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Abstract10

Analytic models for how species will respond to climate change can highlight key parameter11

dependencies. By mapping equations for population dynamics onto corresponding well-studied12

problems from quantum mechanics we derive analytical results for the frequently observed case13

of asymmetric environmental response curves. We derive expressions in terms of parameters14

representing climate velocity, dispersal rate, maximum growth rate, niche width, high-frequency15

climate variability and environmental performance curve skew for three key responses: 1) pop-16

ulation persistence, 2) lag between range displacement and climate displacement, 3) location of17

maximum population sensitivity. Surprisingly, under our model assumptions, the direction of18

performance curve asymmetry does not strongly contribute to either persistence or lags. Con-19

servation measures to support range-shifting populations may have most benefit near their envi-20

ronmental optimum or where the environmental dependence is shallow, irrespective of whether21

this is the ‘leading’ or ‘trailing’ edge. A metapopulation simulation corroborates our results.22
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1 Introduction23

Climate change is driving range shifts of species across the world (Parmesan & Yohe 2003; Lenoir24

et al. 2020) making understanding the underlying ecological dynamics and drivers a key compo-25

nent of conservation efforts (Urban et al. 2016). For species with narrow environmental niches,26

their likelihood of survival will be determined by their relative rates of extirpation from sites27

at trailing edges and colonisation at leading edges (Kerr 2020). Range shifts are not instanta-28

neous, creating communities not at equilibrium with their climatic niche (Svenning & Sandel29

2013; Alexander et al. 2018; Rumpf et al. 2019; Lenoir et al. 2020). While species-distribution30

models (Elith & Leathwick 2009) can indicate the potential end state after climate change, dy-31

namic models are required to examine how a species’ range may shift through time (Zurell et al.32

2009, Alexander et al. 2017). To meet this need, many modelling approaches have been applied,33

spanning the full breadth of possible trade-offs between model precision, realism and specificity34

(Levins 1966).35

Large generalised spatially-explicit simulation models (Brooker et al. 2007; Urban et al. 2012;36

Lurgi et al. 2015; Thompson & Gonzalez 2017; Thompson & Fronhofer 2019) are able to flexibly37

capture many processes and have been highly informative. However, the complexity of these38

models makes systematic interrogation of conclusions drawn from particular parameter choices a39

challenge. Results can depend strongly on the underlying assumptions of the model (Zurell et al.40

2016). Moving-habitat integro-differential equation models (Zhou & Kot 2011; Kot & Phillips41

2015; Harsch et al. 2017; Hurford et al. 2019), which include a continuous spatial element and42

discrete time, can capture many nuances of dispersal processes and are somewhat analytically43

tractable (Kot & Phillips 2015). However, conclusions are still largely restricted to inspection of44

simulation results.45

To complement these more specific models, there remains a strong need for fundamental46

theory to identify critical determinants of climate change responses. Purely analytic models pro-47

vide another perspective to the problem, providing an ‘all-else-equal’ baseline for consideration.48

To address this need, partial differential equation models building on well-established reaction-49

diffusion equation models (Cantrell & Cosner 2003) for invasive species and gene spread (Fisher50

1937; Skellam 1951; Hastings et al. 2005), have been applied to climate change scenarios (Pease51
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et al. 1989; Potapov & Lewis 2004; Berestycki et al. 2009; Li et al. 2014). This work has shown52

the critical rate of climate change that a species can survive to be a function of dispersal rate and53

population growth rate from rare, allowing direct comparison with data (Leroux et al. 2013).54

However, to date, analytic models have been restricted to simple representations of species55

performance across environments. In particular, the functional dependence of the species’ intrin-56

sic growth rate on its environment, i.e. the environmental performance curve (EPC), is assumed57

to be symmetric. It is widely appreciated that most species show highly asymmetric environmen-58

tal responses (Savage et al. 2004), for example a gradual increase up to an optimum followed by59

a sharp decline. Disparities in environmental sensitivity between trailing and leading range edges60

may be expected to influence range-shift dynamics. For example, using a numerical approach,61

Hurford et al. (2019) demonstrated a case where the EPC asymmetry and dispersal interact to62

cause divergent effects depending on the direction of the asymmetry. Further, these asymmetries63

may be particularly relevant when underlying climatic variability is considered (Nadeau et al.64

2017).65

Here, we extend previous analytic theory to incorporate asymmetric environmental depen-66

dence and directly investigate the impact of asymmetry on three key responses: likelihood of67

persistence, range-shift lag and the location of peak sensitivity to conservation interventions. We68

do this by re-formulating the species-movement problem as a Schrödinger equation, unlocking69

mathematical results from the quantum mechanics literature. We then corroborate these results70

in a simulation exhibiting complex dynamics.71
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2 Analytic Theory72

2.1 Setting and specification of core model73

For simplicity we only outline the mathematical derivations here. Full details are given in SI74

1 and SI 2 is an evaluated Mathematica notebook to replicate our analysis. Throughout, we75

assume a single spatial dimension (x) that spans a linear gradient in an environmental variable76

E, where initially E = x. Our E could represent any environmental variable, but is most77

easily conceptualised as an average temperature. Climate change is introduced by a linear time78

dependence of E: Ex,t = x − vt, where v is the rate of change in E. Hence, the location where79

E = 0, moves with velocity v. In a warming scenario, x could be distance from a Pole or to a80

mountain peak and v would be negative. The correspondence between space and E means that81

v can also be interpreted as a ‘climate velocity’ of dimensions of Length×Time−1 (Brito-Morales82

et al. 2018).83

A species’ local population growth rate, given the environment, is defined by an environmental84

performance curve (EPC) function g(E). Following e.g. Fisher (1937), Pease et al. (1989) and85

Hastings et al. (2005), we model changes in the local population density b = b(x, t) of a species86

through time t at location x, including dispersal at a rate D, as87

∂b(x, t)

∂t
= g(Ex,t)b(x, t) − c b(x, t)2 +D

∂2b(x, t)

∂x2
. (1)

The effect of migration is incorporated via the final term of Eq. (1). The rate of net migration88

depends on the curvature of the population density to either side of the focal point. Populations89

near the peak of the biomass distribution (where the curvature is negative) lose population90

density to net-migration, while the edges of the distribution (where the curvature is positive)91

gain. The dispersal rate D is 1/2 times the mean squared displacement along x of a lineage per92

unit time and can related directly to the mean movement of individuals per generation (Kareiva93

& Shigesada 1983).94

Central to our approach is a change of reference frame to track the region of suitable envi-95

ronment across space. We define y = x− vt and use y as our principal spatial variable (Fig. 1).96

This allows us to examine the distribution u(y, t) = u(x − vt, t) = b(x, t) of the population in97
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a reference frame co-moving with the environment. Evaluation of the derivatives results in the98

following partial differential equation for u(y, t), equivalent to the equation for b(x, t) above:99

∂u(y, t)

∂t
= g(Ey,t)u(y, t) − c u(y, t)2 +D

∂2u(y, t)

∂y2
+ v

∂u(y, t)

∂y
(2)

Figure 1: a) Example of movement of species range with climate change under a fixed spatial
reference frame (x). Climate change rate (v) is set to +0.45 starting at t=0. Brightness of colour
signifies population density, peak density is indicated by the central blue line. b) Species range
through time under climate change in the moving reference frame (y) - parameters are otherwise
identical to a). With ongoing climate change, after a period of adjustment the population reaches
a steady travelling wave state, with a lower overall population density and a constant lag behind
the moving climate. Parameter values are listed in the Mathematica supplement.
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Term Meaning

Core Model parameters x Spatial coordinate
v Rate of climate change
y Spatial location, reference frame moving with cli-

mate change y = x− vt
b(x, t) Population density at point x and time t (fixed ref-

erence)
u(y, t) Population density at point y and time t (moving

reference)
E Environmental variable
g(E) Environmental performance curve (EPC) function

describing local population growth rate given E
ψ(y) Population distribution without climate change.
λ Population growth rate
λ0 Population growth rate without climate change
D Dispersal rate
c Strength of density dependence

EPC parameters w Niche width parameter
a Asymmetry of EPC
φ Environmental optimum, peak of g()
Rmax Growth rate at optimum
σ Standard deviation of temporal environmental vari-

ation
Derived Values v∗ Critical rate of climate change at which the popula-

tion cannot persist (λ = 0)
∆space Lag in space between total climate displacement and

displacement of population at steady state
∆time Lag in time between changes in the environmental

values and the population density
Smax Location of peak sensitivity of λ, relative to optimum

Table 1: Summary of parameters and variables used in the analytic theory.

2.2 Approximate model general solution using a Schrödinger Equation100

For vulnerable populations - that is, populations that are close to extirpation - an approximate101

solution of Eqs. (1) and (2) can be constructed if the spatial distribution of the population prior102

to climate change (v = 0) is either known or has been computed from either Eqs. (1) or (2)103

(SI 1). We denote this spatial distribution with a function ψ(y), that describes the shape of the104

population distribution across space.105

By focusing on vulnerable species the problem simplifies, because when populations are low106

the quadratic terms in Eq. (2) describing density-dependencies will generally be small compared107
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to both the dispersal terms and the term containing the environmental performance curve g(·),108

with the latter two mostly balancing each other (S1.3). The effect of density dependence can then109

be taken into account as a small perturbation. As a result, the equilibrium solution u(y, t) will,110

up to a scaling factor, be very similar to the form that u(y, t) would attain while the population111

was growing from initial low abundance.112

Mathematically, we therefore define ψ(y) not directly as the solution of Eq. (2) for v = 0113

but as the solution of the corresponding equation without density dependence for a population114

growing from low abundance with the maximum feasible growth rate λ0:115

λ0ψ = g(y)ψ +D
d2ψ

dy2
. (3)

This equation defines ψ(y) up to a constant factor that does not matter for the following.116

We show in S1.2 and S1.3 that from ψ(y) and λ0 an approximation of the species’ response117

to climate change at any given velocity v can be obtained without solving another differential118

equation. Instead, the populations’ approximate distribution in the presence of climate change119

(with velocity v) is120

b (x, t) = Ue−v(x−vt)/(2D)ψ (x− vt) , (4)

where U is a scaling parameter given by121

U =
λ
∫∞
−∞ ψ2dy

c
∫∞
−∞ e−vy/(2D)ψ3dy

, (5)

and122

λ = λ0 −
v2

4D
. (6)

Under our assumptions, Eq (4) holds up to a relative error of the magnitude of λ/maxy g(y).123

The population’s actual distribution prior to climate change is a good first approximation of ψ(y)124

(= ψ(x)) and can be used in place of ψ above. Alternatively, Eq. (3) can be solved numerically.125

Here, however, we make use of another possibility. This draws on the formal equivalence between126
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Eq. (3) and the time-independent Schrödinger equation (Schrödinger, 1926) for the wave function127

ψ of a particle moving in a one-dimensional energy potential V (y):128

Eψ = V (y)ψ − ~2

2m

d2ψ

dy2
. (7)

In this equation, E denotes the total energy, m is the particle’s mass and ~ is a constant.129

Comparing terms, one sees that the potential energy V (y) corresponds to the environmental130

performance function g(·) (with a sign flip). The final term describes the kinetic energy of the131

particle and corresponds to the dispersal term in Eq. (3). The value of these correspondences132

come from the fact that Eq. (7) has been studied extensively in quantum physics. This has led133

to a strong body of intuition about the nature of the solutions of the eigenvalue problem given134

by Eq. (7) and the discovery of many functional forms for V (y) for which closed-form solutions135

can be derived (Mattis 1993).136

Importantly, we are not adopting an interpretation of population density as a quantum me-137

chanical wave function. Our results are distinct to the fundamental uncertainty aspects of quan-138

tum mechanics that may be familiar to some readers, although previous authors have suggested139

that those could have ecological applications too (Bull 2015; Real et al. 2017). Rather, we140

are transferring existing mathematical results from the quantum mechanics literature. We only141

consider real valued-solutions and so our problem is closely related to classical reaction-diffusion142

models (Nagasawa 1993).143

2.3 Representing Environmental Performance Curves144

In our model the function g(E) describes how the local intrinsic growth rate of a population (i.e.145

without dispersal effects) depends on environmental conditions. It could be any function that is146

negative as E becomes very large or very small. However, by selecting one of the many functions147

for which Eq. (7) has been solved analytically (for an accessible list see http://wikipedia.org/148

wiki/List_of_quantum-mechanical_systems_with_analytical_solutions) considerable progress149

can be made.150

An asymmetric environmental performance curve (Fig 2b,c) can be defined in analogy to the151

Morse potential (Morse 1929) function152
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gMor (E) = Rmax

(
1−

(
1− ea(E− φ)

)2
a2w2

)
, (8)

where Rmax is the local intrinsic growth rate of the species at the environmental optimum E = φ,153

w is a niche width parameter and a is a non-zero asymmetry parameter. For simplicity we will154

assume the environmental optimum to be at φ = 0 throughout. We assume that |aw| < 1155

throughout, which assures that both very high and very low values of E lead to negative growth156

rates gMor(E). EPC g(E) provided in other functional forms are best approximated by gMor(E)157

by matching the first three derivatives at the point φ of maximum performance (g′(φ) = 0). This158

is achieved by setting w = (2Rmax/|g′′(φ)|)1/2 and a = g′′′ (φ) /3g′′ (φ).159

Care is needed when referring to skew direction - a positive value of a leads to a ‘negative’160

or left-tailed skew (Fig 2b,c) in terms of E. Our E variable declines with climate change - if161

E is a temperature variable, lower values are therefore warmer, and positive a values would162

be described as ‘warm-skewed’ because the heavy tail is to the warmer (more equatorial, lower163

elevation) side of the optimum (Hurford et al. 2019).164

On top of these underlying functions, the effect of high-frequency temporal environmental165

variation can be modelled by convolving these curves with a probability density function that166

represents the environmental variation. When environmental variability is represented by a Gaus-167

sian distribution with standard deviation σ, the convolution with the Morse potential function168

Eq (8) maps onto a transformed Morse potential. In Fig 2d, we show the effect of introducing169

variability with σ = 1 on the overall effective environmental performance curve: it softens the170

edges and shifts and flattens the peak of the performance curve (Ruel and Ayers 1999).171

9

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 6, 2022. ; https://doi.org/10.1101/2022.02.04.479140doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.04.479140
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Illustration of environmental performance curves under different models that permit
analytic solutions. In each case the species has an optimum φ = 0 and Rmax = 10 a) harmonic
potential function, w = 2. b) Morse potential function, where a = +0.9, w = 1 c) Morse potential
function a = −0.9, w = 1, d) Morse potential function as ‘g(E)’, but incorporating the effects
of a variable E, (mean 0, σ = 1, a = +0.9, w = 1). Note how with the peak of the curve has
shifted with the introduction of this climate variability.

3 Analytic Results172

We use our model to derive analytic predictions for how three response properties depend on key173

parameters – 1) the capacity for species to sustain themselves under climate change, 2) the lag174

between a species’ distribution and where it ‘should’ be if it kept pace with climate change, and175

3) the location where conservation interventions would be most efficacious.176

3.1 Response 1: Critical speed of climate change177

The sign of the low-density growth rate λ under climate change is crucial for a moving population178

(Grainger et al. 2019). If positive, a population at low abundance will grow (despite climate179

change), to the equilibrium state described by Eq. (4). If negative, the population will to decline180

to extinction. By Eq. (6), climate change is always detrimental to fitness. Remarkably, this fitness181

decline is entirely independent of the form of the EPC g(E). Also of interest is that the impact of182

climate change rate on population fitness is quadratic, implying that linear extrapolations from183
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observations of slow change will not correctly predict the impact of faster changes.184

Equation (6) can be rearranged to determine the critical speed of climate change (v∗), at185

which a species can no longer keep up and will go extinct (i.e. λ = 0):186

v∗ =
√

4Dλ0. (9)

Alternatively, one can solve for D to identify the critical rate of dispersal that a species must187

exceed to maintain its population (Hastings et al. 2005; Leroux et al. 2013). Again, neither of188

these results depend on the shape of g().189

The shape of the performance curve does, however, influence the pre-climate change popula-190

tion growth rate (λ0).Using the asymmetric EPC defined above, we can obtain (S2.3) a relatively191

simple expression for the intrinsic population growth rate,192

λ = Rmax −
v2

4D
−
√
DRmax
w

+
a2D

4
. (10)

This is valid as long as D < 4Rmaxa
−4w−2 (S1.6).193

The first three terms of Eq. (10) correspond to previously found conclusions about the impact194

of climate change in the case of a symmetric (quadratic) EPC (Pease et al. 1989). Consistent195

with intuition, the model predicts that greater maximum population growth rate increases fitness196

and that climate change is detrimental to population fitness. The effect of dispersal rate D is197

multifaceted – the second term shows how greater dispersal can offset the impact of faster climate198

change, but the third term shows a negative effect of greater dispersal due to losses from the199

central part of the population. This effect is mitigated by larger niche widths.200

The fourth term predicts that asymmetry (a) acts quadratically, and is therefore independent201

of skew direction – whether the long tail in performance is on the leading or trailing range edge202

is not relevant to population fitness. This follows naturally from the result that asymmetry only203

influences the baseline population fitness λ0, which does not have any sense of directionality.204

Grouping the terms can identify λ0 = Rmax − (DRmax)1/2w−1 + a2D/4, i.e. most of the pa-205

rameters in Eq. (10) contribute only to the λ0 component, not the response to climate change206

as such.207
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Similarly, high-frequency temporal variation impacts only the form of g(), and so can be208

shown not to alter the marginal impact of climate change in our model (Eqs. (6), (9)). That209

said, σ does impact the overall expression for λ in a complex manner (see S2.3.2). The marginal210

effect of increasing σ from a low value on λ,211

dλ

dσ

∣∣∣∣
σ=0

=
a2
√
DRmax
w

− 2Rmax
w2

, (11)

is easier to interpret. Taking into account the condition D < 4Rmaxa
−4w−2 for Eq. (10),212

increasing variability will always lead to a reduction in growth rate. However, it shows that the213

marginal effect of temporal variation on fitness is dependent on a large number of model terms.214

The range width denominators confirm the intuition that temporal variation is most influential215

with narrow ranged species. Both dispersal and asymmetry in Eq. (8) effectively widen the216

niche and correspondingly reduce the negative impacts of environmental variation. Again, the217

direction (sign) of the asymmetry is not relevant since a enters quadratically.218

3.2 Response 2: Range shift lag behind climate change219

Since both dispersal and population growth take time, there is expected to be a measurable lag220

(in space and time) between the suitable climatic range and the distribution of a population221

(Alexander et al. 2018). With a constant rate of climate change, and assuming a species’222

population is able to sustain itself, it will eventually reach an equilibrium in coordinates co-223

moving with the changing climate. Even in an idealised model system like ours, there are224

multiple metrics that can be used to describe a species range in space (Yalcin & Leroux 2017).225

Here we measure lag in the moving reference frame between the pre-climate change peak of226

population density and the peak with climate change once it reaches the travelling wave stage227

(Fig 1).228

Using the asymmetric EPC including the effect of temporal variation, we can derive expres-229

sions for these lags (S2). Focusing on the case where the rate of climate change v is relatively230

small (v → 0), the steady-state lag (∆) in time becomes:231
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∆time → w

2
√
DRmax

+ a2
(

w2

2Rmax
+

σ2w

4
√
DRmax

)
(12)

This lag in time can be converted to lag in space by multiplying by the velocity of climate232

change. If ‘lag’ is instead measured in terms of the centre of mass of the population’s distribution,233

identical results are obtained to lowest order in v and a (S2.4). Where there is no asymmetry234

(a = 0), only the first term is relevant. The denominator reaffirms the intuition that lags are235

reduced by greater dispersal and larger maximum growth rates. The numerator shows that lags236

are greater with wider niche widths – the population is not forced to move as rapidly when a237

larger part of the environment is suitable.238

From the second term of Eq. 12 it can be seen that the exact impact of a depends in a239

complex way on other parameters but responds only to the magnitude of asymmetry, not the240

sign. Overall, greater maximum growth rate Rmax and greater dispersal D always decrease that241

lag and greater niche width w, asymmetry a, and climate variability always enhance it. The242

effect of climate variation σ is tied to the asymmetry of the EPC, with variation combining with243

asymmetry increasing effective niche width, while in the symmetric case σ has no effect.244

3.3 Response 3: Sensitivity to Conservation Actions245

Our model can be analysed to examine where interventions are most consequential for the overall246

population growth rate, and might therefore be of particular conservation priority. We do this by247

assessing the sensitivity of the overall population λ to local perturbations in growth rate across248

space. Note that we use the moving spatial reference frame y (and optimum φ = 0), so that249

locations are relative to the environmental optimum at each point in time as climate change250

progresses. This method is analogous to determining the most sensitive life-stage (e.g. Caswell251

2012, 2019), but substituting age by space. The sensitivity of λ is proportional to the product252

of the reproductive value and the abundance at each environment in the stable distribution.253

Computing the shift of the peak sensitivity Smax relative to the value of y where the envi-254

ronment is optimal, we find255
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Smax =
1

a
ln

[
1− a2

√
D

4Rmax

]
≈ −a

√
D

4Rmax
. (13)

Remarkably, the shift Smax away from the optimum environment depends neither on the rate256

nor direction of environmental change. In S1.5, we show that this independence on v is a highly257

general result valid for any functional form of the EPC. For symmetric EPC, there is no shift at258

all, but for our asymmetric EPC maximum sensitivity always occurs on the long-tail side of the259

environmental optimum (Figure 3).260

Figure 3: Distribution of sensitivity to intervention and population density at equilibrium with
climate change. In both panels, the horizontal axis is in y, the species leading edge is to the
right, and the trailing edge to the left. Apart from the asymmetry of the EPC, parameters are
the same, only the direction of asymmetry varies. Horizontal axis = y (the moving reference
frame) where 0 = φ, the species environmental optimum. Three quantities are plotted: the EPC
function, showing environmental optima at y = 0 (blue), the population density (orange, ψ,
standardised to equal 1 at y = 0), and the sensitivity to intervention (green, also scaled)

4 Comparison with simulations261

To derive analytic results, our framework makes a number of simplifying assumptions. To test262

the translatability of our predictions to more complex systems, we built a spatially-explicit263

population model. Expanding on the continuous-time and continuous space analytic results, we264

built this model to include randomness and discreteness in both space and time. Because of the265
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inherent challenges in estimating key parameters we focus on qualitative comparisons between266

our analytic predictions and the simulations, but show in SI 4 that quantitative predictions267

are of the correct order of magnitude. Where possible we use the same symbols for simulation268

and analytic parameters where they are similar, but note that they are not directly comparable269

because of differences in overall model structure.270

4.1 Model Specification271

Full details of our simulation model are given in SI 3. Briefly, we generated rectangular arenas272

with dimensions 40x10, each with 200 randomly located nodes connected to their nearest neigh-273

bours (Figure 4a). A single environmental variable E linearly increases along the x-axis of each274

arena from 0 to 40. Population dynamics of each species were modelled in discrete time and275

followed logistic growth with dispersal between nodes, where the intrinsic growth rate Rmax de-276

pended on the current environment at that node through performance functions based on Eq (8),277

with Rmax = 10, w = 1 and a = ±0.9). To represent temporal environmental variability, for278

each set of 15 timesteps (which we refer to as a ‘year’) we added a value drawn from a Gaussian279

distribution (mean=0, σ = 0.5) to all E values during that year. Immigration into neighbouring280

sites was determined by an exponential distance decay function, with dispersal rate chosen such281

that extinctions are possible once climate change is introduced.282

We assembled 100 sets of species with either direction of environmental performance skew283

(a = +0.9 or −0.9). We did not test a symmetric environmental performance curve case, as it284

is not possible to standardise all aspects of the performance curve for a fair comparison. For285

each set, 100 species were generated with environmental optima (φ) each drawn from a uniform286

distribution between 20 and 30, maintaining a region of suitability throughout the simulation287

to mitigate possible edge effects. The arenas were seeded with initial colonists and the model288

integrated for 200 ‘years’ to fill their initial range. Species that at any point fell below a threshold289

biomass (10−6) across all nodes were considered extinct and removed.290

We examined three response metrics that could be derived from both the simulation model291

and the analytic model, to assess if the pattern of parameter dependencies holds.292
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4.2 Critical rate of climate change293

We sequentially simulated each assembled set of species under varying rates of climate chance294

(v = 0 to 0.5 in steps of 0.05) and identified the fraction of species that had fallen below 1% of295

their starting total population size at the end of 50 ‘years’ of climate change. In line with our296

expectations, there was a relatively precipitous decline in survival chance. Both a = +0.9 and297

-0.9 showed very similar responses (Figure 4bi). We confirmed that the asymmetry parameter298

was indeed impacting v∗ with trials of a = -0.7, 0.3, 0.3 and 0.7 (SI 3). We fit a generalised linear299

mixed-effects model that included as main predictors v, a, their interactions and assemblage as300

a random effect to estimate v50, the v at which the 50% of species go extinct. When left-skewed301

(a = +0.9), v50 = 0.292, while when right-skewed (a = −0.9), v50 = 0.305.302

4.3 Movement Lags303

We tested the lag in movement of the centre of mass of the population distribution for each of304

the assemblies during climate change. We first assessed the starting location of the ‘centre of305

mass’ of each species before any climate change (mi,start) as the average x-coordinate of each306

node, weighted by the biomass of species i at each node, averaged over 20 years. We then ran307

70 years of climate change at v = 0.1, and measured the average lag in space (∆̄i
space

) for each308

species over the final 20 years:309

∆̄i
space

=
1

20

70∑
t=51

(mi,start + vt−mi,t) (14)

Overall, a = +0.9 led to a marginally greater average spatial lag (0.618) than a = −0.9310

(0.467), but this was small compared to the overall amount of variation in the simulations (Fig.311

4bii).312

4.4 Location of Peak Sensitivity313

Localised conservation interventions were represented by increasing the intrinsic growth rate by314

2 at all sites within an intervention window 1 spatial unit wide. This band was centred L spatial315

units in the x-dimension from the optimum of each species. Climate change was introduced at316
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a rate of v = 0.28, which in the absence of intervention would cause around half the species to317

go extinct. When climate change was introduced, the intervention window moved with it. The318

simulation of 50 years of climate change was repeated with values of L ranging from +3 to -3319

(in steps of 0.5) and the percentage increase in species surviving the climate change period with320

the conservation intervention, compared to simulations without the intervention was recorded.321

In line with the analytic expectations, we found that the location where the sensitivity had322

the most impact depended on the direction of the skew of the asymmetry of the EPC (Fig. 4biii).323

Interventions were most efficacious at preventing extinctions when they were located away from324

the optimum on the shallow environmental sensitivity (long tail of the EPC) side of the moving325

range, regardless of whether this was the ‘leading’ or ‘trailing’ edge of the range.326
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Figure 4: Metapopulation simulations setting and results a) Illustration of example virtual
region of connected habitats the species inhabit in the simulation. Initial mean environmental
values (E) are given by the blue (low) to red (high) colouration. The size of the yellow dia-
monds illustrates the population density at each site. The environmental performance curve of
the species (right-skewed, a = −0.9) is drawn above. With climate change and an increasing
underlying environmental variable, the species will have to shift its range leftwards. b) Numerical
results from the simulations, partitioned and coloured by the direction of the skew of the EPC.
i) The speed of climate change (v) at which the proportion of species that are able to survive
falls below 0.5. Lines are fitted binomial GLMs. ii) Density plots of the lag by which species fall
behind the movement of climate at a moderate rate of climate change. iii) Observed increase
in survival during climate change, at different locations of conservation intervention relative to
each species’ optimum. Solid coloured lines are GAMs fit through simulation results with 95%
confidence intervals. Black dashed lines illustrate the environmental performance curves for ref-
erence. Peak efficacy aligns with the long tail of the environmental performance curve in both
cases. For all three responses, the qualitative predictions of our analytic model are supported.

5 Discussion327

Our results shed new light on how the shape of a species environmental niche and other key328

drivers may impact responses to climate change. Our finding that while the extent of asymmetry329

is potentially highly influential, the direction of skew is not relevant to either the likelihood of330

population persistence or the range shift lag in our model is particularly surprising. Meta-331
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analyses of the rates of species range shifts have not identified strong trait or taxonomic signals,332

instead identifying range size and habitat breadth as the most informative predictors (Maclean333

& Beissinger 2017; Lenoir et al. 2020). If it is assumed that the direction of environmental334

performance asymmetry is linked to taxonomy, this would align with our results, however data335

specifying environmental performance curves is not presently available to conduct strong tests.336

In physics, beyond the simplest case of the movement of a hydrogen atom in a vacuum, the337

complexities of multi-body problems limit the resolution with which predictions can be made.338

The same is true in ecology, and there are a large number of additional processes including339

species interactions, evolution, demography and environmental heterogeneity that will influence340

the observed dynamics (Urban et al. 2016). Analytic calculations will struggle to concurrently341

include the full diversity of processes that simulation models can achieve, and certain features342

pose particular challenges, for example heavy-tailed dispersal models that do not have moment-343

generating functions (Liu & Kot 2019). Nonetheless, the expansion of the analytic theory is344

fundamental to building a foundation of expectations for how the natural world will react.345

Using our model, we demonstrated that interventions will have the greatest benefit on a346

rare range shifting species when located somewhat near the centre of the range, in the region347

corresponding to the long-tail of an asymmetric performance response. The result is consistent348

regardless of whether this region is towards the leading or trailing edge of the at-risk species’349

range. This conclusion is somewhat different to discussions about whether it is most helpful to350

support a species at its trailing edge (where it is at risk of imminent disappearance) or towards351

its leading edge (where assisted translocation is possible) and could form a possible rule-of-thumb352

when information is sparse.353

5.1 Applicability and Scope354

In principle, the parameters in the analytic model could be directly measured for natural pop-355

ulations (e.g. Leroux et al. 2013). However, measuring dispersal rates remains challenging,356

especially given the importance of rare long distance events (Kerr 2020). The predictability357

of dispersal and colonisation rate is limited even under tightly controlled experimental condi-358

tions (Melbourne & Hastings 2009) leading to hard limits to the accuracy of any direct model359
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prediction.360

In our analysis, we interpreted b() as denoting a population density (individuals per unit area).361

However, one can instead interpret b() as the density of patches occupied (occupied patches per362

unit area), in the spirit of metapopulation modelling introduced by Levins (1969). This second363

interpretation may lead to a closer alignment between the assumptions of the model and empirical364

realities, as well as being more directly amenable to empirical verification or parameterisation365

using grid-cell occupancy data.366

An important step in the derivation of our analytic results is the focus on species that are367

close to their extinction threshold. This allows the impact of density dependence to be as-368

sumed minimal and the application of perturbation theory. However, a steady state of a system369

such as Eq. (2) can broadly be achieved in two ways - either through high dispersal and low370

density-dependence, or through higher density-dependence and much lower influence of dispersal371

on growth rate. We examined species with minimal density-dependence, and therefore disper-372

sal terms will strongly influence local growth rates, including a not-insignificant reduction in373

population density in central areas due to emmigration. Our model is therefore likely most374

directly applicable at local scales where mass effects are more significant than occasional rare375

long-distance dispersal events.376

This context is helpful to understand why our findings contrast with a previous modelling377

result. Hurford et al. (2019) found through simulations of an integro-differential equation model378

that positively skewed EPCs were associated with reduced lags compared to negatively skewed379

EPCs. Hurford et al. attributed this result to increased immigration into newly suitable areas380

from high-density populations near the leading edge. A key difference between our assumptions381

that may explain the discordance is that we focus on species close to an extinction threshold,382

while in Hurford et al.’s model extinctions do not occur.383

5.2 Limitations and extensions384

We base our results around the properties of a stable travelling wave and use the toolbox of385

quantum physics to precisely describe its motion. Our analytic framework is therefore orientated386

around long-term equilibrium solutions. Yet, there is considerable scope for the analysis of387
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transient dynamics following the start of the perturbation (in this case climate change), which388

may be more representative of available ecological observations (Hastings 2016). While our work389

significantly extends the scope of analytic theory in this field, there remain many further processes390

that are not directly considered. Our approach to modelling temporal variability effectively only391

modifies the underlying growth curve. It therefore only indirectly captures the impact of discrete392

stochastic events, that can be highly influential over short time frames relevant to contemporary393

climate change responses.394

Further, neither our analytic model nor simulations explicitly include interactions between395

species precluding potential ‘box-car effects’, where competitive interactions slow the rate of396

advance (Urban et al. 2012; Legault et al. 2020), or the potential for extirpation from areas due to397

the climate-driven arrival of new species. Although the shape of the environmental performance398

could be attributed to indirect biotic as well as direct influences of the environment, this would399

not necessarily capture the complexities of interaction with other species, particularly when400

climate variability is considered (Terry et al. 2022). Models for interacting species within the401

reaction-diffusion framework have been developed (Cantrell & Cosner 2003, Potapov and Lewis402

2014) and incorporating interactions within a moving-environment framework is an interesting403

future avenue of research. Lastly, our model assumes fixed species traits, but species have the404

potential to adapt their traits to changing climates through plasticity or evolution (Hoffmann &405

Sgrò 2011). Trait adaptation can be built directly into the partial differential equation framework406

(Pease et al. 1989, Chevin et al. 2010) and represents a further promising area for further work.407

5.3 Conclusion408

Although spatial partial differential equation models have a long pedigree within ecology (Fisher409

1937; Hastings et al. 2005), our results show how rich seams of results remain to be harnessed410

to generate fresh ecological perspectives and more detailed baseline expectations. Our focus on411

the special - but critically important - case of species close to extirpation allows a simplification412

to an essentially linear problem and the incorporation of knowledge from other disciplines that413

can bring new and surprising analytical insight.414
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S1 Mathematical Derivations540

We develop our analytic theory in two main steps. In the first, we formulate and analyse a541

partial differential equation (PDE) model for the distribution of a species’ population in a moving542

environmental gradient. Several results valid for essentially any environmental performance curve543

(EPC) are derived. In the second step, we derive more detailed analytic predictions for a specific544

choice of the functional form of the EPC.545

S1.1 Setting546

We assume that the relevant environmental variable changes linearly along the x spatial axis,547

while being essentially constant in the other spatial directions. We denote by b(x, t) the time-548

dependent (t) distribution of a species’ population along the x axis. This can be understood in549

two different ways: (1) as a population density (individuals per unit length) or, (2) in the spirit550

of metapopulation modelling introduced by Levins (1969), as the density of patches occupied by551

the population near x (occupied patches per unit length). In developing the analytic theory, we552

will stick with the first, more conventional interpretation, but the second interpretation may be553

more appropriate in certain cases.554

If the environmental gradient is not too steep, and so the range over which the performance555

curve permits a population to grow not too narrow, we can course-grain over individuals (1st556

interpretation) or patches (2nd interpretation) and model the dynamics of b = b(x, t) using the557

PDE model:558

∂b

∂t
= g(E(x, t))b− cb2 +D

∂2b

∂x2
. (15)

The first term on the right-hand-side describes population growth (g(E) > 0) or decline (g(E) <559

0) dependent on the environmental variable E = E(x, t), the second term intraspecific competi-560

tion with competition coefficient c, and the third term random dispersal of individuals, modelled561

as Fick diffusion.562

We assume that the environmental variable E changes linearly in space and that the point563

in space where E = 0 moves along the x axis at a constant velocity v. Then E = E0 + p(x− vt)564
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with some constant E0. We measure lengths in units such that p = 1 and chose the origin of the565

x axes such that E = 0 at x, t = 0, implying E0 = 0. This simplifies Eq. (15) to566

∂b

∂t
= g(x− vt)b− cb2 +D

∂2b

∂x2
. (16)

Next, we introduce a spatial coordinate co-moving with the environmental variable. We define567

y = x− vt, so that x = y + vt. Writing b(x, t) = u(x− vt, t) = u(y, t), we obtain for u = u(y, t)568

the equation:569

−v ∂u
∂y

+
∂u

∂t
= g(y)u− cu2 +D

∂2u

∂y2
. (17)

S1.2 Invasion fitness570

An ecologically important quantity is the invasion fitness of the species in question, i.e., its long-571

term population growth rate at low abundance. This can be obtained by dropping the quadratic572

term in Eq. (17) (reflecting an assumption that it is negligible because u is small, see next section)573

and looking for solution of the form u(y, t) = eλtuinv(y) (with uinv(y) → 0 as y → ±∞), where574

λ is the invasion fitness. Mathematically, this leads to the eigenvalue problem575

λuinv = g(y)uinv + v
duinv
dy

+D
d2uinv
dy2

(18)

which can be written equivalently in Sturm-Liouville form576

λevy/Duinv = g(y)evy/Duinv +D
d

dy

[
evy/D

duinv
dy

]
. (19)

By Sturm-Liouville theory (Al-Gwaiz, 2008), there is, up to a constant factor, no more than one577

non-negative solution uinv(y) ≥ 0 and corresponding eigenvalue λ solving this problem. Below,578

in section S1.4, we shall study this solution for special cases in more detail, assuming that it579

exists.580
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S1.3 Perturbation theory581

First, however, we will use perturbation theoretical methods to obtain from solutions of Eq. (18)582

approximate solutions of Eq. (17) and insights about the responses of populations to environ-583

mental change and management interventions.584

For simplicity, we consider only equilibrium solutions u(y, t) = u(y). Standard procedures585

(Chen et al. 1996) can be applied to extend this line of thought to time-dependent solutions.586

Of particular interest is the situation where the focal species is at risk of extinction because587

λ is positive but close to zero. To study this case, we assume that u is everywhere so small that588

the quadratic term in Eq. (17) is small compared to the other terms (later results will vindicate589

this assumption). We introduce a book-keeping parameter ε to keep track of the order at which590

the small effect of the non-linearity contributes to corrections of the solution (we will set ε = 1591

in then end) this. To make the problem accessible to singular perturbation theory, we subtract592

λu from the right hand side of Eq. (17) and then add ελu, with net zero effect. Then we write593

the time-independent form of Eq. (17) as594

−v du
dy

= −λu+ g(y)u+D
d2u

dy2
− ε
[
cu2 − λu

]
, (20)

Following a standard procedure of perturbation theory, we decompose595

u(y) = u0(y) + εu1(y) + ε2u2(y) + . . . , (21)

insert this expansion into Eq. (20), and sort terms by powers of ε (noting ε0 = 1):596

0 =ε0
[
v
du0
dy
− λu0 + g(y)u) +D

d2u0
dy2

]
+

ε1
[
v
du1
dy
− λu1 + g(y)u1 +D

d2u1
dy2

− cu20 + λu0

]
+

(terms of order ε2 and higher).

(22)

This equation is now solved at each order in ε separately. We have constructed this expansion597

such that at order ε0 the general solution is u0(y) = Uuinv(y), with the constant U > 0 to be598

determined. Solving the equation for u1 at order ε is not always possible, because the linear599
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operator L defined for arbitrary bounded and smooth functions f(y) as600

Lf = v
df

dy
− λf + g(y)f +D

d2f

dy2
(23)

has a non-trivial null space f = uinf and is therefore not invertible. According to Fredholm theory601

(Zeidler 1995), solvability requires that for functions u+(y) in the null space of the adjoint L+
602

of operator L, the condition603

∫ ∞
−∞

u+(y)
[
−cu0(y)2 + λu0(y)

]
dy = 0 (24)

is satisfied. By standard arguments (Zeidler 1995), the adjoint operator L+ is obtained by604

flipping the sign of all y-derivatives d/dy in Eq. (23), giving605

L+f = −v df
dy
− λf + g(y)f +D

d2f

dy2
. (25)

The null space of L+, that is, functions u+ satisfying L+u+ = 0, are, up to a constant factor, of606

the form607

u+(y) = evy/Duinv(y), (26)

as is verified by direct evaluation. Ecologically, u+(y) provides, up to a constant factor, the608

reproductive value of individuals at location y. With this in mind, the factor evy/D in Eq. (26)609

is ecologically plausible: as tendency, it assigns to individuals ahead in the range shift a higher610

reproductive value than to those lagging behind.611

Putting Eq. (26) and u0 = Uuinv into the solvability condition Eq. (24), the condition can be612

evaluated further, yielding the hitherto unspecified constant613

U =
λ
∫∞
−∞ evy/Du2invdy

c
∫∞
−∞ evy/Du3invdy

. (27)

Since uinv enters quadratically in the numerator and to third order in the denominator of U ,614

Eq. (27) implies that u0 = Uuinv scales as λ/c, i.e. the magnitude of uinv cancels out. It follows615
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that, in order to balance contributions from u0 in ε1 term in Eq. (22), the term g(y)u1 must616

scale as λu0. We can therefore estimate that the contribution u1 to u is by a factor of the617

order of magnitude of λ/maxy g(y) smaller than the contribution u0. As λ approaches zero from618

above, the term εu1(u) in Eq. (21) (with ε set to 1) therefore becomes negligible compared to619

the leading term. One can argue similarity for the higher-order corrections. Hence, populations620

in equilibrium but close to extirpation are approximately distributed with a density621

u(y) ≈ Uuinv(y), (28)

with U given by Eq. (27). (In the study of non-linear dissipative systems, Eq. (28) is known622

as the weakly nonlinear approximation (Stephenson & Wollkind 1995) of the equilibrium of623

Eq. (17).) This result establishes how the solution of the eigenvalue problem Eq. (18) essentially624

determines the equilibrium solution of the non-linear problem Eq. (17), especially for species625

close to extirpation.626

S1.4 Population fitness under climate change627

We now study Eq. (18) in more detail. The equation can be simplified by writing uinv(y) as628

uinv(y) = e−vy/(2D)ψ(y) with a new unknown function ψ(y). Putting this into Eq. (18) yields629

an eigenvalue problem involving ψ = ψ(y):630

(
λ+

v2

4D

)
ψ = g(y)ψ +D

d2ψ

dy2
. (29)

This formulation of the problem has the advantage that it depends on the velocity v of envi-631

ronmental change only on the left-hand side. To understand the significance of this result, let632

us assume that the species in question had been studied before the onset of climate change, i.e.633

for v = 0. In this case uinv(y) = ψ(y) and, by Eq. (28), this function is for vulnerable species634

approximated by the observed distribution profile before environmental change. We denote the635

invasion fitness of the species for v = 0 by λ0. This quantity might also have been determined636

before the onset of environmental change, for example by measuring harvesting resistance (Ross-637

berg 2013) or similar quantities. Assuming that the dispersal constant D is known as well, the638
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fate of the population under environmental change (v 6= 0) can now be predicted.639

Specifically, since ψ(y) remains unchanged, invasion fitness will decline to:640

λ = λ0 −
v2

4D
(30)

by Eq. (29). Remarkably, this decline is entirely independent of the form of the environmental641

performance curve. In particular, it does not depend on whether g(y) is left- or right-skewed.642

When environmental change is too fast (|v| > 2
√
Dλ0), λ becomes negative and the species goes643

extinct.644

For species that survive environmental change, the predicted population density is645

u(y) ≈ Ue−vy/(2D)ψ(y), (31)

with646

U =
λ
∫∞
−∞ ψ2dy

c
∫∞
−∞ e−vy/(2D)ψ3dy

. (32)

The factor e−vy/(2D) in Eq. (31) shifts the value of y where u(y) is largest along the y axis,647

causing a lag between the actual distribution and the distribution one would expect in a static648

environment. The factor e−vy/(2D) in the denominator in Eq. (32) corrects an artefact in Eq. (31)649

that arises when the maximum performance g(y) and so the maximum of ψ(y) are not close to650

y = 0. It has otherwise little effect.651

S1.5 Optimising the location of conservation interventions652

Given the detrimental effect of environmental change, conservation ecologists have considered653

how a species’ population might best be supported to prevent extirpation during range shift.654

One management option is to support endangered populations by providing, e.g., additional655

food, shelter or nesting opportunities, suppressing competitors or natural enemies, or in case of656

exploited species, through targeted reductions in exploitation rates. A question that naturally657

arises is: where in a species range (between the leading edge and the trailing edge of the range)658
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would such interventions be most effective? The first impulse might be, e.g., to support species659

in the leading edge of their shifting populations to accelerate the range shift. Interestingly, our660

theory suggests this isn’t always the best choice.661

For simplicity, we assume that the conservation measures are introduced at a particular662

point ycons along the y-axis (i.e the reference frame that moves with the climate) and reasonably663

represented in our model by modifying the environmental performance function g(y) to g(y) +664

gconsδ(y− ycons). Here a constant gcons > 0 quantifies the strength (and sign) of the intervention665

or perturbation and δ(y − ycons) denotes Dirac’s delta-functional, a generalised function that666

represents a sharp peak that is localised to be non-zero only at y = ycons and is considered to667

have a ‘height’ such that
∫
δ(y − ycons)dy = 1.668

We can evaluate the effect of this intervention perturbatively along the lines of the perturba-669

tion scheme above (S1.3). For this, we multiply the added term gconsδ(y − ycons)u(y) with the670

book-keeping parameter ε and include it amongst the “small” terms on the right in Eq. (20).671

The calculation then progresses as before. It leads to a modified result for the population scaling672

factor673

U =
λ
∫∞
−∞ ψ2dy + gconsψ

2(ycons)

c
∫∞
−∞ e−vy/(2D)ψ3dy

. (33)

Thus, the effective invasion fitness resulting from these conservation measures increases to674

λcons ≈ λ0 −
v2

4D
+
gconsψ

2(ycons)∫
ψ2dy

. (34)

Hence, the conservation measures may indeed prevent extirpation of a population. Crucially,675

they are, by Eq. (34), most effective neither in the leading nor the trailing edge of the migrating676

population, but at the point where ψ(y) is largest. The mathematics underlying this result is677

closely related to that underlying the well-known sensitivity analyses for matrix models of age- or678

stage-structured population models (Caswell 2019). In the latter case, sensitivity is highest for679

matrix elements (i, j) for which the product of the reproductive value of stage i and numerical680

population size of stage j is largest. In our setting, the corresponding product evaluates to681

ψ2(ycons). This explains why it is neither efficient to support range-shifting populations at their682
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leading edges nor at their trailing edges: the reproductive value of individuals at both ends is683

small and the density of surviving individuals small as well, which is why conservation measures684

aimed at the edges have little impact on the fate of the species as a whole. Remarkably, this685

rule is independent of the rate or direction of climate change and independent of the actual686

distribution of the migrating population.687

S1.6 Constraints on parameters for the Morse EPC model688

Similar to the Schrödinger Equation (7), our equation for ψ(y) does not have ecologically valid689

solution for all parameter combinations. Here we discuss these limits on parameters in terms of690

the linear growth rate for v = 0, as given by Equation (10),691

λ0 = Rmax −
√
DRmax
w

+
a2D

4
. (35)

This expression attains a minimum in terms of D at D = 4Rmaxa
−4w−2. At this point λ =692

Rmax(1− a−2w−2). This value of λ0 is the one that gMor(E) approaches for large values of aE.693

It is negative by the condition |aw| < 1 that we imposed to assure that gMor(E) declines to694

negative values for large |E|.695

For D = 4Rmaxa
−4w−2, the solution ψ(y) of Eq. (3) does not decline to zero for either large696

positive or large negative y; rather, it describes the temporal decline of a population over a wide697

range in y. In the quantum physical analogue, this corresponds to a situations where, due to the698

quantum mechanical uncertainty principle, a potential well becomes unable to bind a quantum699

particles when it is too narrow and shallow. For values of D beyond this point Eq. (3) has no700

bounded solutions and hence cannot describe a growth from small abundance. In our analyses,701

we therefore always assume702

D <
4Rmax
a4w2

. (36)

This constraint on D is a model artefact linked to the fact that gMor(E) approaches a constant703

value for large aE. Ecologically more realistic would be EPCs g(E) that always exhibit a steady704

decline with increasing |E| for both large positive and large negative E, in which case this705
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constraint does not arise. For values of D well below the bound given by Eq. (36), however, this706

artefact of gMor(E) plays no role.707
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S2 Mathematica Supplement: Solving Schrödinger equa-721

tions for particular cases722

The remainder of the mathematical results that stem from the use of the Schrödinger equation723

we present as an annotated and evaluated Mathematica notebook .pdf. Expressions used in the724

main text are highlighted with a light blue background. It is also available as Mathematica.nb725

in the code repository. While Mathematica is licensed software, this document can also ‘read’726

using the free Wolfram player (https://www.wolfram.com/player/).727

S3 Model Specification728

Separate .pdf file729

S4 Quantitative Match730

Separate .pdf file731
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