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Abstract

In humans and other mammals, germline mutations are more likely to

arise in fathers than in mothers. Although this sex bias has long been

attributed to DNA replication errors in spermatogenesis, recent evidence

from humans points to the importance of mutagenic processes that do

not depend on cell division, calling into question our understanding of

this basic phenomenon. Here, we infer the ratio of paternal-to-maternal

mutations, ↵, in 42 species of amniotes, from putatively neutral substitu-

tion rates of sex chromosomes and autosomes. Despite marked di↵erences

in gametogenesis, physiologies and environments across species, fathers

consistently contribute more mutations than mothers in all the species

examined, including mammals, birds and reptiles. In mammals, ↵ is as

high as 4 and correlates with generation times; in birds and snakes, ↵
appears more stable around 2. These observations can be explained by

a simple model, in which mutations accrue at equal rates in both sexes

during early development and at a higher rate in the male germline after

sexual di↵erentiation, with a conserved paternal-to-maternal ratio across

species. Thus, ↵ may reflect the relative contributions of two or more

developmental phases to total germline mutations, and is expected to

depend on generation time even if mutations do not track cell divisions.
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1 Main

Humans tend to inherit more de novo mutations (DNMs) from their fathers
than from their mothers. This phenomenon was first noted over 70 years ago,
when JBS Haldane relied on the population frequency of hemophilia in order
to infer that the de novo mutation rate at the disease locus is substantially5

higher in fathers [1]. Work since then, particularly in molecular evolution, has
confirmed a “male bias” in mutation (henceforth paternal bias) [2–9], with
estimates from human pedigrees indicating that, genome-wide, DNMs occur
roughly four times more often on the paternal genome than on the maternal
one [10, 11].10

The textbook explanation for the paternal mutation bias is that it arises
as a consequence of the vastly di↵erent numbers of cell divisions–and hence
DNA replication cycles–necessary to produce sperm compared to oocytes [12–
15]. Indeed, in humans as in other mammals, oocytes are arrested in meiotic
prophase I at birth, with no subsequent DNA replication in the mother’s15

life, whereas spermatogonia start dividing shortly before puberty and divide
continuously throughout the reproductive life of the father [13, 16]. The obser-
vation that the number of DNMs increases with paternal age has been widely
interpreted in this light, as evidence for DNA replication errors being the
predominant source of germline mutation [10, 11, 17, 18].20

A number of recent findings have called this view into question, however.
First, analyses of large numbers of human pedigrees revealed an e↵ect of mater-
nal age on the number of maternal DNMs [19, 20], with an additional ⇠0.4
mutations accrued per year. Given the lack of mitotic cell division in oocytes
after birth, this observation indicates that by typical reproductive ages, at25

least half of maternal DNMs arise from DNA damage [18]. Second, despite
highly variable rates of germ cell division over human ontogenesis, germline
mutations accumulate with absolute time in both sexes, resulting in a ratio
of paternal-to-maternal germline mutation, ↵, of around 3.5 at puberty and
very little increase with parental ages [21]. Third, studies in a dozen other30

mammals suggest that ↵ ranges from 2 to 4 whether the species reproduces
months, years or decades after birth [22, 23], when estimates of germ cell divi-
sion numbers at time of reproduction would predict a much wider range in
↵ [13, 22, 24, 25]. Explaining the observations in humans under a model in
which most mutations are due to replication errors, and thus track cell divi-35

sions, would call for an exquisite balance of cell division and mutation rates
across developmental stages in both sexes [26]. In males, the constant accumu-
lation of mutations with absolute time would require varying rates of germ cell
divisions over ontogenesis to be precisely countered by reciprocal di↵erences
in the per cell division mutation rates. In females, it would necessitate that40

the mutation rate per unit of time be identical whether mutations arise from
replication errors or damage. In turn, the similarity of ↵ across mammals that
di↵er drastically in their reproductive ages would entail two distinct sources
of mutation—replication error in males and damage in females—covarying in
tight concert with generation times.45
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A more parsimonious alternative is that most germline mutations arise from
the interplay between damage and repair rather than from replication errors
[27], and that the balance results in more mutations on the paternal than the
maternal genome [26]. Assuming repair is ine�cient relative to the length of
the cell cycle or, perhaps more plausibly, that repair is e�cient but inaccurate 50

[28, 29], mutations that arise from damage will not track cell divisions [26].
Damage-induced mutations must underlie the observed maternal age e↵ect on
DNMs in humans; they could also account for the accumulation of germline
mutations in proportion to absolute time in males, assuming fixed rates of
damage and repair machinery errors in germ cells [26]. In support of damage- 55

induced mutations being predominant in the human germline, analyses of the
mutation spectrum indicate that 75% of DNMs and 80% of mutations in adult
seminiferous tubules are due to mutation “signatures” SBS5/40 [30, 31], which
are clock-like, uncorrelated with cell division rates in the soma [32, 33], and
prevalent in post-mitotic tissues [29, 34]. In addition, most substitutions in 60

post-pubertal germ cell tumours are attributed to SBS5/40, in both females
and males [35]. More generally, cell division rates do not appear to be a major
determinant of mutation rates across somatic tissues [36]: notably, post-mitotic
neurons accumulate mutations at a similar rate as granulocytes, which are the
product of continuous cell divisions [29]. A decoupling between cell division 65

numbers and mutation burden has also been described in colonic crypts across
mammals [37], and in yeast, up to 90% of mutations have been estimated to be
non-replicative in origin [38]. Altogether, these results suggest an important
role, for both germline and soma, of mutagenic processes that accumulate with
absolute time, as expected from damage-induced mutations [26]. 70

1.1 Estimating sex di↵erences in germline mutation

rates across amniotes

In undermining the prevailing understanding of the paternal bias in human
germline mutations, these observations revive the question of how the bias
arises, as well as of the influences of life history traits and exogenous or endoge- 75

nous environments. To investigate them, we took a broad taxonomic view,
characterizing the paternal mutation bias across amniotes, including mammals
but also birds and snakes, which di↵er in potentially salient dimensions. As two
examples, in birds as in mammals, oogenesis is arrested by birth in females,
while spermatogenesis is ongoing throughout male reproductive life [39, 40], 80

but birds have internal testes whereas some mammals have external testes. In
addition, mammals and birds are endotherms, in contrast to ectothermic rep-
tiles such as snakes. More generally, the taxa considered vary widely in their
life histories, physiologies, and natural habitats.

To estimate ↵ in each lineage, we based ourselves on the evolutionary rates 85

at putatively neutrally-evolving sites of sex chromosomes compared to the
autosomes [41]. The more direct approach of detecting de novo mutations in
pedigrees requires them to be available for each species, in large numbers for
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precise estimates. In contrast, the evolutionary method is in principle appli-
cable to any set of species with high quality genome assemblies and a stable90

sex karyotype. It takes advantage of the fact that at the population level, sex
chromosomes spend di↵erent numbers of generations in each sex (e.g., the X
chromosome spends twice as many generations in females as in males), whereas
autosomes spend an equal number in both (Figure 1A). Thus, all else being
equal, if there is a paternal mutation bias, an autosome with greater exposure95

to the more mutagenic male germline will accumulate more neutral substitu-
tions than the X over evolutionary timescales (Figure 1A); the inverse will be
true for the autosomes compared to the Z chromosome [41].

Such evolutionary approaches have been widely applied, but until recently
they were limited in the number of loci or species (e.g. [6–8, 42–44]) and did100

not take into account the influence of sex di↵erences in generation times on the
estimation of ↵ [23]. An additional complication to consider is that X (Z) and
autosomes di↵er not only in their exposures to male and female germlines but
in a number of technical and biological features (notably, GC content) that
may need to be controlled for [45–47]. Moreover, analyses involving closely105

related species can be confounded by the e↵ects of ancestral polymorphism:
for example, lower ancestral diversity in the X chromosome relative to the
autosomes reduces the X-to-autosome divergence ratio, leading to overestima-
tion of ↵ [5] (Figure 1B). In birds, unresolved branches within the phylogeny
present an additional di�culty in estimating substitution rates [48, 49].110

Here, we designed a pipeline for estimating the paternal mutation bias sys-
tematically across a wide range of species, mindful of these issues. To these
ends, we employed existing whole genome alignments [50, 51] or produced our
own (for snakes, see Sequence alignments in Methods), focusing on assem-
blies with high quality and contiguity and, where possible, those based on a115

homogametic individual. To handle the confounding e↵ects of ancestral poly-
morphism on divergence, we thinned species in the phylogeny to ensure a
minimum level of divergence between them, relative to polymorphism levels
(see Species selection criteria in Methods). This stringent filtering procedure
resulted in three whole genome alignments including 20 mammals, 17 birds120

and five snake species, respectively (Table S2).
In order to estimate neutral substitution rates from the alignments and

compare X (Z) and autosomes while minimizing confounding factors, we
focused on non-repetitive, non-exonic regions that were orthologous across all
species in an alignment and did not overlap with pseudo-autosomal regions125

with orthologs on the Y (W) chromosome (see Selecting non-repetitive and
putatively neutral sequences in Methods; see Figure S1F for a more stringent
masking of all conserved regions). To account for di↵erences between X (Z)
and autosomes in features other than their exposure to each sex, we regressed
neutral substitution rates in the 1Mb genomic windows against GC content130

and GC content squared (Figure 1B). We took this approach because GC con-
tent is readily obtained from any genome sequence and is highly correlated
with known modifiers of the mutation rate such as replication timing and the
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fraction of CpG dinucleotides [47, 52]. We then obtained substitution rate esti-
mates for the X (Z) chromosome and autosomes from the regression fit. Finally, 135

we inferred ↵ for the terminal branches leading to the 42 amniote species from
the ratio of the substitution rate estimates for the X (Z) versus the auto-
somes (Figure 2), taking into account sampling error as well as uncertainty in
the ratio of paternal-to-maternal generation times [53] (see Estimating ↵ from
X-to-autosome substitution rate ratios in Methods). 140

Overall, our evolutionary-based estimates, ↵̂evo, are consistent with esti-
mates from pedigree sequencing studies, ↵̂dnm (Figure 2); in particular, the
point estimates for species with the largest amount of available DNM data
(e.g., humans, mice and cattle) are in very close agreement. This finding is not
necessarily expected, as ↵̂evo is an average over many thousands of generations 145

of evolution, whereas estimates from DNMs are based on small numbers of
families at present. In principle, di↵erences between the estimates could there-
fore arise if ↵ evolves rapidly, or if the historical ratios of paternal-to-maternal
generation time di↵er from the those sampled in the pedigrees (Figure 2) [53].
Disagreement between the two estimates could also arise from mutation rate 150

modifiers that di↵er between sex chromosomes and autosomes: in particular,
the low ↵̂evo compared to ↵̂dnm in cats [54] could be due to unusual features
of the X chromosome (as a hypothetical example, if the feline X chromosome
is very late replicating relative to the autosomes). Given the many reasons for
the two types of estimates to di↵er, the general concordance between them 155

suggests that, with the possible exception of cats and dogs, the evolutionary
approach is providing sensible estimates and the paternal bias in mutation is
not rapidly evolving.

1.2 A paternal bias in mutation is widespread across

amniotes 160

A paternal bias in mutation is seen across amniotes, with a range of 1–4 in the
species considered (Figure 2). The ↵̂evo estimates remain similar if we exclude
hypermutable CpG sites (Figure S1B), or focus only on mutation types that are
not subject to the e↵ects of GC-biased gene conversion (gBGC) (Figure S1F
and Figure S2). More generally, they are robustly above 1 for di↵erent choices 165

of conservation filters (e.g., excluding all conserved regions, not just exons) and
di↵erent substitution types (see Figure S1 for details). These results establish
that the paternal bias in mutation is not a feature of long lived humans or of
mammals, but instead ubiquitous across species that vary markedly in their
gametogenesis, physiology and life history. 170

Since gBGC is induced by recombination and acts like selection for GC,
and given the greater population recombination rate of autosomes relative to
the sex chromosomes, we would expect the X-to-autosome substitution rate
ratio of gBGC-favored mutation types (T>C and T>G) to be somewhat lower
than that of mutation types una↵ected by gBGC (C>G and T>A). Consistent 175

with this expectation, ↵̂evo estimates in mammals using only gBGC-favored
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mutation types were inflated relative to estimates from mutation types unaf-
fected by gBGC (Figure S2). Also as expected, bird and snake species with
ZW sex determination exhibit the opposite pattern (i.e., a deflated ratio of
Z-to-autosome substitution rate leads to a decreased estimate of ↵̂evo; Figure180

S2). The behavior of the di↵erent mutation types therefore provides a further
sanity check on our estimates.

Within mammals, the mean value of ↵̂evo is 2.7, with a range 1.0 to 4.1
and a coe�cient of variation of 0.29. In birds, ↵̂evo is lower on average but
also seemingly more stable, ranging from 1.5 to 2.7 (mean = 1.8, coe�cient185

of variation = 0.19). In the handful of snake species sampled, the mean is
similar to that of birds and ↵̂evo ranges from 1.3 to 2.2 (mean = 1.7, coe�cient
of variation = 0.23), in agreement with a previous evolutionary estimate for
rattlesnake (↵ = 2.0; [55]).

In mammals, variation in ↵ has long been known to be associated with190

generation times, and has been consistently interpreted as resulting from
greater numbers of replication errors in species with longer-lived fathers (e.g.,
[4, 9, 23, 56]). We confirmed the observation here: after accounting for the
phylogenetic relationship between species, mammals reproducing at older ages
show a stronger paternal bias in mutation (p-value = 0.01, r2 = 29%; Figure195

3). Statistically significant relationships also exist between ↵̂evo and other
life history traits (Figure S3), but these traits are strongly correlated with
one another (Figure S4) and generation time is the strongest single predictor
(Figure S3; see Testing relationships between ↵ and life history traits in Meth-
ods). In contrast, a significant relationship between generation time and ↵̂evo200

is not seen in birds (p-value = 0.30, r2 = 7%; Figure 3; [57], despite similar
numbers of species and a similar range of generation times to mammals. (Given
the paucity of generation time and ↵ estimates for snakes, we could not test
the relationship in reptiles.) In light of more recent evidence that mutations
depend on absolute time and not cell division rates, the standard explanation205

for this generation time e↵ect no longer holds. These observations therefore
raise the question of how else the relationship between generation times and
↵ in mammals can be explained.

1.3 A cell-division-independent explanation for the

correlation between ↵ and generation time210

In eutherian mammals, embryo development is likely independent of sex until
primordial germ cell (PGC) specification and subsequent development of the
gonads [58]. As a result, mutations arising during early embryogenesis (Early)
are expected to occur at a similar rate in males and females (↵Early = 1), as has
been inferred in the few pedigree studies in which DNMs during parental early215

embryogenesis are distinguished from mutations later in development, namely
in humans [59], cattle [25] and mice [24] (Figure 4A). While sex di↵erences in
early development may exist [60], di↵erences in male and female mutation rates
at such an early stage are likely modest in mammals [61, 62]. At some point
after sexual di↵erentiation of the germline, however, (in what we term the Late220
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stage) mutation rates in the two sexes need no longer be the same: sources and
rates of DNA damage could di↵er between germ cells, as could the e�ciency
and accuracy of repair. Indeed, human fathers that recently reached puberty
contribute over three times more mutations than similarly aged mothers [21].
Intriguingly, the magnitude of paternal bias for mutations that occurred long 225

after sexual di↵erentiation of the PGCs appears to be similar in mice, cattle
and humans, at approximately 4:1 [24, 25, 59] (Figure 4A).

In light of these observations, we considered a simple model in which ↵ in
mammals is the outcome of two developmental stages with distinct ratios of
paternal-to-maternal mutations. In the Early stage to germline sex di↵erenti- 230

ation, we assumed a paternal-to-maternal mutation ratio of 1 and an expected
number of mutations on par with what is observed in humans (i.e., 5 muta-
tions per haploid genome; [59, 63, 64]) (Figure 4A). In the Late developmental
stage after germline sex di↵erentiation, which varies in length among species,
we assumed a conserved ratio of paternal-to-maternal yearly mutation rates 235

of 4, as suggested by DNM data [24, 25, 59] (Figure 4A and Table S3). This
model yields a relationship between ↵ and generation time bounded below by
1 and with a plateau at 4, assuming the same generation times in the two
sexes (Figure 4B); more generally, the height of the plateau depends on the
ratio of paternal-to-maternal generation times (Figure S5). The rapidity with 240

which ↵ reaches this asymptote is determined by the magnitude of the pater-
nal mutation rate per year in the Late stage (Figure 4B). Most saliently, a
positive relationship between ↵ and generation time is expected as long as
↵Early < ↵Late.

Using this model, we then predicted ↵ for the terminal branches in the 245

mammalian tree. To estimate the number of mutations occurring in Late

for each branch, we used the evolutionary rates in Figure 2A. Specifically,
we calculated a sex-averaged substitution rate per generation by multiplying
the autosomal yearly substitution rate in each branch by a generation time
estimate for its tip (Table S2). Given a fixed ratio of paternal-to-maternal 250

mutation rates of 4 in the Late stage, the substitution rate for each sex can be
calculated for any given ratio of paternal-to-maternal generation times (Model-
ing the e↵ects of germline developmental stages on ↵ in Methods). From these
quantities, we obtain an estimate of ↵ that we can use to predict ↵̂evo (Mod-
eling the e↵ects of germline developmental stages on ↵ in Methods). When we 255

do so, we explain a significant proportion of the variance (r2 = 37%) in ↵̂evo

in mammals (p-value = 0.005; Figure 4C)—42% of the variance, after taking
into account sampling error in our ↵̂evo estimates (see Modeling the e↵ects
of germline developmental stages on ↵ in Methods). Moreover, this remains
true regardless of the precise number of Early mutations assumed (see Mod- 260

eling the e↵ects of germline developmental stages on ↵ in Methods). The two
clear outliers are carnivores, for which ↵̂evo may be an underestimate, given
the higher estimate from DNMs in cats (Figure 2).

These predictions rely on evolutionary estimates that are uncertain, due for
instance to inaccuracies in split time estimates and the use of contemporary 265



8

generation times as proxies for past ones. If we instead predict ↵ using param-
eters derived from pedigree data in the nine mammalian species for which
more than one trio has been studied (Modeling the e↵ects of germline devel-
opmental stages on ↵ in Methods), the model explains 82% of the variance in
↵̂dnm (p-value = 0.001; Figure 4C). We note that this assessment is based on270

few phylogenetically-independent contrasts, and so while the fit is statistically
significant, the high variance explained may be somewhat deceiving.

In any case, this phenomenological model clarifies that the increased ↵
seen in long-lived mammals may simply result from a reduction in the frac-
tion of early embryonic mutations relative to total number of mutations per275

generation–consistent with the higher proportion of Early mutations in mice
and cattle compared to humans (Figure 4A). In addition, the model helps to
explain the only modest increase in ↵ with parental ages observed in humans
[21].

Given this explanation for an e↵ect of generation time on ↵ in mammals,280

how then to interpret the absence of such an e↵ect in birds? One possibility
is that sex di↵erences in mutation rates arise earlier in development: unlike
in mammals, the avian sexual phenotype is directly determined by the sex
chromosome content of individual cells [65, 66] and PGCs are determined by
inheritance of maternally derived gene products (preformation) [67]. These285

features of germ cell development raise the possibility that sex-di↵erences in
mutation rates could appear earlier in ontogenesis in birds than in mammals,
consistent with reported sex di↵erences in the cellular phenotypes of PGCs
prior to gonad development [68]. If the developmental window when both sexes
have a similar mutation rate is indeed small, then assuming that the ratio of290

paternal-to-maternal mutation rate is roughly constant across parental ages,
generation times should have no influence on ↵. Alternatively, the lack of an
apparent generation time e↵ect on ↵ in birds may arise simply because the ratio
of paternal-to-maternal age e↵ects in Late is lower in birds than in mammals
(e.g., 2 instead of 4). In this scenario, bird generation times would influence ↵295

within a narrower range (e.g., between 1 and 2), and our power to detect the
relationship between generation time and ↵ may be reduced.

1.4 Outlook

Analyzing diverse species with the same pipeline, we found that, far from being
a feature of species with long-lived males, a paternal bias in germline muta-300

tion is ubiquitous across amniotes that di↵er markedly in their life history,
physiology and gametogenesis. Moreover, by considering the di↵erent develop-
ment stages over which germline mutations arise, we provide a new and simple
explanation for variation in the degree of sex bias across mammals that does
not require dependence on the number of cell divisions. While our findings305

do not account for why male germ cells might accumulate more mutations
than female ones, the observation that paternal bias varies little across species
exposed to disparate physical environments, and presumably exogenous muta-
gens, hints at sex di↵erences in endogenous sources of DNA damage or repair
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(e.g., [69]). Another question raised by our findings is why, after sexual di↵er- 310

entiation of the germline, mutation appears to be more paternally-biased in
mammals (⇠4:1) than in birds and snakes (⇠2:1).

More generally, our results recast long standing questions about the source
of sex bias in germline mutations as part of a larger puzzle about why certain
cell types (here, spermatogonia versus oocytes) accrue more mutations than 315

others. Intriguingly, the relative mutagenicity of di↵erent tissues appears to
be conserved across species: for instance, in mammals, the balance of damage
and repair results in an approximately four-fold increase in mutation rates per
unit of time in spermatogonia compared to oocytes (Figure 4A). Similarly,
comparing mutation rates in colonic crypts [37] to estimates for spermatogo- 320

nia, the ratio of crypt-to-sperm mutation rate appears relatively stable across
four mammalian species (Figure S6). These observations may point to a role
of stabilizing selection in maintaining the relative rates at which mutations
accumulate in di↵erent tissues over evolutionary timescales.
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Fig. 1: Estimating the paternal bias in mutation from neutral substi-
tution rates of sex chromosomes and autosomes. (A) On average, the
lineage of an X chromosome spends fewer generations in males than females.
Given a higher mutation rate in males than in females and all else being
equal, this leads to lower rates of neutral substitutions on the X chromo-
some compared to autosomes [41]. (B) Procedure for estimating the ratio of
paternal-to-maternal mutation rates, ↵, from substitution rates in sex chromo-
somes and autosomes. The autosomes and the X chromosome are partitioned
into 1 Mb windows, depicted in purple and orange, respectively. Each window
is filtered to focus on putatively neutrally-evolving sequences (see Selecting
non-repetitive and putatively neutral sequences in Methods), and its GC con-
tent is calculated (represented by shading). The putatively neutral substitution
rates per window are then regressed against the GC content (center panel, see
Estimating ↵ from X-to-autosome substitution rate ratios in Methods). Sub-
stitution rate estimates for the X chromosome and autosomes are obtained
from the regression fit (red points). Finally, the ratio of the point estimates is
converted to an estimate of ↵ (right panel). An analogous procedure applies to
comparisons of the Z chromosome and autosomes in a ZW sex-determination
system.
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Fig. 2 (previous page): Estimates of the paternal bias in mutation
across 42 amniote lineages. Colored points denote estimates of ↵ from
X(Z)-to-autosome substitution rate ratios, ↵̂evo, in mammals (top, orange),
birds (middle, blue), and snakes (bottom, green). Note that the x-axis is log-
scaled, and CIs extending past 6 are truncated (see Table S2). Vertical colored
lines denote the mean ↵̂evo for each group and the vertical gray dotted line
denotes ↵ = 1 (i.e., no sex bias in mutation). Species in each group are plotted
according to their phylogenetic relationships, with branch lengths scaled by
the neutral substitution rate (see the legends for the divergence per base-pair).
Asterisks indicate species with chromosome-level assemblies. Points denote the
point estimate of ↵̂evo. Darker colored horizontal lines represent 95% CIs, which
include variation in substitution rates across genomic windows; lighter colored
horizontal lines incorporate additional uncertainty in the ratio of paternal-to-
maternal generation times, assuming it ranges from 0.9 to 1.1 (see Estimating
↵ from X-to-autosome substitution rate ratios in Methods). Short vertical
black lines denote point estimates of ↵ from published pedigree studies of de
novo mutations, ↵̂dnm, and the surrounding horizontal gray boxes represent
their 95% binomial CIs. For more detail, see the extended Figure 2 legend in
Supplementary tables and figures and Methods.
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Fig. 3: Relationship between ↵̂evo and generation time estimates in
mammals and birds. Estimates of ↵ from X (Z)-to-autosome comparisons
are plotted against generation times from the literature (see Table S2), on a log
scale. Lines denote the phylogenetic generalized least squares regression fits in
mammals (orange) and birds (blue). � refers to Pagel’s � [70], a measure of the
strength of phylogenetic signal, which was inferred via maximum likelihood
(see Testing relationships between ↵ and life history traits in Methods). Fixing
� to 1 in birds, as estimated for mammals, did not meaningfully improve the
fit (p-value = 0.282, r2 = 0.08).
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Fig. 4 (previous page): Variation in ↵ among mammals may reflect
varying exposures to di↵erent developmental stages. (A) Ratio of
paternal-to-maternal de novo mutations (DNMs) occurring in early embryo-
genesis (Early, white points), after the sexual di↵erentiation of the germline
(Late, grey points) and in both of these stages combined (Total, red line), for
the three mammalian species in which this classification is available (mouse
[24], cattle [25], and human [59]). For each species, the percentage of DNMs
occurring at each stage are indicated and used to scale the size of points. Ver-
tical lines show the 95% binomial CIs. Since the phasing rate is not equal
across developmental stages, point estimates for ↵ in Total were computed
by extrapolating the proportion of paternally and maternally phased DNMs
in each stage to all the DNMs in that stage (i.e., assuming full phasing)(see
Estimating ↵ from pedigree studies in vertebrates in Methods). (B) Schematic
representation of a model in which ↵ is the outcome of mutation in two devel-
opmental stages (see Modeling the e↵ects of germline developmental stages
on ↵ in Methods). (C) Expected relationship between ↵ and generation time
under the model outlined in B, assuming generation times are the same in
both sexes. The increase of ↵ with generation time depends on the paternal
mutation rate per year in Late, µm, as illustrated by the purple gradient. (D)
Fits of predicted ↵ values to ↵̂evo (orange) and ↵̂dnm (gray). In each species,
↵ using µf and µm, as estimated from autosomal branch-specific substitution
rates per year (↵̂evo) or as estimated from pedigree sequencing data (↵̂dnm)
(see Modeling the e↵ects of germline developmental stages on ↵ in Methods).
The orange and gray lines denote the regression fit using phylogenetic general-
ized least squares (PGLS). PGLS statistics are shown for the two models (see
Figure 3 legend for details).
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3 Data availability

Scripts for reproducing the analyses and figures may be found at
https://github.com/flw88/mut_sex_bias_amniotes.
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