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The recent breakthrough in in-silico protein structure pre-1

diction at near-experimental quality by AlphaFold2 [1] and2

then RoseTTAFold [2] is revolutionizing structural biology3

and bioinformatics. The European Bioinformatics Institute4

(EBI) in collaboration with AlphaFold2/DeepMind has al-5

ready made 1 106 829 protein structures publicly available6

and plans to extend this library to hundreds of millions of7

structures this year [3]. With these novel computational ap-8

proaches, it will not be long before billions of high quality pro-9

tein structures become available [4]. The scale of this treasure10

trove poses challenges to state-of-the-art analysis methods.11

Currently, the most widely used approach to protein an-12

notation and analysis is based on sequence similarity search13

[5–8]. The goal is to find homologous sequences from which14

properties of the query sequence can be interferred, such as15

molecular and cellular functions and structure. Despite the16

success of sequence-based homology inference, many proteins17

cannot be annotated because detecting distant evolutionary18

relationships from sequences alone remains challenging [9].19

Detecting similarity between protein structures by 3D su-20

perposition offers higher sensitivity for identifying homolo-21

gous proteins [10]. The imminent availability of high-quality22

structure models for any protein of interest could allow us23

to use structure comparison to improve homology-based in-24

ference and structural, functional and evolutionary analyses.25

However, despite decades of effort to improve speed and sen-26

sitivity of structural aligners, current tools are much too slow27

to cope with the expected scale of structure databases.28

For example, searching with a single query structure29

through a database with 100 million protein structures would30

take the popular TMalign [11] tool around a month on one31

CPU core, and an all-versus-all comparison would take around32

10 millennia on a 1 000 core cluster. In comparison, sequence33

searching is five orders of magnitude faster: An all-versus-34

all comparison of 100 M sequences would take MMseqs2 [6] at35

high search sensitivity only around a week on the same cluster.36

Structural alignment tools are slower for two reasons. First,37

whereas sequence search tools employ fast and sensitive pre-38

filter algorithms to gain several orders of magnitude in speed,39

no comparable prefilters exist for structure searches. Sec-40
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ond, structural similarity scores are non-local: changing the41

alignment in one part affects the similarity in all other parts.42

For example in TMalign, two highly interdependent optimiza-43

tions are performed: The pairing up of residues that are to be44

aligned with each other, and the superposition of the 3D struc-45

tures by minimizing some distance measure between aligned46

residues. Most structural aligners, such as the popular TMa-47

lign, DALI, and CE [11–13], solve the alignment optimization48

problem by iterative or stochastic optimization.49

To increase speed, a crucial idea is to describe the amino50

acid backbone of proteins as sequences over a structural alpha-51

bet and compare structures using sequence alignments [14]. In52

this way, structural alphabets reduce structure comparisons to53

much faster sequence alignments. Many ways to discretize the54

local amino acid backbone have been proposed [15]. Most,55

such as CLE, 3D-BLAST, and Protein Blocks, discretize the56

conformations of short stretches of usually 3 to 5 Cα atoms57

[16–18]. 3D-BLAST and CLE trained a substitution matrix58

for their structural alphabet and rely on an aligner like BLAST59

[5] to perform the sequence searches.60

For Foldseek, we developed a novel type of structural alpha-61

bet that does not describe the backbone but rather tertiary62

interactions. The 20 states of the 3D-interactions (3Di) al-63

phabet describe for each residue i the geometric conformation64

with its spatially closest residue j. Compared to the various65

backbone structural alphabets, 3Di has three key advantages:66

First, the dependency of consecutive 3Di letters on each other67

is much weaker than for backbone structural alphabets, where68

for instance a helix state is followed by another helix state with69

high probability. The dependency decreases information den-70

sity and results in high-scoring false alignments. Second, the71

frequencies of the 3Di states are more evenly distributed than72

for backbone states, for which 60 % describe generic secondary73

structure states. This further increases information density74

in 3Di sequences (Supplementary Table 1) and decreases75

false positives. Third, in backbone structural alphabets, less76

information is contained in the highly conserved protein cores77

(consisting mostly of regular secondary structure elements)78

and more in the predominantly non-conserved coil/loop re-79

gions. In contrast, 3Di sequences have the highest information80

density in conserved cores and the lowest in loop regions.81

Foldseek (Fig. 1a) (1) discretizes the query structures into82

sequences over the 3Di alphabet and then searches through83

the 3Di sequences of the target structures using the double-84

diagonal k-mer-based prefilter and gapless alignment prefilter85

modules from MMseqs2, our highly optimized and parallelized86

open-source sequence search software [6]. (2) High scoring hits87
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FIG. 1. Foldseek workflow. (a) Foldseek searches a set of query structures through a set of target structures. (1) Query and target
structures are discretized into 3Di sequences (see b). To detect candidate structures, we apply the fast and sensitive k-mer and ungapped
alignment prefilter from MMseqs2 on the 3Di sequences. (2) Followed by a local alignment using a vectorized Smith-Waterman algorithm
combining both 3Di and amino acid substitution scores. Alternatively, a global alignment is computed with an accelerated TMalign
version. (b) Learning the 3Di alphabet: (1) 3Di states describe tertiary interaction between a residue i and its nearest neighbor j. Nearest
neighbors have the closest virtual center distance (yellow). Virtual center (Supplementary Fig. 1) positions were optimized for maximum
search sensitivity. (2) To describe the interaction geometry of residues i and j, we extract seven angles, the euclidean Cα distance, and
two sequence distance features from the six Cα coordinates of the two backbone fragments (blue, red). (3) These 10 features are used to
define 20 3Di states by training a vector-quantized variational autoencoder [19] modified to learn states that are maximally evolutionarily
conserved. For structure searches, the encoder predicts the best-matching 3Di state for each residue.

are aligned locally (default) or aligned globally with TMa-88

lign. The novel local alignment stage combines structural and89

amino acid substitution scores for improved sensitivity with-90

out sacrificing speed. The construction of the 3Di alphabet is91

summarized in Fig. 1b and Supplemental Figs 1–3.92

To minimize high-scoring false positives and provide reli-93

able E-values, for each match the score of the reversed query94

sequence is subtracted from the original score. Furthermore,95

a compositional bias correction is applied that lowers the sub-96

stitution scores of 3Di states enriched within a local 40 residue97

sequence window (see “Pairwise local structural alignments”).98

E-values are calculated based on an extreme-value score dis-99

tribution whose parameters are predicted by a neural network100

from 3Di sequence composition and length (see “E-Values”).101

We measured the sensitivity and speed of Foldseek and six102

structure alignment tools with single-domain structures (Fig.103

2a-b) on the SCOPe40 dataset [20]. This dataset contains104

11 211 protein domains clustered at 40 % sequence identity.105

We performed an all-versus-all search and compared the per-106

formance for finding members of the same SCOPe family, su-107

perfamily, and fold (true positive matches, TPs) by measuring108

the fraction of TPs out of all possible correct matches for the109

query until the fifth false positive (FP). FPs are matches to a110

different fold (see “SCOPe Benchmark”). The sensitivity was111

measured by the area under the curve (AUC) of the cumula-112

tive ROC curve up to the fifth FP.113

Foldseek reaches sensitivities at family and superfamily114

level below Dali, higher than the structural aligner CE, and115

performs similarly to TMalign and TMalign-fast. Foldseek116

is much more sensitive than structural alphabet-based search117

tools 3D-BLAST and CLE-SW (Fig. 2a-b). Even on the fold118

level, where most TPs are between non-homologous superfam-119

ilies, it is more sensitive than CE and similar to TMalign. Yet120

on this small, single-domain benchmark it is more than 3,000121

times faster than TMalign, DALI, and CE (Fig. 2b). On the122

much larger AlphaFoldDB, where Foldseek approaches its full123

speed, it is around 184,600 and 23,000 faster than DALI and124

TMalign, respectively (Fig. 2d). Its E-values are accurate,125

which is critical for homology searching (Fig. 2c)126

To assess the reliability and speed of Foldseek with full-127

length protein chains, we performed an all-versus-all Foldseek128

search on the AlphaFoldDB. For each query structure we com-129

puted the TMalign score of Foldseek’s second best match (the130

best match is the self-match). We ignored matches for which131

the average of the predicted Local Distance Difference Test132

(pLDDT [1]) from query and target is below 80 or which are133

fragmented. All but 1,675 out of 133,813 second-best matches134

with high alignment confidence (Foldseek score per aligned135

column ≥ 1.0) had a good TM-score (≥ 0.5), indicating that136

the fold was correctly recognized (Supplementary Fig. 4).137

Manual inspection of outliers with high Foldseek score per138

column and low TMscores (< 0.5) revealed Foldseek matches139

with multiple smaller, correctly aligned regions (Supplemen-140

tary Table 2). Even though their average pLDDT is above141

80, the relative orientation of correctly folded segments is of-142

ten not correctly predicted by AlphaFold2. TM-align does not143

identify these as homologs, as it searches for global structural144

superpositions, thus overlooking significant local similarities.145

We investigated the sensitivity for detecting very remote146

homologs by counting the number of cross-kingdom hits within147

AlphaFoldDB. Foldseek and MMseqs2 found cross-kingdom148

hits for 34.5% and 27.4% of the 364 357 queries, respectively.149

Overall, Foldseek finds 3.4 times as many cross-kingdom hits150

as MMseqs2 (see Supplementary Fig. 5).151

To facilitate access to Foldseek, we developed a user-152

friendly webserver optimized to quickly return results for sin-153
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FIG. 2. Foldseek reaches similar sensitivities as structural aligners at thousands of times their speed (a) Cumulative
distributions of sensitivity for homology detection. Sensitivity is the area under the ROC curve up to the fifth false positive, for all-
versus-all searches with the 11 211 single-domain structures of the SCOPe40 database). True positives are matches within the same family,
superfamily or fold (see main text). (b) Sensitivity versus total runtime on an AMD EPYC 7702P 64-core CPU for the all-versus-all
searches. (c) Accuracy of reported E-values: Mean number of FP hits versus reported E-value threshold. (d) Top10 hits of search with
RdRp (6M71_A) through the AlphaFold/Proteome with Foldseek, TMalign and DALI.

gle queries. It performs searches through three structure154

databases, AlphaFoldDB/Proteome, AlphaFoldDB/Swiss-155

Prot, and the PDB100, using one of three alignment meth-156

ods: standard Foldseek (default), Foldseek without amino acid157

scoring, and TMalign. The server takes PDB files as input158

and returns a list of matched structures, query-target sequence159

alignments, similarity scores, and E-values or TMscores.160

We compared the Foldseek webserver with TMalign and161

DALI by searching with the SARS-CoV-2 RNA-dependent162

RNA polymerase (RdRp, PDB: 6M71_A [21]; 942 residues)163

through the AlphaFoldDB (Proteome + Swiss-Prot) contain-164

ing 804 872 protein structures. The searches took TMalign165

33h and DALI 10 days to complete on a single core. Foldseek166

took 5 seconds, which is about 23 000, 180 600 times faster167

than TMalign and DALI respectively. We compared the top168

10 hits of the AlphaFoldDB/Proteome database (Fig. 2d).169

Foldseek as well as TMalign contain only reverse transcrip-170

tase (RT) domains, which are structurally similar to RdRps.171

DALI finds three RdRp and two RT hits, and five FPs hits to172

kinases (Supplementary Table 3). Foldseek finds significant173

hits with E-values between 10−7 to 10−6, while TMalign re-174

ports low TM-scores between 0.419 and 0.42. This illustrates175

a key difference between structural aligners, which depend on176

finding a global 3D superposition, and Foldseek’s local align-177

ment. Foldseek is independent of the relative orientation of178

domains and therefore excels at detecting homologous multi-179

domain structures.180

The availability of high-quality protein structures for nearly181

every structured protein is going to be transformative for182

structural biology and bioinformatics. What could until re-183

cently only be done by analyzing sequences can now be done184

with structures. The main limitation in our view, the four185

orders of magnitude slower speed of structure comparisons, is186

removed by Foldseek.187
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METHODS244

Overview Foldseek enables fast and sensitive comparison of245

large structure sets. It encodes structures as sequences over246

the 20-state 3Di alphabet and thereby reduces structural align-247

ments to 3Di sequence alignments. The 3Di alphabet devel-248

oped for Foldseek describes tertiary residue-residue interac-249

tions instead of backbone conformations and proved critical250

for reaching high sensitivities. Foldseek’s prefilter finds two251

similar, spaced 3Di k-mer matches in the same diagonal of252

the dynamic programming matrix. By not restricting itself to253

exact matches, the prefilter achieves high sensitivity while re-254

ducing the number of sequences for which full alignments are255

computed by several orders of magnitude. Further speed-ups256

are achieved by multi-threading and utilizing single instruction257

multiple data (SIMD) vector units. Owing to the SIMDe li-258

brary (github.com/simd-everywhere/simde), Foldseek runs on259

a wide range of CPU architectures (x86_64, arm64, ppc64le)260

and operating systems (Linux, macOS). The core modules of261

Foldseek, which build on the MMseqs2 framework [22], are de-262

scribed in the following paragraphs.
263

Create database The createdb module converts a set of264

Protein Data Bank (PDB; [23]) or macromolecular Crystal-265

lographic Information File (mmCIF) formatted files into an266

internal Foldseek database format using the gemmi package267

(project-gemmi.github.io). The format is compatible with268

the MMseqs2 database format, which is optimized for par-269

allel access. We store each chain as a separate entry in the270

database. The module follows the MMseqs2 createdb mod-271

ule logic, however, in addition to the amino acid sequence it272

computes the 3Di sequence from the 3D atom coordinates of273

the Cα and Cβ , Cbackbone and N coordinates (see “Descrip-274

tors for 3Di structural alphabet”). The 3Di and amino acid275

sequence, and the Cα floating-point coordinates are stored in276

the database.277

Prefilter The prefilter module generates similar k-mers278

and detects double, consecutive, similar k-mer matches that279

occur on the same diagonal. In contrast to the MMseqs2280

prefilter, the Foldseek prefilter utilizes the 3Di information281

instead of the amino acid sequence information to generate282

similar k-mers using a 3Di substitution matrix (see “3Di sub-283

stitution score matrix”). This criterion suppresses hits to284

non-homologous structures effectively, as they are less likely285

to have consecutive k-mer matches on the same diagonal by286

chance. To counteract the effect of regions with 3Di compo-287

sitions that differ from the database average, a compositional288

bias correction is applied in a way analogous to MMseqs2 [24].289

For each hit we perform an ungapped alignment over the di-290

agonals with double, consecutive, similar k-mer matches and291

sort those by the maximum ungapped diagonal score. Align-292

ments with a score of at least 15 bits are passed onto the next293

stage.
294

Pairwise local structural alignments After the prefilter295

has removed the vast majority of non-homologous sequences,296

pairwise alignments are performed on the remaining sequences297

in the structurealign module. Sequences are aligned us-298

ing a SIMD accelerated Smith-Waterman algorithm [25, 26].299

We extended this implementation to support amino acid and300

3Di scoring, compositional bias correction, and 256-bit-wide301

vectorization. The score linearly combines amino acid and302

3Di substitution scores with weights 1.4 and 2.1, respectively.303

A compositional bias correction is applied to the amino acid304

and 3Di scores. To further suppress high-scoring false positive305

matches, for each match we align the reversed query sequence306

against the target and subtract the reverse score from the for-307

ward score.308

E-Values To estimate E-values for each match, we trained309

a neural network to predict the mean µ and scale parame-310

ter λ of the extreme value distribution for each query. We311

built a module in Foldseek called computemulambda, which312

takes a query and database structures as input and aligns the313

query against a randomly shuffled version of the database se-314

quences. For each query sequence the module produces N315

random alignments and fits to their scores an extreme-value316

(Gumbel) distribution. The maximum likelihood fitting is317

done using the Gumbel fitting function taken from HMMER3318

( hmmcalibrate) [27]. To train the network, we predicted µ319

and λ for 100 000 sequences sampled from the AlphaFoldDB.320

We trained the network to predict µ and λ from the mono-321

residue composition of the query and its length. The network322

has 22 input nodes, 2 fully-connected layers with 32 nodes323

each (ReLU activation) and two linear output nodes. The op-324

timizer ADAM with learning rate 0.001 was used for training.325

When testing the resulting E-values on searches with scram-326

bled sequences, the log of the mean number of false positives327

per query turned out to have an accurately linear dependence328

on the log of the reported E-values, albeit with a slope of 0.32329

instead of 1. We therefore correct the E-values from the neural330

network by taking them to the power of 0.32. We compared331

how well the mean number of FPs at a given E-value agreed332

with the E-values reported by Foldseek, MMseqs2, and 3D-333

Blast, (Fig. 2c for SCOPe and Supplementary Fig. 6 for334

AlphaFoldDB). We considered a hit as FP if it was in a dif-335

ferent fold and had a TM-score lower than 0.3. Furthermore,336

we ignored all cross-fold hits within the four- to eight-bladed337

β-propeller superfamilies (SCOPe b.66-b.70) and within the338

Rossman-like folds (c.2-c.5, c.27, c.28, c.30, and c.31) because339

of the extensive cross-fold homologies within these groups [28].
340

Pairwise global structural alignments using TM-align341

We also offer the option to use TM-align for pairwise align-342

ments. We implemented TM-align based on the Cα atom co-343

ordinates and made adjustments to improve the (1) speed and344

(2) memory usage. (1) TM-align performs multiple floating-345

point based Needleman-Wunsch (NW) alignment steps, while346

applying different scoring functions (e.g., score secondary347

structure, Euclidean distance of superposed structures or frag-348

ments, etc.) TM-align’s NW code did not take advantage of349

SIMD instructions, therefore, we replaced it by parasail’s [29]350

SIMD-based NW implementation and extended it to support351

the different scoring functions. We also replaced the TM-score352

computation using fast_protein_cluster’s SIMD based imple-353

mentation [30]. Our NW implementation does not compute354

exactly the same alignment since we apply affine gap costs355

while TM-align does not. (2) TMalign requires 17 bytes ×356

query length × target length of memory, we reduce the con-357
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stant overhead from 17 to 4 bytes. If Foldseek is used in TM-358

align mode (parameter --alignment-type 1), we replace the359

reported E-value column with TM-scores normalized by the360

query length. The results are ordered in descending order by361

TM-score.362

Descriptors for 3Di structural alphabet The 3Di alpha-363

bet describes the tertiary contacts between residues and their364

nearest neighbors in 3D space. For each residue i the confor-365

mation of the local backbone around i together with the local366

backbone around its nearest neighbor j is approximated by367

20 discrete states (see Supplementary Fig. 3). We chose368

the alphabet size A=20 as a trade-off between encoding as369

much information as possible (large A) and limiting the num-370

ber of similar 3Di k-mers that we need to generate in the371

k-mer based prefilter. This number scales with Ak, giving us372

an alphabet size similar to the size of the amino acid alphabet.373

The discrete single-letter states are formed from neighborhood374

descriptors containing ten features encoding the conformation375

of backbones around residues i and j represented by the Cα376

atoms (Cα,i−1,Cα,i,Cα,i+1) and (Cα,j−1,Cα,j ,Cα,j+1). The377

descriptors use the five unit vectors along the following direc-378

tions,379

u1 :Cα,i−1 →Cα,i u4 :Cα,j→Cα,j+1

u2 :Cα,i →Cα,i+1 u5 :Cα,i →Cα,j

u3 :Cα,j−1 →Cα,j .

We define the angle between uk and ul as ϕkl, so cosϕkl =uT
k ul.380

The seven features cosϕ12, cosϕ34, cosϕ15, cosϕ35, cosϕ14,381

cosϕ23, cosϕ13, and the distance |Cα,i−Cα,j | describe the382

conformation between the backbone fragments. In addition,383

we encode the sequence distance with the two features384

sign(i−j) min(|i−j|,4) and sign(i−j) log(|i−j|+1).
385

Learning the 3Di states using a VQ-VAE The ten-386

dimensional descriptors were discretized into an alphabet387

of 20 states using a variational autoencoder with vector-388

quantized latent variables (VQ-VAE) [31]. In contrast to389

the standard VQ-VAE, we trained the VQ-VAE not as a390

simple generative model but rather to learn states that are391

maximally conserved in evolution. To that end, we trained392

it with pairs of descriptors xn,yn ∈R10 from structurally393

aligned residues, to predict the distribution of yn from xn.394

The VQ-VAE consists of an encoder and decoder network395

with the discrete latent 3Di state as a bottleneck in-between.396

The encoder network embeds the 10-dimensional descriptor397

xn into a two-dimensional continuous latent space, where the398

embedding is then discretized by the nearest centroid, each399

centroid representing a 3Di state. Given the centroid, the400

decoder predicts the probability distribution of the descriptor401

yn of the aligned residue. After training, only encoder and402

centroids are used to discretize descriptors. Encoder and403

decoder networks are both fully connected with two hidden404

layers of dimension 10, a batch normalization after each405

hidden layer and ReLU as activation functions. The encoder,406

centroids, and decoder have 242, 40, and 352 parameters,407

respectively. The output layer of the decoder consists of 20408

units predicting µ and σ2 of the descriptors x of the aligned409

residue, such that the decoder predicts N (x|µ,Iσ2) (with410

diagonal covariance). We trained the VQ-VAE on the loss411

function defined in Equation (3) in [31] (with commitment412

loss =0.25) using the deep-learning framework PyTorch413

(version 1.9.0), the ADAM optimizer, with a batch size414

of 512, and a learning rate of 10−3 over 4 epochs. Using415

Kerasify, we integrated the encoder network into Foldseek.416

The domains from the SCOPe database were split 80 %/20 %417

by fold into training and validation sets. For the training, we418

structurally aligned the structures with TMalign, removed419

all alignments with a TM-score below 0.6, and removed all420

aligned residue pairs with a distance between their Cα atoms421

of more than 5 Å. We trained the VQ-VAE with 100 different422

initial parameters and chose the model that was performing423

best in the benchmark on the validation dataset (the highest424

sum of ratios between 3Di AUC and TMalign AUC for family,425

superfamily and fold level).
426

3Di substitution score matrix We trained a BLOSUM-427

like substitution matrix for 3Di sequences from pairs of428

structurally aligned residues used for the “VAE-VQ training”.429

First, we determined the 3Di states of all residues. Next, the430

substitution frequencies between 3Di states were calculated431

by counting how often two 3Di states were structurally432

aligned. (Note that the substitution frequencies from state A433

to B and the opposite direction are equal.) Finally, the score434

S(x,y)= 2 log2
p(x,y)

p(x)p(y) for substituting state x through state435

y is the log-ratio between the substitution frequency p(x,y)436

and the probability that the two states occur independently,437

scaled by the factor 2.438

Optimize nearest-neighbor selection To select nearest-439

neighbor residues that maximize the performance of the440

resulting 3Di alphabet in finding and aligning homologous441

structures, we introduced the virtual center V of a residue.442

The virtual center position is defined by the angle θ (V -443

Cα-Cβ), the dihedral angle τ (V -Cα-Cβ-N), and the length444

l (|V −Cα|). For each residue i we selected the residue j445

with the smallest distance between their virtual centers. The446

virtual center was optimized on the training and validation447

structure sets used for the VQ-VAE training by creating448

alphabets for positions with θ∈ [0,2π], τ ∈ [−π,π] in 45◦449

steps, and l∈{1.53Åk : k∈{1,1.5,2,2.5,3}} (1.53Å is the450

distance between Cα and Cβ). The virtual center defined by451

θ=270◦, τ =0◦ and l=2 performed best in the benchmark.452

For glycines, the Cβ positions were approximated by forming453

a tetrahedral from Cα. This virtual center preferably selects454

long-range, tertiary interactions and only falls back to455

selecting interactions to i+1 or i−1 when no other residues456

are nearby. In that case, the interaction captures only the457

backbone conformation.458

SCOPe Benchmark We downloaded SCOPe 2.07 [32]459

structures, clustered at 40 % sequence identity, containing460

11 211 domains, for the generation of 3Di states and for the461

performance evaluation of Foldseek. The SCOPe benchmark462

set consists of single domains with an average length of 174463

residues. In our benchmark, we compare the domains all-464

versus-all. Per domain, we measured the fraction of detected465

TPs up to the 5th false positive. For family-, superfamily-466

and fold-level recognition, TPs were defined as same family,467

same superfamily and not same family, and same fold and468
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not same superfamily, respectively. Hits from different folds469

are FPs.470

AlphaFold database used for all-versus-all search471

We downloaded the AlphaFoldDB [33] version 1 containing472

365,198 protein models and searched it all-versus-all using473

Foldseek -s 9.5 --max-seqs 2000. For our second best474

hit analysis we consider only models with: (1) an average475

Cα’s pLDDT greater than or equal to 80, and (2) models of476

non-fragmented domains. We also computed the structural477

similarity for each pair using TMalign (default options).
478

Performance evaluation: Sensitivity In order to evaluate479

the sensitivity of the structural alignment tools, we used a480

cumulative ROC curve analysis. After sorting the alignment481

result of each query, we calculated the fraction of TPs in the482

list up to the 5th false positives. We quantitatively measured483

the sensitivity by comparing the area under the curve (AUC)484

for family-, superfamily-, and fold-level classifications.
485

Performance evaluation: Runtime Using the SCOPe486

benchmark dataset, the runtime of the pairwise structural487

alignment was evaluated for all methods. Depending on the488

processing time of each tool, the runtimes of the structural489

alignment tools TM-align, DALI, and CE were estimated on490

10 % of the benchmark set (1 121 proteins randomly selected491

from the SCOPe domains). Tools with multi-threading sup-492

port (MMseqs2 and Foldseek) were executed with 64 threads,493

tools without were parallelized by breaking the query set into494

64 equally sized chunks and executing them in parallel.
495

Tools and options for benchmark comparison Following496

are command lines used in the SCOPe benchmark.497

Foldseek We used Foldseek commit 4de45 during this498

analysis. Foldseek was run with the following parameters:499

--threads 64 -s 9.5 -e 10 --max-seqs 2000
500

MMseqs2 We used the default MMseqs2 (release 13-45111)501

search algorithm to obtain the sequence-based align-502

ment result. MMseqs2 sorts the results by e-value and503

score. We searched with: --threads 64 -s 7.5 -e 10000504

--max-seqs 2000
505

CLE-Smith-Waterman We used PDB Tool v4.80506

(github.com/realbigws/PDB_Tool) to convert the bench-507

mark structure set to CLE sequences. After the conversion,508

we used SSW [26] (commit ad452e) to align CLE sequences509

all-versus-all. We sorted the results by alignment score. The510

following parameters were used to run SSW: (1) protein511

alignment mode (-p), (2) gap open penalty of 100 (-o 100),512

(3) gap extend penalty of 10 (-e 10 ), (4) CLE’s optimized513

substitution matrix (-a cle.shen.mat), (5) returning align-514

ment (-c). The gap open and extend values were inferred515

from DeepAlign [34]. The results are sorted by score in516

descending order.517

ssw_test -p -o 100 -e 10 -a cle.shen.mat -c
518

3D-BLAST We used 3D-BLAST (beta102) with BLAST+519

(2.2.26) and SSW [26] (version ad452e). We first converted520

the PDB structures to a 3D-BLAST database using 3d-blast521

-sq_write and 3d-blast -sq_append. We searched the522

structural sequences against the database using blastp523

with the following parameters: (1) we used 3D-BLAST’s524

optimized substitution matrix (-M 3DBLAST), (2) number of525

hits and alignments shown of 12 000 (-v 12000 -b 12000),526

(3) E-value threshold of 1 000 (-e 1000) (4) disabling query527

sequence filter (-F F) (5) gap open of 8 (-G 8), and (6) gap528

extend of 2 (-E 2). 3D-BLAST’s results are sorted by E-value529

in ascending order:530

blastall -p blastp -M 3DBLAST -v 12000 -b 12000 -e531

1000 -F F -G 8 -E 2532

For Smith-Waterman we used (1) gap open of 8 (2) gap533

extend of 2 and (3) returning alignments (-c) (4) using the534

3D-BLAST’s optimized substitution matrix (-a 3DBLAST),535

(5) protein alignment mode (-p): ssw_test -o 8 -e 2 -c536

-a 3DBLAST -p. Presented in Figure 2 are the Smith-537

Waterman results, since BLAST performed worse with an538

average AUC of 0.573, 0.127, 0.009 for family-, superfamily-539

and fold-classification, respectively.
540

TMalign We downloaded and compiled the TMalign.cpp541

source code (version 2019/08/22) from the Zhang group542

website. We ran the benchmark using default parameters and543

-fast for the fast version. We used the TM score normalized544

by the 1st chain (query) in all our analyses. Default: TMalign545

query.pdb target.pdb546

Fast: TMalign query.pdb target.pdb -fast
547

DALI We installed the standalone DaliLite.v5. For the548

SCOPe benchmark set, input files were formatted in DAT549

files with DALI’s import.pl. The conversion to DAT format550

produced 11 137 valid structures out of the 11 211 initial551

structures for the SCOPe benchmark. After formatting the552

input files, we calculated the protein alignment with DALI’s553

structural alignment algorithm. The results were sorted by554

DALI’s Z-score:555

import.pl –pdbfile query.pdb –pdbid PDBid –dat DAT556

dali.pl –cd1 queryDATid –db targetDB.list –TITLE557

systematic –dat1 DAT –dat2 DAT –outfmt "summary"558

–clean559

CE We used BioJava’s [35] (version 5.4.0) implementation560

of the combinatorial extension (CE) alignment algorithm.561

We modified one of the modules of BioJava under shape562

configuration to calculate the CE value. Our modified563

CEalign.jar file requires a list of query files, path to the564

target PDB files, and an output path as input parameters.565

This Java module runs an all-versus-all CE calculation. The566

Jar file of our implementation of CE calculation is provided.567

java -jar CEalign.jar querylist.txt568

TargetPDBDirectory OutputDirectory
569

Hardware specifications for benchmarks The runtime570

benchmarks were executed on a machine with an AMD EPYC571

7702P 64-core CPU and 1024 GB RAM memory.
572

Webserver The Foldseek webserver is a continuation of the573

MMseqs2 webserver [36]. To allow for searches in seconds574

we implemented MMseqs2’s pre-computed database indexing575

capabilities in Foldseek. Using these, the search databases can576

be held fully in system memory by the operating system and577

instantly accessed by each Foldseek process, thus avoiding ex-578

pensive accesses to slow disk drives. A similar mechanism was579

used to store and read the associated taxonomic information.580

The AlphaFoldDB/Proteome (v1), AlphaFoldDB/Swiss-Prot581
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(v2), and PDB100 require 3.9GB, 3.6GB, and 2.2GB RAM,582

respectively. The databases are kept in memory using583

vmtouch (github.com/hoytech/vmtouch).
584

Code availability Foldseek is GPLv3-licensed free open585

source software. The source code and binaries for Foldseek can586

be downloaded at github.com/steineggerlab/foldseek.587

The webserver code is available at github.com/soedinglab/588

mmseqs2-app. The analysis scripts are available at:589

github.com/steineggerlab/foldseek-analysis.
590

Data availability Benchmark data and Foldseek databases591

are available at: wwwuser.gwdg.de/~compbiol/foldseek.592
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