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ABSTRACT	

Protein-protein interactions (PPIs) are essential to understanding biological pathways as well 
as their roles in development and disease. Computational tools have been successful at 
predicting PPIs in silico, but the lack of consistent and reliable frameworks for this task has led 
to network models that are difficult to compare and, overall, a low level of trust in the PPI 
predictions. To better understand the underlying mechanisms that underpin these models, we 
designed B4PPI, an open-source framework for benchmarking that accounts for a range of 
biological and statistical pitfalls while facilitating reproducibility. We use B4PPI to shed light on 
the impact of network topology and how different algorithms deal with highly connected 
proteins. By studying functional genomics-based and sequence-based models (the two most 
popular approaches) on human PPIs, we show their complementarity as the former performs 
best on lone proteins while the latter specialises in interactions involving hubs. We also show 
that algorithm design has little impact on performance with functional genomic data. We 
replicate our results between both human and S. Cerevisiae data and demonstrate that models 
using functional genomics are better suited to PPI prediction across species. With rapidly 
increasing amounts of sequence and functional genomics data, our study provides a systematic 
foundation for future construction, comparison and application of PPI networks. 
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INTRODUCTION	

Protein-protein interactions (PPIs) are central to protein function and inform a wide range of 
biomedical applications, from mechanistic studies [1], [2] to drug development [3], [4]. Better 
understanding these interactions is critical for successfully mapping biological pathways, but 
the diversity of PPIs and the scale of the network make this a difficult task. Experimental 
methods to map PPIs exist, but even when high-throughput tend to focus on proteins of 
interest.  

Computational methods can address the issue of scalability and experimental bias. Given a pair 
of proteins and some characteristics of each one, machine learning models can learn to predict 
the likelihood of interaction. Numerous methods have been developed for this, using the full 
range of machine learning models, from early work on S. Cerevisiae [5]–[8] to algorithms 
dedicated to human PPIs [9]–[13]. Yet, despite a wealth of tools, the mechanics and 
consequences of the underlying inference are still poorly understood, and it is unclear why 
models with similar performance make vastly different predictions. Reported performance 
scores often cannot be compared or replicated due to proprietary data and inconsistent or 
flawed assessment methods. As a consequence, there are multiple issues for in silico PPIs: it is 
unclear what the state-of-the-art is, analyses are difficult to reconcile, the development of new 
models is inefficient, follow-up mechanisms studies are likely undermined and, ultimately, 
there are different versions of the underlying molecular networks that describe protein 
function.  

A unified framework for PPI inference would improve the development and reliable 
assessment of new models, and would facilitate the overdue widespread adoption of PPI 
predictions for downstream analysis. Replicable, trustworthy and generalisable high-
performing models can capture more causal biology and enhance many aspects of biological 
research such as experimental designs and drug development. 

In this work, we design a robust and standardised approach to in silico PPI prediction that 
accounts for both biological and statistical pitfalls and leverages the strength of large, open-
source and professionally curated databases. We make publicly available benchmarking 
standards for human and yeast PPIs to accelerate future discoveries and lay the foundations 
for similar datasets for other organisms. Within this framework, we study and compare the 
main approaches to PPI prediction in humans, based on functional genomic (FG) information 
or amino acid sequences alone. We highlight why both perspectives are still relevant today and 
how each adapts to the PPI network’s topology. In particular, we show that the presence of 
highly connected proteins in the networks has a drastic impact on prediction models and is an 
area where FG and sequence models diverge. We also replicate these results between human 
and yeast (S. Cerevisiae) and show which tools are most suitable to cross-species predictions. 
This work provides robust foundations for future developments in PPI prediction models, but 
also gives critical insight into which models can and should be used in different situations.   
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RESULTS	

B4PPI:	A	robust	and	open-source	benchmark	for	PPI	prediction	

The lack of a consistent way to assess PPI prediction algorithms has hindered the development 
of such algorithms and reduced their impact by making it difficult to reuse models for 
downstream analysis [14]. Benchmarks are important for replicability, and when combined 
with carefully curated datasets, they enable fast development through trial and error. Our 
Benchmarking Pipeline for the Prediction of Protein-Protein Interactions in Humans (B4PPI-
Human) includes both carefully selected training and testing sets and a collection of input 
features to enable such trials. Standard UniProt IDs are used throughout to easily combine 
these with other data sources. Relevant metrics are selected with guidelines on how to share 
them. All this, alongside the pre-processing steps and relevant guidelines, is made available 
online and can be downloaded easily from https://github.com/Llannelongue/B4PPI. An 
example of a reporting sheet is in  Figure 1. 

The complexity of the underlying biological mechanisms of PPIs introduces pitfalls that need 
to be considered when evaluating models. First, the way non-interacting proteins are selected 
for training is important. While some efforts have used proteins known to be localised in 
different parts of the cell [5], [12], [15], [16], this has been shown to be unreliable and a source 
of significant bias that overestimates accuracy [17]. An alternative is to use a database of 
experimentally tested non-interacting proteins, but leading resources such as Negatome have  
only ~1,300 pairs and thus offer limited coverage [15], [18]. Considering the scarcity of PPIs, 
randomly sampling pairs of proteins has a very low risk of false negative and limits selection 
bias (i.e. focusing on known proteins of interest) [17], [19]. However, the impact of the 
associated imbalance between interacting and non-interacting proteins should be taken into 
account when training models on balanced datasets [20]. Lastly, each observation is itself a 
pair of proteins. Even when ensuring that the two sets don’t have pairs in common, there can 
be individual proteins present in both the training and testing sets. This protein-level overlap, 
often overseen, has been shown to significantly affect the performance of an algorithm and 
should therefore be properly assessed [21]. Despite being documented in the literature, these 
pitfalls are still unevenly accounted for in published works. This, alongside inconsistencies in 
the choice of testing sets and performance metrics explains why, despite the number of 
algorithms released in recent years, there is still no simple way to compare a new approach to 
the state-of-the-art, or even know what the state-of-the-art is.  

The essential aspects of training and assessment that should be systematically accounted for 
are (1) the quality of the positive examples (i.e. the interacting proteins), (2) how non-
interacting proteins are selected for the gold standard, (3) a suitable split between training and 
testing sets, in particular regarding individual proteins, and (4) the metrics to evaluate and 
compare models. B4PPI seeks to address these four aspects of benchmarking.   
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When building a gold standard for machine learning algorithms, quality and representativity 
are the most important aspects to consider, which makes IntAct [22] a database of choice for 
interacting proteins. It aggregates reliable evidence of molecular interactions from over 20,000 
publications, which are manually curated, and includes data from other interactions databases 
such as the IMEx consortium [23]. We further limited the risk of false positives by removing 
low-quality interactions, for example the ones based on spatial colocalisation only (Methods). 
The final dataset comprised 78,229 interactions, covering 12,026 proteins (out of the 20,386 
registered in UniProt). 

To select non-interacting proteins to serve as negative examples, randomly sampling protein 
pairs is the approach with the lowest probability of error considering the scarcity of the PPI 
network [24]. Non-interacting proteins can be sampled using a uniform distribution, i.e. all 
proteins have an equal probability of being selected, which leads to an unbiased set, 
representative of the general population of protein pairs. However, PPI networks are known 
to be similar to scale-free networks, i.e. composed of a few highly connected nodes, called 
hubs, and numerous lone proteins with few interactions [25] (Supplementary Figure 1). 
Consequently, hubs are over-represented in a set of PPIs. For example in our curated set from 
IntAct, the top 20% of proteins by number of interactions were involved in 94% of PPIs. But 
when uniformly sampling protein pairs, the same top 20% were only involved in 37% of non-
interacting proteins. Although expected, this can be an issue for machine learning algorithms 
that would identify hubs and systematically predict a positive interaction when hubs are 
involved. Such a strategy would maximise accuracy on the training set but lead to a majority of 
false positives when making predictions on new pairs. To mitigate this, a balanced sampling 
can be used [26], where the probability of sampling a protein for the negative set is 
proportionate to its frequency in the positive set. It has been shown that each strategy serves 
a different purpose [19]; balanced sampling is beneficial for training models but shouldn’t be 
used for evaluating them, as the induced bias makes metrics less meaningful. This was the 
strategy implemented here, where non-interacting proteins were selected with balanced 
sampling for the training set and uniform sampling for the testing sets.  

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 9, 2022. ; https://doi.org/10.1101/2022.02.07.479382doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.07.479382
http://creativecommons.org/licenses/by/4.0/


6 

 

 

 
Figure 1: Reported performance sheet of the logistic regression (FG-based) on B4PPI-Human. 

Reporting sheet B4PPI-Human: Logistic Regression 
 
PR and ROC curves on T1* and T2** 

 

 
* First testing set, used to compare models on an independent set and investigate protein-level overlap. 
** Second testing set, used to assess generalisation on an imbalanced dataset (10 times more negative examples than positive ones). 

Impact of protein-level overlap 

 
 Running time Memory Energy used Carbon footprint (UK) 

Training once 6s Negligible < 0.01 kWh 0.007 gCO2e 
Training incl. 

hyperparameters tuning same* Negligible same same 

Inference <1s Negligible ~0 ~0 
* No hyperparameters to tune 
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In the presence of limited data, the division of the gold standard between training and testing 
sets is critical to simultaneously optimise learning and obtain meaningful generalisation 
metrics. Here, the testing set should achieve several objectives, (1) provide performance 
metrics on a new, independent set, (2) measure the impact, or absence of impact, of protein-
level overlap, (3) demonstrate how the model can generalise to real-world data. Since a single 
set cannot achieve simultaneously (2) and (3), as the careful selection of proteins to measure 
overlap biases the dataset, we designed two testing sets T1 and T2 (Methods). T1 should be 
used to compare different approaches with an independent set and investigate protein-level 
overlap, and T2 should be used to assess generalisation. T1 was built by purposefully leaving 
some proteins out of the training set; we demonstrated the importance of this as dividing the 
training and testing sets conventionally (using, for example, the popular scikit-learn library) 
resulted in almost all pairs (95%) in the testing set sharing at least one protein with the training 
set (Figure 2), which may lead to overestimating performances [21]. T2, with ten times more 
negative examples than positive ones (Supplementary Table 1), can then be used to assess how 
models perform in a more realistic setting where positive interactions are rare compared to 
non-interacting proteins.  

 
Figure 2: The impact of train/test splitting strategies on protein-level overlap. The common splitting strategy is 
to allocate pairs randomly (outer ring) while here we set aside proteins for testing (inner ring). 

The choice of metrics is a crucial element of a benchmark, and summarising the results by a 
single number, such as accuracy or AUROC, is often misleading [27]. We report both the 
Receiver Operating Characteristic (ROC) and the Precision-Recall (PR) curves which highlight 
nuanced and complementary aspects of PPI models. In addition, to address the environmental 
impact of bioinformatic tools [28], we also reported the carbon footprint of training models, 
measured using the Green Algorithms calculator [29].   
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The elements described above represent the minimum needed for reproducible benchmarks 
and researchers who wish to use their own input features can evaluate their models on these 
partitions. However, to rapidly test a new model, it is useful to have access to carefully selected 
and highly accurate protein properties. The two main categories of features used are amino 
acid sequences and functional genomics annotations, such as subcellular localisation and 
biological functions. These are available with B4PPI, from the professionally curated databases 
UniProt, the Human Protein Atlas (HPA) [30], [31] and Bgee [32] (Methods and Table 1 for the 
full list of features). 

With B4PPI, we could compare different models in a consistent manner to better understand 
what aspects of the underlying biology are captured by each method. We focused here on FG-
based and sequence-based models as they have been widely used and rarely compared, 
despite attempts at combining them.  

FG-based	linear	models	achieved	top	performance	

In FG-based models, FG annotations are pre-processed to compute similarity measures, such 
as colocalisation, between proteins (Methods). The low dimensionality of the transformed 
problem explains the success of standard machine learning algorithms; in particular, Naïve 
Bayes Classifiers [33], decision trees [34] and Random Forests [35] have been the most popular 
choices [5]–[7], [36]. Despite the proven track record of such tools, the more recent XGBoost 
algorithm [37] has been shown to outperform them in other situations like kidney disease 
diagnostic [38], which motivated its inclusion in this analysis.  

Using logistic regression as a baseline, we reported PR and ROC curves on the two test sets 
(Figure 1). A list of coordinates for these two curves was made available so that future models 
can be compared without unnecessary re-training. We also reported the training time, 6 
seconds, and the carbon footprint, close to 0 gCO2e. We then compared other models to this 
baseline and produced similar performance sheets (Supplementary Figure 2).  

We found that more complex algorithms brought little improvement over logistic regression, 
as most models performed similarly on T1 (Figure 3 and Supplementary Figure 3).  XGBoost 
and Random Forest showed minor improvement in AUROC and AUPRC, but the difference 
between the ROC curves of the logistic regression and XGBoost is non-significant (p=0.27) 
(Methods). Moreover, XGBoost was more efficient than Random Forest as it had nearly half 
the runtime (30s vs 54s). When studying the coefficients of the linear regression, we found 
that most decisions are based on common biological processes, co-localisation (cellular 
compartment) and common domains, all three coefficients being significant (p<0.001) 
(Supplementary Figure 4). 

The reporting standard also enabled us to look at finer performance metrics, broken down by 
protein-level overlap (i.e. individual proteins common to the training and testing sets). 
Comparing PR and ROC curves showed that both logistic regression and XGBoost were 
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unaffected by the level of overlap (Figure 1 and Supplementary Figure 2), and can therefore 
transfer effectively to new proteins.  

 

 
Figure 3: Comparison of FG-based models on T1 (n=24,898, 50% positive), with PR curves (left) and ROC curves 
(right) for all the models tested (top) and then only XGBoost and Logistic Regression for clarity (bottom).  

Sequence	models	outperformed	FG-based	algorithms	on	known	
proteins	

The alternative to FG-based models is to use amino acids sequences as the input for a PPI 
prediction algorithm. We compared several deep learning architectures and reported the 
performance of an optimised Siamese neural network (Methods, Figure 9 and Supplementary 
Figure 5). Despite having access to no functional information about the proteins, the sequence 
model outperformed the best performing FG-based model, XGBoost, except at low recall and 
high precision (AUPRC=0.68 vs 0.65 and ROC curves significantly different, p=9x10-47) (Figure 
4). However, while XGBoost was trained in only 30s with less than 0.01 kWh of energy, the 
deep learning approach trained for 1h10 with 0.62 kWh, emitting 22,000 times more 
greenhouse gases (GHGs). In addition, the performance of the sequence model was heavily 
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affected by the choice of deep learning architecture and its hyper-parameters, such as number 
of layers or learning rate. These require extensive (and expensive) optimisation. Protein-level 
overlap had a significant impact on these results. The model had an AUPRC of 0.68 on average, 
but 0.75 when restricted to proteins present in both training and testing sets, and only 0.62 
when there was no overlap (Supplementary Figure 5). This demonstrates that (1) in the 
absence of specific adjustments, such deep learning models are poorly suited to make 
predictions on previously unseen proteins and (2) in-depth benchmarks like B4PPI are 
important to reliably measure performances. While this comparison of FG-based and 
sequence-based models could indicate that deep learning is the best approach to PPI 
prediction, and support the numerous similar claims in the literature, it could also be the 
consequence of unaccounted-for biological properties of PPIs.  

 

 
Figure 4: Siamese network vs XGBoost on T1. The difference between the ROC curves was statistically significant 
(p = 9x10-47). 

The	role	of	network	hubs	is	essential	to	PPI	prediction	

A scale-free topology has important biological implications [25] so we hypothesised that a one-
fits-all approach for hubs and lone proteins is unlikely to be optimal. In assessing interactions 
between protein hubs (hub-hub), between a protein hub and a lone protein (hub-lone) and 
between lone proteins (lone-lone) (Methods), we found a distinct pattern whereby FG-based 
models had greater AUPRC and AUROC for interactions involving only lone proteins while 
sequence-based models performed better for hubs (Figure 5).  

These findings can be explained by the pre-processing of similarity measures for FG models. 
Because of their central role in biological pathways, hubs are highly studied and therefore 
annotated for many processes and localisations. For example in the training set, hubs have on 
average 11.6 annotations for biological processes (significant feature in the logistic regression 
model discussed above) while non-hubs only have 5.8 (median 6 vs 3). The same phenomenon 
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is observed for cellular compartments (6.2 vs 3.6 annotations on average). Because the 
similarity measures used by the FG models quantify overlaps in annotations, hubs annotated 
for a large number of processes provide little information about the probability of interaction, 
which can explain why FG-based models perform best when hubs are not involved.  

These results provide insight into the strengths of each approach and, importantly, show that 
a PPI approach should be context specific, particularly with respect to the network topologies 
of interest. Indeed, the apparent superiority of the deep learning model shown on Figure 4 is 
largely due to the composition of T1, made up of 70% of hub-hub or hub-lone interactions.  

 

 
Figure 5: Performance of XGBoost (top) and sequence-based model (bottom) on hubs and lone proteins. 

Cross-species	validation	of	PPI	prediction	models	and	relative	
performances	

S. Cerevisiae is a well-studied model organism with a known interactome and has been used 
extensively for in silico PPI predictions [8], [36], [39]. We replicated the analyses presented 
above on S. Cerevisiae proteins and found that our findings regarding network topology and 
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models’ relative performances were robust across species. The data was selected similarly to 
previously, extracted and curated from IntAct and UniProt, but without data from HPA and 
Bgee as these databases do not curate yeast (Methods).  

As shown previously, all FG-based models had similar performances with AUPRC between 0.71 
and 0.73 (Figure 6); however, in this analysis, the differences between XGBoost and other 
models were statistically significant (p = 2x10-12 for Naïve Bayes and p = 9x10-31 for logistic 
regression). The sequence model outperformed FG-based models in most cases (p = 2x10-6), 
except at high recall (Figure 6). Second, similar to humans, FG-based models were not sensitive 
to protein-level overlap while sequence-based models had different performances depending 
on the level of overlap (Supplementary Figure 6). Finally, we found consistency regarding the 
role of network hubs; FG-based models were better able to predict lone-lone protein 
interactions while the sequence-based model was better at predicting interactions amongst 
protein hubs (Supplementary Figure 7).  

While experimental data on PPIs is readily available for humans and S. Cerevisiae, many non-
model organisms lack data despite their biological relevance [40]. For these, cross-species 
predictions – i.e. training a model on a species to make predictions on another – are of 
particular interest. We showed that FG-based models are generally more suitable than 
sequence-based ones for this task. 

We investigated whether models trained on yeast could be used to predict human PPIs, finding 
that the yeast-trained FG-based models (logistic regression and XGBoost) achieved similar 
AUPRC and AUROC as those which were human-trained to predict human PPIs (p = 0.26 for 
XGBoost) (Figure 7). Conversely, the yeast-trained sequence model was unable to predict 
human PPIs (AUPRC = 0.52 vs 0.68, p = 3x10-272). We observed the same phenomenon when 
using human-trained models to make predictions on yeast (Supplementary Figure 8).  

 

 
Figure 6: Comparison of a range of models on the yeast testing set. 
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Figure 7: Cross-species predictions. Models trained on human PPIs (dotted lines) and yeast PPIs (solid lines) 
were used to make predictions on the human testing set. The top plot is the sequence-based model, the other 
ones are FG-based (XGBoost in the middle, logistic regression at the bottom).  
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DISCUSSION	

In this work, we sought to identify and explain the strengths and weaknesses of a wide 
selection of approaches to PPI prediction, and thereby provide the community with both a 
benchmarking resource, insight into which PPI approach to select or trust in a particular 
scenario, and finally with a set of well-studied PPI models which have also been validated 
across species. 

The FG-based and sequence-based models are common for PPI prediction but are rarely 
directly compared. In particular, it was unclear where the differences lie and if one approach 
should be preferred today. We found that when using FG annotations, the choice of algorithm 
has little impact on the predictions and a logistic regression performs close to the state-of-the-
art while providing clear insight into the decision-making process; here, colocalisation, 
common biological processes and shared domains are the main indicators of interaction. The 
fact that a highly flexible and non-linear model such as XGBoost performs similarly to logistic 
regression, making identical predictions in 93% of cases, shows that performance is likely 
driven by the quality and the pre-processing of the FG annotations instead of the modelling; 
once the similarity measures have been calculated, there are limited non-linearities and a 
simple logistic regression achieves top performance.  Sequence-based models on the other 
hand need specifically optimised architectures but achieve similarly high performances, if not 
higher in some settings, without any biological information apart from amino acid sequences.  

We found that the two approaches adapt to the presence of hubs and lone proteins differently 
and show complementary strengths. While sequence-based models are mostly useful when 
hubs are involved, FG-based models perform well for interactions between lone proteins. This 
simple result offers important insight into the specificities of each approach and explains 
discrepancies in reported performances in the literature, as the topology of the testing set has 
a large impact on metrics. These results are not specific to human PPIs as the same conclusions 
were drawn from analysis on S. Cerevisiae. Cross-species predictions are instrumental to study 
non-model organisms, and we showed that FG-based decision rules translate well to new 
species while sequence-based models do not.  

These observations are consistent with the way each algorithm learns. FG-based models make 
predictions based on general, but less complex, rules about PPIs which translate well to new 
proteins and new species. This is particularly useful considering that many proteins are still not 
represented in interaction databases. On the other hand, sequence-based models have 
millions of parameters which give them the flexibility to recognise individual proteins and learn 
specific interaction patterns. Although this enables such models to make predictions without 
functional information, it also limits high performance to proteins present in the training set. 
This likely explains the poor results of sequence models on previously unseen proteins and 
cross-species datasets. It is also consistent with the high performance of these models on 
network hubs, which are overrepresented in training sets and therefore well captured by the 
models.  
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These analysis and results required a robust and reliable benchmarking pipeline. We designed 
the open-source B4PPI, which accounts for a range of biological and statistical pitfalls. By being 
freely accessible and using standard identifiers for proteins, B4PPI can be used by any 
researcher working on in silico PPI prediction to assess performances and compare their 
approaches to the state-of-the-art. An example reporting sheet is presented that includes 
relevant metrics, from PR and ROC curves to runtime and carbon footprint, to ensure the 
models released can be trusted and encourage wider use of PPI imputation for downstream 
analysis. B4PPI also comes with pre-processed features to enable rapid development of new 
approaches.  

Our study has limitations. We focused on the two most widely used approaches to PPI 
prediction, namely FG-based and sequence-based; however, some alternative approaches 
have also been proposed, using, for example, higher-level protein structures [36], phylogeny 
[41] and the topology of existing networks [42]–[44], but the latter depends heavily on the 
quality of the existing PPI networks. Most FG annotations are from gene ontologies which have 
a hierarchical structure which we do not account for here, contrary to Armean et al. [45] for 
example. Moreover, we analysed two common interactomes, human and yeast, yet there are 
many more. As demonstrated though with the yeast dataset, similar benchmarks and analysis 
can be transferred to other model organisms in a relatively straightforward manner. 

We showed here the limits of classic sequence-based deep learning models for cross-species 
predictions, but it is worth noting some recent deep learning models that have been 
successfully used for cross-species predictions [46], [47] by including biological and chemical 
information about amino acids as well as structural knowledge. The results presented in this 
work can hopefully guide similar future work and help move this area further. 

While a benchmarking standard for PPI prediction is needed, it is important to remember the 
downsides of benchmarks, as demonstrated in computer vision or natural language 
processing. A fixed set of metrics can motivate the community to overly focus on those, at the 
expense of applicability and usefulness. To limit this, B4PPI includes a range of metrics but the 
relevant indicators for each use-case should nonetheless be carefully considered.  

The size and complexity of the PPI network makes in silico prediction tools indispensable, but 
it is important to ensure that the models developed are reliable and readily available to the 
community for downstream analysis and to give insights into biological pathways. For this, 
consistent and reliable evaluation pipelines are necessary as well as a better understanding of 
what machine learning models learn. The results presented here make key progress in both 
areas and facilitate the development, evaluation and reliability of future PPI models.   
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METHODS	

B4PPI-Human	

The data was obtained from large and professionally curated databases. This limits 
experimental bias, as each interaction is based on several experiments, and leverages experts’ 
knowledge in the curation process. Standard UniProt IDs are used throughout to ensure 
maximum compatibilities. Most of the manipulations were done in Python [48] with Jupyter 
Notebooks [49] using the Pandas library [50], [51] and Numpy [52]. The plots were drawn using 
Matplotlib [53], Seaborn [54] and the MetBrewer colour palettes [55]. All the code and final 
data are available on GitHub (https://github.com/Llannelongue/B4PPI); some intermediary 
pre-processed datasets are not available online due to file size limits but they can be recreated 
using the code available. Data is available under Creative Commons Attribution (CC BY 4.0) 
License. 

Protein-protein	interaction	data	

The train machine learning algorithms, the quality of the gold standard is paramount. Data on 
PPIs was obtained from IntAct [22] and downloaded from the EMBLE-EBI FTP server 
(timestamp: 15/10/2021). We restricted the data to human protein-protein interactions with 
UniProt IDs. To reduce the risk of false positives, we removed spoke complex expansions 
(where the pairwise interactions within a complex are unreliable) and interactions based on 
colocalisation only. This quality control step leaves 128,790 PPIs, covering 15,506 proteins (out 
of 20,386 in UniProt). Based on this dataset, we created an index of the number of recorded 
interactions per protein and made a list of hubs (highly connected proteins). In line with the 
literature, hubs are defined as the 20% of proteins with the most interactions [56], which here 
is equivalent to proteins with more than 21 partners. The quality of the interactions is assessed 
further by looking at the MIscore [57], a quality score based on the manual curation of the 
interactions that takes into account the detection method, the interaction type and the 
number of publications reporting it. In case of duplicated PPIs, the highest MIscore was used. 
When looking at the distribution of the MIscores in the dataset (Figure 8), a natural threshold 
of 0.47 is visible, which restrict the dataset to 78,229 interactions, covering 12,026 proteins.  
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Figure 8: Distribution of the MIscore in IntAct.  

Functional	genomics	annotations	and	amino	acids	sequences	

Protein sequences in humans are well documented and can be obtained from UniProt, but FG 
features can be more challenging as they should be diverse (i.e. cover a wide range of 
properties), of high-quality and have high coverage (i.e. few missing proteins). For the same 
reasons as described above, aggregated, manually curated and professionally reviewed 
databases are preferred. Based on features that have been successfully used for the task 
before, it is relevant to include information about cellular and tissue localisation, biological 
functions and gene expression patterns [5], [8], [10], [36].  

One of the main databases on proteins is UniProt [58] and in particular its knowledgebase 
UniProtKB. Swiss-Prot, the section of UniProtKB that is reviewed and manually curated, is used 
in this work to ensure optimal quality. The data from Swiss-Prot is downloaded through their 
API by restricting to reviewed, non-obsolete, human proteins (last download is 09/11/2021). 
The different columns are then cleaned to extract the information of interest in a standardised 
format, and we use UniProt IDs throughout. There is information for 20,386 proteins and more 
details about each feature are in Table 1. UniProt’s API is also used to map UniProt IDs between 
different databases and to map outdated IDs. In particular, we extract amino acids sequences 
for each protein, more than 95% of which come from the translation of coding sequences 
submitted to the International Nucleotide Sequence Database Collaboration [59]. Annotated 
domains and motifs are also included in the database. Additionally, we extract gene ontology 
(GO) annotations of biological processes, cellular components and molecular functions. For 
each protein, each of the FG features is represented as a bag-of-words, i.e. a sparse vector of 
length the number of annotations in the database. 

When working with gene expression data, both biological and technical noise need to be 
accounted for correctly. The Bgee public repository [32] does that by regrouping curated 
healthy wild-type standardised gene expression patterns. The human data is mainly from GTEx 
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v6 (phs000424.v6.p1), with an added layer of manual curation to remove unhealthy subjects. 
For a gene, the final data provides binary calls of presence or absence of expression for each 
combination of anatomical entity and developmental stage. We downloaded the database 
from their FTP server (version 14.2) and obtained information for 59,777 genes, 320 
anatomical entities and 33 developmental stages, which leads to 1,147 stage/entity 
combinations. The Bgee entries are matched to the UniProt IDs using UniProt’s own mapping 
table. 

The Human Protein Atlas (HPA) [30], [31] provides data mapping human proteins to tissues 
and cells. In particular, we used the Tissue Atlas [30] that presents the distribution of proteins 
in tissues and cell types and the Cell Atlas [31] that contains the distribution across subcellular 
locations. The Tissue Atlas contains data similar to Bgee, but the overlap is likely to be limited 
as the two databases only share GTEx RNA-seq data. While Bgee has a more thorough curation 
process, HPA contains a lot of original in-house experimental results, which justifies the 
inclusion of both data sources. We downloaded the HPA data from their website (release 20.1, 
Ensembl version 92.38). Despite its name, the data in HPA is identified by Ensembl gene IDs, 
which are mapped to UniProt IDs using UniProt’s API. We restricted the dataset to the 
reviewed proteins present in Swiss-Prot and to ensure the quality of annotations, we discarded 
the entries HPA annotated as “uncertain”. For the tissue IHC data, we mapped expression 
levels to numerical values (high=3, medium=2, low=1 and “not detected”=-1) with untested 
tissues being mapped to 0. Similar pre-processing was used for the consensus RNA-seq data 
and the subcellular location. 

Table 1: Features used to train human models (GO = Gene Ontology). 

Feature 
Number of 
different 

annotations 

Missing values 
(/20,386) Source 

Biological processes (GO) 12,248 3,338 UniProt [58] 

Cellular components (GO) 1,754 1,765 UniProt 

Molecular functions (GO) 4,346 4,552 UniProt 

Domains 2,313 11,815 UniProt 

Motifs 819 18,103 UniProt 

Sequence N/A 0 UniProt 

Gene expression profile 1,147 1,296 Bgee [32] 

Tissue IHC data 62 9,536 HPA [30], [31] 

Tissue and cell type 189 9,536 HPA 

RNA-seq 61 1,448 HPA 

Subcellular location 33 7,820 HPA 
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Pre-processing	to	measure	features	similarity	

For a protein, each FG feature was represented as a vector, of length the number of 
annotations. To measure the feature-specific similarity between two proteins, we compared 
the two vectors using cosine similarity [60], a popular tool widely used for similar tasks in 
Natural Language Processing. For two vectors 𝐴 = (𝐴!) and 𝐵 = (𝐵!), their cosine similarity 
𝐶𝑆(𝐴, 𝐵) is: 

𝐶𝑆(𝐴, 𝐵) = 	
𝐴	 ∙ 𝐵

‖𝐴‖	‖𝐵‖ =
∑ 𝐴!𝐵!!

-∑ 𝐴!"! -∑ 𝐵!"!

 

As a result, for each of the 207,784,305 possible pairs of proteins, we obtained 12 similarity 
features: biological processes, cell components, molecular function, domains and motifs from 
UniProt, gene expression from Bgee, tissue/cell expression, tissue expression, RNA-seq 
expression and subcellular locations from the Human Protein Atlas (Table 1).  

Creation	of	the	gold	standard	

The PPIs obtained from IntAct are divided between a training set and two testing sets. First, a 
set of 1,562 proteins (13%) was randomly set aside to ensure some unseen proteins are 
present in the testing set; the necessity of this is shown in Figure 2. The dataset was then 
randomly divided under this constraint and included 53,331 PPIs in the training set, 12,449 in 
T1 and the same in T2 (Supplementary Table 1).  

The negative examples (i.e. non interacting proteins) are obtained using random sampling 
among all the possible pairs, excluding any pair that has been observed experimentally to limit 
the risk of false negative. For the training set, balanced sampling is used [26] to favour learning, 
which means that the probably of sampling a protein for the negative set is proportionate to 
its frequency in the positive set. For T1 and T2, we used uniform sampling (all proteins have 
the same probability of sampling) to limit the risk of bias. The training set and T1 both have 
50% of positive examples, while T2 has ten times more non-interacting proteins than 
interacting ones (Supplementary Table 1). 

To investigate how models deal with different network topologies, especially hubs and lone 
proteins, we had to create a separate testing set to ensure sufficient sample size in each 
category (hub-hub, hub-lone and lone-lone interactions). We do so by aggregating PPIs from 
T1 and T2, and using balanced sampling for the non-interacting proteins. This results in 49,796 
pairs (50% positive) ( 

Supplementary Table 2). 

S.	Cerevisiae	data	

The pipeline describe above was also followed for the S. Cerevisiae data. UniProt lists 6,721 
yeast proteins and the same information as for humans ( 
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Supplementary Table 3) but HPA and Bgee do not include data for this organism. PPIs were 
obtained from IntAct following the same procedure, although no selection based on MIscores 
was made considering the absence of an obvious choice when looking at the distribution 
(Supplementary Figure 9). The final PPI dataset comprised 43,068 interactions covering 5,679 
proteins. 

The split between training and testing sets was done similarly by setting aside 737 proteins for 
testing and then randomly allocating PPIs to keep 30,369 PPIs for training. Because there is 
fewer data on yeast, and only one testing set is needed to replicate the analysis conducted on 
humans, dividing the remaining 12,699 further between T1 and T2 is not suitable here. But if 
the goal was to measure generalisability of a yeast model, this could be easily done.  

Training	

FG-based machine learning models were trained using the scikit-learn library [61]. For models 
that cannot deal with missing data, mean imputation was used (Supplementary Table 4). 
Hyper-parameter search was done using Weight-and-Bias’s Bayesian method [62] to find the 
optimal settings of each algorithm in a reasonable time. All hyperparameter choices are in 
Supplementary Table 4 and Supplementary Table 5. 

Deep learning models were trained using PyTorch Lightning [63], [64]. The Siamese 
architecture [65], [66] was composed of a bidirectional Gated Recurrent Unit (GRU) [67] 
followed by a linear output (Figure 9). Long-Short Term Memory networks (LSTM) [68] and 
Convolutional Neural Networks (CNN) [69] were also tested, but GRU was preferred because 
of runtime efficiency and its ability to account for proteins of various lengths. Full parameters 
are in Supplementary Table 4, Supplementary Table 5 and in the open-source code. 
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Figure 9: Diagram of the deep learning architecture used to predict interactions from a pair of protein 
sequences. 

Evaluation	

The Receiver Operating Characteristic (ROC) and the Precision-Recall (PR) curves are 
complementary options for PPI prediction. While the ROC curve is unaffected by the 
prevalence of interacting proteins, a benefit as the true prevalence of PPIs is mostly unknown, 
it also means that both classes are considered equally, whereas often, PPIs are more 
interesting than non-interacting proteins. This is addressed by the PR curve where precision 
puts an emphasis on positive examples.  

Both curves are reported alongside their respective Areas Under the Curve (AUC). To 
statistically compare ROC curves for a same testing set, we used a DeLong nonparametric test 
[70] and reported the p-value. We corrected for multiple testing by using a conservative 
significance threshold of 5 x 10-4, corresponding to a Bonferroni correction for 100 pairwise 
comparisons [71]. 

Carbon	footprint	of	this	project	

We used the Green Algorithms calculator (v2.1) [29] and estimated that the carbon footprint 
of this project was 51 kgCO2e, which corresponds to 4.7 tree-years. We did our best to 
minimise greenhouse gas emissions in the first place, and as a commitment to the reduction 
of the carbon footprint of computational research, we funded tree planting in the east of 
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England region through carbonfootprint.com. These trees are estimated to sequester 1 tonne 
of CO2 in their lifetime, almost 20 times the emissions of this study.   
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SUPPLEMENTARY	MATERIAL	

Supplementary	Figures	

 
Supplementary Figure 1: Distribution of proteins' degree in IntAct. The exponential decrease is characteristic of 
a scale-free network. 
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Supplementary Figure 2: Performance sheet of XGBoost on B4PPI-Human. 

Reporting sheet B4PPI-Human: XGBoost 
 
PR and ROC curves on T1* and T2** 

 

 
* First testing set, used to compare models on an independent set and investigate protein-level overlap. 
** Second testing set, used to assess generalisation on an imbalanced dataset (10 times more negative examples than positive ones). 

Impact of protein-level overlap 

 
 Running time Memory Energy used Carbon footprint (UK) 

Training once 30s Negligible < 0.01 kWh 0.002 gCO2e 
Training incl. 

hyperparameters tuning 22min Negligible < 0.01 kWh 1 gCO2e 

Inference <1s Negligible ~0 ~0 
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Supplementary Figure 3: Comparison of a broader range of FG-based models. 

 

 
Supplementary Figure 4: Output of the logistic regression on the training set. 
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Supplementary Figure 5: Performance sheet of the sequence-based model.  

Reporting sheet B4PPI-Human: Sequence-based 
 
PR and ROC curves on T1* and T2** 

 

 
* First testing set, used to compare models on an independent set and investigate protein-level overlap.  
** Second testing set, used to assess generalisation on an imbalanced dataset (10 times more negative examples than positive ones). 

Impact of protein-level overlap 

 
 

 Running time Memory Energy used Carbon footprint (UK) 
Training once 1h10 15 GB 0.62 kWh 158 gCO2e 
Training incl. 

hyperparameters tuning >100h >1.5 TB > 62 kWh > 15 kgCO2e 

Inference 1min46 6 GB 0.01 kWh 4 gCO2e 

Number of (trainable) parameters: 1.6m 
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Supplementary Figure 6: Impact of protein-level overlap on the yeast dataset for XGBoost (top, FG-based) and 
the sequence-based model (bottom). 
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Supplementary Figure 7: Impact of hubs for FG-based (XGBoost, top) and sequence-based (bottom) model on 
yeast interactions. 
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Supplementary Figure 8: Cross-species predictions. Models trained on human PPIs (dotted lines) and yeast PPIs 
(solid lines) were used to make predictions on the yeast testing set (n=25,398, 50% positive). The top plot is the 
sequence-based method, the others the FG-based ones (XGBoost in the middle, logistic regression at the 
bottom). 
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Supplementary Figure 9: distribution of IntAct’s MIscore in the yeast dataset. 
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Supplementary	Tables	

Supplementary Table 1: Sample size in B4PPI. 

Set 
Number of examples (% of positive) 

B4PPI-Human Yeast dataset 

Training 106,662 (50%) 60,738 (50%) 

T1 24,898 (50%) 25,398 (50%) 

T2 136,939 (9%) N/A 

 

Supplementary Table 2: Sample size in each category in the dataset used to investigate networks topology. 

Type of interaction Number of pairs % of PPIs 

Hub-hub 27,580 50.69 % 

Hub-lone 19,205 49.70 % 

Lone-lone 3,011 45.67 % 

 

Supplementary Table 3: Details of the features used for B4PPI-Yeast. 

Feature 
Number of different 

annotations 
Missing values 

(/6,721) Source 

Biological processes (GO) 3,114 1,510 UniProt [58] 

Cellular components (GO) 820 839 UniProt 

Molecular functions (GO) 2,079 2,242 UniProt 

Domains 606 5,135 UniProt 

Motifs 181 6,273 UniProt 

Sequence N/A 0 UniProt 
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Supplementary Table 4: Optimal parameters for the models trained on B4PPI-Human 

Algorithm 
Missing data 
imputation Scaling Optimal hyperparameters 

Logistic Regression Yes (mean) Yes Penalty = none, tol = 0.0001 

XGBoost No No 
colsample_bytree = 0.8059, learning_rate = 0.00002186, 
max_depth = 29, min_child_weight = 25, n_estimators = 

116, subsample = 0.4595 

Decision Tree Yes (mean) No Criterion = entropy, min_samples_split = 895, splitter = 
random 

SVM Yes (mean) No C = 1, degree = 3, gamma = scale, kernel = rbf (default 
values were used due to long runtime) 

Random Forest Yes (mean) No Criterion = gini, max_features = log2, min_sample_split = 
487, n_estimators = 336 

KNN Yes (mean) No 
Algorithm = brute, leaf_size = 53, n_neighbors = 35, p = 2, 

weights = uniform 
Naïve Bayes Yes (mean) No N/A 

Sequence-based 
Siamese architecture 

N/A N/A 

Batch size = 200, gradient_clip_val = 10, RNN = 
bidirectional GRU, output = linear, hidden size = 512, 
n_layers = 1, learning rate = 0.001 (GRU) and 0.0001 

(output) 
 

Supplementary Table 5: Optimal parameters for the models trained on the yeast dataset. 

Algorithm Missing data 
imputation Scaling Optimal hyperparameters 

Logistic Regression Yes (mean) Yes Penalty = none, tol = 0.0001 

XGBoost No No 
colsample_bytree = 0.7087, learning_rate = 0.00001129, 
max_depth = 26, min_child_weight = 3, n_estimators = 

244, subsample = 0.9318 
Naïve Bayes Yes (mean) No N/A 

Sequence-based 
Siamese architecture 

N/A N/A 

Batch size = 200, gradient_clip_val = 10, RNN = 
bidirectional GRU, output = linear, hidden size = 512, 
n_layers = 1, learning rate = 0.001 (GRU) and 0.0001 

(output) 
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