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Abstract To form a perceptual decision the brain must acquire samples of evidence from the9

environment and incorporate them in computations that mediate choice behavior. While much is10

known about the neural circuits that process sensory information and those that form decisions,11

less is known about the mechanisms that establish the functional linkage between them. We12

trained monkeys to make difficult decisions about the net direction of visual motion under13

conditions that required trial-by-trial control of functional connectivity. In one condition, the14

motion appeared at different locations on different trials. In the other, two motion patches15

appeared, only one of which was informative. Neurons in the parietal cortex produced brief16

oscillations in their firing rate at the time routing was established: upon onset of the motion17

display when its location was unpredictable across trials, and upon onset of an attention cue that18

indicated in which of two locations an informative patch of dots would appear. The oscillation19

was absent when the stimulus location was fixed across trials. We interpret the oscillation as a20

manifestation of the mechanism that establishes the source and destination of flexibly routed21

information, but not the transmission of the information per se.22

23

Introduction24

Human and animal behavior is remarkably flexible. We can execute a particular action in response25

to a wide variety of prompts. In a lab setting, a monkeymight move its eyes to a location because a26

visual target had been flashed there amoment ago or because a visual stimulus at another location27

(or a tone) predicts a reward for this eye movement. In both scenarios there is an elevation of28

the firing rate of neurons that direct attention and orienting responses to the target. In the first29

case, the sensory input prompting this activation comes from neurons in the visual cortex with30

receptive fields that overlap the target location. In the second, the sensory input is from visual31

cortical neurons with receptive fields that do not overlap the target (or from auditory cortex). In32

the setting of decision making, we might say that there are many possible sources of evidence33

that could bear on the decision to choose a particular response. Therein lie the seeds of a routing34

problem that is central to cognition (Zylberberg et al., 2010). A general mechanism for routing is35

currently unknown and there is no guarantee that there is just one solution. However the study of36

attention and executive control implicate a role of oscillatory activity and/or synchronous spiking37

in the process (Gregoriou et al., 2012; Lee et al., 2013; Saalmann et al., 2007; Pesaran et al., 2008;38

Dean et al., 2012; Stanley et al., 2018).39

We examined information routing in the context of perceptual decision-making, using a well40
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studied direction discrimination task (Newsome and Pare, 1988; Britten et al., 1992). The subject, a41

rhesusmonkey, must determine the net direction of dynamic randomdots, only a fraction of which42

are informative at any moment. The decision is indicated by a saccadic eye movement to one of43

two choice-targets located on opposite sides of the random dot display. The decision is easy when44

many of the dots are moving coherently (strong motion); it is difficult when most of the dots are45

randomly replotted and only a small fraction of the dots are informative (weakmotion). To perform46

well, the subject must accumulate noisy evidence over time. This accumulation is reflected in the47

activity of neurons in the lateral intraparietal area (LIP) with receptive fields that overlap one of the48

choice targets (Shadlen and Newsome, 1996)—an observation that presupposes a solution to a49

routing problem. Momentary evidence from direction selective neurons in area MT, with receptive50

fields that overlap themotion, must route their information, directly or indirectly, to neurons in LIP51

that represent the choice targets (Salzman et al., 1992; Shadlen and Kandel, 2021). This routing52

could not be anticipated by evolution. In some cases it might be established through learning,53

while in others it may need to be established on the fly. Here, we focus on the latter scenario.54

We used two tasks that require a solution to the routing problem on each experimental trial. In55

the first, a visual cue instructs themonkey tomake its decision about one of two patches of random56

dots (cued attention task). In the second, a single patch of motion appears at an unpredictable57

location (variable location task). In both tasks LIP neurons exhibit decision related activity during58

motion viewing, consistent with successful routing on most trials. We reasoned that the routing59

must be established after the onset of the attention cue or the motion stimulus and before the60

neurons in LIP begin to represent the accumulating evidence. We observed a prominent oscillation61

in the firing rates of single neurons in these epochs. The oscillation is aligned to the onset of the62

instructive cue in the cued attention task and to the onset of themotion stimulus itself in both tasks.63

Theoscillations are brief and limited to the epochpreceding the representation of the accumulating64

evidence. We propose that they are signatures of the mechanisms that establish the routing of65

evidence to the site of its incorporation in a decision, but they do not appear to play a role during66

the information transfer accompanying decision formation.67

Results68

Four rhesus monkeys (Macaca mullata) were trained to perform variations of the random dot mo-69

tion (RDM) task that required trial by trial changes in routing. In the cued attention task (Fig. 1A),70

two patches of random dot motion were presented on each trial, preceded by a cue that indicated71

which location the monkey must attend to. The monkey received a reward if it chose the direction72

of motion in the cued patch. In the variable location task (Fig. 1B), just one patch of motion was73

presented, but its location was unpredictable.74

In the cued attention task, both monkeys based their decisions on the relevant motion patch75

in at least 90% of trials (Fig. 2A) and their performance accuracy improved as a function of viewing76

duration at a rate consistent with temporal integration of evidence to a stopping bound, as shown77

previously (Kiani et al. 2008; Fig. 2B). However, neither monkey was able to fully ignore the uncued78

patch, as evidenced by the shallower choice function on the trials in which the motion patches had79

opposite directions (open symbols, Fig. 2A). At the strongest motion strength (±51% coh), errors80

occurred on 11% of trials when the patches contained opposite directions, compared to 3% when81

the patches shared the same direction. Some of these errors are explained by a failure to route82

information from the appropriate patch. The curves in Fig. 2A&B are fits to a drift diffusion model83

that takes into account both motion strength and viewing duration. Importantly, it allows for the84

possibility that the uncued patch of dots is not fully suppressed, and on a random fraction of trials,85

𝜆, themonkey bases the decision on that patch (seeMethods, Behavior and Table 1). In the variable86

location task, the monkeys made fewer than 2% errors when motion was strongest, nearly all of87

which were on trials with duration of less than 0.3 s (Fig. 2B). This performance is comparable to88

similar tasks in which the location of the motion stimulus was predictable (Fetsch et al., 2014; Gold89
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Figure 1. Task flow. A, Cued Attention task. After the monkey acquires fixation, two choice-targets appear,followed by a brief spatial cue (blue circle). After a delay, two random dot motion patches appear. The motionstrength is the same in the two patches, but the directions may be the same or opposite. When the fixationpoint is extinguished, the monkey indicates the direction of the cued motion with a saccade to the left or rightchoice target and receives a reward if the choice corresponds to the direction of the cued patch. B, VariableLocation task. Same as in A except there is no attention cue, and only one patch of motion is shown, eitherabove or below the point of fixation.

and Shadlen, 2000). For the monkey that performed a free response version of the task, both90

reaction time and choice depended on the strength of motion (Fig. 2C).91

Neural recordings92

The data comprise 173 neurons from LIP of four monkeys (see Table 2). All neurons were screened93

for spatially selective persistent activity in oculomotor delayed response (ODR) tasks. One of the94

saccadic choice targets (𝑇in) was placed in the neural response field, typically in the contralateral95

visual field (seeMethods). Such neurons are known to reflect the accumulation of evidence bearing96

on the decision to choose 𝑇in. As shown in Fig. 3, the neural response begins to reflect the direction97

and strength of motion approximately 200 ms after motion onset, and this holds whether the98

source of evidence is from the upper or lower location. In the cued attention task, the decision-99

related activity is also affected by the direction of motion of the uncued patch (Figure 3—figure100

Supplement 2), consistent with the higher error rate on trials with motion in opposite directions.101

It thus appears that by 200 ms of the onset of motion, some mechanism must establish func-102

Task Monkey 𝜅 𝐵 𝐶0 𝜅opp 𝜆
Cued attention Dm 7.9 0.74 -0.047 4.6 0.029
Cued attention Np 17.9 0.44 -0.011 7.9 0.006
Variable location Dm 10.3 0.64 0.013
Variable location Ap 11.4 0.61 -0.001
Variable location (FR) Dz 17.1 0.74 -0.02

Table 1. Parameters for model fits. Variables are defined in Eqs. 2, 4 and 5. Model comparison favorsinclusion of 𝜅opp and 𝜆 for both monkeys (BIC: 609 and 773 for Dm and NP). Inclusion of both parameters issuperior to just one. For Dm, BIC = 9.7 (comparison to 𝜅opp = 𝜅, which attributes nearly all errors atcoh = ±0.52 to use of the wrong patch). For Np, BIC = 71 (comparison to 𝜆 = 0). Free response task (FR)includes constant parameters, 𝑇 right
nd = 0.33 and 𝑇 lef t

nd = 0.34, which accounts for sensory and motor latenciesthat add to the decision time to explain the total response time.
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Figure 2. Behavior. A, Cued attention task. Proportion of rightward choices is plotted as a function of signedmotion strength of the cued patch (positive coherence signifies rightward). Filled and open symbols showtrials where the direction of uncued motion patch was the same or opposite to the cued patch, combiningtrials for all viewing durations. Solid and dashed curves are fits of a bounded drift-diffusion model thatincorporates misrouting owing to incomplete suppression of the uncued patch or attending to it erroneouslyon a fraction of trials. The curves represent the expectation of the choice-proportions for the mean stimulusduration (top, monkey Dm; bottom, monkey Np). B, Variable location task with random stimulus durations.There is only one patch of motion. The proportion of choices in the positive direction (favoring the target inthe neural response field) is plotted as as a function of signed coherence. The smooth curve is a fit to asimpler bounded drift diffusion model. As in A, the proportions reflect all stimulus durations, and the fitshows predictions for the mean duration (top, monkey Dm; bottom, monkey Ap). C Choice-response timeversion of the variable location task. The choices (top) and response times (bottom) are fit by a boundeddrift-diffusion model. Fit parameters for all monkeys and conditions are in Table 1

Np Dm Ap Dz Nt* Br*
Cued attention 60 49
Variable location 28 23
Variable location (FR) 13 28 21
Fixed location (FR) 64 52

Table 2. Number of neurons recorded from each monkey in the tasks (FR, free response task; * previouslypublished data).
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Figure 3. LIP neurons reflect evidence from the attended patch of motion. A, Activity of 109 neuronsstudied in the cued attention task when the upper patch (top) and lower patch (bottom) were cued asinformative (combined data from monkeys Dm and Np). Responses are detrended by neuron, via subtractionof the mean firing rate, as function of time, on the lowest coherences (0% and ±3.2%). Errors on non-zerocoherences are excluded. The neurons reflect the formation of decision from information derived from theupper and lower visual field. B, Activity of 64 neurons studied in the variable location task when the motionpatch appeared in the upper (top) or lower (bottom) location (combinded data from monkeys Dm, Ap and Dz).
Figure 3—figure supplement 1. Firing rates aligned to all task relevant events
Figure 3—figure supplement 2. Comparison of responses when motion patches had the same or opposite
directions
Figure 3—figure supplement 3. Neural responses shown separately for each monkey and task

tional connectivity between LIP neurons that represent the choice-targets and the relevant direction-103

selective neuronswith receptive fields that overlap the RDM. In the cued attention task, this routing104

might occur following the attention cue. In the variable location task, only the onset of the RDM is105

informative. In what follows we demonstrate a brief oscillation in the firing rates of LIP neurons.106

We first characterize the timing and strength of the oscillations in the two tasks. We then report107

additional observations that suggest the oscillations are associated with a mechanism that estab-108

lishes the functional connectivity between sources of evidence and the circuits in LIP that use this109

evidence to establish the relative priority of the choice targets. In the Discussion, we consider how110

such oscillations might bear on neural mechanisms of routing.111

Oscillations in the cued attention task112

Fig. 4A–D shows prominent oscillations in the firing rate of two example neurons, aligned to onset113

of the attention cue. Importantly, the cue, like the random dot motion, was presented outside114

the neural response field (see Methods, Mapping tasks). One of the neurons (Dm49) exhibits 3–4115

evenly spaced periods of increased activity (∼16.7Hz) when the cue signaled that the relevant patch116

of motion would appear in the upper location. The other neuron (Dm35) exhibits a similar period117

but with a more pronounced decay in amplitude, independent of whether the cue appeared in the118

upper or lower location. These examples are among the most vivid in the data set. In most cases119

the oscillations are imperceptible in the trial rasters. The examples also highlight heterogeneous120

features, such as the rate of decay and spatial preference, that wewill not dwell upon. What stands121

out as consistent is the timing, periodicity and transient nature of the oscillations. These features122

are preserved in the firing rate averages across the population of neurons (Fig. 4E,F).123

To further characterize the amplitude and frequency of these oscillations we applied a match-124

ing pursuit (MP) algorithm (Chandran et al., 2016; Mallat and Zhang, 1993) to the the across-trial125

average spike rate functions for each neuron. MP is especially useful for brief periodic signals, as it126

measures power with high temporal resolution (see Methods). We report the average Wigner-Ville127
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Figure 4—figure supplement 2. Realigning does not identify additional peaks
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power, 𝑃 , in the 12–20 Hz range using 90 ms epochs preceding and following onset of the atten-128

tion cue, denoted 𝑃 12∶20
pre and 𝑃 12∶20

post (−90≤ 𝑡 < 0 and 40≤ 𝑡 < 130 ms, respectively). We use the same129

nomenclature below, when aligning the response to other task events. The superscript identifies130

the range of frequencies contributing to the 𝑃 statistic. The majority of neurons recorded in the131

cued attention task exhibit an increase in 𝑃 12∶20 after cue onset (𝑃 12∶20
post > 𝑃 12∶20

pre , 𝑝 < 0.05, 65 of 109132

neurons). The presence of oscillations is similar for putative excitatory and inhibitory neurons (as-133

certained from spike waveform analysis; see Methods, Cell type analysis). Across the population,134

the mean 𝑃 12∶20
post was 1.52±0.49 sp2s−2, an order of magnitude larger than 𝑃 12∶20

pre (0.12±0.03 sp2s−2;135

𝑝 < 0.0001). In comparison, Wigner-Ville power in the 4–11 Hz band does not undergo change (𝑃 4∶11
pre136

and 𝑃 4∶11
post are 1.27±0.29 and 1.32±0.27 sp2s−2, respectively; 𝑝 = 0.35).137

The oscillation in firing rate is triggered by the onset of the cue, and decays quickly thereafter.138

By 0.18 s after cue onset, 𝑃 12∶20 is only 0.067±0.026 sp2s−2, which is comparable to 𝑃 12∶20
pre (𝑝 = 0.09).139

We wondered if the oscillations are truly brief or are simply undetectable as a consequence of de-140

phasing. To test this, we used a piecewise linear time warp designed to realign temporally jittered141

oscillations (Williams et al., 2020). While this algorithm successfully realigned jittered synthetic142

data, it did not identify any new peaks in the neural data (Figure 4—figure Supplement 2). We there-143

fore conclude that the oscillation is in fact short-lived and, in this case, caused by a task-relevant144

visual cue, outside the neural response field.145

A weak oscillation in the firing rate is also present after motion onset. Fig. 5A–D shows the146

activity of the same example neurons shown in Fig. 4A–D, aligned to onset of the random dot147

displays. The oscillations are apparent in the rasters and average firing rates for both neurons.148

As shown in Fig. 5E–F, they are also evident in the average firing rate across the population of149

neurons. They are weaker than the oscillations induced by the attention cue (𝑝 < 0.0001; Fig. 5G),150

but they are statistically reliable: 𝑃 12∶20
post is an order of magnitude larger than 𝑃 12∶20

pre (0.80±0.30 vs.151

0.06±0.01 sp2s−2, 𝑝 < 0.0001). The weaker oscillation following motion onset is consistent with the152

hypothesis that these oscillations play a role in establishing functional connectivity. In the cued153

attention task, information about the location of the relevant motion patch was already supplied154

by the cue.155

We also detected oscillations in the local field potential recordings made from the same elec-156

trode used for the neural recordings. The LFPs revealed oscillations similar to those detected in157

the spiking activity. For example, Fig. 6A shows the average LFP for monkey Dm, aligned to the158

onset of the attention cue. The gray arrows are copies of the black arrows in Fig. 4, which show the159

peaks in the firing rate oscillations from the same experiments. The oscillations in the LFP record-160

ings frommonkey Np are less pronounced, but some deflection is evident at the time of the peaks161

in spike rate, shown by the gray arrows in Fig. 6B. For bothmonkeys, 𝑃 12∶20
post is greater than 𝑃 12∶20

pre for162

both cue and motion onset (𝑝 < 0.0001), and like the firing rate oscillations, 𝑃 12∶20 at motion onset163

is weaker than at cue onset (𝑝 < 0.0001, Fig. 6C).164

The oscillations in the LFP and firing rates appear to bemanifestations of a common underlying165

mechanism. In addition to the similarity in their timing and frequency, there is a tendency for spikes166

to occur in the trough of the LFP oscillation (𝑝 < 0.0005; Fig. 6D). The frequency histogram of spike167

phases is obtained by extracting the dominant Gabor atom from the matching pursuit analysis of168

the LFP. The spike phases are the inverse cosine of the carrier at the timeof the spike, such that zero169

and 𝜋 are the peak and nadir of the carrier, respectively (see Methods, Spike-field alignment). The170

observation is unsurprising given the similarity of the signals, but it is not an artifact of recording171

the LFP and action potentials from the same electrode. Similar oscillations in the LFP are present172

at electrodes that pick up few (or zero) spikes.173

Oscillations in the variable location task174

In the variable location task, it is the appearance of the random dot motion itself that resolves175

the uncertainty about the source of evidence bearing on the decision. As in the cued attention176

task, the routing must be established between direction selective neurons in the visual cortex that177
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Figure 5. Oscillations at motion onset in the cued attention task. A–D, Activity of the neurons shown inFig. 4A–D, aligned here to the onset of random dot motion. Attention was cued to the upper patch in A and Band to the lower patch in C and D. E,F, Average activity across all neurons in both locations. Gray arrows markthe positions of the peaks in activity in Fig. 4E&F. G, Average 𝑃 12∶20
pre and 𝑃 12∶20

post , across all neurons from bothmonkeys, in 90 ms epochs before and after onset of the attention cue and random dot motion stimulus.Asterisks indicate significant differences (*,**: 𝛼 =0.05, 0.01; error bars are s.e.m.).
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represent the motion and the LIP neurons that represent one of the choice-targets. Here however,178

connectivity must be established between the onset latency of visual cortical neurons and the179

beginning of evidence accumulation—roughly 40–200ms frommotion onset. The example neuron180

shown in Fig. 7A–B exhibits oscillations in the firing rates similar to those in the cued attention task.181

They are also evident in the pooled firing rates across 64 neurons from the three monkeys (Fig. 7C182

and Figure 7—figure Supplement 1). The average 𝑃 12∶20
post is two orders of magnitude larger than183

𝑃 12∶20
pre (2.3±1.2 and 0.034±0.005 sp2s−2, respectively; 𝑝 < 0.0001).184

The task comprises alternating blocks of fixed and variable stimulus locations. In the former185

case, it may not be necessary to establish the appropriate functional connectivity on every trial.186

We therefore predicted that signals associated with routing might be diminished in these blocks.187

Indeed 𝑃 12∶20
post was slightly reduced on trials where the motion stimulus location was fixed (𝑝 <188

0.01, permutation test). While significant, there are aspects of the design that might weaken this189

comparison. In particular themonkey had learned to expect the RDM to appear in various locations,190

and may not have adapted fully to the blocked design. We therefore augmented this analysis with191

a reänalysis of two older data sets, which are better suited to test our hypothesis.192

Two monkeys reported in Roitman and Shadlen (2002) were trained and studied with random193

dot motion viewed at the center of the visual field. One year later, the same monkeys were re-194

trained and studied on a variable location task (included in Shushruth et al. 2018). We sought to195

determine whether oscillations in the firing rates were present following onset of the random dot196

motion. As shown in Fig. 8, we did not detect oscillations in the recordings from either monkey in197

the earlier fixed location study, whereas they are clearly present in the data from same monkeys—198

and same LIP—in the variable location design (Table 3E). While the study was not designed with199

this longitudinal comparison in mind, it provides support for the hypothesis that the transient os-200

cillations are associated with neural mechanisms responsible for flexible routing. It also rebuts the201

assertion that the oscillations are triggered by any task-relevant visual stimulus. The oscillations202

appear to be associated with task events that resolve uncertainty about the source of information.203

Of course, routing requires specification of both the source and destination of information. We204
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Fixed location (FR) Variable location (FR)
𝑃 12∶20
pre 𝑃 12∶20

post P-value 𝑃 12∶20
pre 𝑃 12∶20

post P-value
Nt 0.8±0.2 1.0±0.2 0.06 0.3±0.1 3.4±2.0 0.04
Br 0.8±0.1 0.9±0.2 0.61 0.2±0.1 2.2±1.0 0.0007
Combined 0.88±0.12 0.97±0.13 0.11 0.40±0.10 2.6±0.9 0.00001

Table 3. Oscillation power in fixed and variable stimulus location tasks. Units are sp2s−2 (FR, free responsetask).
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therefore looked for oscillations following the onset of the choice targets. Recall that this event205

precedes the attention cue in the cued attention task and the the RDM in the variable location206

task. As shown in Fig. 9, oscillations are present in both tasks following onset of the choice targets207

(𝑝 < 0.0001), one of which is in the neural response field. They can also arise when both targets208

appear outside the neural response field, but are relevant to the routing of other information in209

the response field. This occurs in the second of the reänalyzed data sets, in blocks where the210

RDM is displayed in the neural response field (0.21±0.07 and 0.54±0.11 sp2s−2 for 𝑃 12∶20
pre and 𝑃 12∶20

post ,211

respectively; 𝑝 < 0.001). This observation, like the attention cue in Fig. 4, is another example of an212

oscillation caused by the onset of stimuli outside the neural response field, but relevant to neurons213

that represent the predicted retinotopic location of the motion evidence.214

Discussion215

Unlike innate sensory-response programs, such as escape or courtship, evolution did not imbue216

the brain with circuits devoted to the vast repertoire of decisions one encounters in life—including217

the motion tasks studied here. Whereas the processing of motion and the organization of orient-218

ing eye movements rely on dedicated sensory and motor circuits, the neural circuits responsible219

for planning possible eye movements cannot exploit dedicated connections to the neurons that220

represent all the possible sources of evidence bearing on such plans. The flexibility to learn which221

sources are relevant and to route them in the moment are hallmarks of higher brain function.222

We studied an example of flexible routing by introducing uncertainty about the source of visual223

evidence bearing on a decision about motion direction. In one task, the location of a single patch224

of random dots was varied randomly across trials. In the other, an attention cue indicated which225

of two motion patches should inform the decision. In both tasks the decision is communicated by226

a saccadic eye movement to one of two choice targets. An advantage of this highly studied percep-227

tual decision is the accompanying quantitative framework that unites choice accuracy, sensitivity,228

decision time, change of mind, and confidence (Shadlen and Kiani, 2013). We exploited this frame-229

work to show that a portion of the errors on the cued attention task are explained by some form of230

misrouting. Bothmonkeys fail to suppress all information from the uncued patch, andmonkey Dm231

appears to attend to the wrong patch altogether on 3–6% of trials, accounting for at least half of232

the errors at the strongest motion coherence. The observations are consistent with a large body of233

work in cognitive science that frames attention in terms of the control of information flow (Driver,234

2001; Posner, 1988; Posner et al., 2004; Buschman and Miller, 2009; Buschman and Kastner, 2015;235

Panichello and Buschman, 2021). In the present study, this control problem, what we refer to as236

routing, must be completed by the time neurons in association cortex begin to integrate the sen-237

sory evidence toward a decision. The destination of the routed information is specified when the238

choice targets appear, but the source is uncertain until the onset of motion in the variable location239

task and the onset of the attention cue in the cued attention task.240
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We discovered a neural correlate of this routing event in the lateral intraparietal area (LIP). We241

focused our recordings on neurons with two properties: (i) a response field that overlaps one of242

the choice-targets and (ii) spatially selective persistent firing rates during an oculomotor delayed243

response task. Such neurons are known to represent the accumulation of the noisy evidence used244

by the monkey to inform the saccadic choice, and we replicated this phenomenon (Fig. 3). We ob-245

served that many such neurons also exhibit a brief oscillation in firing rate that is time-locked to246

the moment when information about the source of evidence becomes available. The oscillation247

manifests as a transient excess of spikes that repeats one or more times at intervals of 61±2 ms248

(∼16 Hz), and it appears to be coupled to the local field potential (Fig. 6). Striking examples like249

those in Figs. 4, 5 and 7 were rare, but the majority of cells showed an increase in oscillatory ac-250

tivity in this range, but they were undetectable in the data from Roitman and Shadlen (2002), who251

presented the motion stimulus in the same location on all trials. The oscillations appeared in the252

same monkeys (and same recording sites) after they were trained to base their decisions on stim-253

uli that could appear in different locations (Fig. 8). This serendipitous observation supports the254

hypothesis that the phenomenon is associated with flexible routing of information from neurons255

that represent the stimulus motion to neurons in LIP that represent the decision. The connection256

path is almost certainly polysynaptic.257

Previous studies have identified transient oscillations, also in the low beta range, that corre-258

late with performance on perceptual tasks (Koelewijn et al., 2008; Haegens et al., 2011; Siegel259

et al., 2011). For example, Donner et al. (2007) describe such oscillations originating from poste-260

rior parietal cortex following onset of a random dot motion stimulus. They reported that power261

was greater when a stimulus was correctly categorized as motion or noise (hits and correct rejects)262

than on misses and false alarms. We interrogated all of our data sets for such a relationship but263

found only one case: a small reduction in 𝑃 12∶20 aligned to motion onset on errors in the cued264

attention task (𝑝 < 0.006, permutation test). Other than this one case, we did not detect a con-265

vincing correlation between behavioral performance on the motion task and the magnitude of the266

oscillations. Perhaps we lack sufficient power. However it seems more likely that errors were not267

associated with a failure to route, but rather, a failure to route the right information. Consistent268

with this interpretation, Fiebelkorn et al. (2013) reported periodicity in detection accuracy during269

visual detection tasks. The periodicity was synchronized with cycles of the theta rhythmmeasured270

in the LFP recorded from area LIP, and the poor-detection phases were associated with increased271

power in an associated 10–18 Hz frequency band (Fiebelkorn et al., 2018, 2019), which the authors272

interpret as a sign of attentional shifts away from the task. These shifts in attention might involve273

the same routing processes as allocation of attention in our task.274

Why would oscillations be associated with routing? One possibility is that they serve to syn-275

chronize spikes and thus increase their influence on downstream circuits (Singer and Gray, 1995;276

Akam and Kullmann, 2010; König et al., 1995; Gregoriou et al., 2009; Fries, 2005, 2015; Buschman277

and Miller, 2009). If so, they ought to be present during the epoch in which signals in upstream278

motion areas are affecting the LIP response. In our data, however, they are present only tran-279

siently, in the epoch preceding the transfer of information (cf. Panichello and Buschman 2021).280

We therefore infer that they are associated with the mechanism that establishes the connection281

rather than facilitating the flow of information directly. Of course, the oscillations themselves do282

not form the connections, but they may provide a clue to the underlying mechanism. Among the283

many challenges posed by routing is the need to identify the appropriate neurons at the source284

and destination. We suspect that the oscillatory signal is linked to this identification function.285

It has been shown that field potentials (e.g., eCoG) are associated with calcium plateau poten-286

tials in apical dendrites of layer-5 pyramidal neurons (Suzuki and Larkum, 2017), and these same287

potentials are capable of inducing plastic changes at relevant time scales (e.g., behavioral time288

scale plasticity, Magee and Grienberger 2020). Such plateau potentials and their biochemical se-289

quelae might allow long range projections—especially feedback—to identify their targets, or for290

the targets of the projections to establish a state of receptivity to a signal that is broadcast widely291
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(Quinn et al., 2021). This would be a convenient way for feedback projections to pick out the causes292

of the activity that is feeding back. Thismight servemany functions, including learning to use those293

inputs again under the right conditions, or to bind in some way the cause of an event with with its294

consequences. Oscillatory activity might be a signature of these inputs (Zhang and Bruno, 2019).295

Thus we are in agreement with a longstanding view that oscillations, measured mainly in the field296

potentials, herald a connection to cognitive states that firing-rates alone do not divulge (Freeman297

et al., 1983; Singer and Gray, 1995; Fries et al., 2001; Crick and Koch, 2003).298

Methods and materials299

Four adultmale rhesusmonkeys (Macacamulatta) were implantedwith a titaniumheadpost (Rogue300

Research, Montreal, Canada) and a plastic (Peek) recording chamber (Crist Instruments, Damascus,301

MD). The placement of the chamber was guided by 3D reconstruction of MRI scans (OsiriX DICOM302

Viewer, Pixmeo, Bernex, Switzerland) to ensure access to area LIP along the left intraparietal sul-303

cus. In the experiments, the monkeys were seated in a primate chair (Crist Instruments) that was304

custom fit to support the monkey’s size and weight during head stabilization, allowing the monkey305

to adjust its posture below the head and thus prevent potential discomfort associated with head306

stabilization. Extracellular single-neuron recordings were made using quartz coated tungsten mi-307

croelectrodes (Thomas Recording GmbH, Giessen, Germany) or 16-channel V-probes or S-probes308

(Plexon), which were advanced (Mini Matrix drive, Thomas Recording) through a metal guide tube309

seated in a plastic grid. Electrical recordings were filtered and amplified (Ominplex recording sys-310

tem, Plexon Inc, Dallas, TX). Waveforms identified as single neuron action potentials were saved,311

and each occurrence was assigned a spike-time. The quality of isolation was confirmed offline312

based on interspike interval and clustering based on principal component analysis of the wave-313

forms (Plexon Offline Sorter, Plexon Inc, Dallas, TX).314

All procedures were approved by the Columbia University IACUC and conform to the NIH guide315

for the care and use of laboratory animals (National Research Council, 2011).316

Behavioral tasks317

Monkeys were trained to perform a variety of oculomotor and perceptual tasks that required the318

monkey to maintain the gaze on a fixation point and to make saccadic eye movements to visual319

targets in the periphery (see Table 2). Eye position (gaze angle) was measured with high speed320

video tracking (EyeLink 1000, SR research). Acceptance windows for eye position during fixation321

was a square ±1.5° from the fixation point (i.e., 9 deg2). Here and throughout, °, or deg, stands for322

degrees visual angle. For saccades to peripheral targets, the acceptance windowwas a ±5° square323

around the target center. The criteria were relaxed for eccentricities exceeding 12°.324

Cued attention task325

Twomonkeys were trained to perform a variation of a randomdotmotion direction-discrimination326

task used in previous studies (e.g., see Roitman and Shadlen 2002) in which two motion patches327

were shown, but only one was informative. In this cued attention task (Fig. 1) the monkey initiated328

a trial by fixating on a central red dot. After 0.35 s twowhite targets appeared, eachwith a diameter329

of 0.5 degrees visual angle. Target onset was followed by a delay period, drawn from a truncated330

exponential distribution331

𝑓 (𝑡) =

⎧

⎪

⎨

⎪

⎩

𝛼
𝜏
𝑒−

𝑡−𝑡min
𝜏 𝑡min ≤ 𝑡 ≤ 𝑡max

0 otherwise
(1)

where 𝜏 = 0.1, 𝑡min = 0.2 s, 𝑡max = 0.6 s, and 𝛼 is chosen to ensure the total probability is unity. Note332

that the expectation of 𝑡 is less than 𝑡min + 𝜏, owing to truncation. In what follows all variable delay333

periods are described by a range, 𝑡min to 𝑡max, and 𝜏 in Eq. 1.334

The cue, a 5° blue ring, was flashed on the screen 4.5° directly above or below the fixation335

point for 0.18–1 s (𝜏 = 0.2 s). After a 0–1 s delay (𝜏 = 0.15 s), two motion patches appeared. The336
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monkey was required to attend to the cued motion patch while ignoring the irrelevant motion in337

the uncued stimulus. The direction of motion of the uncued stimulus was the same as that of the338

cued stimulus on one third of trials and opposite on two thirds. We found this ratio worked to339

minimize the influence of the uncued motion stimulus on the choices. Motion was always along340

the horizontal axis. For each trial, the strength of the net motion (motion coherence) was drawn341

uniformly from the set {0, 3.2, 6.4, 12.8, 25.6, 51.2}. The strength ofmotion for the two patches was342

matched to prevent themonkey from responding based on the easier motion stimulus rather than343

the relevant one. The cued location was assigned randomly between the two locations for each344

trial. Motion lasted for 0.1–1.5 s (𝜏 = 0.35 s) and was followed by a 0.4–1.2 s delay (𝜏 = 0.15 s). After345

this delay the red fixation point disappeared and the monkey indicated its response by a saccade346

to a left or right choice target.347

One choice target was centered in the response field of the recorded neuron. The other was at348

the same elevation and azimuth in the opposite hemifield. The random dot motion was confined349

to two circular apertures (5° diameter) centered at the same elevation above and/or below the350

fixation point. The locations were determined by establishing the extent of the neural response351

field so as to avoid overlap. The monkey performed a series of delayed saccades (see Mapping352

tasks), and we ensured that saccadic targets (white spots, 0.5° diameter) did not elicit a visual or353

memory response when they overlapped the intended apertures.354

Variable location task355

In the variable location task, only one of the random dot patches was shown on the trial, and there356

was no attention cue. The same strategy was employed to determine the two locations, above and357

below the fixation point, but the the location on any trial was random (Bernoulli dist, P=0.5). For358

monkeys Ap and Dz, the choice targets were not restricted to the same elevation in the visual field.359

One was centered in the neural response field (location 𝐴); and the other was at location 𝐵, such360

that a virtual line 𝐴𝐵 passes through the fixation point (𝐹 ), and 𝐴𝐹 ≅ 𝐵𝐹 ). The opposing directions361

of motion were parallel to 𝐴𝐵. Monkey Dm was only trained on horizontal motion, so targets and362

motion shared the same elevation. The task was otherwise similar to the cued attention task.363

For monkeys Ap and Dm, motion was displayed for 0.1–1 s (Eq. 1, 𝜏 = 0.25 s) and was followed364

by a 0.4–1.2 s delay (𝜏 = 0.15 s). After this delay the fixation point disappeared and themonkey indi-365

cated its decision by making a saccade to one of the choice targets. Motion strengths were drawn366

from the same distribution as in the cued attention task for monkeys Dm and Ap; the strongest367

coherence was not included for monkey Dz. For this monkey we used a free response (choice-368

response time) design. the task was identical to the controlled duration version, except that a369

saccadic response was accepted any time after motion onset. For all monkeys, correct choices370

were rewarded with a drop of juice. Trials with 0% coh were rewarded randomly. Experiments371

were conducted in alternating blocks of 120 trials with either a fixed or variable stimulus location.372

In a fixed location block themotion stimulus appeared in one location for 60 consecutive trials and373

then appeared in the other location for 60 trials.374

For monkeys Ap and Dz stimuli were shown on a 40 cm cathode-ray tube (CRT) monitor with a375

75 frame/second refresh rate. Formonkey Dm, stimuli were shown on a 54 cm liquid crystal display376

(LCD) with an effective refresh rate of 60 frames per second. For this display, the interval between377

replotted frames was reduced from every third frame to every second frame. we adjusted the dot378

displacement to achieve consistent speed across display types (typically 5°/s).379

Mapping tasks380

We conducted two screening tasks to select neurons for study in the tasks. In both, the monkey381

maintained its gaze on a central fixation point (FP), and initiated a saccade when the FP was ex-382

tinguished. In the memory saccade task, 0.2–1 s (𝜏 = 0.2 s) after attaining central fixation, a white383

target (0.5° diameter) was flashed in the periphery. After a memory delay of 0.7–1.2 s (𝜏 = 0.1.5 s)384

from target onset, the fixation point was extinguished. disappeared and the monkey was free to385
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saccade to the cued location to receive a juice reward. The overlap saccade task was the same, ex-386

cept that the target remained visible throughout the delay period and the saccade. We refer to387

both these tasks as ’oculomotor delayed response’ (ODR).388

Neuron selection and recording389

Recording sites were selected by 3D reconstruction of anatomical MRI (3T). The electrode was ad-390

vanced along the intraprietal sulcus at positions that are thought to correspond to the ventral391

portion of the lateral intraprietal area (LIPv; Lewis and Van Essen 2000) where one encounters392

meany neurons with visual and perisaccadic responses. Within putatative LIPv, wemapped all well393

isolated units using the overlap saccade task. Neurons with spatially selective persistent activity in394

this task were further mapped using the memory-saccade task. A neuron was included in the data395

set if it showed spatially selective persistent activity during the delay period of memory saccades396

and if the neural response field allowed for a task geometry compatible with the monkey’s train-397

ing. We excluded neurons post hoc if we obtained less than 240 trials before the signal to noise398

deteriorated to the point that the spike waveform was not adequately isolated (7/71 neurons).399

In the cued attention task, a 16 channel probe was used to record several neurons simultane-400

ously. All channels were screened with thememory guided saccade task. The recording probe was401

positioned to maximize the number of recorded units showing memory activity. The task objects402

could not be placed optimally for all cells, but nearby cells tended to have similar response fields.403

The task geometry was optimized for the best isolated channel. This yielded 1–7 simultaneously404

recorded cells with acceptable task geometry: a choice target roughly centered in the response405

field and both motion patches outside the response field. Cells were sorted offline as for single406

electrodes. Particular attention was paid to whether waveform principal components, or spike407

rate changed over time to ensure that the same cell was recorded throughout the session. Mon-408

keys performed an ODR trial to each target location after every 40 trials on the motion task, and409

thorough screening was repeated at the end of the session to ensure that response fields were410

constant throughout the session. If a cell showed a change in any of these parameters, trials af-411

ter that change were excluded from analysis. Occasionally a new waveform appeared during the412

recording session. It was included in the analysis if (i) it was well isolated from background noise,413

(ii) exhibited a consistent waveform-principal components, spike rate, and response preference414

in the interleaved ODR trials, and (iii) showed an appropriate response field in the post session415

screening tasks.416

Data analysis417

Peristimulus timehistograms (PSTHs)were generated by aligning spike times to an event of interest418

and finding the average number of spikes, across trials, in time-bins relative to the event. Time-bins419

were 5 ms wide for averages across neurons and 10 ms for single neurons. For the firing rate vs.420

time graphs (by coherence) traces in Fig. 3, the rates are obtained by convolving the point process,421

𝛿(𝑡 − 𝑠𝑖), where 𝑠𝑖 are spike times, with a non-causal boxcar filter of width 100 ms. This smoothing422

was not applied to any other plot or analysis, as it obscures the oscillations of interest. To better423

visualize the decision-related activity, we detrended the responses in Fig. 3. For each neuron we424

subtracted the average response to the 0 and +/-3.2% coherences. Figures show the average across425

neurons, with each neuron weighted by the number of recorded trials. Across the two tasks, 8 out426

of 173 neurons showed a preference for the ipsilateral direction during the motion viewing epoch.427

For these neurons, the sign of the motion was reversed in analysis of signed coherence (Fig. 3).428

Behavior429

The decision process leading to leftward and rightward choices is affected by the direction and430

strength of motion as well as the duration of the stimulus. The durations were controlled by the431

experimenter for the three monkeys displayed in (Fig. 2). For the fourth monkey, Dz, we used a432

free response (choice-response time) design. Decision formation in both designs is explained by a433
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process of bounded accumulation of noisy evidence, also known as bounded drift-diffusion (Kiani434

et al., 2008). Accordingly, momentary motion evidence is integrated over time until it reaches one435

of two bounds (±𝐵) or the evidence stream is turned off. The influence of the motion evidence436

depends on the signed motion coherence (𝐶) and on a drift rate parameter (𝜅).437

𝑑𝑉 = 𝜅(𝐶 + 𝐶0)𝑑𝑡 + 𝑑𝑊 , (2)
where 𝑊 is a standard Wiener process (i.e., 𝑑𝑊 is a sample drawn from a Normal distribution,
 {0,

√

𝑑𝑡}). The initial state is 𝑉𝑡=0 = 0 and the process continues until |𝑉 (𝑡)| ≥ 𝐵. The time of
this termination governs the response time in a free response task (e.g., monkey Dz), and simply
curtails further integration when the stimulus duration is controlled experimentally. If the decision
process is terminated when integrated evidence reaches a bound, the chosen direction is the sign
of the bound reached. If a bound has not yet been reached before the evidence stream is turned
off (at 𝑡 = 𝑡dur ) the chosen direction depends on the sign of the unabsorbed integrated evidence.
The choice probability was modeled by fitting 𝐵, 𝜅, and a bias term 𝐶0 expressed as an offset in
signed motion coherence (Hanks et al., 2011; Urai et al., 2019). These quantities are obtained by
numerical solution of the Fokker-Planck equation, Which yields a probability density comprising
three components: (𝑖) 𝑓+(𝑡|𝑡 ≤ 𝑡dur), the upper bound absorption times, (𝑖𝑖) 𝑓−

(

𝑡|𝑡 ≤ 𝑡dur
), the lower

bound absorption times and (𝑖𝑖𝑖) 𝑓un(𝑉 |𝑡 = 𝑡dur) the values of the unabsorbed 𝑉 at 𝑡 = 𝑡dur , such that

∫

𝑡dur

0
𝑓+(𝑡) + 𝑓−(𝑡)𝑑𝑡 + ∫

+𝐵

−𝐵
𝑓un(𝑉𝑡dur )𝑑𝑉 = 1

The probability of a positive choice is438

𝑃+(𝐶, 𝑡dur) = ∫

𝑡dur

0
𝑓+(𝑡)𝑑𝑡 + ∫

+𝐵

0
𝑓un(𝑉𝑡dur )𝑑𝑉𝑡dur (3)

and
𝑃−(𝐶, 𝑡dur) = 1 − 𝑃+(𝐶, 𝑡dur)

This specifies the base diffusionmodel withoutmisrouting. The latter comprises (1) attention to the439

wrong patch and (2) incomplete suppression of the uncued motion patch. For the base model,the440

observed proportion of positive choices is 𝑃+(𝐶, 𝑡dur) = 𝑃+(𝐶, 𝑡dur). If the monkey attends to the441

wrong motion patch on a fraction of trials, 𝜆, then442

𝑃+(𝐶, 𝑡dur) =

⎧

⎪

⎨

⎪

⎩

𝑃+(𝐶, 𝑡dur) same direction

(1 − 𝜆)𝑃+(𝐶, 𝑡dur) + 𝜆𝑃−(𝐶, 𝑡dur) opposite direction
(4)

To model incomplete suppression of the uncued patch, we allow for a different value of 𝜅 in Eq. 2443

when the patches have the same or opposite directions444

𝑑𝑉 =

⎧

⎪

⎨

⎪

⎩

𝜅(𝐶 + 𝐶0)𝑑𝑡 + 𝑑𝑊 same direction

𝜅opp(𝐶 + 𝐶0)𝑑𝑡 + 𝑑𝑊 opposite direction
(5)

where 𝐶 is the signed coherence of the cued patch.445

The models were fit separately for the two monkeys using maximum likelihood. The fitted446

parameters are {𝜅, 𝐶0, 𝐵} for the basic model without misrouting (df=3). Erroneous routing and447

incomplete suppression add one degree of freedom apiece. We report the absolute value of the448

ΔBIC to convey support of a model against an alternative (i.e, Bayes Factor >1; Table 1).449
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Quantification of oscillations450

We implemented a matching pursuit (MP) algorithm to quantify the strength of oscillations in the451

neural firing rates and local field potentials (Chandran et al., 2016;Mallat and Zhang, 1993). MP is452

a greedy algorithm designed to represent a finite signal, 𝑠(𝑡), as a sum of Gabor functions (atoms)453

from a library that covers the position 𝜏 andwidth 𝜎 of the Gaussian envelope aswell as the angular454

frequency 𝜉 of the carrier sinusoids:455

𝑔𝛾 (𝑡) =
1

√

𝜎
𝑒−𝜋

(

𝑡−𝜏
𝜎

)2

𝑒𝑖𝜉𝑡 (6)
where the subscript, 𝛾 , identifies the atom, 𝛾 = {𝜏, 𝜎, 𝜉}. MP is well suited to brief epochs containing456

mixtures of transient and periodic features. We used the open source algorithm developed by the457

Epilepsy Research Laboratory at Johns Hopkins Medical Institutions and Supratim Ray (available458

from https://github.com/supratimray/MP). For the spike rates, 𝑠(𝑡) is the average firing rates across459

trials for a neuron, as shown in the example neurons (e.g., using −0.3 ≤ 𝑡 < 0.724 s relative to the460

event of interest. For spiking data, the input is the averaged unsmoothed firing rate (1 ms bins).461

For LFP data, the input is the trial averaged voltage in (1 KHz sampling rate). The output is power462

as a function of time and frequency, as shown in Figure 4—figure Supplement 1. We define the463

low-beta power as the mean Wigner-Ville power (𝑃 12∶20) in the frequency band 12–20 Hz in the464

90 ms before or 40–130 ms after event onset, denoted 𝑃 12∶20
pre and 𝑃 12∶20

post , respectively. We typically465

report the mean 𝑃 12∶20 across neurons (± s.e.m.) and determine statistical significance by applying466

aWilcoxon signed-rank test (a nonparametric equivalent of the paired t-test), using 𝑃 12∶20
pre and 𝑃 12∶20

post467

for each neuron. For comparisons of unpaired 𝑃 12∶20
post , we use the Mann-Whitney U test.468

The estimate of 𝑃 12∶20 can be impacted by the number of samples in the mean firing rate or LFP.469

For comparisons between conditions with unequal numbers of trials, we also evaluated the mean470

difference in 𝑃 12∶20 derived from random subsets of𝑁10 trials from the two conditions, where𝑁10 is471

∼10% of the number of trials in the condition with the lesser number of trials. We calculated 𝑃 12∶20472

from the spike rate averages in the two conditions and took the difference, 𝐷pow. We repeated this473

procedure 1000 times and used the mean, ̄𝐷pow, as the estimate. We compared this test statistic to474

its distribution under the null hypothesis, by repeating the identical procedure on random subsets475

drawn from the union of the data from the two conditions, again using 1000 repetitions to achieve476

a sample of ̄𝐷pow under the null hypothesis. We repeated this 100 times to estimate its distribution,477

and calculated thep-values from the tail probabilities (2-tailed). This bootstrapprocedure produces478

qualitatively similar results to those obtained from the Mann-Whitney U in almost all cases (e.g.,479

comparison of 𝑃 12∶20 triggered by motion onset in the old data sets). The two exceptions are the480

comparison of 𝑃 12∶20 after motion onset on correct vs. errors and on blocks of variable location481

and fixed location of the RDM. This is why we qualify our interpretation of these findings.482

For single neuron analyses, the data from each neuron was divided into 50 trial blocks. For483

each block we obtain 𝑃 12∶20
pre and 𝑃 12∶20

post and applied a Wilcoxon signed rank test to evaluate the null484

hypothesis of identical means.485

Cell type analysis486

Spike waveforms were preserved for 42 neurons from monkey Np. Neurons were classified as487

putative excitatory or inhibitory based on the distance, 𝐷 between the peak and trough of the488

average spike waveforms. All but two were classified as either putative inhibitory (𝐷 ≤ 150 µs) or489

excitatory (𝐷 ≥ 350 µs; Barthó et al. 2004; Trainito et al. 2019; Ardid et al. 2015).490

Spike-field alignment491

To assess the relationship between the oscillations in firing rate and local field potential, we esti-492

mated the phase of the LFP associated with all spikes that occur in an epoch 40–130 ms after cue493

onset. The analysis was restricted to neuron-LFP recordings where the MP algorithm identified494

oscillations in the LFP (31 of 104 experiments; cued attention task), based on the criterion that at495
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least one of the 10 strongest atoms (Gabor functions) overlapped the epoch and frequency band496

of interest (i.e., 12–20 Hz), based on its carrier. We used the inverse cosine of the latter to associate497

the time of each spike with a phase. Thus spikes occurring near the peak or trough of the oscilla-498

tion are assigned phases 𝜙𝑠 ≈ 0 and 𝜙𝑠 ≈ 𝜋, respectively. To produce the histogram of phase values499

in Fig. 6D, we correct for the non-uniform representation of cosine phase in the sampled epochs.500

We evaluated the null hypothesis that 𝜙𝑠 is uniformly distributed by comparing the empirical (non-501

uniform) representation of candidate phases with the distribution of 𝜙𝑠 (Kolmogorov-Smirnov two502

sample test).503

Acknowledgments504

We thank Chris Fetsch for piloting initial experiments; Cornel Duhaney and Brian Madeira for ex-505

ceptional assistance in animal training and care; Supratim Ray for advice on implementation of the506

Matching Pursuit algorithm; Danique Jeurissen, Shushruth, Natalie Steinemann, andGabe Stine for507

comments on an earlier draft of the manuscript.508

References509

Akam T, Kullmann DM. Oscillations and filtering networks support flexible routing of information. Neuron.510 2010; 67(2):308–320.511

Ardid S, Vinck M, Kaping D, Marquez S, Everling S, Womelsdorf T. Mapping of functionally characterized512 cell classes onto canonical circuit operations in primate prefrontal cortex. Journal of Neuroscience. 2015;513 35(7):2975–2991.514

Barthó P, Hirase H, Monconduit L, Zugaro M, Harris KD, Buzsaki G. Characterization of neocortical principal515 cells and interneurons by network interactions and extracellular features. Journal of neurophysiology. 2004;516 92(1):600–608.517

Britten KH, Shadlen MN, Newsome WT, Movshon JA. The analysis of visual motion: a comparison of neuronal518 and psychophysical performance. Journal of Neuroscience. 1992; 12(12):4745–4765.519

Buschman TJ, Kastner S. From behavior to neural dynamics: an integrated theory of attention. Neuron. 2015;520 88(1):127–144.521

Buschman TJ, Miller EK. Serial, covert shifts of attention during visual search are reflected by the frontal eye522 fields and correlated with population oscillations. Neuron. 2009; 63(3):386–396.523

Chandran S, Mishra A, Shirhatti V, Ray S. Comparison of matching pursuit algorithm with other signal process-524 ing techniques for computation of the time-frequency power spectrum of brain signals. Journal of Neuro-525 science. 2016; 36(12):3399–3408.526

Crick F, Koch C. A framework for consciousness. Nature neuroscience. 2003; 6(2):119–126.527

Dean HL, Hagan MA, Pesaran B. Only coherent spiking in posterior parietal cortex coordinates looking and528 reaching. Neuron. 2012; 73(4):829–841.529

Donner TH, SiegelM, Oostenveld R, Fries P, BauerM, Engel AK. Population activity in the human dorsal pathway530 predicts the accuracy of visual motion detection. Journal of Neurophysiology. 2007; 98(1):345–359.531

Driver J. A selective review of selective attention research from the past century. British Journal of Psychology.532 2001; 92:53–78. doi: 10.1348/000712601162103.533

Fetsch CR, Kiani R, Newsome WT, Shadlen MN. Effects of cortical microstimulation on confidence in a percep-534 tual decision. Neuron. 2014; 83(4):20.535

Fiebelkorn IC, Pinsk MA, Kastner S. A dynamic interplay within the frontoparietal network underlies rhythmic536 spatial attention. Neuron. 2018; 99(4):842–853.537

Fiebelkorn IC, Pinsk MA, Kastner S. The mediodorsal pulvinar coordinates the macaque fronto-parietal net-538 work during rhythmic spatial attention. Nature communications. 2019; 10(1):1–15.539

Fiebelkorn IC, Saalmann YB, Kastner S. Rhythmic sampling within and between objects despite sustained540 attention at a cued location. Current Biology. 2013; 23(24):2553–2558.541

18 of 20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.02.07.478903doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.07.478903
http://creativecommons.org/licenses/by/4.0/


Freeman R, Sclar G, Ohzawa I. An electrophysiological comparison of convergent and divergent strabismus in542 the cat: visual evoked potentials. Journal of neurophysiology. 1983; 49(1):227–237.543

Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends544 in cognitive sciences. 2005; 9(10):474–480.545

Fries P. Rhythms for cognition: communication through coherence. Neuron. 2015; 88(1):220–235.546

Fries P, Reynolds JH, Rorie AE, Desimone R. Modulation of oscillatory neuronal synchronization by selective547 visual attention. Science. 2001; 291(5508):1560–1563.548

Gold JI, Shadlen MN. Representation of a perceptual decision in developing oculomotor commands. Nature.549 2000; 404(6776):23.550

Gregoriou GG, Gotts SJ, Desimone R. Cell-type-specific synchronization of neural activity in FEF with V4 during551 attention. Neuron. 2012; 73(3):581–594.552

Gregoriou GG, Gotts SJ, Zhou H, Desimone R. High-frequency, long-range coupling between prefrontal and553 visual cortex during attention. science. 2009; 324(5931):1207–1210.554

Haegens S, Nácher V, Hernández A, Luna R, Jensen O, Romo R. Beta oscillations in the monkey sensorimotor555 network reflect somatosensory decision making. Proceedings of the National Academy of Sciences. 2011;556 108(26):10708–10713.557

Hanks TD, Mazurek ME, Kiani R, Hopp E, Shadlen MN. Elapsed decision time affects the weighting of prior558 probability in a perceptual decision task. Journal of Neuroscience. 2011; 31(17):6339–6352.559

Kiani R, Hanks TD, Shadlen MN. Bounded integration in parietal cortex underlies decisions even when viewing560 duration is dictated by the environment. Journal of Neuroscience. 2008; 28(12):19.561

Koelewijn T, van Schie HT, Bekkering H, Oostenveld R, JensenO. Motor-cortical beta oscillations aremodulated562 by correctness of observed action. Neuroimage. 2008; 40(2):767–775.563

König P, Engel AK, Singer W. Relation between oscillatory activity and long-range synchronization in cat visual564 cortex. In: Proceedings of the national academy of sciences 92 no. 1; 1995. p. 290–294.565

Lee JH, Whittington MA, Kopell NJ. Top-down beta rhythms support selective attention via interlaminar inter-566 action: a model. PLoS computational biology. 2013; 9(8).567

Lewis JW, Van Essen DC. Corticocortical connections of visual, sensorimotor, andmultimodal processing areas568 in the parietal lobe of the macaque monkey. Journal of Comparative Neurology. 2000; 428(1):112–137.569

Magee JC, Grienberger C. Synaptic Plasticity Forms and Functions. Annual Review of Neuroscience. 2020;570 43(1):1–23. doi: 10.1146/annurev-neuro-090919-022842.571

Mallat SG, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Transactions on signal processing.572 1993; 41(12):3397–3415.573

National Research Council. Guide for the Care and Use of Laboratory Animals: Eighth Edi-574 tion. Washington, DC: The National Academies Press; 2011. https://www.nap.edu/catalog/12910/575

guide-for-the-care-and-use-of-laboratory-animals-eighth, doi: 10.17226/12910.576

NewsomeWT, Pare EB. A selective impairment of motion perception following lesions of the middle temporal577 visual area (MT). Journal of Neuroscience. 1988; 8(6):2201–2211.578

Panichello MF, Buschman TJ. Shared mechanisms underlie the control of working memory and attention.579 Nature. 2021; 592(7855):601–605. doi: 10.1038/s41586-021-03390-w.580

Pesaran B, NelsonMJ, Andersen RA. Free choice activates a decision circuit between frontal and parietal cortex.581 Nature. 2008; 453(7193):406–409.582

Posner MI. Structures and function of selective attention. American Psychological Association; 1988.583

Posner MI, Snyder CR, Solso R. Attention and cognitive control. Cognitive psychology: Key readings. 2004; 205.584

Quinn KR, Seillier L, Butts DA, Nienborg H. Decision-related feedback in visual cortex lacks spatial selectivity.585 Nature Communications. 2021; 12(1):4473. doi: 10.1038/s41467-021-24629-0.586

19 of 20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.02.07.478903doi: bioRxiv preprint 

https://www.nap.edu/catalog/12910/guide-for-the-care-and-use-of-laboratory-animals-eighth
https://www.nap.edu/catalog/12910/guide-for-the-care-and-use-of-laboratory-animals-eighth
https://www.nap.edu/catalog/12910/guide-for-the-care-and-use-of-laboratory-animals-eighth
https://doi.org/10.1101/2022.02.07.478903
http://creativecommons.org/licenses/by/4.0/


Roitman JD, Shadlen MN. Response of neurons in the lateral intraparietal area during a combined visual587 discrimination reaction time task. The Journal of neuroscience. 2002; 22:9475–89.588

Saalmann YB, Pigarev IN, Vidyasagar TR. Neural mechanisms of visual attention: how top-down feedback589 highlights relevant locations. Science. 2007; 316(5831):1612–1615.590

Salzman CD, Murasugi CM, Britten KH, Newsome WT. Microstimulation in visual area MT: Effects on direction591 discrimination performance. Journal of Neuroscience. 1992; 12(6):2331–55.592

Shadlen MN, Kandel ER. Decision-Making and Consciousness. In: Kandel ER, Koester JD, Mack SH, Siegelbaum593 SA, editors. Principles of Neural Science, 6e New York, NY: McGraw Hill; 2021.neurology.mhmedical.com/content.594

aspx?aid=1180646321.595

Shadlen MN, Kiani R. Decision Making as a Window on Cognition. Neuron. 2013; 80(3):791 – 806. doi:596 10.1016/j.neuron.2013.10.047.597

Shadlen MN, Newsome WT. Motion perception: seeing and deciding. Proceedings of the national academy of598 sciences. 1996; 93(2):628–633.599

Shushruth S, Mazurek M, Shadlen MN. Comparison of Decision-Related Signals in Sensory andMotor Prepara-600 tory Responses of Neurons in Area LIP. Journal of Neuroscience. 2018; 11(38):28.601

Siegel M, Engel AK, Donner TH. Cortical network dynamics of perceptual decision-making in the human brain.602 Frontiers in human neuroscience. 2011; 5. https://doi.org/10.3389/fnhum.2011.00021.603

Singer W, Gray CM. Visual feature integration and the temporal correlation hypothesis. Annual review of604 neuroscience. 1995; 18(1):555–586.605

Stanley DA, Roy JE, Aoi MC, Kopell NJ, Miller EK. Low-beta oscillations turn up the gain during category judg-606 ments. Cerebral Cortex. 2018; 28(1):116–130. https://doi.org/10.1093/cercor/bhw356.607

Suzuki M, Larkum ME. Dendritic calcium spikes are clearly detectable at the cortical surface. Nature commu-608 nications. 2017 08; 8(1):276. doi: 10.1038/s41467-017-00282-4.609

Trainito C, von Nicolai C, Miller EK, Siegel M. Extracellular spike waveform dissociates four functionally distinct610 cell classes in primate cortex. Current Biology. 2019; 29(18):2973–2982.611

Urai AE, Gee JWd, Tsetsos K, Donner TH. Choice history biases subsequent evidence accumulation. eLife. 2019;612 8:e46331. doi: 10.7554/elife.46331.613

Williams AH, Poole B, Maheswaranathan N, Dhawale AK, Fisher T, Wilson CD, Brann DH, Trautmann EM, Ryu S,614 Shusterman R, et al. Discovering precise temporal patterns in large-scale neural recordings through robust615 and interpretable time warping. Neuron. 2020; 105(2):246–259.616

Zhang W, Bruno RM. High-order thalamic inputs to primary somatosensory cortex are stronger and longer617 lasting than cortical inputs. Elife. 2019; 8. https://doi.org/10.7554/eLife.44158.618

Zylberberg A, Fernández Slezak D, Roelfsema PR, Dehaene S, Sigman M. The brain’s router: A cortical network619 model of serial processing in the primate brain. PLoS Comput Biol. 2010; 6(4):e1000765. doi: 10.1371/jour-620 nal.pcbi.1000765.621

20 of 20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.02.07.478903doi: bioRxiv preprint 

neurology.mhmedical.com/content.aspx?aid=1180646321
neurology.mhmedical.com/content.aspx?aid=1180646321
neurology.mhmedical.com/content.aspx?aid=1180646321
10.1016/j.neuron.2013.10.047
10.1016/j.neuron.2013.10.047
10.1016/j.neuron.2013.10.047
https://doi.org/10.3389/fnhum.2011.00021
https://doi.org/10.1093/cercor/bhw356
10.7554/elife.46331
https://doi.org/10.7554/eLife.44158
10.1371/journal.pcbi.1000765
10.1371/journal.pcbi.1000765
10.1371/journal.pcbi.1000765
https://doi.org/10.1101/2022.02.07.478903
http://creativecommons.org/licenses/by/4.0/


109 neurons
51,658 trials

-0.1 0 0.1 0.2 -0.1 0 0.1 0.2 -0.1 0 0.1 0.2 0.3 0.4 -0.2-0.1 0 0.1
Time from target onset (s) Time from cue onset (s) Time from motion onset (s) Time from saccade (s)

0

5

10

15

20

25

30

Fi
rin
g
ra
te

(s
p/
s)

/ / / / / /

Motion
strength

51.2 %
25.6 %
12.8 %
6.4 %
3.2 %
0 %

Figure 3—figure supplement 1. Firing rates aligned to all task relevant events. These are
the same data in Fig. 3. From left to right, responses are aligned to target onset, cue onset, motion
onset, and saccade. Formotion and saccade epochs, warmer colors indicate strongermotion. Solid
and dashed traces indicate choices to the target in and out of the response field, respectively.
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Figure 3—figure supplement 2. Comparison of responses when motion patches had the
same or opposite directions. The graphs use the combined data from both monkeys without
detrending, including error trials. A, LIP activity for trials with motion in the same direction in both
patches. Firing rates are averages using all trials with the same motion strength (color) and direc-
tion (line style). The responses begin to exhibit a dependency on motion direction and strength
∼ 180 ms after motion onset. B, LIP activity for trials with opposite directions of motion in the
two patches. Activity follows the same general pattern seen in A, but the dependency on motion
strength is less apparent.
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Figure 3—figure supplement 3. Neural response shown separately for each monkey and
task. Data are from the same neurons included in Fig. 3 shown here without detrending. A,B,
Average firing rate aligned to motion onset in the cued attention task. C–E, Average firing rate
aligned to motion onset in the variable location task.
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Figure 4—figure supplement 1. Oscillations in spiking activity measured using a matching
pursuit algorithm. The algorithm uses a greedy method to fit the waveform using a dictionary
of Gabor functions of time (Eq. 6). A, Input to matching pursuit algorithm. The average firing rate
is rendered as a peristimulus aligned histogram (1 ms bin width) from neuron Dm49 aligned to
cue onset (same 150 shown in Fig. 4A). B, Output of matching pursuit algorithm. Heat map shows
power (color) by frequency and time from cue onset.
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Figure 4—figure supplement 2. Realigning does not identify additional peaks. A, Activity re-
aligned using the affinewarp algorithm (Williams et al., 2020). B–D, Affinewarp can recover tem-
porally jittered oscillations in synthetic data. B, Input oscillation. C, Mean activity of 500 simulated
trials using the firing from B, with increasing temporal jitter. For each trial temporal noise is added
at each time point before generating spikes, causing the oscillations to becomemisaligned in time
and to disappear from the average. D, Average firing rate of the activity of the trials shown in C
after applying the affinewarp algorithm. The underlying oscillation is partially recovered.
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Figure 7—figure supplement 1. Oscillations in the variable location task for each monkey.
Average firing rates, aligned to motion onset.
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