been normalized (not rarefield) to 100 with 3 decimals. pisthokonta zaria Discoba laptophyta Picozoa Radiolaria Metazoa Cryptophyta Fungi Archaeplastida Streptophyta Chlorophyta Alveolata Stramenopiles Dinoflagellata Ciliophora Ochrophyta

Figure S10: Shiny panel "treemap".

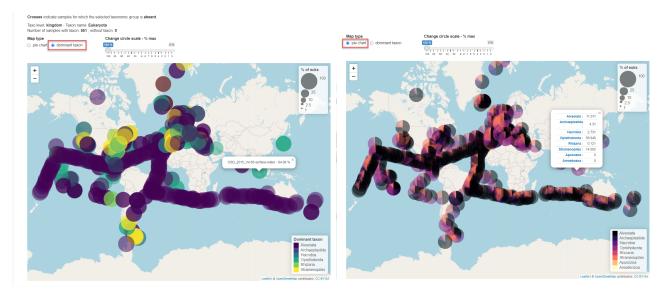


Figure S11: Shiny panel "map".

Figure S12: Shiny panel "barplot".

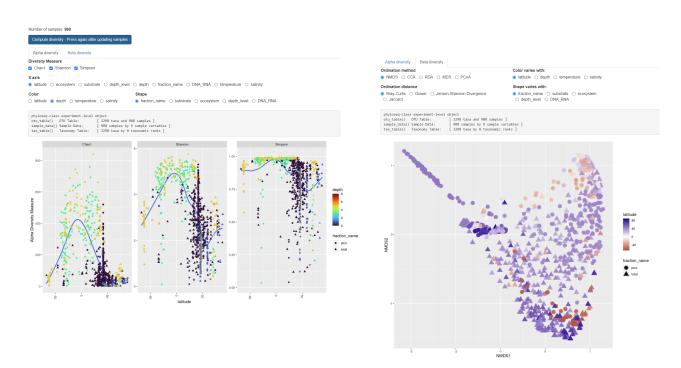


Figure S13: Shiny panel "diversity".

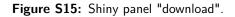


Figure S14: Shiny panel "query".

About	Datas	ets	Treemap	Мар	Barplot	Diversity	Query	Download	Help			
Selected	damp	les, da	atasets an	d taxa								
	-							selected datase han 1000 samp		e and taxa. The asv_read	ls and phyloseq files can be very	1
file	(content									key fields	
datasets.xl	sx I	nforma	tion on the di	dataset_id								
samples.xl	sx l	List of s	amples selec	file_code								
asv.xlsx	ASV selected with taxonomy and sequence										asv_code	
asv_reads.tsv.gz Percent of reads (normalized to total number of eukaryotic reads in the sample), for each ASV and each sample (long form).											asv_code, file_code	
phyloseq.re	hyloseq.rds File to use with phyloseq R package (https://joey711.github.io/phyloseq/). Use readRDS() function to read										5000 samples max	
Number of s	samples	960										
🛓 Downle	oad data	isets, sa	amples and A	ASVs (zip)		🛓 Downloa	d ASVs abu	ndance (tsv.gz)				
Make phyl phyloseq- otu_table	-class e		ent-level o e:		xa and 908	samples]						

hake phyloted tools otu_table() OTU Table: [2298 taxa and 908 samples] sample_data() Sample Data: [908 samples by 9 sample variables] tax_table() Taxonomy Table: [3298 taxa by 8 taxonomic ranks] phyloseq-class experiment-level object otu_table() OTU Table: [3298 taxa and 908 samples] sample_data() Sample Data: [908 sample sy 9 sample variables] tax_table() Taxonomy Table: [3298 taxa by 8 taxonomic ranks] ***** Download phyloseq file (rds)

