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Abstract 
Motivation: Epitope-based molecular mimicry occurs when an antibody cross-reacts with two different 
antigens due to structural and chemical similarities. Molecular mimicry between proteins from two 
viruses can lead to beneficial cross-protection when the antibodies produced by exposure to one also 
react with the other. On the other hand, mimicry between a protein from a pathogen and a human 
protein can lead to auto-immune disorders if the antibodies resulting from exposure to the virus end up 
interacting with host proteins. While cross-protection can suggest the possible reuse of vaccines 
developed for other pathogens, cross-reaction with host proteins may explain side effects. There are 
no computational tools available to date for a large-scale search of antibody cross-reactivity. 
Results: We present a comprehensive Epitope-based Molecular Mimicry Search (EMoMiS) pipeline 
for computational molecular mimicry searches. EMoMiS, when applied to the SARS-CoV-2 Spike 
protein, identified eight examples of molecular mimicry with viral and human proteins. These findings 
provide possible explanations for (a) differential severity of COVID-19 caused by cross-protection due 
to prior vaccinations and/or exposure to other viruses, and (b) commonly seen COVID-19 side effects 
such as thrombocytopenia and thrombophilia.  Our findings are supported by previously reported 
research but need validation with laboratory experiments. The developed pipeline is generic and can 
be applied to find mimicry for novel pathogens. It has applications in improving vaccine design. 
Availability: The developed Epitope-based Molecular Mimicry Search Pipeline (EMoMiS) is available 
from https://biorg.cs.fiu.edu/emomis/. 
Contact: giri@cs.fiu.edu  
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1 Introduction  
Epitope-based molecular mimicry occurs when antibodies cross-react 
with two different antigens, triggered by the structural similarity and the 
physicochemical properties at the binding site (Albert and Inman, 1999). 
Identification of cross-reactivity may explain heterologous immunity 
when antibodies for a previous infection from an unrelated organism 
cross-react with newly encountered pathogens (Welsh et al., 2010). It can 
also explain autoimmune disorders such as rheumatoid arthritis when 
antibodies cross-react with human proteins  (Cusick et al., 2012).  
Limited studies have described a computational molecular mimicry search 
process. One of the earliest works is a genome-wide BLAST survey to 
search for parasite-host molecular mimicry (Ludin et al., 2011). Many 
examples of the sequence similarity approach adapted for molecular 
mimicry searches can be found in the literature. Examples include the 
study of virulence mechanisms of pathogenic bacteria (Doxey and 
McConkey, 2013), fungus-plant interactions induced by cross-reactivity 
(Armijos-Jaramillo et al., 2021), and pathogenicity of Clostridium 
botulinum ATCC 3502  to the human host (Bhardwaj et al., 2018). 
Another approach for molecular mimicry search is to look for similar 
structural motifs (Kristensen et al., 2006). A recent tool called Epitopedia 
combined sequence and structural similarity searches for improved 
scoring of molecular mimicry candidates of known epitopes (Balbin et al., 
2021). However, sequence and structural similarity of epitopes from two 
proteins do not guarantee antibody cross-reaction. Non-consecutive amino 
acids (AA) of the antigenic protein may affect antibody binding, 
preventing or enhancing its cross-reactivity. To the best of our knowledge, 
there are no molecular mimicry search tools available that 
computationally evaluate antibody cross-reactivity.  
Deep learning is a promising approach to overcome the major challenges 
of investigating proteins at a molecular level. The complexity of protein 
structures and their dynamic nature make the binding energy function 
highly unstable and difficult to model (Esmaielbeiki et al., 2016). Protein 
docking algorithms may predict the correct “native” binding pose, but the 
interaction strength is generally poorly predicted (Weng et al., 2020). 
Physics-based simulations can accurately infer the protein interaction 
trajectory but require substantial computational resources, posing a 
significant challenge for large-scale mimicry searches. Deep learning can 
alleviate the high computational cost of protein-protein interactions 
prediction and improve predictive accuracy (Graves et al., 2020; Gainza 
et al., 2020; Wang et al., 2020; Pittala and Bailey-Kellogg, 2020). By 
training a machine learning tool with sufficient positive and negative 
examples of binding interface regions, the model learns to estimate the 
strength of interactions between queried antibody-antigen pairs. 

Recent data-driven studies have suggested that non-COVID-19 
vaccines may provide partial immunity against the SARS-CoV-2 virus 
(Pawlowski et al., 2021; Rivas et al., 2021). Mannar et al. experimentally 
confirmed that several SARS-CoV-2-induced antibodies cross-react with 
proteins from other viruses such as HIV-1 (Mannar et al., 2021) and 
Dengue virus (Nath et al., 2020). The discovery of heterologous immunity 
resulting from mimicry may suggest using other vaccines for partial 
protection against a rampant pathogen. Mimicry can also explain how the 
history of prior infections can provide heterologous immunity against a 
pathogen. Molecular mimicry can also explain several unexpected side 
effects of the SARS-CoV-2 infection. We recently reported that molecular 
mimicry between SARS-CoV-2 Spike and human thrombopoietin (TPO) 
might induce thrombocytopenia in infected subjects (Nunez-Castilla et al., 
2021).  

In this study, we developed a comprehensive computational Epitope-
based Molecular Mimicry Search (EMoMiS) pipeline that includes 
sequence and structural similarity searches followed by deep learning for 
antibody-antigen binding assessments. We applied it to the SARS-CoV-2 
Spike protein. We report the discovery of many potential antibody-antigen 
cross-reactions and discuss their implications. 

2 Methods 
In this study, a comprehensive computational pipeline called EMoMiS was 
developed (Fig. 1). The method identifies known antibodies that can cross-
react with target antigens. After searching the database of antigens for 
regions of sequence and structural similarity with the target protein, a pre-
trained deep learning model is used to evaluate if antibodies, known to 
recognize the database antigens, can cross-react with the target structure. 
For this discussion, the term “target protein” refers to the query protein 
(such as the SARS-CoV-2 Spike) for the search.   

The EMoMiS pipeline uses the three-dimensional structures, 𝑆!" as 
well as sequence information, 𝑄!" of antibody-antigen complexes from 
the structural antibody database SAbDab (Dunbar et al., 2014). The 
second input to our pipeline is the structure and sequence of the target 
protein (𝑆#$%&'# and 𝑄#$%&'#), for which mimics are sought. Note that we 
do not require the availability of a structural complex of the target protein 
with its antibody. Also, we may have several variant sequences and 
structures, as is the case with SARS-CoV-2. The target query protein is 
assumed to be immunogenic, i.e., able to provoke an immune response  
(Baker et al., 2010).  In Step A (Fig 1), the target protein sequence(s) 
(𝑄#$%&'#) is searched against the sequences from SAbDab (𝑄!") for 
regions of sequence similarity with other eukaryotic and prokaryotic 
protein sequences. In Step B, a hit, denoted as 𝑄()#	, is retained only if (a) 
the match has sufficient length (i.e., above a prespecified threshold), (b) 
the corresponding target antigen is surface-accessible (in 𝑆#$%&'#), and (c) 
the sequence similarity is in the antibody-antigen interface region (in the 
corresponding complex in 𝑆!"). In Step C, we isolate the target 
(𝑆()#*#$%&'#) and the mimic (𝑆()#*!") from the hit region and check if they 
display good local structural alignment. In Step D, we evaluate the 
potential cross-reactivity using a pre-trained deep learning model (Gainza 
et al., 2020), which estimates the binding strength between the antibody 
𝑆!"*+, complexed with the database antigen 𝑆!" and the target antigen 
𝑆#$%&'#*+&.  

Figure 1. EMoMiS computational pipeline for epitope-based molecular mimicry 
search. The process consists of four steps: (A) sequence similarity search, (B) filtering, 
(C) structural alignment, and (D) deep learning for antibody binding evaluation. 
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2.1. Sequence Similarity Search 
The sequence similarity search between the target protein sequence, 
𝑄#$%&'#, and the antigen sequences from the data set, 𝑄!", was performed 
using Protein-Protein BLAST 2.12.0+ (Altschul, 1997). FASTA 
sequences were downloaded using BioPython utilities (Cock et al., 2009). 
The search was executed with several non-default parameters: the ‘-
blastp-short’ flag was used to find small hits because the average epitope 
length is only about 15 amino acids (Kringelum et al., 2013); the ‘-
gapopen’ was set to the maximum value since epitope regions are unlikely 
to allow insertions and deletions without disrupting the binding; and 
finally, ‘-evalue’ was set to ‘999999’ to include high E-values that often 
result from short alignments. 

2.2. Filtering the Sequence Hits 

In the filtering step, we select only relevant areas among the hits. First, we 
require an alignment with an exact match of at least three consecutive 
amino acids. Second, we check if the three matching amino acids are 
surface accessible in the target antigen (𝑆#$%&'#) to allow binding. An 
amino acid residue is considered surface accessible if its relative 
accessible surface area (RASA) is more than 20% (Touw et al., 2015). 
Third, we retain hits that lie in the contact region of the antibody-antigen 
interface in the complex, 𝑆!". An antigen residue is considered a contact 
point if the distance from any of its heavy atoms (atoms other than H 
atoms) to the antibody is less than 5Å.  

2.3. Structural Alignment 
The structures of the target and database proteins from each sequence 
match were assessed for similarity using TM-align, an algorithm for 
sequence-independent structural comparisons  (Zhang, 2005).  

To distinguish between molecular mimicry patterns and coincidental 
structural alignments, we obtained a distribution of alignment scores of 
randomly selected short motifs. The metric for structural similarity was 
the root-mean-square deviation (RMSD) between aligned residues in 
angstroms (Å). Since shorter motifs are expected to have lower RMSD 
values, the distribution of RMSD values for each motif length was 
considered separately. For 3000 random antigens from the SAbDab 
database, we isolated possible epitopes of lengths ranging from 3 to 32 

AA, such that the center of each motif was in contact with its native 
antibody.  The isolated motifs of the same length were randomly paired 
and aligned with the command-line tool, TM-align (Zhang, 2005).  

The resulting distribution of structurally aligned random epitopes was 
used to establish thresholds for acceptable structural mimicry (Fig. S1). 
The Z-scores were computed for each point of the distribution. RMSD 
values with Z-score less than -1.645 (one-tailed p-value < 0.05) were 
considered “high-confidence” hits, while Z-scores between -1.645 and -
1.281 (one-tailed p-value < 0.1) were labeled as “medium-confidence” 
hits (see details in Table S1). Since the epitope is expected to be 32 AA 
(Kringelum et al., 2013), we chopped longer sequence matches into 32 
residue-long motifs centered at the point of antibody contact. 

2.4. Binding Prediction with Deep Learning 

After determining the sequence and structure similarity of a candidate 
binding site along with its surface accessibility, the next step in the 
EMoMiS pipeline is to evaluate the strength of binding between the 
antibodies of the mimicking proteins to the target protein at the candidate 
site (Fig. 1). The Molecular Surface Interaction Fingerprint Search 
(MaSIF-Search)  that uses a geometric deep learning approach was used 
to evaluate antibody-antigen binding, (Gainza et al., 2020). The pre-
trained model from MaSIF-Search was used for this work. The MaSIF 
method is designed to uncover patterns on the surfaces of proteins. Given 
two surface regions (patches) from distinct proteins, the model evaluates 
compatibility for forming a stable binding complex. The patches are 
obtained by drawing a fixed-sized geodesic radius on the solvent-excluded 
protein surface (Sanner et al., 1996). The data structure of the patch is a 
grid of 80 bins with five angular and 16 radial coordinates. Each bin has 
five geometric and chemical features: shape index, distance-dependent 
curvature, electrostatics, charge, and hydropathy. The model captures the 
general distribution of native binding versus decoys by training the 
artificial intelligence (AI) network with many examples of binding and 
non-binding protein surface regions.  

In Step D of the EMoMiS pipeline, we evaluate the structurally similar 
motifs for the binding strength of the antibody-antigen pair. The antibody 
patch corresponding to the mimicry antigen is centered on the antibody 
contact residue. The antigen patch of the target protein (Spike) is centered 
on the middle amino acid from the filtered sub-query. The resulting patch 
pair is passed to the pre-trained MaSIF-Search deep learning model that 
outputs a binding score. If several patches map to the same residue, then 
we report the binding score of the best patch pair. 

The patch extraction method was adapted from the original MaSIF-
Search described in (Gainza et al., 2020). First, we triangulated each 
protein complex with a granularity of 1 Å. Geometrical and chemical 
features for each point in a surface mesh were computed with the MaSIF 
data preparation module. Next, the structures were discretized into a set of 
overlapped patches with a radius of 12 Å, where each point in a surface 
mesh is treated as a patch center.  

To evaluate the complementarity of the two patches, the pre-trained 
MaSIF-Search “sc05” model with a patch radius of 12 Å was used 
(Gainza et al., 2020). The model takes a single patch as input and embeds 
it into an 80-dimensional descriptor. The original model was trained to 
minimize the distance between embedded vectors from native binders 
(positive) and maximize it for non-interacting decoy patches (negative) 
(Gainza et al., 2020). The distance between embedded vectors from two 
patches will be referred to as the Deep Learning binding score or “DL 
score."  

Figure 2. Distribution of Deep Learning (DL) scores of MaSIF pre-trained “sc05” 
model applied to antibody-antigen complexes from the SAbDab database (left) and the 
SARS-CoV-2 Spike proteins complexes with native antibodies (right). 
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Table 1. Molecular mimicry for SARS-CoV-2 Spike protein predicted by the EMoMiS pipeline. (A-D) Forward phase - antibodies from other 
organisms predicted to cross-react with Spike. (E-H) Reverse phase - antibodies originated from Spike predicted to cross-react with antigens from the 
database. 

 Organism Subject 

protein 

Subject 

PDB 

Spike 

PDB 
Motif Spike Region 

 
Antibody RMSD 

Struct 

p-val 

DL 

Score 

DL 

p-val 

A Human TPO 1V7N 7L2F TQLPP NTD 22-26  TN1 0.9 0.093 1.281 0.010 

B Human TNFRSF-5 6PE8 7K43 ESEF NTD 154-157  FAB 0.42 0.095 1.749 0.032 

C Human ABCB-1 6FN1 7VNE NITN RBD 331-334  UIC2 0.41 0.092 2.259 0.092 

D Dengue virus 1 non-structural 
protein 1 6WEQ 7M6I NLVK RBD 532-535  2B7 0.25 0.061 2.347 0.108 

E Human αIIbβ3 4Z7N 7L2C GDSS NTD 252-255  2-51 0.26 0.063 1.705 0.029 

F HPV-16 
major capsid  

protein l1 
6BT3 7RW2 KHTP NTD 206-209 

 
5-7 0.21 0.055 1.829 0.038 

G HIV-1 Envelope glyco-
protein gp160 6PWU 7NDA NITN RBD 331-334 

 COVOX 
 253H55L 

0.37 0.083 2.012 0.057 

H Coronavirus OC43 spike glycopro-
tein 7M51 7RNJ FKEELD S2 1148-1153  S2P6 0.1 0.004 2.130 0.072 

2.5. Determining Thresholds for Binding Strengths 
The pre-trained MaSIF model “sc05” performed well on the antibody-
antigen complexes with the receiver operator characteristic area under the 
curve (ROC AUC) 95% (Fig. 2). Although the “sc05” model was trained 
on a general collection of protein-protein interactions, we tested the model 
only on antibody complexes. The structures from 433 non-redundant 
SAbDab complexes with 90% maximum sequence identity were extracted 
for the model testing (Dunbar et al., 2014). Antigens homologous to any 
protein from the MaSIF-Search training set were excluded from the testing 
set, which resulted in 179 protein complexes. Two antigens were called 
homologous if pairwise alignment identity were greater than 95% (Rice et 
al., 2000). Eighteen Spike-antibody complexes were tested separately, as 
the SARS-CoV-2 virus was our primary focus. A patch pair from two 
proteins were labeled “positive” if the distance between patch centers is 
less than 1Å, while “negative” non-interactive patches were chosen 
randomly. We observe that the MaSIF pre-trained model is able to 
distinguish between positive native binders (Fig. 2, orange) and negative 
decoys (Fig. 2, blue) with a ROC AUC of 95%. The binding scores for 
SARS-CoV-2 and antibodies (Fig. 2, right) had a similar pattern as the 
general antibody-antigen complexes from SAbDab (Fig. 2, left).  

Z-statistics for the DL scores distribution for negative non-binding 
patches (Fig. 2, blue, left) were used to determine the containment 
thresholds. The value corresponding to a Z-score of -1.645 (one-tailed p-
value=0.05) was used as the high-confidence threshold (Fig 2, green). The 
scores corresponding to one-tailed p-values between 0.05 and 0.1 (Z-
scores less than -1.281) were considered a medium-confidence binding 
(Fig. 2, yellow). The rest of the scores were “low-confidence” (Fig 2, red). 

2.6. EMoMiS Reversed Phase 
If the sequence and structure of the antibodies for the target protein are 
also available, then an additional phase called the 'reverse' phase may be 
added to the pipeline. The pipeline follows the same procedure while the 

lists of database and target proteins are switched. In other words, every 
location of the database proteins is queried against the list of known 
epitopes from the target protein. Such a trick allows searching for cross-
reactivity of antibodies, known to recognize the target virus, with the 
database antigens. When native antibody structures are not available, such 
as what may happen in the early stages of an epidemic, the pipeline can 
only be executed in the forward phase. In the case of SARS-CoV-2, such 
antibodies and their structures are indeed available. 

2.7. Hardware 

The EMoMiS software was built in the Chameleon Cloud environment on 
CHI@TACC “Haswell” bare metal instance, which had  2x 12 core Intel 
Xeon E5-2670 v3 and 128 GB of RAM (Keahey et al.). To ensure 
reproducibility, the running environment was containerized with 
Singularity version 3.8.5 (Kurtzer et al., 2017). Deep Learning models 
were tested on a server machine at the Knight Foundation School of 
Computing and Information Sciences at Florida International University, 
which had 8 GeForce GTX 1080 Ti GPU, 256G of RAM, and 28 core 
Intel(R) Xeon(R) CPU E5-2650. 

3 Results 
An epitope-based molecular mimicry search (EMoMiS) pipeline was 
developed in this work. The process consists of four steps: sequence 
similarity search, filtering, structural alignment and filtering, and deep 
learning for antibody binding evaluation (Fig. 1). The developed software 
was applied to search for epitopes from multiple organisms that may 
mimic a portion of the SARS-CoV-2 Spike protein surface.  

3.1 Dataset 
Structural antibody database SAbDab was used as the reference for the 
molecular mimicry search pipeline (Dunbar et al., 2014). The database 
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was downloaded on November 30, 2021, containing 3,670 unique 
antibody-antigen complexes. The target sequences and structures of 167 
SARS-CoV-2 spike protein references were isolated from the database. 
The target proteins of homologous MERS and SARS virus families were 
excluded from the database resulting in 3,193 reference antibody-antigen 
complexes (Supplementary Table S2). 

The Beta, Delta, and Omicron variants of SARS-CoV-2 Spike were 
obtained from Protein Data Bank (PDB) database (PDB IDs 7LYM, 
7V7N, 7T9J) (Gobeil et al., 2021; Berman et al., 2000).   

3.2 EMoMiS Forward Phase 
During the forward phase of the EMoMiS pipeline, every location of the 
167 target SARS-CoV-2 Spike proteins was matched against antibodies 
from 3,193 database complexes. The method identified four molecular 
mimicry candidates, where antibodies from other organisms that likely 
cross-react with the SARS-CoV-2 Spike (Table 1, A-D). (A) The TN1 
antibody from human thrombopoietin (Feese et al., 2004) had the most 
significant Deep Learning score (DL score = 1.281, p-value = 0.01), while 
structural similarity had medium confidence (RMSD=0.9, p-
value=0.093). The mimicry is predicted for the TQLPP motif in the Spike 
N-terminal domain (NTD). (B) An antibody from tumor necrosis factor 
receptor superfamily member 5 (TNFRSF-5) (Argiriadi et al., 2019)  also 
had high confidence to cross-react with Spike in the NTD region (DL 
score = 1.749, p-value = 0.032), while the motif ESEF structurally aligned 
with medium confidence (RMSD = 0.42, p-value = 0.095). (C) The motif 
NITN from human ABCB-1 (Alam et al., 2018) had medium structural 
similarity with the SARS-CoV-2 Spike protein in the receptor-binding 
domain (RBD), whereas human-specific inhibitory antibody UIC2 
showed a medium score for cross-reaction with the Spike protein (DL 
score = 2.259, p-value = 0.092). (D) The scores for antibody 2B7 from 

Dengue virus (Biering et al., 2021) to cross-react with Spike were close to 
medium (DL score = 2.347, p-value = 0.108), while structural similarity 
for the corresponding NLVK motif had a medium RMSD score (RMSD = 
0.25, p-value = 0.061). 

3.3 EMoMiS Reverse Phase 
In the reverse phase of the EMoMiS pipeline, the database and target lists 
were switched to identify unknown epitopes from multiple organisms that 
may cross-react with native anti-Spike antibodies (Table 1) EMoMiS 
predicted that  SARS-CoV-2-specific antibodies can cross-react with (E) 
human αIIbβ3 (Lin et al., 2016), (F) major capsid protein l1 of Human 
papilloma virus (HPV) 16 (Guan et al., 2017), (G) HIV-1 envelope 
glycoprotein (Pan et al., 2020), and (H) coronavirus OC43 Spike 
glycoprotein (Sauer et al., 2021). Human αIIbβ3 motif GDSS and HPV-
16 motif KHTP had a high score for antibody cross-reaction (DL score = 
1.705 and 1.829, p-value < 0.05), while structural similarity with the same 
motifs of Spike protein had a medium score (RMSD = 0.26 and 0.21, p-
value < 0.1). The NITN motif of the HIV-1 envelope glycoprotein gp160 
and SARS-CoV-2 spike protein had medium structural similarity (RMSD 
= 0.37, p-value = 0.083), while the binding of antibody COVOX-
253H55L with the motif of HIV-1 had medium confidence (DL score = 
2.012, p-value = 0.057). The FKEELD motif from Spike Coronavirus 
OC43 had high structural similarity with SARS-CoV-2 Spike protein 
(RMSD = 0.1, p-value = 0.004), while the binding of S2P6 antibody had 
only medium confidence for antigen cross-reaction (DL score = 2.130, p-
value = 0.072). 

3.4 Surface Accessibility of Predicted Mimicry Candidates 
All predicted mimicry motifs appeared surface accessible in the Spike 
protein (Fig. 3), confirming the possibility for antibody cross-reaction. 
Motifs GDSS (Fig. 3, E), KHTP (Fig. 3, F), NITN (Fig. 3, C and G), and 
FKEELD (Fig. 3, H) are confirmed antibody interacting spots on Spike 
(Cerutti, Guo, Zhou, et al., 2021; Cerutti, Guo, Wang, et al., 2021; 
Dejnirattisai et al., 2021; Pinto et al., 2021). We note that motif FKEELD 
(residues 1148-1153) is hidden in Fig. 3 H because the structure for 
residues after 1147 is not available for the full Spike (Cerutti, Guo, Zhou, 
et al., 2021). 

3.5 Impact of Variants 
Finally, the SARS-CoV-2 Spike variants of concern (Omicron, Delta, and 
Beta) were analyzed for the prevalence of identified molecular mimicry 
candidates (Table 2). The variant Spike structures were queried against the 
epitopes of four mimicry proteins identified in the EMoMiS forward 
phase: TPO, TNFRSF-5, ABCB-1, and non-structural protein 1 of Dengue 
virus 1. The binding and structural alignment scores for the Alpha variant 
corresponds to the previously reported molecular mimicry results (Table 
1,  rows A-D). The scores for Beta variant 1.351 were not computed for 
TQLPP and ESEF motifs, as the structure is not available for those regions 
(PDB ID 7LYM). Two mutations are known in the ESEF motif of the 
Delta B.1.617.2 variant (E156G and F157V), which resulted in a 
significant decrease in binding strength of FAB and Delta Spike compared 
to the Alpha variant (DL score 2.87 vs 1.74). No other mutations directly 
affected the mimicry motifs, yet, the pipeline shows variability in the 
binding and structural alignment scores.  

 

Figure 3. All predicted molecular mimicry motifs on SARS-CoV-2 Spike, identified by 
the EMoMiS forward and reverse phases. 
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Table 2. Molecular mimicry predictions across Spike variants. DL score shows the binding strength of the antibody from other organisms (indicated in 
row 2) to bind the Spike of the given variant. RMSD indicates the structural alignment score of the mimicry antigen and corresponding Spike motifs. 
DL is denoted as the deep learning score of the antibody (row 2) to bind the N-terminal or receptor-binding domains (NTD and RBD, respectively) of 
the SARS-CoV-2 Spike. The significance was determined with one-tailed Z-score statistics (~ p-values<0.11; * p-values<0.1; **p-values<0.05) 

Motif TQLPP (NTD 22-26) ESEF (NTD 154-157) NITN (RBD 331-334) NLVK (RBD 532-535) 

Antibody/Antigen TN1/TPO FAB/TNFRSF-5 UIC2/ABCB-1 2B7/Dengue virus 1  

  DL score RMSD DL score RMSD DL score RMSD DL score RMSD 

Alpha 1.28 ** 0.9 * 1.74 ** 0.42 * 2.25 * 0.41 * 2.34 ~ 0.25 * 

Beta 1.351 NA NA NA NA 1.73 ** 0.81 4.45 0.35 * 
Delta B.1.617.2 
 (Mut. E156G, F157V) 

1.57 ** 0.54 ** 2.87 0.88 1.98 * 0.54 2.94 0.51 

Omicron B.1.1.5.29  1.83 ** 0.9 * 2.39 0.22 * 2.14 * 0.48 ~ 3.15 0.38 * 

The scores for molecular mimicry in the TQLPP region were 
consistently significant across the variants (Table 2, column 2). The 
binding score of cross-reacting antibody with ESEF motif significantly 
decreased in Delta and Omicron variants (Table 2, Column 3, DL score), 
while its structures in the TNFRSF-5 and Omicron Spike aligned with the 
same confidence (Table 2, column 3, RMSD). The confidence of the 
cross-reactive binding strength increased for the NITN motif in Beta 1.351 
while staying the same for other Delta and Omicron (Table 2, column 4, 
DL score). On the other hand, the RMSD between NITN aligned residues 
increased significantly for every Spike variant (Table 2, column 4, 
RMSD). The DL score of the 2B7 antibody to bind to Spike has decreased 
in every variant compared to control (Table 2, column 5, DL score). 
However, the structural alignment showed a significant decline only in the 
Delta B.1.6.17.2 (Table 2, column 5, RMSD). 

4 Discussion 
We developed an epitope-based molecular mimicry search pipeline that 
identifies epitopes that can elicit antibodies cross-reactive to the surface-
accessible query viral immunogens. Other molecular mimicry search 
studies have been fairly simplistic and have not been viewed as an 
instrument to prepare for the viral pandemic. After applying the EMoMiS 
pipeline to the SARS-CoV-2 Spike protein we hypothesize how cross-
reactivity can impact immune response. 

4.1. EMoMiS Pipeline 
The EMoMiS tool has many advantages over alternative molecular 
mimicry search methods. First, along with the standard sequence and 
structural similarity searches, our method evaluates cross-reactive 
antibody binding strength. The sensitivity analysis revealed that the 
MaSIF deep learning model accurately separates positive and negative 
binding with AUC equal to 95% (Fig. 2).  Combined with sequence and 
structural similarity filtering, the deep learning model aims to select only 
relevant candidates for antibody cross-reaction. Second, our method is 
capable of predicting cross-reaction with unknown epitopes. Only one 
protein requires an antibody binding in the sequence similarity region, 
while the evaluated motif on the second protein can be in any surface 
accessible position. Thus, the usage of structural antibody database 
SAbDab expands the search space when compared to the Immune Epitope 
Database (IEDB), typically used to search for mimicking epitopes (Vita et 
al., 2019). Third, the pipeline may take as input multiple structural 
conformations and target protein variants, which accounts for protein 

dynamics. Large variability of target protein structures increases the 
chance of finding configuration favorable for antibody binding. 

Yet, despite the high accuracy, the deep learning model for cross-
reactivity evaluation needs improvements. The model can be biased 
towards some interface structures. The training and testing sets for MaSIF 
deep learning are limited by the protein complexes available in the Protein 
Data Bank (PDB). If the target protein is sufficiently novel in comparison 
to the contents of the database and the training set, the model may fail to 
generalize and may produce false predictions.  Another limitation of the 
deep learning model is the absence of glycans in the set of features. The 
glycosylation events may significantly affect the antibody neutralizing 
properties and thus, the model sensitivity (Miranda et al., 2007). Those 
limiting factors may consolidate the false-negative predictions.  For 
example, the score for the antibody from the Ab-Spike OC43 complex 
(PDB ID 7M51) to bind SARS-CoV-2 Spike protein (PDB ID 7M53) was 
very low (DL score = 3.066, p-value = 0.306, see Supplemental Table S3). 
Yet, the cross-reaction between antibody B6 (PDB IDs 7M51 and 7M53) 
with coronavirus OC43 and SARS-CoV-2 Spike proteins was 
experimentally verified (Sauer et al., 2021). On the other hand, another 
Spike configuration (PDB ID 7RNJ) was found to cross-react with 
coronavirus OC43 (Table 1, H), which highlights the advantage of using 
multiple target structures. 

While the lack of a molecular structure for the target protein may be 
seen as a limitation for the EMoMiS pipeline, protein structures can be 
quickly and accurately predicted with the recent advances in the deep 
learning field (Jumper et al., 2021). 

4.2. Antiviral Antibody Cross-reaction 
The EMoMiS pipeline identified four sites in the SARS-CoV-2 Spike 
protein that may mimic epitopes from other viruses. Antibody cross-
reaction with viral mimic epitopes may provide cross-protection to the 
host. On the other hand, antibodies elicited by mimicry may cross-react 
with the vital antigen with lower affinity. As a result, bound antibodies 
may fail to block the virus from cell entry, while shielding the pathogen 
from its native antibodies. Such an effect is known as antibody-dependent 
enhancement (ADE), where antibody enhances the viral entry (Tirado and 
Yoon, 2003). 

The strongest antibody cross-reactions were predicted for HPV-16 
major capsid protein l and the SARS-CoV-2 Spike protein. HPV is a DNA 
virus that can cause benign and malignant neoplasms (Molijn et al., 2005). 
A recent study reported a patient for which persistent verruca vulgaris 
(benign HPV warts) paradoxically regressed after recovery from COVID-
19 (Demirbaş et al., 2021). However, we hypothesize that the HPV 
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vaccine will not be effective against COVID-19, as the predicted motif 
KHTP is not included in the list of cross-neutralizing epitopes (Tumban et 
al., 2011). Indeed, a recent study of immunization records shows that there 
is no decrease in the frequency of COVID-19 cases in HPV vaccinated 
patients (Pawlowski et al., 2021).  

The next medium confidence molecular mimicry was predicted for non-
structural protein 1 of dengue virus and the SARS-CoV-2 Spike protein 
(Table 1, row D). The antibody cross-reaction between proteins from the 
dengue and SARS-CoV-2 viruses was previously computationally 
predicted (Nath et al., 2020). A recent study experimentally confirmed this 
hypothesis, but the rate of antibody cross-reaction was only 22% (Lustig 
et al., 2021). Yet, it remains unknown if antibodies induced by such cross-
reaction can provide cross-protection. 

Another molecular mimicry hit was found between the SARS-CoV-2 
Spike and the HIV-1 envelope glycoprotein. The first hint to cross-
reactivity was documented in the study that observed false-positive HIV 
tests in COVID-19 patients (Tan et al., 2021). Another group has found 
that two out of nine tested anti-HIV antibodies can cross-react with the 
Spike protein, but such antibody reactions do not block viral entry 
(Mannar et al., 2021). Thus, cross-reaction of anti-HIV antibodies with 
Spike may promote an adverse effect of antibody-dependent enhancement 
(ADE). 

The last molecular mimicry prediction was for coronavirus OC43 and 
SARS-CoV-2 Spike proteins. The structure of the predicted cross-reactive 
anti-Spike antibody S2P6 was isolated from the experimental study 
confirming the existence of such mimicry (Pinto et al., 2021). The 
FKEELD region from perfusion-stabilized S ectodomain trimers is a 
confirmed epitope and conserved across SARS-CoV, MERS-CoV, SARS-
CoV-2, and OC43 (Pinto et al., 2021). Identified mimicry proves the 
validity of our pipeline. We note that SARS-CoV and MERS-CoV are 
absent in the mimicry results because they were excluded from the 
database to avoid obvious molecular mimicry from the closely related 
viral families. 

4.3. Autoimmune Disorders 
Molecular mimicry between epitopes from viral and human proteins may 
cause autoimmune disorders. Antibodies induced by the virus may bind to 
essential human proteins and thereby change their ability to function. The 
SARS-CoV-2 infection can initiate a cascade of interactions between 
plasmin, complement, and platelet-activating systems, which can lead to 
tissue damage, thrombosis, inflammation, and cytokine storm (Mukund et 
al., 2020). The nature of the adverse interactions can be caused by the 
auto-antibodies induced by molecular mimicry.  Four of the identified 
mimicry antigenic motifs originated from human proteins: TPO, 
TNFRSF-5, ABCB-1, and αIIbβ3 (Table 1).  

The strongest cross-reaction was predicted for antibody TN1 to 
recognize the TQLPP motif from TPO and the Spike protein (row A in 
Table 1). Human TPO is a glycoprotein hormone that regulates the 
production of platelets, essential elements for blood coagulation (Kuter 
and Begley, 2002). Previously, we have shown that molecular mimicry 
between Spike and TPO may induce thrombocytopenia, a disorder with 
low blood platelet count (Nunez-Castilla et al., 2021). The EMoMiS 
pipeline result provides further evidence that antibodies that recognize 
TQLPP in Spike may cross-react with TPO, causing the reduction of 
platelet counts. Thrombocytopenia is a common side effect in COVID-19 
patients and is associated with an almost 5-fold increase in mortality 
(Yang et al., 2020; Shi et al., 2021). 

Another high-confidence molecular mimicry was predicted for SARS-
CoV-2 Spike and the human protein TNFRSF-5 (Table 1, row B). TNFSF-
5, also known as CD40,  is a tumor necrosis factor receptor superfamily 
member expressed by immune and non-immune cells and involved in 
producing pro-inflammatory cytokines (Vonderheide and Glennie, 2013). 
Previous studies have reported that monoclonal antibodies against the 
CD40 ligand may induce thrombophilia (Kawai et al., 2000). At the same 
time, it has been shown that COVID-19 infection increases susceptibility 
to systemic thromboembolic complications (Mui et al., 2021; Ferrari et 
al., 2020; Oudkerk et al., 2020). We hypothesize that thrombophilia in 
COVID-19 patients can be induced by the antibody cross-reactivity 
between CD40 and Spike.  

The next high-confidence cross-reactivity prediction was between an 
antibody from SARS-CoV-2 Spike and human αIIbβ3 (Table 1, E). The 
protein αIIbβ3 is a heterodimeric platelet receptor that plays an essential 
role in platelet aggregation (Ma et al., 2007). A previous study showed 
that the level of αIIbβ3 activation on platelets from non-surviving 
COVID-19 patients decreased compared to survivors (Ercan et al., 2021, 
5). The mechanism for the decline in αIIbβ3 in severe COVID-19 patients 
was unknown. Here, we propose that the imbalance of αIIbβ3 can be 
explained by auto-antibodies induced by Spike. 

The cross-reactivity of antibody UIC2 with human ABCB-1 and SARS-
COV-2 Spike protein was predicted with medium confidence (Table 1, 
row C). The multidrug transporter ABCB1 is an ATP-binding cassette 
transporter that is involved in protecting tissues from toxic insult and plays 
a role in multidrug extrusion from cancer cells (Alam et al., 2018). The 
implications of this mimicry discovery remain to be understood and would 
require data from COVID-19 patients with cancer.   

4.4. Effect of Mutations on Molecular Mimicry 
When the structure and sequence of viral variants are available, molecular 
mimicry results may explain the change in the immune response upon 
evolutionary mutations. For example, the antibody known to recognize 
TNFRSF-5 has a reduced cross-reactive binding strength in the Omicron 
and Delta variants compared to the Spike protein in the reference Alpha 
strain (Table 2, column 3). These variants have less chance to elicit auto-
antibodies against TNFRSF-5, implying a lower chance of developing 
thrombophilia. On the other hand, TQLPP molecular mimicry of Spike 
with human TPO was consistent across all SARS-CoV-2 variants (Table 
2, column 2), suggesting that thrombocytopenia is a concern of COVID-
19 infection regardless of mutation. Additionally, the reduction in binding 
score between antibody 2B7 and Beta, Delta, and Omicron variants 
compared to Alpha suggests the potential loss of cross-protection provided 
by the previous infection of the dengue virus 1.   

5 Conclusion 
In conclusion, we have developed a novel approach to infer epitope-

based molecular mimicry. We demonstrate the vital importance of 
predicting cross-reactivity by applying EMoMiS to the SARS-CoV-2 
Spike protein. We have found one confirmed mimicry epitope, FKEELD 
from SARS-CoV-2 and OC43 Spike proteins. Other predicted events of 
antibody cross-reactivity of SARS-CoV-2 Spike with HPV-16, HIV-1, 
and Dengue virus were suggested by previous literature (Demirbaş et al., 
2021; Mannar et al., 2021; Lustig et al., 2021). Unlike previous studies 
(Balbin et al., 2021; Ludin et al., 2011; Doxey and McConkey, 2013), the 
EMoMiS pipeline can predict the exact site of molecular mimicry, thus 
opening the door for further experimentation. Most importantly, the 
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results should be seen as an attempt to explain observed phenomena in 
terms of partial immunity and the COVID-19-associated complications 
and side effects. EMoMiS has generated potential explanations for 
thrombocytopenia and thrombophilia, observed to occur in some COVID-
19 patients. All predicted molecular mimicry candidates were derived 
computationally and should be verified in the laboratory. Additionally, 
this work serves as a step toward building generic pipelines to prepare for 
future epidemics caused by new pathogens. Our methods also provide a 
way to quickly understand what one could expect with new variants of a 
virus.  
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