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Abstract 

In many metazoans, centromeres are embedded in large blocks of highly repetitive (peri-) 

centromeric heterochromatin from which non-coding RNAs emanate that have been assigned 

diverse functions in different species. However, little is known about their functional details or 

regulation. The pericentromere of the X chromosome in Drosophila melanogaster contains a 

multi mega-base array of the 359 bp satellite repeats from the 1.688 family, which is 

transcribed into a lncRNA (SAT III RNA). We performed a SAT III RNA pulldown assay and 

identified a SAT III RNA-associated complex of four previously uncharacterized proteins and 

show that they affect germline development. These factors not only interact with each other 

and with SAT III RNA but also co-regulate each other. RNAi depletion of any of the factors 

leads to severe defects in the developing germline and sterility. Moreover, we show that the 

complex plays a crucial role in SAT III RNA repression, as RNAi depletion of the factors leads 

to a drastic increase of SAT III RNA levels. Importantly, genetic reduction of SAT III RNA level 

in the RNAi-depleted flies partially rescued the germ line defects and infertility phenotype. 

Based on our results we hypothesize that the identified complex functions in the germline to 

regulate SAT III RNA levels, possibly to offset effects of chromatin remodelling taking place 

in the developing germline. 

 

Keywords: centromeres, pericentromeric heterochromatin, satellite repeats, non-coding 

RNA, RNA-binding proteins, germline, oocyte, development, Drosophila melanogaster 
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Introduction 

 

Centromeric chromatin forms the base for the microtubule fibers of the spindle apparatus to 

attach and apply force to pull sister chromatids to the opposite poles during anaphase. 

Although centromeres are usually found at the same chromosome location, their formation is 

independent of the underlying DNA sequence and, therefore, defined epigenetically. Its 

determinant is the histone H3-variant CENP-A that is found at a high density at centromeric 

chromatin, where it replaces canonical H3 in a subset of nucleosomes. In metazoans, 

centromeric and pericentromeric DNA is usually highly repetitive over megabases of DNA, 

but low in sequence conservation. To what extent repetitive DNA sequence and unusual 

chromatin structures are involved in the epigenetic determination of centromeres is still 

unclear (Mellone & Fachinetti, 2021). 

 

 Centromeric and pericentromeric regions are transcribed in all species studied to date 

and several functions have been proposed for the actual act of transcription at those sides or 

for the resulting non-coding transcripts (Corless, Hocker et al., 2020). In fission yeast, 

pericentric transcripts are processed into small interfering RNAs (siRNAs) by the RNA 

interference pathway, which is important for heterochromatin formation (Volpe, Kidner et al., 

2002). In human, mouse, frog and Drosophila, long transcripts can be detected, which have 

profound functions on cell division, most likely by affecting the integrity of centromeric 

chromatin, kinetochore formation and cohesion (Blower, 2016, Chen, Zhang et al., 2021, Ferri, 

Bouzinba-Segard et al., 2009, Ideue, Cho et al., 2014, McNulty, Sullivan et al., 2017, Rosic, 

Kohler et al., 2014, Wong, Brettingham-Moore et al., 2007). Both depletion and upregulation 

of (peri)centromeric transcripts can impair mitosis, and upregulation has also been associated 

with cellular stress, cancer and aging (De Cecco, Criscione et al., 2013, Hedouin, Grillo et al., 

2017, Jolly, Metz et al., 2004, Rosic et al., 2014, Swanson, Manning et al., 2013, Ting, Lipson 

et al., 2011, Valgardsdottir, Chiodi et al., 2005, Valgardsdottir, Chiodi et al., 2008). In humans, 

(peri)centromeric transcription seems to be partially controlled by the localization of 

centromeres in the proximity of nucleoli, where centromeric alpha-satellite expression is 

repressed (Bury, Moodie et al., 2020, Wong et al., 2007). Apart from that, the regulation of 

(peri)centromeric transcription is not well understood. 
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 In Drosophila, expression of pericentromeric satellite repeats has been well 

documented, for instance in preblastoderm embryos (Bury et al., 2020, Wong et al., 2007) 

and germ cells (Wei, Eickbush et al., 2021). In the female gonad, germline stem cells first 

divide asymmetrically to allow one cell to start differentiating while the other cell retains its 

stem cell properties. This asymmetry is partially mediated by an asymmetrical distribution of 

centromere and kinetochore proteins (Dattoli, Carty et al., 2020, Ranjan, Snedeker et al., 

2019). The ensuing cystoblast daughter cell undergoes symmetrical divisions, however, 

without complete abscission, resulting in a 16-cell cyst which will become an egg chamber. 

One of these cells will develop into the oocyte with heavily compacted chromatin, while the 

other 15 become nurse cells and start endoreduplicating their genome, including the 

pericentromeric satellite DNA for the first four endocycles. Subsequently, in endocycle 5, the 

chromosomes are highly compacted in five DAPI-rich regions representing all major 

chromosome arms, which has been termed the ‘five-blob stage’. At the onset of endocycle 6, 

the polytene chromosomes disperse into 32 sister chromosome pairs and continue to 

endoreduplicate the chromosome arms without further amplifying the (peri)centromeric DNA 

(Dej & Spradling, 1999). Interestingly, RNA FISH experiments have detected satellite 

transcripts in endoreduplicating nurse cells (Wei et al., 2021), suggesting that satellite RNAs 

play a role outside of mitosis. It is, however, unknown whether satellite transcripts contribute 

to processes such as asymmetric cell division or endoreduplication. It is of note that 

(peri)centromeres are heavily populated by different classes of transposable elements (TEs), 

which are also transcribed (Chang, Chavan et al., 2019). To avoid possible damage to the 

genome, the germ line has developed specialized pathways to transcriptionally silence TEs: 

the so-called piRNA pathway, which processes piwi-interacting RNAs that target TEs for 

silencing (Khurana & Theurkauf, 2010). The expression of piRNA precursors is maintained by 

the interaction of the PolII machinery with heterochromatin components such as the HP1-

variant Rhino, via the TFIIA paralog Moonshiner (Andersen, Tirian et al., 2017). However, it 

has not been established whether other repetitive regions are regulated in a similar manner.  

 

In this study, we focused on the regulation and function of repetitive SAT III RNA from 

the X chromosome of Drosophila melanogaster by analysing SAT III RNA-interacting proteins. 

RNA pulldown experiments with SAT III transcripts identified a novel nucleolar protein 
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complex that we show to associate with SAT III RNA. This complex is highly expressed in the 

germ line of flies and required for accurate gonadal development, nurse cell chromatin 

dispersal and fertility. Importantly, we show that the complex is essential for repression of SAT 

III RNA in the germ line and that elevated levels of SAT III RNA are at least in part responsible 

for the observed defects. The complex is involved in controlling SAT III RNA levels which in 

turn allows accurate germ line development in the female reproductive tract. 

 

Results 

1. Identification of a SAT III RNA-containing protein complex.  

The acrocentric X chromosome in Drosophila melanogaster contains a large pericentromeric 

region from which the long non-coding SAT III RNA is transcribed in sense and antisense 

direction. SAT III RNA remains nuclear and associates with centromeric and pericentromeric 

chromatin (Rosic et al., 2014). To identify SAT III RNA-interacting proteins, we performed RNA 

pulldowns from Drosophila melanogaster S2 cell lysate, using in vitro transcribed SAT III RNA 

that contained 4 copies of the S1m loop, followed by mass spectrometry (Leppek & Stoecklin, 

2014) (Fig. 1A and S1A). The experiment was conducted with sense and antisense SAT III RNA 

in separate experiments and in duplicates. S1m RNA loops only were used as a control to 

exclude factors that bind to the loops instead of SAT III RNA (Fig. 1B and S1B and suppl. 

Tables 1 + 2). The SAT III sense RNA pulldowns were slightly more consistent when compared 

to the SAT III antisense RNA pulldown and we, therefore, initially focused on proteins enriched 

in the sense pulldown. In total, 72 proteins were enriched in both SAT III sense RNA 

pulldowns, with 36 (50%) ribosomal proteins, 15 (21%) RNA-processing proteins and 6 (8%) 

uncharacterised proteins of which CG13096 was also highly enriched in the antisense RNA 

pulldown (Fig. S1C). We included three additional proteins (CG1234, CG8545, and CG32344) 

in our analysis that were only enriched in the first pulldown because a string analysis predicted 

that they interact with the proteins CG13096 and CG12128 that were enriched in both SAT 

III sense pulldowns (Fig. 1C and S1D). 

 

 The five selected candidates stood out not only for being largely uncharacterized in 

flies but also for their putative functions based on their human orthologs (Fig. 1D and E) with 
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established links to mitosis or centromeric RNAs. The human orthologue of the putative 

ribosomal-like protein CG13096 (RSL1D1) was identified in a human alpha satellite RNA 

pulldown (Zhu, Hoong et al., 2018) and the human orthologue of the putative RNA 

methyltransferase CG12128 (SPOUT1 or CENP-32) was enriched at mitotic spindles and 

kinetochores, being important for tethering the mitotic spindle to centrosomes and 

kinetochores (Ohta, Bukowski-Wills et al., 2010, Ohta, Wood et al., 2015). The nucleolar 

protein CG1234 had been identified to cause shorter mitotic spindles upon knockdown (KD) 

(Somma, Ceprani et al., 2008), and the human orthologue (NOP2) of the putative RNA-

methyltransferase CG8545 was enriched in a human alpha satellite RNA pulldown (Zhu et al., 

2018). In addition, CG8545 was co-immunoprecipitated with CENP-A in Drosophila cells 

(unpublished data from our lab). Similarly, the putative DEAD-box RNA helicase CG32344 

was found in a CENP-A pulldown of associated factors in Drosophila S2 cells (Barth, Schade 

et al., 2015). Generally, DEAD-box helicases have been shown to bind satellite I ncRNAs in 

humans contributing to accurate chromosome segregation (Nishimura, Cho et al., 2019). Even 

though CG12128 is an interesting candidate found in both SAT III RNA pulldowns, 

subsequent experiments showed that it does not share the same phenotypes as the other 

four candidate proteins and was, therefore, either excluded from our studies or used as a 

control. The remaining four uncharacterized proteins turned out to be expressed in the 

gonads and to be important for germline development during subsequent experiments (Fig. 

S2 and data below). We named this complex the Centromeric Transcript-Associated Gonadal 

(Centagon) complex, with CG1234 as Centagon 1 (Cent1), CG8545 as Centagon 2 (Cent2), 

CG13096 as Centagon 3 (Cent3), and CG32344 as Centagon 4 (Cent4) (Fig. 1C-D). 

 

 

2. Sat III RNA interacts with a novel protein complex that exhibits cell cycle-specific 

localisation patterns. 

We tested the mutual interactions of the four Centagon proteins with a Yeast-Two-Hybrid 

assay in triplicates and identified a consistent interaction of Cent2 with Cent, Cent3, and 

Cent4 (Fig. 2A, red circles). Empty vectors served as negative control and an interaction of 

Rdx and Cal1 as positive control (Bade, Pauleau et al., 2014). Furthermore, we validated the 

binding of SAT III RNA to Cent3 using an Electromobility-shift assay (EMSA) (Fig. 2B). We 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 5, 2022. ; https://doi.org/10.1101/2022.02.05.479222doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.05.479222
http://creativecommons.org/licenses/by-nc/4.0/


 6 

were able to efficiently purify Cent3-GST in sufficient amounts to perform EMSAs but were 

unable to do so for the other Centagon proteins. Purified Cent3-GST protein was incubated 

with SAT III and control RNAs at different molar ratios. Addition of Cent3-GST resulted in a 

band shift of both SAT III sense and antisense RNA, as well as of the control lncRNA hsr 

omega and an alpha tubulin RNA fragment. We concluded from this broad RNA binding 

spectrum that Cent3 is most likely a bona fide RNA-binding protein with little RNA specificity, 

at least in vitro with purified components. No shifts were observed in control EMSAs with BSA 

and SAT III RNA (Fig. S1E). The interaction with the Cent3 subunit demonstrates that the 

Centagon complex has RNA binding capacity and can directly interact with SAT III RNAs. 

 

 To assess the cellular localization of the Centagon complex, we initially expressed 

GFP-tagged Centagon proteins in S2 cells and tracked them during the cell cycle (Fig. 2C and 

S3A). All four proteins show a similar dynamic localization pattern: they are detected at the 

nucleolus in interphase, overlap with a-tubulin at the microtubule spindle during mitosis and 

reform nuclear foci in early G1. However, RNAi of the different Centagon complex 

components did not result in any obvious defects in mitosis, cell cycle regulation or 

proliferation (data not shown). We, therefore, obtained expression data from the 

modENCODE Tissue Expression Database (Brown, Boley et al., 2014) and found that all 

Centagon proteins are most highly expressed in Drosophila ovaries (Fig. S2). This suggests 

that the function of the Centagon complex is tissue-specific and can likely be found in the 

female germ line. 

 

  

3. The Centagon complex is highly expressed in the germline. 

In order to assess the localization of Centagon proteins in fly gonads, we produced fly lines 

with endogenously GFP-tagged Centagon proteins using CRISPR/Cas9 genome editing and 

imaged larvae and adult fly tissue (Fig. 3A-D). As expected from their expression profiles (Fig. 

S2), Centagon proteins were detected in the nuclei of both the germline (nurse cells and 

oocyte) and somatic follicle cells (Fig. 3A). Co-immunostaining with the nucleolar marker 

modulo showed that also in ovaries the Centagon proteins localize to the nucleolus in 

interphase (Fig. S3B). We next examined the expression during development and found 

strong expression already in 3rd instar larval gonads (Fig. 3B + C). It should be noted here that 
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Centagon 1-GFP and Centagon 4-GFP flies were heterozygous since homozygous stocks 

were not viable. The weaker GFP signals in those lines may be attributed to their 

heterozygosity rather than a lower expression compared to Cent2 and Cent3. Importantly, 

Centagon protein expression is not limited to the gonads, as GFP signal was also observed 

in larval brain tissue, larval imaginal discs and fat tissue (Fig. 3B + C). In the germarium, 

Centagon proteins are highly expressed in the germ stem cells (GSCs, marked by pMad 

immunostaining) and first cystoblasts, but undetectable in cells derived from subsequent 

divisions (Fig. 3D). The Centagon complex is also expressed in the accompanying somatic 

cells. Only at egg chamber stage 1, expression increases again in the germ cells, indicating a 

differential Centagon expression pattern during early germ cell divisions.  

 

To confirm that the Centagon complex also binds SAT III RNA in vivo and in ovary, we 

performed RNA-Immunoprecipitation (RIP) with ovary lysate from the two homozygous lines 

of the endogenously tagged Centagons, Cent2 and Cent3, and analysed the SAT III RNA 

levels by qPCR. We detected a significant enrichment of SAT III RNA in the Cent2-IP 

compared to the control GAPDH mRNA (Fig. 3E + S3E). SAT III RNA was also enriched in the 

Cent3 RIP but only two out of three repeats showed a strong enrichment (Fig. 3F + S3E). This 

result suggests that also in ovaries, the Centagon complex binds SAT III RNA.  

 

 

4. The Centagon complex is important for oogenesis. 

To study the germ line function of the Centagon complex we next performed knockdown 

experiments of the Centagon members in ovaries. To do so, we crossed TRiP RNAi fly lines 

targeting Centagon transcripts with two ovary-specific Gal4 driver lines: Maternal Triple driver 

(MTD-Gal4) and Mat67.15-Gal4 (Grieder, de Cuevas et al., 2000, Mazzalupo & Cooley, 2006, 

Staller, Yan et al., 2013). MTD-Gal4 is expressed already in GSCs and Mat67.15-Gal4 starts 

expression in early egg chambers (Fig. S3C). We dissected the ovaries of the resulting female 

offspring and observed an obvious size difference between control and all Centagon KD 

ovaries. In contrast, KD of CG12128, which we used as control, did not affect ovarian 

development (Fig. S3D). KD of the Centagon members during early germ cell development 

(with MTD-Gal4) led to more severe phenotypes with strongly underdeveloped ovaries 

compared to KD at later stages (with Mat67.15-Gal4) suggesting a function during early germ 
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line development. The efficiency of the Mat67.15-induced KD was monitored by qPCR (Fig. 

4A). Not only were the mRNA levels of the Centagon members significantly reduced when 

depleted by RNAi, upon KD of one member, levels of the other three Centagon members 

were significantly upregulated, emphasizing the existence of a functional complex and 

suggesting co-regulation and interdependence of the Centagon complex components. No 

qPCR data for the MTD-induced KD efficiency is available because there was too little tissue 

left after knockdown. However, since the phenotype was consistent with the one from the 

Mat67.15 induced KD, we are confident that the KD was also highly efficient. 

Immunofluorescent imaging showed that in the early MTD-induced Centagon KD ovaries, 

almost no vasa-positive germ cells were left in the germaria and only very few immature egg 

chambers were observed (Fig. 4B, white arrows). Interestingly, this was not due to a loss of 

GSCs, since many pMad-positive cells were left in the stem-cell niche. However, we observed 

aberrant pMad expression at the germ cell cyst stage (red arrows), which was significantly 

higher in the Centagon 1 KD ovaries compared to the control (Fig. 4C). This result indicates 

a possible differentiation defect of germ cells upon Centagon depletion with cells maintaining 

a stem cell-like potential longer than under control conditions. 

 

When the Centagon members were knocked down in early egg chambers (with 

Mat67.15-Gal4), egg chambers ceased to develop and displayed abnormally fragmented 

nurse cell nuclei that were reminiscent of the 5-blob phenotype (Fig. 4D + E) (Dej & Spradling, 

1999). In these ovarioles, most egg chambers degenerated before reaching a mature egg 

stage. The phenotype was strongest in young females (2-4 days). In older females (5-7 days), 

nurse cells were less fragmented and more egg chambers developed (right panel), indicating 

some adjustment of the phenotype with age. However, the eggs laid by both young and old 

females were smaller with no dorsal filaments, which we categorized into three groups: 

normal, medium (slightly deformed) and small (without dorsal filaments) (Fig. 4F). A survival 

assay showed that KD of the Centagon members in the ovary leads up to a 20-fold reduction 

of eggs laid overnight (KD of Cent2) with most of them being deformed. Unsurprisingly, there 

is a clear correlation between egg phenotype severity and the hatching rate (survival rate) of 

these eggs after 24 hours (Fig. 4G). We concluded that the Centagon complex is both 

important during early germ cell divisions and for egg chamber development.  
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As the Centagon complex is also expressed in somatic ovary cells and germ cells of the 

testis, we also conducted KD experiments in these cell types. Depletion in the ovary follicle 

cells resulted in compound egg chambers, follicle cell gaps and, in case of depletion in follicle 

stem cells, to loss of the entire ovary (Fig. S4A + B). It is important to note that even though 

the expression profiles for Centagon components in adult testis are not as high in the FlyAtlas 

Anatomical Expression (Chintapalli, Wang et al., 2007) and modENCODE Tissue Expression 

Data sets (Brown et al., 2014) compared to adult ovaries, we detected strong GFP signals in 

the developing testis of endogenously tagged flies and a strong male germ line phenotype 

upon depletion. Centagon depletion in the testis led to smaller, deformed testes with a 

misplaced hub and no sperm formation (Fig. S4C). Therefore, we concluded that the 

Centagon complex is important for the development of somatic and germ cell development 

in the male and female germ line of Drosophila melanogaster.  

 

 

5. SAT III RNA levels are repressed by the Centagon complex in ovaries 

As the Centagon complex was initially identified as a SAT III RNA-associated complex, we 

next investigated if the depletion of Centagon members has an effect on SAT III RNA levels 

and localization. First, we performed SAT III RNA FISH in ovaries to determine the SAT III RNA 

localization in w1118 control flies (Fig. 5A). In w1118 ovarioles the SAT III RNA localized in one to 

several foci in nurse cell nuclei as well as inside the oocyte nucleus (see close-up). To test the 

specificity of the FISH signal, we used the Zhr1 fly line which carries a chromosomal 

translocation that removed the majority of the pericentric SAT III DNA region (Ferri et al., 

2009, Sawamura, Yamamoto et al., 1993). We tested both SAT III sense and antisense RNA 

FISH, but observed a more specific signal with the antisense probes: Although the signals of 

SAT III sense and antisense probes showed similar localizations in ovarioles, some SAT III 

sense RNA FISH signal was also detectable in Zhr1 flies (Fig. S5A), indicating that there are a 

few SAT III repeats remaining in Zhr1 flies or that the SAT III sense probe may also detect other 

satellite repeats. Therefore, further FISH experiments were conducted with SAT III antisense 

probes. Indeed, Zhr1 flies did not show any of the SAT III RNA FISH foci that we observed in 

w1118 ovarioles (Fig. 5A). To ensure that the observed signal in control flies was indeed RNA 

and not DNA, which are both mostly lacking in Zhr1 flies, we treated the ovaries with RNase 

A. All SAT III RNA foci in w1118 ovaries disappear after treatment with RNase A, indicating the 
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specific hybridization of SAT III probes to RNA (Fig. S5B). Importantly, the SAT III RNA FISH 

signal increased drastically in Mat67.15-induced Centagon KD ovaries (Fig. 5A + B). Although 

the Centagon members were mostly identified in the SAT III sense RNA pulldown, the RNA 

FISH experiments show that SAT III sense and antisense transcripts are both upregulated after 

Centagon KD. This increase was further confirmed by qPCR, where we measured an up to 50-

fold increase of SAT III RNA levels in Centagon KD ovaries compared to the control (Fig. 5C). 

Furthermore, the spatial resolution of the SAT III RNA FISH revealed that SAT III RNA levels 

were specifically increased in egg chambers with fragmented nurse cells. To quantify this 

effect, we measured SAT III RNA levels in KD ovaries of 5-7-day old females with both 

fragmented and normal nurse cell chromatin and found a highly significant increase of SAT III 

RNA signals in nurse cells with fragmented chromatin (Fig. 5D and E). Comparable results 

were obtained with the MTD-induced KD where SAT III RNA FISH signal increased in KD 

ovaries (Fig. S5C). This indicates that the Centagon complex controls SAT III RNA levels and 

that an increase of SAT III RNA levels correlates with fragmented nurse cell nuclei in Centagon 

KD ovaries.  

 

 

6. SAT III RNA reduction partially rescues the Centagon KD phenotypes 

To evaluate the causal relationship of high SAT III RNA levels and nurse cell fragmentation, 

we genetically lowered the SAT III RNA level by crossing the Centagon 1 RNAi-line and 

Mat67.15-Gal4 driver line with the Zhr1 fly line. When Centagon 1 was depleted in ovaries of 

Zhr1, nurse cell fragmentation was significantly reduced (Fig. 6A + B). Furthermore, females 

with Centagon 1 depletion and the Zhr1 X chromosomes laid as many eggs as the control 

w1118 females (Fig. 6C). However, many of these eggs were deformed and had a lower survival 

rate. It should be noted that the KD efficiency of Centagon 1 was slightly lower in Zhr1 flies 

(Fig. 6D), which could be partially responsible for the reduced phenotype we observed. 

Additionally, SAT III RNA levels were assessed by qPCR (Fig. 6E), which indeed remained low 

in Zhr1 flies. We concluded that the effect observed after Centagon KD is at least partially 

caused by high SAT III RNA levels resulting from the lack of repressive function of the 

Centagon complex. In conclusion, we identified a complex that regulates (peri)centromeric 

SAT III transcript levels, which is essential for normal somatic and germ cell development in 
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the female gonad and may have additional functions in the male germline and potentially 

other tissues where we detected high levels of the Centagon complex.  

 

Discussion 

 

There are longstanding questions as to what extent repetitive regions of the genome are 

functionally relevant and whether transcription or the transcripts themselves are important for 

genome regulation and cellular functions. In addition, how these transcripts are regulated is 

not well understood. We focused on the long non-coding RNA SAT III from the repetitive 

(peri-)centromeric region of the X chromosome of Drosophila melanogaster and show that 

SAT III RNA is regulated by a novel RNA-binding complex of at least four different proteins 

that we termed ‘Centromeric Transcript-Associated Gonadal’ (Centagon) complex. We show 

here that the Centagon complex represses SAT III RNA levels in the female gonad and 

influences germ line development and fertility.  

 

 Previously, SAT III RNA has been shown to promote correct chromosome segregation 

during mitosis since depletion of SAT III RNA or the genomic locus causes segregation defects 

in Drosophila cells and embryos (Rosic et al., 2014). Here we show that elevated SAT III RNA 

levels are also detrimental for gonadal cells in vivo: The Centagon complex controls SAT III 

RNA levels in the Drosophila gonad and depletion of complex members resulted in an up to 

50-fold increase of SAT III transcript levels accompanied by massive defects in egg chamber 

maturation. Importantly, reducing the SAT III RNA level in Centagon-depleted ovaries 

partially rescues the phenotypes. We therefore conclude that accurate levels of SAT III RNA 

are fundamental to cell survival and development, and tightly regulated. Interestingly, the 

Centagon complex is important in both actively dividing early germ cells and in postmitotic 

nurse cells during egg chamber maturation (Fig. 4) indicating an effect of SAT III RNA 

upregulation outside of mitosis. Depletion of the Centagon complex in the germarium during 

early germ cell divisions led to empty ovarioles and aberrant expression of the germ stem cell 

marker pMad. This indicates that the Centagon complex is important for correct germ cell 

differentiation. Interestingly, the Centagon proteins were amongst 646 factors from a 
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transcriptome-wide RNAi screen that aimed to identify networks controlling stem cell self-

renewal and differentiation in female gonads (Sanchez, Teixeira et al., 2016). 

 

Because the depletion of Centagon components in S2 cells did not result in obvious 

defects, its role in regulating SAT III levels might be restricted to certain stages and tissues 

during development as suggested by the high expression levels of endogenously tagged 

Centagon components in larval tissue. Centagon levels seem particularly high in tissues that 

undergo changes in their developmental potential such as the germline and imaginal discs. 

This may include changes in heterochromatin and strict regulation of transcripts from 

repetitive elements by the nucleolar Centagon complex. This is supported by previous reports 

that the localization of centromeres to an intact nucleolus is important for heterochromatin 

formation and transcriptional silencing of repetitive elements in Drosophila and human cells 

(Bury et al., 2020, Padeken, Mendiburo et al., 2013).  

 

 It is important to note that the Centagon complex components have been implicated 

in ribosome biogenesis: The yeast orthologue of Cent1 is involved in 60S ribosomal subunit 

maturation (Milkereit, Gadal et al., 2001), while Cent2 as a putative RNA methyltransferase 

may be involved in rRNA maturation as has been documented for the nucleolar RNA 

methyltransferase fibrillarin (Tollervey, Lehtonen et al., 1993). KD of Cent3 leads to 

accumulation of aberrant rRNA intermediates (Sanchez et al., 2016) and DEAD-box RNA 

helicases like Cent4 are often part of large complexes such as ribosomes or spliceosomes 

(Linder & Jankowsky, 2011). It is not known whether defects in ribosome biogenesis also affect 

SAT III transcript levels or vice versa, however the SAT III locus on the X chromosome is 

immediately adjacent to the rDNA locus and a deregulated chromatin state of one of the loci 

may directly or indirectly affect the other. Furthermore, there seems to be a strong connection 

between rRNA synthesis and GSC differentiation (Neumuller, Betschinger et al., 2008, 

Sanchez et al., 2016, Zhang, Shalaby et al., 2014). However, the fact that we did not observe 

any major defects in S2 cells and no obvious structural defects in the nucleolar organization 

argues against a major functional importance of the Centagon complex in ribosome 

biogenesis or nucleolar integrity. More work is needed to fully understand the precise 

relationship of centromeric transcript and the nucleolus, especially in specialized tissues like 

the germ line.  
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KD of the Centagon members in early egg chambers resulted in egg chamber 

maturation defects, visible by an extended fragmented (5-blob) chromatin state in nurse cells, 

which remained small in size and eventually degenerated. A clear connection of the observed 

phenotypes with elevated SAT III RNA levels could be established: the simultaneous 

depletion of Centagon members and SAT III RNA reduced the nurse cell chromatin 

fragmentation phenotype and led to a higher number of eggs. Although the nurse cells do 

not undergo mitosis, they are subjected to a unique endocycle which requires a mitosis-like 

step to disperse the nurse cell chromatin after endocycle 5 (Dej & Spradling, 1999), which is 

apparently partially blocked by high SAT III RNA levels. Interestingly, some Centagon 

orthologues have been implicated in cell cycle functions: Cent1 orthologues in human and 

yeast and the human Cent2 orthologue promote S phase and replication initiation (Cheung, 

Amin et al., 2019, Johmura, Osada et al., 2008, Wang, Wang et al., 2020, Zhang, Yu et al., 

2002) and the human orthologue of Cent3 promotes proliferation (Ma, Chang et al., 2008). 

 

 Germ cells are highly specialized cells in an organism that need to prepare the 

genome for transitioning from a fully differentiated germ cell to being part of the totipotent 

zygote after fertilization. This is reflected in massive chromatin remodelling events that must 

take place during early development to remove highly specialized chromatin organization 

from the sperm and egg to become a zygote. These early embryos are defined by a largely 

unconstrained genome conformations until the maternal to zygotic transition when the 

genome becomes ordered and structured into domains (Hug & Vaquerizas, 2018). We 

propose that an important function of the novel SAT III silencing mechanism we describe is 

to keep the transcriptional activation of repetitive elements under control during chromatin 

remodelling processes in the germ line to maintain genome integrity. This has been well 

described for the Drosophila germline, where transposable elements are transcriptionally 

silenced through heterochromatin formation mediated by the PIWI-interacting RNA pathway 

to protect the genome (Batki, Schnabl et al., 2019, Sienski, Donertas et al., 2012). We envision 

a similar scenario for repetitive regions that need to be highly controlled by a repressive 

complex in the germ line, in this case, Centagon. The complex is specifically expressed in the 

germ line and in tissues that undergo changes in their developmental potential, perhaps to 

contribute to satellite repeat silencing during chromatin remodelling phases that occur during 
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these developmental stages. Why too much or too little SAT III RNA causes developmental 

defects is still unclear but by identifying the Centagon complex, we are one step closer in 

understanding SAT III RNA regulation and its specific role in germ line development.    

 

 

Materials and Methods 

 

Cloning 

Full-length Centagon coding regions were cloned into a modified pMT/V5 vector 

(Invitrogen) or pLAPcopia-GFP (Erhardt, Mellone et al., 2008) for imaging S2 cells or pGEX 

for bacterial expression of recombinant proteins; SAT III repeats were cloned into pSP73-

4xS1m (Leppek & Stoecklin, 2014, Rosic et al., 2014). All plasmid sequences were verified 

by Sanger sequencing. For the knock-in transgenic flies, endogenous Centagon loci were N-

terminally  (CG1234) or C-terminally (CG8545, CG32344) GFP tagged. The guide RNAs 

were designed using CCTOP  (https://cctop.cos.uni-heidelberg.de/index.html (Stemmer, 

Thumberger et al., 2015). The cloning and injection were performed by Qidong Fungene 

Biotechnology Co.Ltd. (http://www.fungene.tech). For yeast two hybrid studies, full length 

Centagon 1-4 and CG12128 were cloned into pMM5 and pMM6 plasmids as described for 

the controls CAL1 and Rdx in (Bade et al., 2014). 

 

RNA extraction 

RNA from S2 cell pellets was purified using equivalent amount of Trizol (Invitrogen) or TriSure 

(Meridian Bioscience). Dissected and snap frozen ovaries were supplemented with Trizol (or 

TriSure) to a total of 100 μl. The tissue was homogenized and the samples were centrifuged 

at 12.000 x g at 4°C for 10 min. RNA was extracted from the supernatant according to the 

manufacturer’s protocol. RNA pellets were resuspended in RNase-free water according to the 

pellet size (20-100 µl). 

 

gDNA digestion of ovary RNA 

10 μg ovary RNA was digested with Turbo DNase (Thermo Fisher Scientific) at 37°C for 20 

min.  For SAT III RNA qPCR from ovaries an additional gDNA digestion step was performed 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 5, 2022. ; https://doi.org/10.1101/2022.02.05.479222doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.05.479222
http://creativecommons.org/licenses/by-nc/4.0/


 15 

to eliminate DNA contamination. The reaction was mixed with 170 μl H2O as well as 20 μl 

NaAC (3M, pH 5.2) on ice, 220 μl Phenol-Chloroform-Isoamyl added, vortexed, and 

centrifuged at 16.000 x g for 5 min at RT. The upper phase was supplemented with 200 μl 

chloroform, vortexed and centrifuged at 16.000 x g 5 min at RT. The upper phase was mixed 

with 200 μl Isopropanol and 1 μl GlycoBlue (Invitrogen) at -80°C for at least 1 h. The sample 

was centrifuged and the pellet washed with 75% ethanol and again centrifuged, air-dry and 

the pellet resuspended in 15 μl H2O. 

 

Reverse Transcription and qPCR 

To synthesize cDNA from 1 μg RNA the Quantitect kit (Qiagen) was used according to 

manufacturer’s instructions. qPCRs were performed using LightCycler® 480 SYBR Green I 

Master Mix (2X) (Roche) with one reaction containing: 7,5 μl 2x Sybrgreen, 1 μl diluted cDNA, 

1 μl each of forward and reverse primers (10 μM) and 4,5 μl H2O. The following program was 

used on the LightCycler® 480: 10 min at 95°C, followed by 40 cycles of 15 sec. 95°C and 1 

min at 55°C.   

 

RNA gel electrophoresis 

RNA from the RNA-pulldown experiment was run on a denaturing MOPS-formaldehyde 1% 

agarose gel in 1/5 volume RNA loading buffer (50% (v/v) glycerol, 1 mM Na2EDTA, 0.4% (v/v) 

bromophenol blue, 40 μg/ml ethidium bromide) and 2x the volume of RNA including loading 

buffer of RNA sample buffer (0,65x MOPS, 65% (v/v) formamide, 8,5% (v/v) formaldehyde). 

The RNA was heated at 65°C for 10 min to unfold, immediately placed on ice and loading 

and separated at 70 V in 1x MOPS (20 mM MOPS pH 7.0, 2 mM sodium acetate, 1 mM EDTA). 

 

RNA Electromobility Shift Assay (EMSA) 

Recombinant protein purification. GST-tagged protein in BL21 bacteria were grown to an OD 

0.6 density and induced with 0.3 mM IPTG at 25°C for 16 h. Cells were harvested, washed 

with PBS, incubated in lysis buffer (500 mM NaCl, 0.1% (v/v) NP-40, 2mM PMSF, 1 μg/ml 

Aprotinin, 1 μg/ml Leupeptin-Hemisulfate, 1 mg/ml Pepstatin, 1 mM DTT in 1x PBS) at 4°C 

and homogenized in two cycles with the Avestin Emulsiflex and centrifuged at 20.000 rpm at 

4°C for 30 min. The lysate was filtered and loaded onto the ÄKTA GST column 

chromatography system, washes with 150 mM and 100 mM NaCl and eluted with 30 mM 
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Glutathione in PBS, pH 9.0. The eluate was loaded onto a PD-10 desalting column (GE 

Healthcare) and eluted with PBS to remove salt. Further concentration was performed with a 

10K centricon tube (Amnion).  

 

Equal amounts of in vitro transcribed RNA (T7 MegaScript kit, Invitrogen) were incubated with 

increasing amounts of purified recombinant protein. RNA was heated to 68°C for 10 min and 

incubating 10 min at RT before placing on ice. The RNA and protein were cooled down for 

30 min on ice and samples loaded on a non-denaturing 1% agarose gel in TAE buffer (40mM 

Tris, 20mM Acetate, 1mM EDTA) and run at 120 V followed by a 20 min ethidium bromide 

bath (RNase-free TAE).  

 

Yeast Two Hybrid 

All full length Centagon sequences were cloned into the pMM5-LexADNA and pMM6-Gal4pTA 

vectors (Bade et al., 2014). A combination of one pMM5 and one pMM6 plasmid was 

transformed into competent yeastS SGY37VIII cells (Knop, Siegers et al., 1999). The YTH was 

performed as described previously (Bade et al., 2014).  In short, interactions were judged 

based on the activity of â-galactosidase that results in the conversion of X-Gal (5-bromo-4-

chloro-3-indolyl-b-D-galactosidase) into a blue dye. 

 

RNA-pulldown 

Blocking beads. 200 μl of High-Performance Streptavidin Sepharose beads (GE Healthcare) 

were washed twice with 1 ml wash buffer-100 (20 mM HEPES-KOH pH 7.9, 100 mM NaCl, 10 

mM MgCl2 0,01% (v/v) NP-40, 1 mM DTT) at 4°C and incubated with 1 ml blocking buffer (1 

mg/ml BSA, 200 μg/ml Glycogen, 200 μg/ml Yeast tRNA, 0,01% (v/v) NP-40 in wash buffer-

100) for 2,5 h at 4°C, washed 3x with wash buffer-300 (20 mM HEPES-KOH pH 7.9, 300 mM 

NaCl, 10 mM MgCl2 0,01% (v/v) NP-40, 1 mM DTT) and stored in wash buffer-150 (20 mM 

HEPES-KOH pH 7.9, 150 mM NaCl, 10 mM MgCl2 0,01% (v/v) NP-40, 1 mM DTT) at 4°C until 

use. 

 

Cell lysis and preclearing.  

- Pulldown: Approximately 4-8 x 109 cells were washes with cold PBS, centrifuged at 6.000 x 

g for 10 min and resuspended in lysis buffer-150 (20 mM Tris pH 7.5, 150 mM NaCl, 1,5 mM 
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MgCl2, 2 mM DTT, 2 mM Ribonucleoside Vanadyl Complex (NEB), Roche cOmplete™) to a 

concentration of 100 μl/106 cells before sonification. The lysate was centrifuged for 15 min at 

16.000 x g at 4°C. 10 ml supernatant was precleared by incubation with 200 μl blocked High 

Performance Streptavidin Sepharose beads for 3 h at 4°C on a rotator wheel.  

 

4xS1m-tagged RNA synthesis: For in vitro transcription, the Megascript kits for SP6 and T7 

(Invitrogen) were used. In a 40 μl reaction, 2 μg of linearized plasmid (pSP73-4xS1m with 

different inserts) was used as a template and the reaction was left at 37°C overnight. The next 

day, 1 μl Turbo DNase was added and the reaction was incubated 15 more min at 37°C, 

followed by a clean-up with mini quick spin columns (Roche). 

 

RNA-pulldown: Each RNA-pulldown was carried out in duplicate to obtain enough protein 

eluate for LC-MS. Per sample, 50 pmol of in vitro transcribed RNA was added to precleared 

cell lysate (pulldown 1: 2 mg/sample, pulldown 2: 1,5 mg/sample) supplemented with 2,5 

μl/ml RNase inhibitor, 0,1 μg/ml tRNA and incubated 1 h at 4°C on a rotator wheel. 10 μl 

sample from each duplicate was taken for RNA extraction (input). 35 μl blocked beads were 

added and incubated at 4°C for 1,5 h on a rotator wheel. The beads were settled by 

centrifugation and 10 μl from each duplicate of the supernatant was taken for RNA extraction 

(flow-through). The beads were washed 5x with wash buffer and 10 μl bead slurry was taken 

for RNA extraction. The rest of the beads was incubated with wash buffer supplemented with 

50 μg/ml RNase A (Applichem) for 15 min on ice. The eluates were combined in a new 

Eppendorf tube and supplemented with 1,5 ml ice-cold acetone for protein precipitation and 

kept at -20°C overnight. The was centrifuged 30 min at 17.000 x g at RT, the pellet washed 

twice with 80% sterile ethanol (RT), air-dried and resuspended in 36 μl 1x SDS loading buffer. 

Samples were denatured 5 min at 95°C and kept on ice before proteins were separated on a 

gel.  

 

In-gel tryptic digestion and LC-MS/MS analysis 

After SDS-PAGE coomassie stained bands were cut out and processed as described 

previously (Barenz, Inoue et al., 2013). In brief, samples were reduced, alkylated and digested 

with trypsin. Peptides were extracted from the gel pieces, concentrated in a vacuum 

centrifuge and dissolved in 15 µl 0.1% TFA. Nanoflow LC-MS2 analysis was performed with 
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an Ultimate 3000 liquid chromatography system coupled to an Orbitrap Elite (Thermo 

Fisher)with in-house packed analytical column (75 µm x 200 mm, 1.9 µm ReprosilPur-AQ 120 

C18 material (Dr. Maisch, Germany). Peptides were separated in a 25 min linear gradient (3-

40% B) (Solvent A: 0.1% formic acid / 1% acetonitrile, solvent B: 0.1% formic acid, 89.9% 

acetonitrile). The mass spectrometer was operated in data-dependent acquisition mode, 

automatically switching between MS and MS2. MS spectra (m/z 400–1600) were acquired in 

the Orbitrap at 60,000 (m/z 400) resolution and MS2 spectra were generated for up to 15 

precursors with normalized collision energy of 35% in the ion trap.  The MS/MS spectra were 

searched against the uniprotKB Drosophila database (13776 entries) and a contaminants 

database (MaxQuant) using Proteome Discoverer 2.5 with Sequest (Thermo Fisher Scientific). 

Carbamidomethyl was set as fixed modification of cysteine and oxidation (methionine), 

deamidation (asparagines, glutamine) and acetylation (protein N-terminus) as variable 

modifications. Mass tolerance was set to 5ppm and 0.5 Da for MS and MS/MS, respectively. 

Only high confident peptides were used and the false discovery rate was set to 0.01. 

 

RNA-IP 

The RNA-IP was performed according to the protocol published in (Tiwari, Zeitler et al., 2019) 

with GFP-Trap Magentic Particles M-270 (Chromotek) with 50 ovaries collected in 20 µl 

RNase-free PBS on ice. The PBS was substituted with 40 µl lysis buffer (50 mM Tris pH 7.5, 

150 mM NaCl, 5 mM EDTA, 0,5% (v/v) NP-40, 10% (v/v) glycerol, 0,5 mM DTT, Roche 

cOmplete™, and 5% (v/v) Ribonucleoside Vanadyl Complex (NEB)) and homogenized 

centrifuged at 15.000 g at 4°C.  

Per sample, 25 µl of washed bead slurry was incubated with 500 µl ovary lysate at 4°C for 2 h 

and washed with lysis buffer and twice with wash buffer (50 mM Tris pH 7.5, 500 mM NaCl, 5 

mM EDTA, 0,5% (v/v) NP-40, 10% (v/v) glycerol, 0,5 mM DTT, Roche cOmplete™, and 5% 

(v/v) Ribonucleoside Vanadyl Complex (NEB)) at 4°C for 10 min. Half of the beads were 

resuspended in 1x SDS loading buffer for WB analysis and the other half were resuspended 

in 500 µl Trizol for RNA isolation.  

 

Western Blot  

15 µl per well were loaded onto a 15-well TGX precast gel 4-15% (Biorad) and run 45 min. at 

150V. The gel was blotted on a 0.2 µm nitrocellulose membrane (GE healthcare) using the 
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TransBlot Turbo (Biorad) at 1.3A, 25V for 7 min. Membranes were blocked in TBST + 5% milk 

and incubated with the primary rabbit α-YFP antibody (1:5000, (Shieh, Minguez et al., 2015)) 

in TBST + 5% milk at 4°C overnight. Subsequently, the membrane was washed three times 

with TBST for 10 min., followed by incubation with the secondary α-rabbit HRP-conjugated 

antibody (1:500, Sigma A0545) for 1 hour at RT. After three more washes with TBST, the 

membrane was treated with SuperSignal™ West Femto Maximum Sensitivity Substrate 

(Thermo Scientific) and exposed on the Amersham Imager 600 (GE healthcare). 

 

Cell culture 

Drosophila Schneider 2 (S2) cells were grown in Schneider’s Drosophila medium (Gibco) 

supplemented with 10% (v/v) Fetal Bovine Serum (PAN) and 200 μg/ml penicillin and 

streptomycin (Capricorn Scientific) at 25°C. Transfected cells were supplemented with 

additional selection antibiotics Hygromcin (250 μg/ml) or Puromycin (50 μg/ml) (Sigma 

Aldrich). For cell growth in suspension, 10 μg/ml Heparin and 0,05% Synperonic (Sigma 

Aldrich) were added to the medium and cells were incubated in an Erlenmeyer flask while 

shaking 80 min-1. 

 

Transfections 

1,5 x 106 cells/wells were transfected with 5 μg pDNA using Cellfectin II reagent (Gibco) 

according to the manufacturers protocol.  

 

Immunofluorescent staining of cells 

Immunofluorescence was performed as described (Mathew, Pauleau et al., 2014). Briefly, 3-5 

x 105 cells were settled on Polysine Slides (Thermo Fisher), fixed with 4%, washed 3x 5 min 

with PBS and permeabilised with 0.1% Triton X-100 in PBS for 5 min. Cells were blocked with 

4% BSA in PBS for 30 min followed by incubation with the primary antibody diluted in 4% 

BSA in PBS overnight. Cells were washed 3x with PBS before incubating with the fluorescent 

secondary antibody diluted 1:500 in 4% BSA in PBS for 1 h protected from light, washed 3x 

with PBS, counterstained with 1 µg/ml DAPI in PBS, washed again and mounted with Aqua-

Poly/Mount (Polysciences). The following antibodies were used: mouse α-tubulin (1:1000, 

Sigma T9026) and rabbit α-Cenp-C (Pauleau, Bergner et al., 2019). Secondary fluorescent 

antibodies were purchased from Thermo Fisher Scientific. 
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Drosophila husbandry 

The fly stocks were reared and maintained on standard medium at 18˚C. Crosses were set up 

with 2/3 virgins and 1/3 males and kept at 25°C, except for crosses with MTD-Gal4, which 

were kept at 18 °C. The following fly lines were used: Bloomington 35587 (trip Centagon 1), 

Bloomington 56998 (trip Centagon 2), Bloomington 33340 (trip Centagon 3), Bloomington 

61865 (trip Centagon 4), Bloomington 33997 (trip CG12128), Mat67.15-Gal4 (Bloomington 

80361), MTD-Gal4 (Bloomington 31777), Zhr1 (origin?), GR1-Gal4 and traffic jam-Gal4 (Veit 

Riechmann lab), UAS-NLS-GFP (Ingrid Lohmann lab), w1118. Endogenously tagged Centagon-

GFP flies were purchased from Qidong Fungene Biotechnology. For dissections and fly 

sorting, a stereomicroscope from Zeiss with external light source was used.   

 

Generation of transgenic flies 

The region of the Centagon 1 gene targeted by the dsRNA of the trip fly line was designed 

with alternative codons and this altered Centagon 1 gene sequence including its upstream 

and downstream regions was cloned into the pATTB vector (Ni, Zhou et al., 2011). The 

plasmid was sent to the fly facility of Cambridge University for injection into vas-int;attp40 

embryos and the resulting flies were crossed to obtain a homozygous stock. 

 

Survival assay 

To obtain females with ovary-specific KDs, different UAS-RNAi females were crossed to Mat 

67;15-Gal4 males. An equal number of newly hatched F1 flies (30 females and 20 males) were 

crossed and eggs laid overnight on day tree were collected and transferred to a new grape 

juice plate with Nipagin (Sigma) and the number of hatched eggs was assessed after 24 h. 

Eggs were collected 5 consecutive nights to monitor egg laying at different ages. 

 

Ovary IF 

Adult ovaries were dissected in 1x PBS and fixed with 4% PFA in PBS for 20 min. The ovaries 

were washed 3x 15min in PBST (0,1% Tween in PBS) and permeabilised in 1% Triton-X in PBS 

for 30 min. After three 15 min washes in PBST, the ovaries were blocked in antibody blocking 

solution (0,1% (v/v) Tween-20, 0,1% BSA, 10% FBS in PBS) for 2 h, followed by incubation 

with the primary antibody in PBST at 4°C overnight. Ovaries were washed in PBST 3x 15min, 
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followed by secondary antibody for 2 h. The ovaries were rinsed once and washed twice for 

15 min with PBST and counterstained with DAPI (1:000) in PBS. After two more 5 min PBST 

washes, the ovaries were mounted onto coverslips, with Aqua Polymount mounting medium. 

The following antibodies were used: rabbit α-pMad (1:500, Abcam 52903), rabbit α-vasa 

(1:30, DSHB), mouse α-modulo (1:5000, Jaques Pradel lab). Secondary fluorescent antibodies 

were purchased from Thermo Fisher Scientific. 

 

Testis IF 

Adult testes were dissected in PBS, fixed in 4% formaldehyde for 20 min and blocked in 5% 

BSA for 1 h at room temperature. Testes were incubated in primary antibodies (in PBST) 

overnight at 4˚C, then washed for 1 h in PBST and incubated with secondary antibodies (in 

5% BSA) for 2 h. After washing for 1 h in PBS, testes were mounted on Vectashield (Vector 

Lab). The following antibodies were used: mouse anti-fasciclin III 7G10 (1:100, DSHB), guinea 

pig anti traffic-jam (1:5000, Dorothea Godt lab), rabbit anti-vasa (1:250, Santa Cruz d-260). 

Secondary fuorescent antibodies were purchased from Thermo Fischer Scientific and used 

1:500. 

  

Ovary RNA FISH 

For RNA FISH, single molecule Hulu FISH probes from Pixelbio were used according to the 

manufacturer’s protocol. Dissected ovaries were fixated with 4% PFA for 30 min, washed twice 

5 min with PBS and permeabilized in 70% ethanol overnight at 4°C. The next day, the ovaries 

were washed 2x 10 min with Hulu wash buffer (2x SSC, 2M Urea), before adding 50 μl Hulu 

hybridization buffer (2x SSC, 2M Urea, 10% dextran sulfate sodium salt, 5x Denhardt’s 

solution) and 0,5 μl Hulu probe. The ovaries were incubated overnight at 30°C protected from 

light, then washed 4x 10 min with HULU wash buffer and incubated with 1 μg/μl DAPI in Hulu 

wash buffer for 5 min and washed 2x 5 min with Hulu wash buffer and mounted with 

Aqua/Polymount on coverslips. All solutions were RNase-free. For RNase experiments, 

ovaries were incubated 1h with 20 μg/ml RNase A in PBS or only PBS at 37°C before fixation. 

 

Microscopic techniques 

DeltaVision microscope. S2 cells with immunofluorescence staining were imaged with the 

DeltaVision Core system (Applied Precision) using the Olympus UPlanSApo 100x (n.a. 1.4). Z-
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slices were 0,2 μm. Deconvolution was performed with the Applied Precisions softWoRx 3.7.1 

suite with the following settings: Ratio (conservative), 10 cycles. Images used as examples in 

figures were adjusted for brightness and contrast in FIJI (ImageJ). 

 

Confocal microscopy. For Drosophila tissues, either the Leica TCS SP5II confocal microscope 

with the HCX Plan APO 40x/1.30 Oil Cs objective was used or the Leica TSC SP8 confocal 

microscope with the PLAN APO 20x, multi-immersion (NA 0.75) and PLAN APO 63x, glycerol 

immersion (NA 1.3) objectives.  2 μm z-slices were imaged for whole ovaries and egg chamber 

and 0,5 μm z-slices   were used for the imaging of germaria. Images used as examples in 

figures were adjusted for brightness and contrast in FIJI (ImageJ). 

 

Quantifications. Microscopic images were analysed in FIJI (ImageJ). For intensity 

measurements, background was removed with the rolling ball tool and a z-projection of the 

z-slices with the signal of interest was made. Then, the region of interest was selected and the 

Raw Int Den was measured.  

sat III signal in egg chambers: The fragmentation of nurse cell chromatin was assessed by eye 

and egg chambers with comparable sizes were analysed.  

pMad levels in MTD-Gal4-induced KD ovaries:  GSCs were selected one by one for intensity 

measurements. Cystoblasts with pMad signal were counted and all pMad-expressing 

cystoblasts were selected together for one intensity measurement. The obtained value was 

divided by the number of cells counted in the selected area. 
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Figure legends 

1. Identification of a SAT III RNA-containing protein complex.  
A. Schematic workflow of the SAT III RNA pulldown experiments. In vitro transcribed Sat III 

RNAs with 4xS1m loops were incubated with S2 cell lysate and streptavidin beads to 

pulldown RNA-protein complexes. Approximately 15% of the beads was treated with Trizol 

for RNA extraction and the rest was incubated with RNase A to elute the SAT III RNA-bound 

proteins, which were subjected to LC-MS.  B. Enrichment of proteins in the SAT III sense 

and antisense pulldown compared to the only 4xS1m loop RNA pulldown. Each dot 

represents a protein and its fold change (FC) in the SAT III sense RNA pulldown (x-axis) and 
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SAT III antisense RNA pulldown (y-axis) compared to the control on a logarithmic scale. 

Coloured dots represent members of the Centagon complex and CG12128. A full list of 

identified proteins can be found in supplemental table 1. C. Five uncharacterized proteins 

found in the SAT III RNA pulldown are predicted to form a complex. Data from STRING 

analysis and our Yeast-Two-Hybrid experiments (see Fig. 2C). D. Human orthologues of the 

five selected factors. Percentages of identical or similar amino acids of the human 

orthologues to the fly proteins are indicated.  F. Overview of predicted domains of the 

candidate proteins according to https://www.ebi.ac.uk/interpro/. Sizes in amino acids are 

indicated below the protein domains. 

 

2. Sat III RNA interacts with a novel protein complex that exhibits cell cycle-specific 

localisation patterns. 

A. Yeast-Two-Hybrid (Y2H) assay with the candidate genes. Three replicates are shown. 

Only interactions positive in all three assays are encircled in red. The top row depicts the 

positive (Rdx and Cal1, left) (Bade et al. 2014) and negative (empty plasmids, right) controls. 

B. SAT III RNA interacts with Centagon 3 in an electromobility shift assay (EMSA). In vitro 

transcribed RNA was incubated with purified Centagon 3-GST protein in the indicated molar 

ratios. As RNA controls, the lncRNA hsr omega and an alpha tubulin RNA fragment were 

used. C. Exogenously GFP-tagged Centagon proteins imaged in metaphase (top row) and 

interphase (bottom row) S2 cells with the different Centagon proteins in green, anti-tubulin 

in red, anti-CENP-C in white and DNA in blue. The Centagon complex localises to the 

nucleolus during interphase and within the spindle area during mitosis. Scale bar 5 μm.   

 

3.  The Centagon complex is highly expressed in the germline. 

A. Ovarioles of flies with endogenous GFP-tagged Centagon proteins. The Centagon 

complex localises to the nuclei of oocytes (red arrows), nurse cells and follicle cells of the 

Drosophila ovary. Scale bar 50 μm.  B. Live imaging of larvae with endogenous GFP-tagged 

Centagon proteins, the location of the gonads is indicated by arrows. Scale bar 0,5 mm.  C. 

Female (F) and male (M) dissected gonads from 3rd instar larvae surrounded by fat tissue 

with endogenous GFP-tagged Centagon proteins. Scale bar 50 μm.  D. Germaria of flies 

with endogenous GFP-tagged Centagon proteins (green), co-immunostained with the germ 

stem cell marker pMad (red) and DAPI (blue). For easier orientation, a model of the 
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germarium has been included on the right and some of the immunofluorescent images were 

rotated on top of a grey background. Scale bar 20 μm.  E+F. RNA-IP with ovary lysate of the 

homozygously tagged Cent2-GFP (E) or Cent3-GFP (F) flies, followed by qPCR to measure 

the levels of associated SAT III RNA and GAPDH mRNA as control. RNA levels of input and 

IP samples were compared to calculate the percentage of recovered RNA in the IP.  

 

4.  The Centagon complex is important for oogenesis. 

A. qPCR of Centagon RNA levels in ovaries after KD with the Mat67.15-Gal4 driver. RNA 

levels are normalized to housekeeping genes. N=3. Student t-test, * p ≤0.05, ** p ≤0.01, 

*** p ≤0.001. B. 0-1-day old ovaries of control and MTD-Gal4-induced Cen1 KD flies. Co-

immunostaining with the germ cell marker vasa (green) and the germ stem cell marker 

pMad (red), and DAPI (blue). White arrows point towards emerging egg chambers in the KD 

ovaries. Red arrows point towards aberrant pMad signal. Scale bar 25 μm. C. Quantification 

of the difference in pMad signal per cell in cystoblasts vs. GSCs as shown in B. Student t-

test, ** p ≤0.01. D. DAPI staining of control and Mat67.15-Gal4-induced Centagon KD 

ovarioles derived from flies of different ages. For easier orientation, some images were 

rotated on top of a grey background. Scale bar 50 μm. E. Quantification of the phenotype 

shown in D. Egg chambers with and without the five-blob chromatin phenotype (after egg 

chamber stage 5) were counted within an ovariole. F. Eggs (F2) derived from Mat67.15-Gal4 

driver-induced Centagon KD flies (F1). The observed phenotypes were classified into the 

categories normal, medium (slightly deformed) and small (also without dorsal filaments). G. 

Number of eggs laid overnight by Mat67.15-Gal4-induced Centagon KD flies. The egg 

phenotypes are indicated by colour and the survival rate of each egg category is indicated 

by percentage. 

 

5.  SAT III RNA levels are repressed by the Centagon complex in ovaries 

A. SAT III antisense RNA FISH (green) in w1118, zhr1 and Mat67.15-Gal4-induced Cen1 KD 

ovaries, stained with DAPI (blue). SAT III RNA signals are depicted both in one z-slice 

(middle) and as z-stack projection (right). The orange square is enlarged on top and shows 

the oocyte nucleus. For easier orientation, some images were rotated on top of a grey 

background. Scale bar 50 μm. B. Quantification of the SAT III RNA FISH signal in A. The SAT 

III RNA FISH signal was measured per egg chamber and normalized to the egg chamber 
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size (measured area). Student t-test *** p ≤0.001. C. qPCR of ovary SAT III RNA levels in 

Mat67.15-Gal4-induced Centagon KD flies. RNA levels are normalized to housekeeping 

genes. N=3Student t-test, * p ≤0.05, ** p ≤0.01, *** p ≤0.001. D. SAT III RNA FISH (green) 

in 5-7-day old Mat67.15-Gal4-induced Cen1 KD ovaries, stained with DAPI (blue). The SAT 

III RNA signal is depicted as z-stack projection. Egg chambers with aberrant nurse cell 

fragmentation (5-blob phenotype) are encircled. For easier orientation, some images were 

rotated on top of a grey background. Scale bar 50 μm. E. Quantification of the SAT III RNA 

FISH signal in C per egg chamber (see B). Statistical difference between egg chambers with 

normal and fragmented nurse cells were determined using a student t-test, *** p ≤0.001. 

 

6.  SAT III RNA reduction partially rescues the Centagon KD phenotypes 

A. SAT III RNA FISH (green) in control, Cen1 KD and Zhr1;Cen1 KD ovaries, stained with 

DAPI (blue). The SAT III RNA signal is depicted as z-stack projection. Rotated pictures are on 

top of a grey background. Scale bar 50 μm. B. Quantification of egg chambers with 

fragmented nurse cells as in 4E. C. Number of eggs laid overnight by Cen1 KD flies with 

and without SAT III. The egg phenotypes are indicated by colour and the survival rate of 

each egg category is indicated by a percentage. D+E. RNA levels of Cent1 (D) and SAT III 

(E) in control, Cent1 KD and Zhr1;Cent1 KD ovaries measured by qPCR. RNA levels are 

normalized to housekeeping genes. N=3. Student t-test, * p ≤0.05. 

 

 

Supplemental Information Figure Legends  

Supplemental Figure S1.  

A. Denaturing gel with RNA of the different RNA-pulldown steps. The S1m-loop tagged 

RNA attached to the beads is indicated by a white triangle. The black arrows indicate rRNA 

bands in the input and flow-through samples which derive from the S2 cell lysate. B. 

Enrichment of proteins in the SAT III sense and antisense RNA pulldown compared to 

4xS1m loop RNA pulldown in the second RNA-pulldown experiment. Each dot represents a 

protein and its fold change (FC) in the SAT III sense RNA pulldown (x-axis) and SAT III 

antisense RNA pulldown (y-axis) compared to the control on a logarithmic scale. Coloured 

dots represent members of the Centagon complex or the CG12128 control protein. C. 
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Overview of the protein classes enriched in both SAT III sense RNA pulldowns. The number 

of identified proteins in each class is indicated in brackets. D. Overview of the peptide 

counts of the Centagon proteins in the MS analysis of each RNA pulldown experiment. E. 

EMSA of SAT III sense and antisense RNA with BSA. In vitro transcribed RNA was incubated 

with BSA in the indicated molar ratios. 

 

Supplemental Figure S2.  

Expression data of the Centagon members per tissue according to www.flybase.org. 

 

Supplemental Figure S3.  

A. Exogenously GFP-tagged Centagon proteins imaged throughout the cell cycle in S2 cells 

with the different Centagon proteins (as indicated) in green, anti-tubulin in red and DNA in 

blue. Scale bar 5 μm. B. Ovarioles (top panels) and germarium (bottom panel) of flies with 

endogenous GFP-tagged Centagon proteins (green), co-immunostained for the nucleolar 

protein Modulo (red) and DAPI (blue). Scale bar 20 μm. C. F1 ovaries from the parent cross: 

UAS-NLS-GFP x Mat67.15-Gal4 or MTD-Gal4, stained with DAPI (blue). The GFP-tagged 

Nuclear Localization Sequence (NLS) (green) shows at what point in ovary development the 

driver line starts Gal4 expression in germ cells: The MTD driver in the germarium, the 

Mat67.15 driver from early egg chambers on. Scale bar 50 μm. D. Ovaries dissected from 

MTD- or Mat67.15-induced Centagon KD females. Scale bar 0,5 mm. E. Western Blot of the 

different steps in the RNA-IP shown in Fig. 3F-G. From left to right: Input, flowthrough, wash 

1, wash 4 and IP. A YFP-antibody was used to detect the GFP-tagged Centagon proteins.  

 

Supplemental Figure S4.  

A. UAS-NLS-GFP flies were either crossed with traffic jam-Gal4 or GR1-Gal4, and F1 ovaries 

were stained with DAPI (blue). The GFP-tagged Nuclear Localization Sequence (NLS) (green) 

appears at the developmental stage when the driver line starts expressing Gal4 in somatic 

cells: The traffic jam driver in the germarium, the GR1 driver in the follicle cells of later egg 

chambers. Scale bar 50 μm.  B. Examples of DAPI-stained ovaries dissected from GR1-

induced Centagon KD females with the indicated phenotypes. Scale bar 50 μm.  C. Control 

(left) and Centagon 3 KD testis (right), induced with the MTD-Gal4 driver. 
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Immunofluorescent staining of the hub (anti-fas III, yellow), the germ cells (anti-vasa, green) 

and cyst cells (traffic jam, red), co-stained with DAPI (blue). Scale bar 50 μm.  

 

Supplemental Figure S5. 

A. SAT III sense RNA FISH (green) in w1118, Zhr1 and Mat67.15-Gal4-induced Cen3 KD 

ovaries, stained with DAPI (blue). SAT III RNA signals are depicted in one z-slice (middle) 

and as z-stack projection (right). The orange square enlarged on top shows the oocyte 

nucleus. For easier orientation, some images were rotated on top of a grey background. 

Scale bar 50 μm. B. SAT III sense and antisense RNA FISH in w1118 ovaries with or without 

RNase A digestion, stained with DAPI. The SAT III RNA FISH signal is shown as a z-stack 

projection. Scale bar 50 μm. C. SAT III antisense RNA FISH on newly hatched control (0-4 h 

old) and Centagon 1 KD (0-1 day old) ovaries. SAT III RNA signals are depicted in one z-

slice (middle) and as z-stack projection (right). Scale bar 50 μm. 

 

 

Supplemental tables 

Mass Spectromerty results of the SAT III RNA pulldowns  

Table 1: pulldown 1  

Peptide counts in SAT III sense (S), antisense  (AS) and ‘loops only’ (L) RNA pulldown. 

log2(FC) = log2 values of the fold change of S/L, only proteins with a log2(FC) of 1 or higher 

are listed. 

 

Table 2: pulldown 2 

Peptide counts in SAT III sense (S), antisense  (AS) and ‘loops only’ (L) RNA pulldown. 

log2(FC) = log2 values of the fold change of S/L, only proteins with a log2(FC) of 1 or higher 

are listed. 
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