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Abstract 25 

Advances in technologies that can record and stimulate deep-brain activity in humans have led 26 

to impactful discoveries within the field of neuroscience and contributed to the development of 27 

novel therapies for neurological and psychiatric disorders. Further progress, however, has been 28 

hindered by device limitations in that recording of single-neuron activity during freely-moving 29 

behaviors in humans has not been possible. Additionally, implantable neurostimulation devices, 30 

currently approved for human use, have limited stimulation programmability and lack full-duplex 31 

bi-directional capability. Here, we developed a wearable bi-directional closed-loop 32 

neuromodulation system (Neuro-stack) and used it to record single-neuron and local field 33 

potential activity during stationary and ambulatory behavior in humans. Together with a highly 34 

flexible and customizable stimulation capability, the Neuro-stack provides an opportunity to 35 

investigate the neurophysiological basis of disease, develop improved responsive 36 

neuromodulation therapies, explore brain function during naturalistic behaviors in humans, and 37 

consequently, bridge decades of neuroscientific findings across species. 38 

Keywords – single neuron, intracranial electrical stimulation, wearables, closed-loop 39 

neuromodulation, phase-locked stimulation, local field potentials, human 40 
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Introduction 41 

Understanding brain function and its relation to cognition and behavior requires the integration of 42 

multiple levels of inquiry, ranging from the examination of single cells all the way up to the probing 43 

of human experience under naturalistic conditions. One major barrier that separates these 44 

approaches is the inability to record from single neurons during naturalistic behaviors in humans, 45 

which frequently involve full-body locomotion as well as twitches, gestures, and actions of the 46 

face and hands. This is problematic because behaviors that are studied in animal neurobiology 47 

are done almost exclusively in freely-moving animals (e.g., rodents) [1-2]. Thus, major gaps 48 

remain between understanding findings from neuroscience studies in animals to those in humans. 49 

In parallel with progress in neuroscience, the medical field has seen a significant increase 50 

in the use and development of therapies delivered through implanted neural devices to treat and 51 

evaluate abnormal brain activity in patients with neurologic and psychiatric disorders [3-8]. 52 

However, current implantable devices do not allow for the recording of single-neuron activity, nor 53 

do they allow for extensive customization of stimulation parameters (e.g., pulse shape, precise 54 

timing with respect to ongoing neural activity), capabilities which would significantly expand the 55 

types of research questions that can be investigated. Furthermore, there is a critical need for 56 

robust data analytic capabilities on these devices (e.g., using deep learning and artificial 57 

intelligence) to deal with the large and complex neural data in real-time. Finally, an additional 58 

impediment in developing new responsive neurostimulation treatments is the lack of a 59 

customizable bi-directional interface that can record simultaneously with stimulation (full-duplex) 60 

and thus “talk” with the brain at the speed of behavior and cognition. 61 

Since neural mechanisms underlying specific behaviors or brain disorders can span 62 

across a large population of cells, often from widespread brain regions [9, 10], there is a need for 63 

implantable neural devices to record from an increased number of channels across the brain. 64 

Further, there is a need for a sufficient temporal scale (<1 ms) to capture both single-neuron and 65 
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local field potential (LFP) activity. Importantly, such technology should have a minimal impact on 66 

a person’s ability to move freely. Current neuroimaging techniques used in humans (e.g., 67 

functional magnetic resonance imaging [fMRI], scalp electroencephalography [EEG], 68 

magnetoencephalography [MEG]) have insufficient combined spatial and temporal resolution to 69 

record single-neuron activity. Intracranial electrophysiological studies, using micro-wire 70 

electrodes in epilepsy patients, can record LFPs and single-unit activity, however research 71 

participants must be tethered to large equipment and remain immobile. The high spatiotemporal 72 

resolution of LFPs (1–10 mm, ≥1 ms) and single-unit (10–50 μm, <1 ms) recordings comes at the 73 

cost of brain coverage, which is mitigated, whenever possible, with a larger number of recording 74 

channels through clinically-guided implantation of 10-15 depth electrodes (i.e., in stereo-EEG 75 

[SEEG]). In this realm, there are two possibilities for neuroscience studies to leverage clinical 76 

opportunities where individuals have electrodes implanted in their brains. The first is to use in-77 

clinic research equipment (e.g., Blackrock Microsystems [11], Neuralynx [12], Nihon Kohden [13], 78 

Ripple Neuro [14]) with immobile participants undergoing clinically indicated SEEG who 79 

participate in voluntary research studies while hospitalized. Stimulation research studies are 80 

similarly done bedside, primarily using open-loop stimulation [15-21], although recent studies 81 

have begun to explore the use of closed-loop stimulation [22-26]. Critically, the equipment used 82 

in these research studies is expensive (up to ~$200K), bulky, and does not allow for extensive 83 

on-device customization of stimulation or complex real-time analyses for closed-loop stimulation. 84 

The second option is to use FDA-approved commercially available neural devices already 85 

implanted in several thousand individuals to treat epilepsy and movement disorders (e.g., 86 

Neuropace RNS System [27] and Medtronic Percept [28]). These chronically implanted devices 87 

offer research participants mobility at the expense of using large macro-recording electrodes that 88 

cannot record single-unit activity, fewer channels (usually 4 bipolar), and lower sampling rates 89 

(250 Hz). Other investigational devices such as the Medtronic Summit RC+S [29-31], allow for 90 

recording 16-channel intracranial EEG (iEEG) activity at up to 1 kHz sampling rates (no single-91 
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units). However, they are not FDA-approved for clinical treatment and thus exist in only a handful 92 

of patients with an FDA investigational device exemption (IDE) approval, limiting their widespread 93 

use by the scientific community. Existing closed-loop implantable technologies also lack full-94 

duplex ability, which allows for simultaneous stimulation and recording of neural tissue inclusive 95 

of unit and LFP activity. While research studies using these systems have given rise to several 96 

impactful neuroscientific discoveries [27, 32], the possibility of novel devices to one-day record 97 

from single neurons, deliver customizable closed-loop stimulation, and carry out complex data 98 

analytics in real-time would provide unparalleled opportunities for first-in-human scientific 99 

discovery and the development of more effective medical therapies for patients’ neuropsychiatric 100 

disorders. 101 

Here, we present a potential technological pathway towards future more advanced 102 

implantable technologies with the development of a miniaturized bi-directional neuromodulation 103 

external device (Neuro-stack) that can record up to 256-channel (128 monopolar/bipolar macro-104 

recordings) iEEG and 32-channel single-unit/LFP activity from micro-wires during ambulatory 105 

behaviors in humans who have macro- and micro-wire depth electrodes implanted for clinical 106 

reasons. The Neuro-stack can deliver customizable closed-loop multi-channel (up to 32 107 

simultaneous) stimulation where parameters such as pulse shape, frequency, amplitude, pulse 108 

width, inter-pulse width, polarity, channel selection and timing (e.g., for phase-locked stimulation) 109 

are configurable. A major advantage of the Neuro-stack is its full-duplex capability that allows for 110 

the recording of neural activity in the presence of concurrent stimulation. 111 

We include data acquired using the Neuro-stack showing single-unit, LFP, and iEEG 112 

activity recorded in twelve participants who had depth electrodes implanted for epilepsy 113 

evaluation. In one of these participants, we used the Neuro-stack to perform binary prediction of 114 

memory performance in real-time (69% F1-score) using neural activity recorded from medial 115 

temporal lobe (MTL) regions. We also demonstrated the Neuro-stack’s ability to record single-116 

neuron activity during walking behavior and deliver customized stimulation. These capabilities  117 
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can be useful for future studies investigating the neural mechanisms underlying naturalistic 118 

behaviors in humans and developing novel neuromodulation therapies for patients with brain 119 

disorders that will be effective in real-world settings. 120 

Results 121 

The Neuro-stack (Fig. 1a-b) provides a bi-directional neuromodulation platform for wide-band 122 

sensing and stimulation of deep-brain areas for basic and clinical neuroscience studies. 123 

Compared to much larger existing devices (Fig. S1) that are used bedside and carried on a cart, 124 

the Neuro-stack’s small hand-held size enables concurrent stimulation and recording of real-time 125 

electrophysiology (single-unit and LFP activity) during freely-moving behavior (Fig. 2) by 126 

connecting to commonly used implanted macro- and micro-electrodes (Fig. 1c-d). Apart from its 127 

small form-factor and unique on-body wearability, the Neuro-stack can support: 128 

1. Recording of up to 256 channels for a total of 128 monopolar or bipolar recordings with a 129 

sampling rate of up to 6,250 Hz. Further, wide-band sensing from up to 32 monopolar or 130 

bipolar recordings at up to 38.6 kHz allows for the recording of single-unit and LFP activity 131 

simultaneously. 132 

2. Flexible and programmable stimulation (Fig. 3) allowing for delivery of bipolar/monopolar 133 

stimulation to any 32 out of 256 contacts simultaneously. Stimulation engines are current-134 

controlled and allow the user to program current amplitude, frequency, timing, pulse 135 

shape, and other parameters (Fig. 3, Table S2). 136 

3. Closed-loop neuromodulation. The Neuro-stack has built-in (hardware) oscillation power 137 

detection and thus the ability to trigger stimulation at a predefined phase of an oscillation 138 

(phase-locked stimulation [PLS] delivered at a particular phase of ongoing theta activity). 139 

Further, sensing of neural activity is concurrent with stimulation for true (full-duplex) 140 

closed-loop capabilities. Resources for designing custom closed-loop algorithms are 141 

available at both the embedded hardware and external software levels. 142 
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Figure 1. Neuro-stack platform. a, Neuro-stack and GUI-based tablet for single-neuron and local field potential (LFP) 
recordings, and closed-loop programmable phase-locked (PLS) stimulation. The tablet allows for selection of recording 
and stimulation channel(s), sampling rate, monopolar/bipolar recordings, and other parameters. Shown are the 
packaged (left) and unpackaged (right) versions. b, The Neuro-stack consists of three stacked layers: 1) 
Communication (Comm), 2) Digital, and 3) Analog. Presented are the printed circuit boards (PCBs, size = 90×60 mm2) 
and 5×2 pin (8 channels, 1 reference, and 1 ground, 10 total pins) Omnetics headstage connectors to which micro- 
electrodes can be connected (only top Analog layer connected). Note that each Analog layer receives up to two 
Omnetics connectors to connect with up to 4 electrodes through one headstage. A high-level block diagram of each 
layer is shown (right). The Comm Layer contains a FPGA (field-programmable gate array) that mediates command and 
data transmission (via USB) between external software and integrated circuit (IC) chips. The Digital Layer contains the 
PLS IC. The Analog Layer contains chips for sensing (Sense IC) and stimulation (Stim IC). Three Analog layers are 
shown to allow recording of 192 channels (64 x 3 layers). Serial peripheral interface (SPI) is used for FPGA 
communication with the Sense and Stim ICs, and shift register for FPGA communication with the PLS and Spike ICs. 
c, The Neuro-stack connected to micro-electrodes in a participant wearing an eye-tracking system. d, Shown are 10-
pin touch proof jumpers for macro-electrode and 10-pin connectors (e.g., Adtech) for micro-electrode recordings. e, 
Example data recorded simultaneously using a clinical monitoring system (Nihon Kohden, gray) and Neuro-stack 
(black) showing similarity of signals. f, Example power spectrograms from data (e) showing concordant activity patterns. 
Frequency (0.1–32 Hz) is shown using a logarithmic scale. g, Example normalized power spectral density (PSD) plots 
from data shown in e. 
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4. Software support that comes in two formats. First, a turnkey graphical user interface (GUI) 143 

running on a Windows-based tablet or laptop is available for research purposes (Fig. 1a). 144 

Second, a full-access application programming interface (API) library written in C++ allows 145 

the user to build custom research open- and closed-loop stimulation capabilities for 146 

research studies (Fig. S3). 147 

5. Tensor multiplication accelerator (Edge TPU, Fig. 2a, Fig. S3 middle) that is integrated 148 

with the Neuro-stack device, enabling an extended range of applications such as real-time 149 

inference for neural decoding (Fig. 4) or closed-loop stimulation. 150 

6. Wired or wireless mode. The Neuro-stack platform can be externally controlled and 151 

powered via a USB cable or remotely controlled through a secure local network using a 152 

battery-powered configuration (Fig. 2a, Fig. S3). This flexibility allows researchers to 153 

perform wide-band recording and stimulation during either stationary or ambulatory 154 

(freely-moving) behavioral tasks. 155 

The central hardware component of the Neuro-stack platform (Fig. 1a-b) consists of three printed 156 

circuit board (PCB) layers: 1) analog, 2) digital, and 3) communication. Each layer is embedded 157 

with one or several dedicated integrated circuit (IC) chips. The analog layer (Fig. 1b, bottom) 158 

contains mixed-signal sensing IC (Sense IC and Spike IC) and stimulation IC (Stim IC) chips, 159 

which were previously developed as part of the DARPA SUBNETS program [33-36]. A single 160 

Sense IC (one per analog layer) accepts neural activity from up to 64 electrode contacts fed into 161 

voltage-controlled oscillators (VCO), which serve as analog-digital converters (ADC). Each VCO 162 

ADC supports 6,250/N Hz sampling frequencies, where N = 1,2,4,8, …, 128 and a 100 mVpp linear 163 

input dynamic range with 12/21 (macro/micro) bits of resolution, ensuring that the underlying 164 

neural signal is captured in the presence of large artifacts (e.g., from stimulation). The Sense IC 165 

contains digital nonlinearity correction to account for nonlinear amplification across the input 166 

range. Moreover, it also contains a digital logic for adaptive stimulation artifact rejection that 167 

subtracts a template stimulation artifact extracted from adjacent channels [36]. The total power 168 
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consumption per channel is 8.2 µW. A single Spike IC (one per analog layer) accepts neural 169 

activity from up to 8 micro-wire contacts and supports sampling rates of up to 38.6 kHz [37]. A 170 

single Stim IC contains eight engines that can, with the appropriate configuration, drive current 171 

through any individual or combination of the connected 64 electrode contacts. Stimulation output 172 

current is highly configurable (Fig. 3a, b), including selection of amplitude, frequency, and multiple 173 

or custom waveform shapes. This flexible programmability allows for stimulation using previously 174 

used burst protocols [38-40] as well as exploration of novel stimulation patterns for investigative 175 

research and therapy development. These capabilities also enable increased degrees of freedom 176 

(timing, amplitude parameters; Fig. 3) compared to currently available intracranial 177 

neurostimulation systems (Table S2). 178 

The Neuro-stack’s digital layer (Fig. 1a-b, middle) routes signals between the analog and 179 

communication layers and contains a custom IC chip (PLS IC) for closed-loop stimulation based 180 

on the detected oscillatory (e.g., theta) phase in the recorded neural signal coming from the 181 

analog layer to enable PLS [41-42]. A field-programmable gate array (FPGA, Xilinx Spartan 6 182 

board) serves as a communication layer (Fig. 1a-b, top, Fig. S3) between an external devices and 183 

custom ICs (Fig. 1b). 184 

The Neuro-stack uses the serial peripheral interface (SPI) at 12 MHz (Sense IC and Stim 185 

IC) and serial shift register (PLS IC and Spike IC) for internal communication between layers and 186 

IC chips and a USB interface for external communication and power supply. The device is 187 

assembled by physically stacking the described layers (Fig. 1a-b). Furthermore, one Neuro-stack 188 

device supports up to four analog layers at the same time, for up to 256 micro-wire (LFP) electrode 189 

contacts (64 per layer) and up to 32 micro-wire (single-unit) electrode contacts (8 per layer). 190 

A ready-to-use GUI is available (connected to the Neuro-stack via USB) and allows for 191 

real-time multi-channel monitoring and control of neural recording and stimulation (Fig. 1a). A 192 

platform-agnostic API library written in C++ that allows for custom applications and experiments 193 

is also provided. To allow ambulatory experiments, the Neuro-stack can be wirelessly controlled 194 
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using the Coral Development Board (CDB; Fig. S3, TPU in Fig. 2a), an ARM-based single-board 195 

computer, running a Mendel Linux distribution. Similar microprocessors with wireless capabilities 196 

such as a Raspberry Pi can also be used for this purpose. Our Neuro-stack setup included an 197 

ARM-compiled Neuro-stack API, which supports wireless applications through a secure local Wi-198 

Fi (2.4 or 5 GHz) network created using the included API library. Only an experimental device that 199 

uses a secure (X.509 certification) connection to a local server can control the Neuro-stack. The 200 

CDB contains an onboard TPU (Fig. 2a), which can make real-time inferences for neural decoding 201 

or closed-loop applications (e.g., Stationary Verbal Memory Task section, Fig. 4). 202 

In-vitro Sensing and Stimulation 203 

The Neuro-stack IC chips (i.e., Stim, Sense, Spike, PLS) were validated in-vitro separately [33-204 

34, 36-37, 41] and some (Sense and Stim) as part of an implantable system [34]. Before moving 205 

to human in-vivo studies, in-vitro validation of all chips in the Neuro-stack was also completed. 206 

The setup for validating sensing capability included the feeding of pre-recorded analog neural 207 

data via an NI PXI System (digital to analog converter) through a phosphate-buffered saline (PBS) 208 

solution, use of an oscilloscope to observe true signals at front-end inputs, and a computer to 209 

control and power the Neuro-stack (Fig. S4, Online Methods). The captured signals were of 210 

satisfactory quality (Sense and Spike IC, Fig. S5a,b). 211 

PLS was also tested using the same in-vitro setup (Fig. S4). For 300 s of LFP data, the 212 

results showed 400 detections within the theta band (3–8 Hz) and triggered stimulations with a 213 

circular variance of 0.3 [42]. 214 

Measurements of stimulation and synchronization delivery delays were also characterized 215 

for ensuring accurate closed-loop implementation as well as alignment between behavioral 216 

stimuli, neural data, and other devices that run in parallel. First, the round-trip delay, important for 217 

closed-loop stimulation, was measured from sensed input to stimulation output by feeding a train 218 

of 50 pulses into the sensing front-end. The pulse rising edge detection triggered stimulation on 219 
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the CDB software side (connected to the Neuro-stack via USB; Fig. S5c). Input/output 220 

observations by the oscilloscope showed a 1.57 ± 0.19 ms round-trip delay (Fig. S5d). This result 221 

was consistent with the PLS-based round-trip delay of 1.7 ± 0.3 ms measured from the sensed 222 

input to stimulation output [42]. Second, synchronization with external devices was done by 223 

timestamping neural samples using the CDB; accuracy depended on the system latency through 224 

hardware and software. We applied the same approach as the round-trip delay with the addition 225 

of sending a test pulse on a general-purpose pin once the sample reached the timestamping step 226 

(Fig. S5c), which resulted in a delay, measured from sensed input to CDB output, of 0.56 ± 0.07 227 

ms (Fig. S5e). For more details see Online Methods – Neuro-stack in-vitro testing section. 228 

In-vivo Sensing and Stimulation 229 

Twelve participants with indwelling macro- and micro-wire electrodes implanted for 230 

pharmacoresistant epilepsy volunteered for the study by providing informed consent according to 231 

a University of California, Los Angeles (UCLA) medical institutional review board (IRB) approved 232 

protocol. Each Behnke-Fried macro-micro depth electrode (Ad-Tech Medical, Racine, WI) 233 

contained 7-8 macro-contacts and 9 (8 recording, 1 reference) 40-µm diameter platinum-iridium 234 

microwires [43] inserted through the macro-electrode’s hollow lumen. Neural activity was 235 

recorded from macro- and micro-wire contacts using the Neuro-stack during wakeful rest in all 236 

participants (Online Methods - Participants) and from various brain regions (Table S1; Online 237 

Methods – Electrode Localization). The Neuro-stack setup was done bedside (Fig. 1c-d) or on-238 

body during ambulatory movement (Fig. 2a), where the system was connected to implanted 239 

electrodes using a custom-built connector (i.e., touch-proof, Cabrio, and Tech-Attach connectors 240 

for commercial Behnke-Fried macro- and micro-electrodes, respectively). The main objective of 241 

the in-vivo validation studies was to test recording of single-unit and LFP activity and macro-242 

stimulation during rest and behavioral tasks (see Ambulatory Walking Task and Stationary Verbal 243 
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Memory Task sections). The PLS closed-loop functionality has been tested in-vitro [42] with 244 

expected in-vivo validation to be a part of future behavioral studies. 245 

iEEG data was also recorded simultaneously with the Neuro-stack using commercially 246 

available electrophysiological recording systems (i.e., Nihon Kohden) for comparison purposes. 247 

Example raw iEEG activity traces from one participant is shown using simultaneous Nihon 248 

 

Figure 2. Neuro-stack as a wearable platform for recording neural activity during ambulatory behavior in 
humans. a, An example research participant wearing the backpack carrying the Neuro-stack system, a single board 
computer with a tensor processing unit (TPU), and a battery, to allow for recording of single-neuron and LFP activity 
during ambulatory behavior. The participant was also wearing an eye-tracking device that keeps track of head direction, 
pupil size changes, eye movements. Data captured from the eye-tracker was synchronized with the neural data using 
a programmable light emitting device (LED) that is visible on the eye-tracker world-view camera. Wireless 
communication between the Neuro-stack, eye-tracker, and other external monitoring devices is enabled through a Wi- 
Fi access point on the TPU device. b, Neural activity was recorded during an ambulatory task where participants walked 
repeatedly (10 times) between two opposite corners of a 5 x 5 ft2 room (from X to Y, Fig.S2b). Example video frame 
from the eye-tracking world-view camera as an example participant approached point Y in the room (bottom). c, Neural 
activity (voltage-normalized separately for each channel) from 12 micro-electrode channels (1-6: hippocampus, 6-12: 
anterior cingulate) during the ambulatory walking task from an example participant. d, 10 s of filtered data from channel 
12 (arrows point to corresponding sections on c and e). e, A raster plot of two single-units isolated from channel 12. f, 
The first single-unit isolated from channel 12 and its corresponding inter-spike interval (ISI) histogram (right) g, The 
second single-unit isolated from channel 12 and its corresponding inter-spike interval (ISI) histogram (right). 
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Kohden and Neuro-stack recordings (Fig. 1e), together with time-frequency power spectrum data 249 

(frequency band: 1 – 32 Hz; Fig. 1f), and PSD plots (frequency band 1 – 250 Hz; Fig. 1g). 250 

Stimulation was performed in three participants to test stimulation artifact propagation 251 

across channels and assess associated statistics with varying parameters. In the first two 252 

participants, bipolar macro-stimulation was applied to the left hippocampus (amplitude: 0.5 mA; 253 

Pulses/burst: 11; waveform shape: rectangular; pulse width: 1ms; frequency: 100 Hz). After 254 

successful delivery was observed in surrounding channels, a series of bipolar macro-stimulation 255 

bursts with varying parameters was delivered in a third participant. The parameter test space 256 

included [amplitude, frequency] combinations of [0.25, 0.50, 0.75, 1.00, 1.25] mA × [60, 80, 100, 257 

120, 140] Hz where every combination was repeated four times for a total of 100 macro-258 

stimulation bursts (Fig. 3c) with the following parameters (pulse width: 1.28 ms, interphase width: 259 

150 μs, rectangular pulse shape, interburst delay: 16.67 s). Stimulation delivery (Fig. 3c–entire 260 

session; Fig. 3d–multi burst; Fig 3e–single burst level) was observed on 40 nearby recording 261 

channels, obtained using the Sense IC (sampling rate: 6250 Hz). Overlayed pulses from one of 262 

the bursts with the same parameters (1.25 mA, 60 Hz) showed successful delivery across all 263 

channels (Fig. 3f – upsampled to 25 kHz and interpolated). Further, all pulses from the same burst 264 

showed consistent artifacts in the channel adjacent to the stimulation site (Fig. 3g – mean ± std). 265 

Higher stimulation amplitudes resulted in lower variability (std) in delivered power (Fig. 3h) while 266 

higher burst frequency resulted in higher variability across channels (Fig. 3i). Note, that 267 

stimulation artifacts were not caused or affected by channel saturation (Fig. 3f) with absolute 268 

voltage levels much lower than the 50 mV cut-off. Results (Fig. 3h,i) suggest that deviation of 269 

underlying neural activity is not the only cause of artifact waveform uncertainty. Future studies 270 

that model and predict artifact propagation could use stimulation mapping prior to studies to 271 

characterize effects and adjust expected values and deviations accordingly. 272 
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Figure 3. Neuro-stack as a programmable closed-loop neuromodulation system. a, Stimulation parameters can 
be customized including frequency, amplitude (0-5080 mA in steps of 20 mA), polarity (anodic/cathodic), timing (of 
pulse width, inter-phase width and inter-pulse/burst interval) and pulse shape (e.g., sinusoidal or rectangular pulses 
shown). b, Key features and capabilities on the stimulation integrated circuit (Stim IC) including the number of channels 
(i.e., 8 out of 64 per analog layer) that can be selected for stimulation, amplitude, configurable pulse shapes where 
amplitude in each of up to 16 steps (a) can be programmed for custom waveform design, frequency, polarity, pulse 
width (a, 10-1280 μs, steps: 10 μs), and inter-phase width (a, 0-150 μs, steps: 10 μs). c, Example macro-electrode 
channel recorded during the delivery of macro-stimulation, which was delivered with varying combinations of amplitudes 
× frequencies [(0.25, 0.5, 0.75, 1.00, 1.25) mA × (60, 80, 100, 120, 140) Hz]. Each stimulation burst contained 10 
biphasic (pulse width = 1.28 ms) after which a delay of 16.67 seconds occurred before the next burst cycle. d, Zoomed- 
in view of c (outlined box) where six stimulation bursts (red arrows) are shown with different parameters (burst 1-3: 
1.25 mA, 80 Hz; burst 4-6: 0.25 mA, 100 Hz). e, Zoomed-in view of a single burst (outlined box) from the same channel 
in d and another example channel (29). f, Time-aligned bipolar pulses from a stimulation burst (10 pulses, 1.25 mA) 
from all channels (n=33). g, Mean and standard deviation (std) values of all time-aligned bipolar stimulation pulses from 
example recording channel (1). h, Normalized power (mean and std) of the propagated stimulation pulses across 
channels (n=33) recorded with respect to varying stimulation current (0.25–1.25 mA). i, Std of normalized power 
(std(power/max[power])) as a function of mean normalized power (mean(power/max[power])) differentiates pulse 
propagation across channels with respect to varying stimulation burst frequencies (60-140 Hz, steps: 20 Hz) with a 
fixed pulse width (1.28 ms) and current amplitude (0.75 mA). Electrode channels are marked in shades of gray (n=33). 
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Ambulatory Walking Task 273 

We used the wireless Neuro-stack setup (Fig. 2a) in six participants while they walked in their 274 

hospital rooms to record single-neuron activity from various brain regions (Table S1) synchronized 275 

with world-view and eye-tracking cameras (Fig. 2b, Fig. S2c-d, Online Methods). 276 

The first four participants walked freely around the room, during which motion artifacts in 277 

recordings were examined. The use of nearby electrodes (same bundle) as a reference resulted 278 

in reduced common noise artifacts using the front-end amplifiers (Fig. S2a). The last two 279 

participants were walked from one point of the room to another ten times (Fig. S2b). Raw (line 280 

noise removed) 12-channel neural activity recorded from one participant during walking is shown 281 

in Figure 2c. Although motion artifacts were reduced, slow voltage transients during movement 282 

were still present (Fig 2c). Nonetheless, single-unit spikes were preserved (Fig. S2a-right) and 283 

detected using a bandpass filter [300 – 3000 Hz] (Fig. 2d, Fig. S2a-right). After spike sorting [44] 284 

of the data, single-unit clusters were successfully isolated (Fig. 2e-g). 285 

Stationary Verbal Memory Task 286 

Neuro-stack’s ability to record neural data in real-time and decode behavioral performance was 287 

tested bedside in a participant with indwelling micro-wire electrodes while they completed a verbal 288 

memory task (Fig. 4a). During the task, the participant was instructed to learn (encode) a list of 289 

ten words that were presented on an iPad screen and then verbally recall as many words as 290 

possible after a brief delay (30 s). During the delay, a non-mnemonic (distraction) task was 291 

completed that involved identifying whether the sum of the two random numbers (1-9) was either 292 

odd or even. Encoding, distraction, and recall blocks were repeated nine times during the 293 

experimental paradigm while the Neuro-stack recorded LFP activity from sixteen micro-wire 294 

channels, which was used to decode memory performance in real-time using artificial neural 295 

networks. 296 
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Figure 4. Decoding memory performance with the Neuro-stack system. a, Neural activity was recorded during 
completion of a verbal memory task, which included three phases: 1) Learning (encoding) during which a list of words 
presented (2 s each, 0.8 s inter-stimulus interval [ISI]), 2) Distraction, during which numbers were presented serially 
(0.7 s each, 0.3 s ISI) and participants were instructed to respond odd/even, and 3) Recall (retrieval) where previously 
presented words were recalled. b, Neuro-stack recording setup and processing pipelines used during the memory task. 
A tablet was used to present words during Encoding and record to identify in real-time the spoken words recalled during 
Retrieval (using speech recognition). Minimally processed data was then fed into an external computer with 
synchronized retrieval results. The neural network model (Model, e) was trained in real-time to predict retrieval 
performance based on neural activity during encoding. The model was then ported to the TPU to perform real-time 
predictions. c, Filtered theta (3–12 Hz) activity from the left hippocampus (LHC) is shown since it was the most critical 
feature used by the trained neural network model to predict memory (top). Vertical lines mark the onset of each word 
(10) during 7 repetitions (blocks) shown of the memory task. Decoding performance (accuracy) is shown (bottom) 
during the first three blocks, which were used to train the neural network (Training) and the associated aligned F1-
Score. The last four blocks were used to predict memory performance (Predict) and the associated aligned F1-Score. 
d, Zoomed-in-view of example theta activity shown in c. e, The neural network model (2 × CNN1D + LSTM + Dense 
network) parameters. f, Time-frequency representation of the first most significant feature (from the trained CNN layer 
activation filter), which highlights theta power during encoding. g, Time-frequency representation of the second most 
significant feature (trained CNN layer activation filter), which highlights temporal patterns in theta activity with increases 
particularly after the onset of word presentation. 
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The TPU device (Fig. S3) was integrated with the Neuro-stack and used to embed a neural 297 

network model that was large enough to generalize across participants but small enough to be 298 

successful with using solely on-system computation. Artificial neural networks were pre-trained 299 

on multi-channel raw (downsampled) LFP data previously acquired using a Blackrock Neuroport 300 

recording system. Offline pre-training performance successfully differentiated remembered from 301 

forgotten words during recall with a test F1 score (F1 = 2 × (P × R) / (P + R), P – precision, R – 302 

recall) of 88.6 ± 5.5% and a test accuracy of 91.7 ± 3.3%. The model was built and trained in a 303 

Keras (TensorFlow backend) framework after detailed comparison with commonly used machine 304 

learning methods (Support Vector Machine [SVM], Principal Component Analysis [PCA] plus 305 

SVM, various neural network architectures; Table S3). The decoder consisted of an input 2 × 306 

CNN1D + LSTM layers that extracted multi-channel LFP features and an output Dense (fully 307 

connected network) + Classifier layers (Fig. 4e). For further details see Online Methods. 308 

During the memory task, the offline model’s output layers were retrained in real-time on 309 

an external computer. The trained model was then translated to TensorFlow Lite and ported to 310 

the Edge TPU, to predict memory during the last four task blocks (Fig. 4b). The training phase 311 

and improving accuracy/loss metrics for an example participant are presented in Fig. 4c. The 312 

online test (prediction) phase resulted in an F1 Score of 69% (Fig. 4c-bottom). Average total 313 

power at theta frequency bands (Fig. 4d) indicated a significant difference between correct and 314 

missed trials. A time-frequency heatmap of the second CNN1D layer activation filters [45] 315 

confirmed that theta multimodal activity timed to the population activations in the left and right 316 

hippocampus was used by the model to identify correctly recalled words (Fig. 4f, g). 317 

Discussion 318 

We present the Neuro-stack, a novel miniaturized recording and stimulation system that can 319 

interface with implanted electrodes in humans during stationary (bedside) or ambulatory 320 

behaviors. The Neuro-stack can record up to 256 channels of LFP/iEEG activity and 32 channels 321 
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of single-/multi-unit activity. Macro-stimulation can also be delivered through any of the channels 322 

(up to 32 channels simultaneously) during recording, allowing for bi-directional full-duplex 323 

capability. This is a significant advantage over existing systems in that it allows for 324 

characterization of ongoing neural consequences of stimulation as well as precisely timed closed-325 

loop stimulation. 326 

A second major advantage of the Neuro-stack over existing systems is its smaller hand-327 

held size that enables it to be carried on-body and be wirelessly controlled. These features 328 

allowed us to record single-neuron waveforms (spikes) during walking, which to our knowledge 329 

are the first recordings of their kind in humans. Future studies using the Neuro-stack could 330 

determine the neural mechanisms underlying human freely-moving behaviors (e.g., spatial 331 

navigation) to identify, for example, spatially selective neurons and their modulation by cognition 332 

(e.g., hippocampal place or entorhinal grid cells [46]) that have been previously discovered in 333 

freely-moving animals. Doing so would bridge decades of findings between animals and humans 334 

and potentially lead the way towards scientifically informed therapies for hippocampal-entorhinal-335 

related dysfunctions (such as Alzheimer’s disease). While we did not identify any spatially 336 

selective single-units in the current study, possibly due to the restricted spatial environment in 337 

which walking took place, further analysis from our ambulatory task and other future studies using 338 

the Neuro-stack over longer distances (e.g., hallways) may be able to identify these neurons in 339 

humans. 340 

A third advantage of the Neuro-stack is its API that allows fast and flexible prototyping of 341 

the experiments with range of backend functions that accurately align behavioral and neural 342 

events (i.e., spikes). We demonstrated how the Neuro-stack’s API integrated with a TPU can, in 343 

real-time, decode verbal memory performance in a single participant with accuracy levels that are 344 

comparable to previous reports [15]. Specifically, we used neural network models applied to 345 

hippocampal recordings to predict whether a previously learned item would be remembered, with 346 

offline results exceeding those previously reported [15], when equivalent metrics (F1-scores at 347 
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the optimal thresholds) are compared. Future studies with larger sample sizes will confirm 348 

whether reported decoding accuracy can be generalized across subjects. It should be noted that 349 

we tested the decoding algorithm in one participant using the model pretrained with recordings 350 

from a different device with different noise levels (Fig. 1g), hence it is reasonable to assume that 351 

performance could go up as more Neuro-stack data are incorporated into the pretrained model. 352 

Given the increasing benefit of using machine learning approaches [47-49] in neuroscience 353 

studies, the Neuro-stack could be useful for validating decoding models and testing novel closed-354 

loop stimulation therapies (e.g., to improve memory in patients with severe memory impairments). 355 

Future studies can also determine which stimulation parameters are most beneficial for 356 

restoring cognitive or behavioral functions given the Neuro-stack’s highly flexible programmability 357 

compared to existing human-approved stimulators. For example, continuous adjustments of 358 

custom pulse shapes, timing of complex burst patterns, and/or timing of stimulation relative to 359 

ongoing neural activity events could allow for the development of more effective stimulation 360 

therapies. Given the wireless and wearable nature of the Neuro-stack, studies could also 361 

determine whether closed-loop stimulation protocols effectively translate to more naturalistic 362 

behaviors during everyday experiences that occur during mobility. 363 

While the Neuro-stack offers several advantages over currently available systems, there 364 

are limitations that warrant discussion. First, this Neuro-stack prototype can only support a 365 

maximum of 32 wide-band single-unit recording channels. While it can also simultaneously record 366 

up to 256 LFP recording channels (using four analog layers), other existing bedside systems can 367 

allocate more than 256 channels solely for unit recordings. The use of multiple Neuro-stack 368 

devices, however, would address this issue and increase single-unit channel count substantially. 369 

Second, although the Neuro-stack is small enough to be carried on-body and thus allow for full 370 

mobility, its connection with implanted electrodes is still wired, similar to other bedside systems. 371 

Thus, significant movements can result in motion artifacts. However, single-unit spike waveforms 372 

can still be detected and isolated during walking behavior as we show using techniques such as 373 
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differential recordings between nearby contacts, as well as proper wire isolation and fixation. 374 

Lastly, the Neuro-stack currently can only be used in research studies with patients who have 375 

externalized electrodes implanted during clinical (e.g., epilepsy) monitoring. Since these patients 376 

need to be continuously tethered to bedside intracranial recording systems to assess for 377 

symptomatic episodes (e.g., seizures), this limits the amount of time a patient can be freely-378 

moving. However, future studies can complete ambulatory studies after clinical data has been 379 

captured as was done in the current study, on the last day of the patient’s hospital stay prior to 380 

electrode de-plantation surgery, or during circumstances where continuous monitoring may not 381 

be necessary (e.g., depression or chronic pain studies [51-52]). Furthermore, proper precautions 382 

and safety measures should be implemented, such as waiting to complete studies until epilepsy 383 

patients are back on anti-epileptic medications to minimize risks associated with seizures during 384 

ambulatory tasks. 385 

Although Neuro-stack is much smaller than other external systems, an even smaller 386 

version could be tested in future in-vivo studies since its IC chips are all implantable by design 387 

[29-33, 37] and require a combined area of just 113 mm2 (4 analog layers). An implantable version 388 

of the Neuro-stack [30] but with its added single-neuron and closed-loop stimulation capabilities 389 

thus presents an exciting avenue towards a completely wireless intracranial single-unit and LFP 390 

recording system that would not be susceptible to motion artifacts. This type of system would 391 

present a significant advancement over current FDA-approved chronic neurostimulation devices 392 

in that it would allow for single-neuron and multi-channel (current state-of-the-art is 4 channels; 393 

Neuropace RNS) recordings, bi-directional recording and stimulation (full-duplex) capability, and 394 

the ability to use advanced strategies for decoding (e.g., neural network models for inference) 395 

behavior or disease-related states. Altogether, these novel capabilities would provide cognitive 396 

and clinical neuroscience studies with a promising future pathway towards determining the deep-397 

brain mechanisms of naturalistic behavior in humans and developing more effective closed-loop 398 

intracranial neuromodulation strategies for individuals with debilitating brain disorders. 399 
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Online Methods 416 

Neuro-stack Hardware Design 417 

Neuro-stack was built from four implantable and previously reported application-specific integrated circuit 418 

(IC) chips. The Sense IC contains 32 low-noise, high dynamic range LFP sensing front-ends (FEs), which 419 

can be duplexed to 32 electrodes for single-ended recording with respect to the reference electrode or to 420 

32 pairs of electrodes for differential recording, matching up to 64-electrode probe (or 8 × 10-electrode 421 

probes, where the 9th is a reference and the 10th a ground contact). After linearization in the nonlinearity 422 

correction (NLC) module, the recorded output can be optionally sent to 4 adaptive stimulation artifact 423 

rejection (ASAR) engines, which suppress stimulation artifacts. The signal processing chain of 424 

FE+NLC+ASAR provides the ability to sense neural activity concurrent with stimulation. Each of the steps 425 

in this chain can be configured and included/bypassed in the pipeline. The Sense IC provides a three-wire 426 

SPI interface. It also down-streams the commands to control the Stim IC. The controller integrated into the 427 

Sense IC implements the state machine for serial peripheral interface (SPI) communication, schedules the 428 

data for the sensing output, and features the capability of individual control of every FE/NLC/ASAR module 429 

[33-36]. The phase-locked stimulation (PLS) IC is a previously developed digital chip that supports 16-430 

channel detection of the power at selectable frequencies within theta band (3–8 Hz), and triggers configured 431 

stimulation at a specified phase of the detected oscillation [41-42]. 432 

We designed a layout and manufactured a digital (Fig. 1b-middle) and an analog printed circuit 433 

board (PCB, Fig. 1b-bottom) using specialized software (Altium Designer 14.0) where each board consisted 434 

of 2 PCB layers. The Sense, Stim, and Spike IC footprints were placed on the analog layer and the PLS IC 435 

footprint on the digital layer. The SPI interface was routed from the analog layer input/output connector to 436 

the Sense IC and from the Sense IC to the Stim IC (Fig. 1b-right). We used a SPI with 3 wires: clock, master 437 

input/output slave (MISO), and master output/input slave (MOSI). Two-wire shift register interfaces were 438 

routed from the analog/digital layer input/output connector to the PLS IC/Spike IC (Fig. 1b-right). The 439 

sensing and stimulation FEs were routed to the two Omnetics PS1-16-AA connectors to which electrodes 440 

are connected. The digital and analog layer input/output connectors are compatible and can be stacked on 441 

top of each other. On the top connector, we placed the Xilinx Spartan 6 (XC6SLX150-2FGG484C) FPGA 442 

board to serve the role of the communication layer (Fig. 1a-top). The FPGA is configured to support four 443 
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SPI interfaces and five shift registers, thus allowing up to four analog layers to be stacked together. We 444 

used a two-analog layer setup for all in-vitro and in-vivo experiments. Since we used separate SPI 445 

interfaces for each analog layer IC, the 4th wire (select) on the SPI was not needed in the PCB design. The 446 

FPGA contains a finite state machine (FSM) that converts USB input (FTDI controller) into SPI (SPI 447 

controller) packet stream and vice-versa. For FPGA programming, we used the Xilinx ISE 14.2 software. 448 

Briefly, The FSM always begins with a Reset state after a reboot, and then enters an Idle state in which it 449 

waits for incoming packets. Once a packet is available, the FSM receives it byte by byte (Receive Byte) 450 

until the complete message is transferred (Receive Packet). The received packet is then being processed 451 

(Process Packet), converted into the appropriate interface (e.g., USB to SPI), and transmitted to the Neuro-452 

stack ICs (via SPI or Shift Register). Similarly, after the processing is done, the response packet from the 453 

ICs enters a state during which it can transmit the packet (Transmit Packet) byte by byte (Transmit Byte) 454 

externally. Once the transmission is done, the FSM goes back to the Idle state and waits for new packets 455 

unless the streaming of the neural data is taking place, in which case the FSM enters Process Packet state 456 

indefinitely until the recording is stopped (Fig. S3-left). Stacked layers were placed inside a plastic enclosure 457 

(Fig. 1a) and wrapped from the inside with copper foil shielding tape to reduce the impact of the noise. 458 

Custom headstages (Fig. 1b, d) were built on a protoboard by placing two 5 × 2 connectors on each, which 459 

were internally routed to the Omnetics connector. 460 

Neuro-stack’s communication layer uses a USB interface for external connections and a specific 461 

communication protocol that can address, configure, and start/stop each IC. The protocol is described by 462 

a packet structure (up to 520 bytes) that captures Command (such as Reset, Start/Stop, Read/Write 463 

configuration registers, etc.), Board ID (to select analog layer), Spike and PLS commands, and optional 464 

Payload (varies in length [Payload Length] depending on the command). The FPGA’s FSM processes the 465 

input packet and decides which IC is to be addressed and forwards relevant bytes to it. The protocol also 466 

includes safety error and cyclic redundancy check bytes (Fig S3-bottom). Every command returns its 467 

specific acknowledgment receipt indicating that the execution of the command was successful. 468 

Neuro-stack Software Design 469 

The Neuro-stack graphical user interface (GUI, Fig. 1a) was built as a Universal Windows Platform 470 

application using Visual Studio (2017) and the Visual C# language. The application can be installed on any 471 
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Windows (8.1 or higher) machine. We specifically used Surface Pro 5 for running the GUI application. The 472 

application uses a USB connection to directly communicate with the Neuro-stack (Fig. 1a) to enable viewing 473 

and configuration of real-time neural data, the configuration of PLS and other stimulation parameters, and 474 

manually triggered delivery of stimulation. 475 

 As an alternative to the GUI, the Neuro-stack application programming interface (API) is a library 476 

of functions built-in C++ that the user can call in custom-design experiments. The API combines all core 477 

and backhand GUI functions into a faster and more resource-efficient implementation. It’s built as a multi-478 

thread real-time software pipeline, which threads mirror hardware blocks (e.g., Sense Process controls the 479 

Sense IC, Stim Process controls the Stim IC, etc. [Fig. S3-middle]). Processes responsible for each IC run 480 

in parallel and asynchronously forward commands to their associated IC or they await a command receipt 481 

or a recorded neural sample via the Input Queue (Fig. S3-middle). Neural samples are timestamped using 482 

network time protocol [NTP, 52] in the Sense and Spike Process threads upon their arrival. They are sent 483 

together with a sample value either to an external device or stored in Log Memory (Fig. S3-middle), which 484 

was used for synchronization. The library can be compiled for commonly used Linux, Windows, macOS, or 485 

ARM based target devices. We used the ARM-based (NXP i.MX 8M SoC) Coral Development Board to run 486 

the Neuro-stack API. To utilize all Coral Development Board capabilities, we complemented the library with 487 

functions that can store/save the TensorFlow Lite model and run inference on recorded neural samples 488 

using the Coral dev Board’s onboard tensor processing unit (TPU). Coral dev Board supports both wired 489 

(USB-C) and wireless (using a local network access point and a TCP/IP server with a X.509 certificate 490 

authentication) interfaces with external control capability and use of a real-time monitoring device (e.g., 491 

Experimental Computer). X.509 is a digital certificate that uses public key infrastructure. We used self-492 

signed certificates since we only used one Experimental Computer to connect to the Neuro-stack. We used 493 

a MacBook Pro (2015) laptop as an Experimental Computer, which ran a client Python 3.6.9 script for 494 

triggering sensing, stimulation, TPU-specific commands, and transferring/storing/monitoring neural activity 495 

by using the Neuro-stack API running on the Coral dev Board (Fig. S3). 496 

 For in-vivo resting state neural recording experiments, we used the GUI application to control the 497 

Neuro-stack (Fig. 1). For in-vitro testing, in-vivo macro-stimulation (Fig. 3), behavioral stationary (Fig. 4) 498 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 22, 2022. ; https://doi.org/10.1101/2022.02.05.479253doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.05.479253


 

28 
 

and ambulatory experiments (Fig. 2), we used the Neuro-stack API and Coral dev Board wireless 499 

configuration (Fig S3). 500 

Neuro-stack in-vitro testing 501 

In-vitro studies involved the use of an oscilloscope, a phosphate-buffered saline (PBS) solution, a National 502 

Instruments digital to analog converter (NI-DAC), and the Neuro-stack (using both wired and wireless 503 

configurations; Fig. S4). Testing of the Sense and Spike ICs involved feeding 100 s of pre-recorded 504 

LFP/single-unit data through the NI-DAC. The analog signals were observed using an oscilloscope and 505 

recorded by a single channel using the Neuro-stack. For visualizing results, a time domain comparison was 506 

used for Sense IC and Spike IC (Fig. S5). The Stim IC was tested as part of closed-loop delay 507 

measurements and in previous reports [34]. Delivered stimulation was captured by the oscilloscope and on 508 

one channel using the Neuro-stack (Fig. S4, S5). The PLS IC was tested in-vitro as part of a previous study 509 

[41-42]. 510 

The round-trip delays were measured by sending a pulse train (50 pulses, 20 mV amplitude, 1 s 511 

pulse width, duty cycle 50%) from the NI-DAC to one channel recorded using the Neuro-stack. The modified 512 

software on the Coral dev Board continuously pooled incoming samples and detected the increase from 513 

zero (rising edge) in these incoming values. Once detected the rising edge triggered one-pulse of 514 

stimulation. The delay (mean ± standard deviation [std] for 50 pulses) was measured on the oscilloscope 515 

by capturing both the recording input and stimulation output rising edges and their time difference (Fig. 516 

S5d). 517 

The Neuro-stack system and software latency from the recording input to the Sense Process thread 518 

on the Coral dev Board was measured using the same pulse train process but instead of triggering 519 

stimulation, the detected rising edge triggers a 1 s pulse to the Coral dev Board general-purpose 520 

input/output (GPIO) pin. We used the oscilloscope to observe the recording input and GPIO output, and 521 

measure the time difference between the rising edges (Fig. S5), which was equivalent to the system latency 522 

(mean ± std for 50 pulses). 523 
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Neuro-stack in-vivo testing 524 

Participants 525 

Research participants were 12 patients (mean age 24.15 years, 9 females) with pharmacoresistant epilepsy 526 

who were previously implanted with acute stereo EEG depth electrodes for seizure monitoring. Participants 527 

volunteered for the research study during their hospital stay by providing informed consent according to a 528 

research protocol approved by the UCLA IRB. In each patient, 8-12 flexible polyurethane depth electrodes 529 

(1.25 mm diameter) were implanted solely for clinical purposes and prior to completion of the research 530 

study. Each depth electrode terminated in a set of eight insulated 40-μm platinum-iridium microwires 531 

(impedances 200-500 kΩ). 532 

Electrode Localization 533 

Electrodes were localized to specific brain regions using methods that have been previously used [53]. 534 

Briefly, a high-resolution post-operative CT scan was co-registered to a pre-operative whole brain MRI and 535 

high-resolution MRI using BrainLab stereotactic localization software (www.brainlab.com and FSL FLIRT 536 

(FMRIB’s Linear Registration Tool [54]). Medial temporal lobe (MTL) regions, including the hippocampus 537 

and entorhinal cortex, were delineated using the Automatic Segmentation of Hippocampal Subfields (ASHS 538 

[55]) software using boundaries determined from MRI visible landmarks that correlate with underlying 539 

cellular histology. White matter and cerebral spinal fluid areas were outlined using FSL FAST software [56]. 540 

Macro- and micro-electrode contacts were identified and outlined on the post-operative CT. For a list of 541 

localized brain regions in all participants see Table S1. 542 

Data Acquisition and Stimulation 543 

For all in-vivo validation sessions, a Neuro-stack with two analog layers was used, which allowed for up to 544 

two micro-electrode bundles (16 channels) and eight macro-electrodes (16 bipolar channels). All micro- 545 

and macro-electrode recording sessions were sampled at 38.6 kHz and 6250 Hz, respectively. Base 546 

recordings were done without hardware decimation, non-linear correction, and artifact rejection on the 547 

Sense IC. Refer to Data Analysis and Statistics section for details about data analyses. 548 

Macro-stimulation was performed in three participants while they rested in their hospital beds. In 549 

the first two participants, three stimulation bursts (0.5 mA) were delivered to a single bipolar electrode 550 
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channel. In a third participant, we performed stimulation propagation mapping, where macro-stimulation 551 

was delivered to a single bipolar channel (Fig. 3c-d) and recording was done in the other 32 channels (Fig. 552 

3e,h,i). During macro-stimulation, signal propagation was observed with using the following stimulation 553 

parameters: Channels: 1 out of 128; Amplitude: 0.25, 0.5, 0.75, 1.00, and 1.25 mA; Frequency: 60, 80, 100, 554 

120, and 140 Hz; Pulse Width: 1.28 ms; Interphase Width: 150 us; Polarity: Anodic; Shape: Rectangular; 555 

Interburst delay: 16.67 s. The desired burst frequency was achieved by setting the inter-pulse delay 556 

appropriately. 557 

Rectangular pulses recorded in all 32 channels were identified by using cross-correlation across 558 

all channels against a template waveform of the delivered stimulation pulse, which was later used for 559 

alignment (Fig. 3f,g) and calculating statistics of propagation with respect to varying amplitudes (Fig. 3h) 560 

and frequencies (Fig. 3i). For statistical calculations of the propagated power, all pulse waveforms across 561 

channels were normalized using the same value of the largest pulse that was propagated. 562 

Ambulatory Walking Task 563 

Single-unit data was recorded in six participants during an ambulatory walking task. Two of the participants 564 

were instructed to walk around their hospital room freely and visit prominent ‘landmarks’ such as locations 565 

near windows, doors, tables, etc. A separate group of four participants was instructed to walk repeatedly 566 

(10 times) from one position to another position in the room using a linear path (Fig. S2b). The ambulatory 567 

movement was tracked using an eye-tracking headset (Pupil Labs Core device [57]) which contained 568 

inward-facing eye cameras (sampling rate: 200 frames per s) and an outward-facing world-view camera 569 

(sampling rate: 120 frames per s). Neuro-stack was connected to two micro-wire electrode bundles 570 

(Behnke-Fried, Ad-Tech) to record from 18 micro-wire contacts (16 recorded single-unit activity and 2 571 

served as reference contacts). Recordings with respect to local references (same bundle) were recorded 572 

at a sampling rate of 38.6 kHz.  573 

During the walking task, the participants wore an eye-tracker headset and a small backpack (Fig. 574 

2a), which carried the Neuro-stack, the TPU (Coral dev Board) using the wireless configuration (Fig. S3), 575 

and a Voltaic V75 USB Battery Pack. The researcher used an Experimental Computer running an 576 

application (Python) to start/stop recordings and view in real-time the neural data. Both the Neuro-stack 577 

and eye-tracker were connected to the same local network from which the NTP timestamps were fetched. 578 
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For a redundant method of synchronization, a miniature LED was attached to the corner of the world-view 579 

camera on the eye-tracking headset (Fig. 2a, Fig. S2d). The LED was programmed to turn on for 50 ms 580 

every 20 s during the experimental walking task, which was not visible by the participant and was also NTP-581 

timestamped. 582 

Stationary Verbal Memory Task 583 

Verbal memory performance was decoded using the Neuro-stack in a single participant. The memory task 584 

began with an encoding period, where the participant was instructed to learn a list of 10 words that were 585 

randomly selected and serially presented in an audio and visual format on an iPad Pro (3rd generation) 586 

screen (Fig. S3 – top right). During encoding, each word was presented for 2 s with an inter-trial fixation 587 

period of 4 s. Words were drawn from clusters of six and seven of the word norms and were all 4-8 letter 588 

nouns that were rated as highly familiar (range 5.5-7 on a 1-7 scale), moderate to high on concreteness 589 

and imagery (range 4.5-6 on a 1-7 scale), and moderate in pleasantness (range 2.5-5.5 on a 1-7 scale) 590 

[58]. After the encoding period, participants completed a distractor task where they were instructed to 591 

determine whether a presented number (1-9) was Odd or Even. The distractor task was then immediately 592 

followed by a verbal recall period where participants were cued to verbalize as many words as they could 593 

remember during a 30 s period. During the experimental paradigm, encoding, distractor, and retrieval 594 

periods were repeated 10 times. Memory performance was calculated as the proportion of previously 595 

encoded verbalized words that were recalled. 596 

 During the verbal memory task, we used the Neuro-stack in a wireless configuration (Fig S3) 597 

together with both the Experimental Computer and Stimulus Presentation device (iPad). We used the Sense 598 

IC to record 16 channels from two (left/right hippocampus) micro-wire bundles. Stimulus presentation on 599 

the iPad was implemented as a game using Xcode 11.2.1 and Swift 5.0.1 programming languages. For 600 

network communication, we used two TCP (transmission control protocol) channels (Fig. 4b, Fig. S3; 1. 601 

Experimental Computer – Coral dev Board, 2. Experimental Computer – iPad). For online binary 602 

classification of the incoming neural data into remembered/forgotten words, we used a pretrained neural 603 

network model (2 × CNN1D + LSTM + Dense; Fig. 4e). The background processing of the task’s data was 604 

divided into two phases: 1) training and 2) prediction, consisted of 5 and 4 blocks of the verbal memory task 605 

cycle, respectively (Fig. 4c, presented 7 blocks only; 3 training and 4 prediction). The purpose of the training 606 
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phase was to personalize the model for the participant. Only the last two Dense layers from the model were 607 

used for retraining and embedding selected filters into the prediction model. The training phase involved 608 

downsampling and filtering of raw data (0.1 – 250 Hz), packing the data separately for each observed brain 609 

region (Preprocess step), and transmitting packages from the Neuro-stack externally to the Experimental 610 

Computer where the model retraining took place (Fig. 4b). The words were presented using an iPad Pro 611 

tablet, which also used a built-in speech recognition algorithm to supply real-time outcomes (i.e., 612 

remembered or forgotten) to the Experimental Computer. The word onset events were isolated and 613 

weighted using a Gaussian window where one standard deviation was 2.5 s and cutoffs were made at -5 614 

and 5 s (before and after word onset), thus giving data around the word onset higher priority. The retraining 615 

of the model took place during every Distraction phase (30 s) of the verbal memory task. Once retrained, 616 

the model was automatically converted on the Experimental Computer from Tensorflow 2.2 to Tensorflow 617 

Lite and uploaded wirelessly to the Edge TPU. During the prediction phase, the same format of 618 

preprocessed data was rerouted to the Edge TPU, where prediction took place. The predictions from TPU 619 

and labels from the iPad were transmitted to the Experimental Computer for performance assessment after 620 

each word trial (Fig. 4b). 621 

Neural Network Model 622 

The neural network model (Fig. 4e) was used to decode performance on the verbal memory task in a single 623 

participant. The model architecture included two one-dimensional convolutional neural networks (CNN1D) 624 

(1st with 32 nodes and 2nd with 64 nodes) and a long-short term memory (LSTM) neural network layer with 625 

64 nodes. The L2 regularization was used in the CNN1D and Dense layers and was proportional to the 626 

square of the weight coefficients' value. Moreover, the training dropout technique [59] was applied after 627 

each layer with a 0.2 rate, except for the LSTM, which used a 0.1 rate and a recurrent dropout (0.5 rate). 628 

The complete structure of one branch is presented in Fig. 4e. The branches were structurally identical for 629 

all brain regions but had different weights after training. The model was pretrained offline using data from 630 

6 medial temporal lobe regions (left/right anterior hippocampus, left/right posterior hippocampus, left/right 631 

entorhinal cortex) from 10 participants who performed the exact same verbal memory task (Fig. 4a) 632 

previously using a Blackrock Neuroport system to record neural data. LFP data (sampling rate 250 Hz, 633 

batch size 512) was extracted around the verbal memory task word onsets (same Gaussian window as 634 
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before) and fed into the model for training (Fig. S6a). The data from all participants was divided into training 635 

(50%), validation (25%), and test (25%) sets. Then training and validation datasets were combined, 636 

shuffled, and used for training of the base model (Fig. S6c). Binary cross-entropy was used for the loss 637 

function, with root mean square propagation for the optimizer (learning rate of 0.001). Five-fold cross-638 

validation (Fig. S6d – average across folds) was used for validation using the presented hyperparameters. 639 

Hyperparameter optimization of the final decoding model (Fig. 4e) was done during the validation phase 640 

and with respect to the F-1 score (0.5 threshold). During the training phase with Neuro-stack, we used the 641 

same training parameters except that CNN1D and LSTM layer coefficients were fixed and only Dense 642 

coefficients were adjusted. Also, we only used two model branches out of six that were previously trained 643 

on the Blackrock-acquired data (hippocampal channels only) to match the left/right hippocampal electrode 644 

placement in the single participant who performed the verbal memory task Neuro-stack experiment. During 645 

online training phase, all incoming windows of the LFP data were continuously combined with the previous 646 

windows and used for retraining, while new retraining iteration updated coefficients saved from the previous 647 

retraining block. Participants (Blackrock: B1-B10; Neuro-stack: N1), their memory performance during 648 

verbal memory task, and test accuracies using offline (B1-B10) and online (N1) models are shown in Fig. 649 

S6b.  650 

To isolate frequency bands that were the most significant for the neural network model decisions, 651 

we adapted Grad-CAM [45] for one-dimensional CNN and applied it on each branch separately. By doing 652 

this, we isolated activation filters of the second CNN1D (Fig. 4f,g – time-frequency representation). 653 

The above described neural network model was chosen after an extensive trial and error process 654 

during which multiple classification algorithms were tested on the same dataset. Specifically, before utilizing 655 

the neural network model, the data was classified using shallow methods such as Support Vector Machine 656 

(SVM). As part of the feature engineering process, we supplied SVM models with raw, power, and phase 657 

data in 0-250 Hz range chunks of 7 s (word onset at 3.5 s) or in a sequence of 1 s sliding time windows 658 

(with no overlap). Before choosing the final decoding model, we also tested several convolutional and 659 

recurrent neural network (RNN) architectures. Summary of accuracies for each of these decoding methods 660 

is presented in Table S3). 661 
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Data Analysis and Statistics 662 

iEEG Power Spectrum Extraction 663 

All time-frequency power scalograms were obtained using CWT (Continuous Wavelet Transform - MATLAB 664 

cwt command) performed on z-scored time domain data (each channel normalized separately). The base 665 

wavelet chosen was the complex Morlet with a symmetry parameter (gamma) equal to 3 and a time-666 

bandwidth product equal to 60. The wavelet coefficients were calculated at seventy logarithmic frequency 667 

points from 1 to 125 Hz, after which the squared absolute value of the coefficients resulted in a power 668 

scalogram. 669 

All frequency power spectrums were obtained using FFT (Fast-Fourier Transform - MATLAB fft 670 

command). The FFT length chosen was the largest power of 2, less than the length of the observed iEEG 671 

trace. The coefficients were then normalized with the trace length. Finally, the squared absolute value of 672 

the spectral coefficients multiplied by 2 (one-sided FFT) resulted in the power spectrum. 673 

Spike sorting 674 

We performed spike sorting using Wave_clus 3 [44]. Preprocessing included the use of a notch-filter to 675 

remove 60 Hz noise. Selected clusters were chosen so that more than 250 spikes were identified and that 676 

out of these, 1% or less had inter-spike-intervals (ISI) of less than 3 ms. 677 

Data and Code Availability 678 

Data and code are available upon reasonable request. 679 
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