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Abstract 25 

Prediction errors have a prominent role in many forms of learning. For example, in 26 

reinforcement learning agents learn by updating the association between states and outcomes as a 27 

function of the prediction error elicited by the event. An empirical hallmark of such error-driven 28 

learning is Kamin blocking, whereby the association between a stimulus and outcome is only learnt 29 

when the outcome is not already fully predicted by another stimulus. It remains debated however to 30 

which extent error-driven computations underlie learning of automatically formed associations as in 31 

statistical learning. Here we asked whether the automatic and incidental learning of the statistical 32 

structure of the environment is error-driven, like reinforcement learning, or instead does not rely on 33 

prediction errors for learning associations. We addressed this issue in a series of Kamin blocking 34 

studies. In three consecutive experiments, we observed robust incidental statistical learning of 35 

temporal associations among pairs of images, but no evidence of blocking. Our results suggest that 36 

statistical learning is not error-driven but may rather follow the principles of basic Hebbian 37 

associative learning.  38 

Keywords: statistical learning, Kamin blocking, prediction errors, incidental learning  39 
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Statistical learning is not error-driven 40 

Learning is an essential feat of animal cognition. It allows us to build and refine our internal 41 

models of the world, so that we predict and flexibly adapt to our dynamic environment. A key 42 

feature of learning is the ability to form associations between events that take place in a systematic 43 

relationship across space or time (Gershman, 2017). For example, in a typical classical conditioning 44 

experiment (Pavlov, 1927), a dog automatically salivates (i.e., unconditioned response) in response 45 

to food (i.e., outcome or unconditioned stimulus). During conditioning, the sound of a bell (i.e., cue 46 

or conditioned stimulus) is repeatedly paired with the food. Once conditioning is accomplished, the 47 

bell itself elicits salivation (i.e., conditioned response). 48 

Cue competition is a crucial phenomenon in associative learning. It refers to the observation 49 

that learning which cues predict an outcome not only depends on the presence of the cues before the 50 

outcome. Rather, cues compete with each other to gain predictive power over the outcome, and this 51 

moderates the learning process (Boddez et. al., 2014; De Houwer et. al., 2005; Luque et. al., 2018; 52 

Schmidt & De Houwer, 2019). Cue competition is exemplified by the Kamin blocking effect 53 

(Kamin, 1969). In a typical blocking paradigm (see Table 1), observers first learn the association 54 

between cue A and outcome X, and later they are trained with the association between cues A + B 55 

and outcome X. As a result of blocking, observers do not learn the association between cue B and 56 

outcome X, because X is already completely predicted by cue A. In other words, the previously 57 

learned A-X association blocks learning the association between cue B and outcome X. 58 

Blocking cannot be explained by simple contiguity-dependent Hebbian associative learning 59 

(Hebb, 1949). Thereby, it suggests that the simple temporal co-occurrence of different stimuli is not 60 

sufficient for learning to occur. Instead, the model developed by Rescorla and Wagner (1972) 61 

provides a viable explanation for blocking. According to the Rescorla-Wagner model, changes in 62 

associative strength are determined by the amount of discrepancy between the expected and the 63 

observed outcome, i.e. the prediction error. In the blocking procedure, the previously learned A→X 64 
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association prevents the formation of an associative link between the second cue B and the outcome 65 

X, because the cue A already minimizes the prediction error during the exposure to the AB→X 66 

compound stimulus. In typical blocking experiments, associations are learned either when the 67 

outcome is a reward (Aggarwal et. al., 2020; Aggarwal & Wickens, 2020; Sharpe et.al., 2017; 68 

Steinberg et. al., 2013) or when performance-related feedback is provided (Blanco et. al., 2014; 69 

Kruschke & Blair, 2000; Le Pelley et. al., 2005, 2007; Luque et. al., 2018, Mitchell et. al., 2006). 70 

This provides support that reinforcement learning (i.e., learning associations between events in a 71 

self-supervised manner, via trial and error) relies on an error-driven learning algorithm (Gershman 72 

& Daw, 2017). 73 

Another powerful form of learning is known as statistical learning, often defined as the 74 

automatic and incidental extraction of regularities from the environment (Batterink et al., 2019; 75 

Frost et al., 2019; Saffran et. al., 1996; Sherman et al., 2020; Turk-Browne et al., 2010). In the 76 

context of statistical learning, we have limited information about how the learning process itself 77 

occurs. Several studies are suggestive of the fact that statistical learning may indeed similarly rely 78 

on prediction errors. In rats, dopaminergic activity in the ventral tegmental area is important for the 79 

formation of an association between two non-rewarding stimuli (Keiflin et al., 2019; Sharpe et al., 80 

2017). In humans, statistical learning involves the ventral striatum (Klein-Flügge et al., 2019), 81 

which has been hypothesized to signal prediction errors (Klein-Flügge et al., 2019; O'Doherty et. al, 82 

2004; McClure et. al., 2003). 83 

However, other researchers, using variants of Kamin’s blocking paradigm, did not find clear-84 

cut evidence for error-driven statistical learning. Beeslay and Shanks (2012) did not observe any 85 

blocking in contextual cueing experiments, where participants incidentally learnt the spatial 86 

relationship among distracters and targets in a visual search task. This paradigm however deviates 87 

from classical blocking paradigms, which rely on a temporal prediction between a cue and a future 88 

outcome (Aggarwal et. al., 2020; Aggarwal & Wickens, 2020; Blanco et. al., 2014; De Houwer & 89 
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Beckers, 2003; De Houwer et. al., 2005; Kruschke & Blair, 2000; Le Pelley et. al., 2005, 2007; 90 

Luque et. al., 2018, Mitchell et. al., 2006; Sharpe et.al., 2017; Steinberg et. al., 2013; Vandorpe et. 91 

al., 2005). Two subsequent experiments (Moris et al., 2014; Schmidt and De Houwer, 2019) 92 

observed blocking of temporal associations only for material that was intentionally learnt, but not 93 

for incidentally learnt stimulus associations. Such learning conditions substantially deviates from a 94 

typical statistical learning scenario, where observers automatically extract regularities without 95 

intention nor awareness (Batterink et al., 2019; Frost et al., 2019; Sherman et al., 2020; Turk-96 

Browne et al., 2010). Overall, it is therefore still unclear whether statistical learning require 97 

prediction errors. 98 

We addressed this unresolved question in three consecutive experiments, in order to 99 

understand whether statistical learning is error-driven. On every trial, we presented participants with 100 

two consecutively presented stimuli. Unbeknownst to participants, we manipulated the conditional 101 

probabilities between successively presented leading and trailing stimuli, such that each trailing 102 

image could be predicted on the basis of its preceding, leading image. After learning, we evaluated 103 

statistical learning by presenting participants with expected and unexpected image pairs. Successful 104 

earning was indexed by faster reaction times to expected relative to unexpected trailing stimuli 105 

(Hunt & Aslin, 2001; Richter & de Lange, 2019; Turk-Browne et. al., 2005). 106 

Experiment 1 107 

Method 108 

Preregistration and data availability 109 

All experiments were preregistered on the Open Science Framework. Deviations from 110 

preregistration are mentioned as such and justified in the corresponding sections below. 111 

 112 
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Participants 113 

The experiment was performed online using the Gorilla platform (Anwyl-Irvine et al., 2020), 114 

and participants were recruited through the Prolific platform (https://www.prolific.co/). 148 115 

participants performed the experiment. 47 of them were excluded before they finished the 116 

experiment based on a priori exclusion criteria (see section ‘Exclusion and inclusion criteria’), and 117 

one participant was excluded from the final data analysis due to excessively slow responses (RTs 118 

above 3 times the mean absolute deviation [MAD] from the group mean). As a result, one hundred 119 

participants (37 females; mean age 24.49, range 18-40 years) were included in the data analysis. 120 

This final number of included participants was preregistered based on previous research (Richter & 121 

de Lange, 2019; Schmidt & De Houwer, 2019) considering that online data would be noisier and, 122 

therefore, a larger number of participants would be required to maintain the same statistical power. 123 

The pre-selected sample size yielded 84% power to detect a small sized (Cohen’s d = 0.3) effect (α 124 

= 0.05).  125 

All participants had normal or corrected to normal vision, normal hearing and no history of 126 

neurological or psychiatric conditions. They provided written informed consent and received 127 

financial reimbursement (8 euro per hour) for their participation in the experiment. The study 128 

followed the guidelines for ethical treatment of research participants by CMO 2014/288 region 129 

Arnhem-Nijmegen, The Netherlands. 130 

Exclusion and inclusion criteria 131 

The online experiment was terminated if the percentage of correct responses during object 132 

categorization was below 80% (threshold was defined based on a preliminary pilot study) in any 133 

training or test phase (see ‘Experimental design’ and Figure 1a) or if the percentage of correct 134 

responses in attention check trials was below 80% in any of the experimental phases (see section 135 

‘Experimental design’). 136 
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Prior to the main data analysis, we discarded trials with no responses, wrong responses, or 137 

anticipated responses (i.e., response time < 200 ms). We also rejected trial outliers (response times 138 

exceeding 3 MAD from mean RT of each participant) and subject outliers (participants whose RTs 139 

exceeded 3 MAD from the group mean). For the accuracy analysis of the pair recognition task, we 140 

rejected trial outliers in terms of response speed (response times exceeding 3 MAD from mean RT 141 

of each participant). 142 

Experimental design 143 

In each experimental trial, participants were exposed to two images presented in the center of 144 

the screen in quick succession: a leading stimulus was followed by a trailing stimulus. For each 145 

participant, there were 4 leading stimuli (2 geometric shapes and 2 everyday objects) and 4 trailing 146 

stimuli (all objects). Everyday objects were randomly chosen from a pool of 64 stimuli derived 147 

from Brady et al. (2008) per participant, thereby eliminating potential effects induced by individual 148 

image features at the group level. In each stimulus set, 50% of objects were electronic (consisting of 149 

electronic components and/or requiring electricity to function) and 50% were non-electronic. The 150 

expectation manipulation consisted of a repeated pairing of images in which the leading image 151 

predicted the identity of the trailing image, thus over time making the trailing image expected given 152 

the leading image. Importantly, each trailing image was only (un)expected depending on which 153 

leading image it was preceded. Thus, each trailing image served both as an expected and 154 

unexpected image depending on the leading image. In addition, trial order was pseudo-randomized, 155 

with the pairs distributed equally over time. In sum, any difference between expected and 156 

unexpected occurrences cannot be explained in terms of familiarity, adaptation or trial history. 157 

Throughout the experiment, participants needed to categorize the trailing object as electronic or 158 

non-electronic as fast as possible. This task was aimed at assessing any implicit reaction time (RT) 159 

benefits due to incidental learning of the temporal statistical regularities: upon learning, leading 160 

images could be used to predict the correct categorization response before the trailing image 161 
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appeared. In addition, there were attention check trials where participants were simply asked to 162 

press a specific key based on a message on screen (e.g., "Press left-arrow key"). The aim of these 163 

trials (7% of all trials per participant) was to monitor participants’ vigilance (see ‘Exclusion and 164 

inclusion criteria’). A fixation bull’s-eye was presented in the center of the screen throughout the 165 

experiment. 166 

The blocking paradigm comprised two consecutive training phases, followed by one test 167 

phase (see Figure 1a). During the two training phases, leading stimuli were perfectly predictive of 168 

their respective trailing stimuli (i.e. P(trailing | leading = 1)). Participants were not informed about 169 

this deterministic association, nor were they instructed to learn this association at the beginning of 170 

the experiment. Therefore, the pair associations were could only be learned incidentally. In training 171 

phase 1, the leading stimulus was either a shape or an object, and it was always followed by the 172 

same trailing object. In training phase 2, a novel leading stimulus (blocked [B] leading stimulus) 173 

was presented along with the leading stimulus presented in training phase 1 (antedating [A] leading 174 

stimulus). If the antedating leading stimulus was an object, then the blocked leading stimulus was a 175 

shape or vice versa. In addition, novel leading (shape + object) and trailing (object) stimulus pairs 176 

were presented as a control. In the test phase, the leading stimulus of each condition (antedating [A] 177 

/ blocked [B] / control [C]) was presented alone, followed by either the expected stimulus (based on 178 

the training phases), or an unexpected trailing stimulus. Expected and unexpected stimulus pairs 179 

were presented equally often to prevent any learning at this final test stage. In the test phase, control 180 

(C) trials were compared to blocked (B) trials to assess blocking while controlling for the amount of 181 

exposure. Also, the control trials in the test phase showed whether new associations had been 182 

learned during training phase 2.  183 

Data was collected during one single session per participant. Firstly, participants familiarized 184 

themselves with all trailing objects. In each trial, an object image was presented for 3500 ms in the 185 

center of the screen, and participants had 1500 ms to categorize the image as electronic or non-186 
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electronic (via a keyboard key press, keys counterbalanced across participants). Then, written 187 

feedback indicated the true category and the name of the object for 2000 ms (8 pairs × 2 trials / 188 

pairs = 16 trials in total). Afterwards, participants performed the experiment (i.e., training phase 1, 189 

training phase 2 and test phase). In each trial, the leading and trailing stimuli were presented for 500 190 

ms successively with no inter-stimulus interval, followed by a 1500 ms inter-trial interval. 191 

Participants categorized the trailing object as electronic or non-electronic as fast as possible (via 192 

keyboard key press, keys counterbalanced across participants). Training phase 1 and training phase 193 

2 started with a short practice period (practice training phase 1: 4 pairs × 4 trials / pairs = 16 trials in 194 

total; practice training phase 2: 8 pairs × 4 trials / pairs = 32 trials in total). After each practice, 195 

participants completed the training phases (training phase 1: 4 pairs × 26 trials / pairs = 104 trials in 196 

total; training phase 2: 8 object pairs × 26 trials / object pair = 208 trials in total). In addition, 197 

attention check trials (see above) were pseudo-randomly interspersed throughout the training phases 198 

without repetitions in successive trials. Afterwards, participants completed the test phase (12 pairs × 199 

24 trials / pairs = 288 trials in total). Crucially, for each leading stimulus, both expected and 200 

unexpected trailing objects belonged to the same category (electronic or non-electronic). This 201 

ensured that differences in RTs during object categorization would not arise by mere response 202 

adjustments costs, but instead reflected perceptual surprise to unexpected trailing objects. 203 

Finally, at the end of the experiment participants performed a pair recognition task to probe 204 

their explicit knowledge of the statistical regularities. Before starting the recognition task, 205 

participants were informed about the presence of statistical regularities among leading and trailing 206 

images in the previous experimental phases (i.e., training phases 1 and 2), and they were asked to 207 

indicate whether the trailing object was likely or unlikely given the leading stimulus according to 208 

what they saw during these previous phases. Participants familiarized themselves with the 209 

procedure via a brief practice (12 pairs × 2 trials / pairs = 24 trials in total) before completing the 210 

recognition task (12 pairs × 8 trials / pairs = 96 trials in total). 211 
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Data analysis 212 

We analyzed the RT data in the test phase in order to test for incidental learning of predictable 213 

stimulus transitions: upon learning, participants were hypothesized to react faster to expected 214 

relative to unexpected trailing stimuli (Richter et al., 2018, Richter & de Lange, 2019). 215 

Furthermore, we analyzed the accuracy data in the pair recognition test to assess participants’ 216 

explicit knowledge about learnt statistical regularities. For both analyses, we used a Bayesian mixed 217 

effect model approach. The Bayesian framework allows a three-way distinction between evidence 218 

for an effect, evidence for no effect, and absence of evidence (Dienes, 2016; Keysers et al., 2020). 219 

This three-way distinction is important in the present study because it allowed us to draw 220 

conclusions from the initial experiment, consider alternative explanations, and run follow-up 221 

experiments to test these alternative explanations. An additional reason for this approach was the 222 

violation of the normality assumption for repeated measures ANOVAs of response times. Data were 223 

analyzed using the brm function of the BRMS package (Bürkner, 2017) in R. In the Supplementary 224 

information, we additionally provide classic frequentist analyses (i.e., ANCOVA of the reaction 225 

time data of the test phase and one-way ANOVA of the accuracy data of the pair recognition test) 226 

for comparability with previous studies and to verify that our conclusions do not depend on the 227 

analytical framework employed. Furthermore, in supplementary tables we provide post-hoc 228 

Bayesian mixed effect models that follow significant interaction effects. 229 

Analysis of RT data in test phase. Firstly, we modeled the behavioral data of the antedating 230 

condition, where one leading stimulus was followed by one trailing stimulus. This served as a sanity 231 

check to verify the baseline assumption that participants were able to learn the temporal association 232 

between the leading and trailing stimuli. The model of the antedating (A) condition included 233 

reaction time as dependent variable and Expectation (unexpected / expected) as a fixed factor. To 234 

model the overall effect of time on task, we included Exposure as a continuous numeric predictor. 235 

Exposure was scaled between -1 and 1 to be numerically in the same range as the other factors, 236 
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which aids model convergence. For the interpretation of the results, the model coefficient for 237 

Exposure represents the increase in RT from the first to the last exposure. Finally, we included the 238 

interaction between Exposure and Expectation in the model, to probe extinction of the learnt 239 

associations. Namely, during the test phase participants are exposed equally often to expected and 240 

unexpected stimulus pairs, potentially resulting in extinction of the RT advantage for expected 241 

stimuli over time. The model included a full random effect structure (i.e., a random intercept and 242 

slopes for all within-participant effects). 243 

Secondly, we determined whether there was blocking by jointly modeling the blocked (B) and 244 

control (C) conditions. The model of blocked and control conditions included reaction time as a 245 

dependent variable and Expectation (unexpected / expected), Condition (control / blocked) and 246 

Exposure as fixed independent variables. We included the interaction between Expectation and 247 

Condition to test for the blocking effect. The contrasts of the factors Expectation and Condition 248 

were coded as successive difference contrasts. Exposure was a continuous predictor scaled between 249 

-1 and 1, as in the antedating condition analysis. Again, we also modeled extinction (Expectation × 250 

Exposure interaction) and its interaction with Condition to probe for potential differences in 251 

extinction between conditions. The models were constructed using weakly informative priors 252 

centered at zero. The response time data was modelled using the exgaussian family and four chains 253 

with 25,000 iterations each (12,500 warm up) per chain and inspected for chain convergence. 254 

Coefficients were accepted as statistically significant if the associated 95% posterior confidence 255 

intervals were non-overlapping with zero. To measure the amount of evidence for and against an 256 

effect (evidence of absence), we calculated Bayes factors (BF) for each fixed effect parameter 257 

against the null hypothesis of this parameter being zero with the hypothesis function in BRMS. 258 

Analysis of RT data split by stimulus type in test phase. We conducted a follow-up analysis 259 

that tested for the effect of the type of leading stimulus (shape / object). We reasoned that leading 260 

object stimuli may have attracted more attention than leading shape stimuli, given that they were 261 
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visually more salient than the surrounding grey shapes, and their category was task-relevant, as the 262 

task required object categorization on the trailing image. Given that associative learning depends on 263 

attention (Kruschke, 2001; Pacton & Perruchet, 2008), it was therefore conceivable that leading 264 

objects, rather than shapes, developed a stronger temporal association with trailing objects. We fit 265 

the model of antedating condition and the model of blocked and control conditions as described 266 

above, but with the inclusion of leading Stimulus Type (shape / object) as additional fixed factor. 267 

The model included a full random effect structure (i.e., a random intercept and slopes for all within-268 

participant effects). If the posterior confidence intervals of the interaction effects between 269 

Expectation and leading Stimulus Type did not overlap with zero, we run separate models for 270 

shapes and objects respectively, in order to test for the blocking effect for each stimulus type. The 271 

models were constructed using weakly informative priors centered at zero. All other analysis 272 

settings were as specified above.  273 

Analyses of accuracy data in pair recognition test. Firstly, we determined whether accuracy 274 

was above chance level within each condition (antedating / blocked / control). Hence, we created 275 

three separate binomial mixed-effects models with response error as dependent variable. Secondly, 276 

we determined whether there was a blocking effect in the explicit knowledge of implicitly learned 277 

associations. To do so, we created a binomial mixed-effects model with response error as binary 278 

dependent variable and Condition (blocked / control) as fixed factor. The models included a full 279 

random effect structure (i.e., a random intercept and slopes for the within-participant effects). The 280 

models were constructed using weakly informative priors centered at zero. All accuracy models 281 

were fit using Bernoulli family and four chains with 25,000 iterations each (12,500 warm up) per 282 

chain and inspected for chain convergence. With respect to significance and amount of evidence we 283 

used the same criteria as for the RT data.  284 

Results 285 
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Analysis of RT data in test phase. First, we compared the reaction times of expected and 286 

unexpected trials in the antedating condition to test whether repeated exposure to leading-trailing 287 

pairs led to learning their temporal association (see Table 2). We observed faster reaction times in 288 

expected (493 ms) than unexpected (508 ms) trials (b = 11.23, CI = [6.80, 15.59], BF10 > 1000, see 289 

Figure 1b), indicating successful learning of stimulus transition probabilities and the consequent 290 

behavioral benefit of expectation in terms of response speed. In addition, we tested whether this 291 

behavioral benefit remained stable during the test phase or dwindled, as would be expected by 292 

extinction. In line with the latter, we observed an interaction effect between Expectation and 293 

Exposure (b = -9.28, CI = [-15.26, -3.38], BF10 = 9.01), indicating that learning showed rapid 294 

extinction (expectation effect for run 1: 22 ms, run 2: 9 ms, run 3: 6 ms; see Figure 1c). 295 

Next, we moved to our main question and tested for the presence of blocking (see Table 3 and 296 

Figure 1d). The reaction time difference between unexpected and expected trials was not different 297 

between control (11 ms) and blocked (12 ms) conditions (b = 1.85, CI = [-3.95, 7.51], BF10 = 0.05, 298 

see Figure 1b). With a BF10 < 0.10, this pattern of results presents strong evidence for the absence 299 

of blocking. There was also no difference in how the reaction time benefit for expected items 300 

behaved over time (b = -2.29, CI = [-11.17, 6.13], BF10 = 0.01; expectation effect in blocked 301 

condition for run 1: 13 ms, run 2: 4 ms, run 3: 12 ms; expectation effect in control condition for run 302 

1: 18 ms, run 2: 10 ms, run 3: 7 ms; see Figure 1c). 303 

Analyses of RT data split by stimulus type in test phase. In a follow-up analysis, we tested 304 

whether the type of leading stimulus (shape / object) affected statistical learning. In the antedating 305 

condition (see Table 4), the reaction time difference between unexpected and expected trials was 306 

larger for leading object (20 ms) compared to leading shape (9 ms) trials according to the posterior 307 

CI, with the BF being inconclusive (b = -10.00, CI = [-18.57, -1.48], BF10 = 1.21), which indicated 308 

that object-object associations were somewhat stronger than shape-object associations. While the 309 

difference in RT was larger for object-object associations than shape-object associations, separate 310 
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follow-up models showed that the reaction time difference was significant with strong BF evidence 311 

when the leading stimulus was an object (b = 15.19, CI = [7.98, 22.46], BF10 = 175.97, see Table S1 312 

and Figure 2a-e), and it was still significant but with an inconclusive BF when it was a shape (b = 313 

5.44, CI = [0.83, 10.05], BF10 = 0.61, Table S2 and see Figure 2b-f).  314 

Across blocked and control conditions (see Table 5), the reaction time difference between 315 

unexpected and expected trials was also larger when the leading stimulus was an object (18 ms for 316 

B, 27 ms for C) compared to a shape (0 ms for B, 1 ms for C) (b = 18.40, CI = [11.52, 25.41], BF10 317 

> 1000). Separate follow-up models showed that reaction times were faster in expected trials than in 318 

unexpected trials when the leading stimulus was an object (RT difference = 18 ms in blocked 319 

condition and 27 ms in control condition; b = 18.73, CI = [12.83, 24.5], BF10 > 1000, see Table S3 320 

and Figure 2a-e). This was not the case when the leading stimulus was a shape (RT difference = 0 321 

ms in blocked condition and 1 ms in control condition; b = 0.11, CI = [-3.27, 3.44], BF10 = 0.03, 322 

Table S4 and see Figure 2b-f). Overall, the data suggest that shape – object associations could be 323 

learnt, but to a lesser extent than object – object associations. In particular, shape – object 324 

associations could be learnt only if a leading shape in isolation was followed by a trailing object 325 

(i.e., in the antedating condition), but not when the leading shape was concurrently paired with a 326 

leading object (in a compound stimulus) and then followed by the trailing object (i.e., in the blocked 327 

and control conditions). This pattern of results fits our prediction that leading objects attract more 328 

attention than shapes, given that they were visually more salient, and their category was task-329 

relevant. As associative learning depends on attention (Kruschke, 2001; Pacton & Perruchet, 2008), 330 

this may have hampered associative learning between leading shapes and trailing objects. In other 331 

words, we found cue competition among the leading shape and object in the forms of 332 

overshadowing (Boddez et. al., 2014; Pavlov, 1927; Schmidt & De Houwer, 2019), with the leading 333 

shape being overshadowed by the leading object. Finally, there was evidence for the absence of an 334 

interaction between Expectation, Condition and leading Stimulus Type (b = 4.09, CI = [-6.18, 335 
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15.80], BF10 = 0.10), indicating that the absence of blocking did not depend on leading Stimulus 336 

Type. 337 

Analyses of accuracy data in pair recognition test. Participants were able to indicate whether 338 

the trailing object was likely or unlikely given the leading stimulus above chance level in the 339 

antedating (b = 0.32, CI = [0.23, 0.42], BF10 > 1000), blocked (b = 0.16, CI = [0.09, 0.24], BF10 = 340 

185.67) and control (b = 0.12, CI = [0.04, 0.19], BF10 = 4.90) conditions. Response errors did not 341 

differ between the blocked and control conditions (b = -0.05, CI = [-0.15, 0.05], BF10 = 0.08), 342 

indicating no blocking for the explicit knowledge of incidentally learned associations. 343 

Experiment 2 344 

Experiment 1 showed that the type of leading stimulus critically influenced statistical 345 

learning. Antedating and control leading shapes got less strongly associated with the trailing object 346 

than antedating and control leading objects. Moreover, blocked and control leading shapes could 347 

not compete with the concurrent leading objects for associative strength because they attracted less 348 

attention. This imbalance between shapes and objects may provide an alternative explanation for the 349 

lack of blocking that we observed. Therefore, in Experiment 2 we made one modification to our 350 

paradigm and only presented objects as leading and trailing stimuli to remove any potential 351 

difference in attention between different leading stimuli, which might finally result in a blocking 352 

effect. 353 

Method 354 

Participants 355 

The experiment was performed online by using the Gorilla platform (Anwyl-Irvine et al., 356 

2020), and participants were recruited through the Prolific platform (https://www.prolific.co/). 81 357 

participants performed the experiment. 27 of them were excluded before they finished the 358 

experiment based on a priori exclusion criteria (see section ‘Exclusion and inclusion criteria’ 359 
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above). Four extra participants were excluded from the final data analysis: two showed accuracy 360 

below 50% chance level in test phase; two showed overall excessively slow responses (RTs above 3 361 

MAD from the group mean). As a result, fifty participants (16 females; mean age 23.90, range 18-362 

34 years) were included in the data analysis, as preregistered. This final number of included 363 

participants was derived from the following a priori power calculation: we aimed for 90% power to 364 

detect the effect size of Cohen’s d = 0.468 derived in the antedating leading object condition of 365 

Experiment 1 (α = 0.05). 366 

All participants had normal or corrected to normal vision, normal hearing and no history of 367 

neurological or psychiatric conditions. They provided written informed consent and received 368 

financial reimbursement (8 euros per hour) for their participation in the experiment. The study 369 

followed the guidelines for ethical treatment of research participants by CMO 2014/288 region 370 

Arnhem-Nijmegen, The Netherlands. 371 

Experimental design 372 

The design and procedure of Experiment 2 was identical in all respects to Experiment 1, apart 373 

from the type of leading stimuli and their location (see Figure 3a). Both leading and trailing stimuli 374 

were everyday objects. Leading and trailing objects were randomly presented on the left or right 375 

side of the central fixation point. Stimuli position (left / right) was counterbalanced with respect to 376 

Expectation (expected / unexpected) and Condition (antedating / blocked / control). In other words, 377 

leading and trailing objects appeared equally often on the left or right side of the central fixation 378 

point across trials. As a result, the expectation manipulation did not depend on spatial position. In 379 

addition, both hemi-fields were equally task-relevant, which fostered participants' attention to both 380 

sides. 381 

Data analysis 382 
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The data analysis of Experiment 2 was identical in all respects to Experiment 1, except for 383 

omitting the factor Stimulus Type because this experiment featured only object stimuli.  384 

Results 385 

Analyses of RT data in test phase. First, we compared the reaction times of expected and 386 

unexpected trials in the antedating condition (see Table 6). We observed that reaction times for 387 

expected (503 ms) and unexpected (510 ms) trials, although showing a qualitative pattern similar to 388 

Experiment 1, were not significantly different from each other (b = 4.95, CI = [-0.07, 9.96], BF10 = 389 

0.33, see Figure 3b). Therefore, unlike Experiment 1, our data do not provide robust support for 390 

learning of the conditional probabilities in condition A (please note that we found a significant 391 

result via a classic frequentist approach; see ‘Analyses of RT data in test phase using ANCOVA’ in 392 

the Supplementary information). There was however some statistical support for extinction, as the 393 

reaction time difference between expected and unexpected trials tended to decrease as the exposure 394 

increased, however with an inconclusive BF (b = -8.17, CI = [-15.39, -0.91], BF10 = 0.77) 395 

(expectation effect for run 1: 17 ms, run 2: 6 ms, run 3: 0 ms; see Figure 3c). 396 

Next, we moved to our main question and compared reaction time differences between 397 

expected and unexpected stimulus pairs between B and C (see Table 7 and Figure 3d). The reaction 398 

time difference between unexpected and expected trials was not statistically different between 399 

control (8 ms) and blocked (1 ms) conditions (b = 3.34, CI = [-3.11, 9.85], BF10 = 0.08, see Figure 400 

3b). Moreover, extinction was not different between B and C (b = 0.37, CI = [-9.60, 10.22], BF10 = 401 

0.10; expectation effect in blocked condition for run 1: 6 ms, run 2: -2, run 3: 0 ms; expectation 402 

effect in control condition for run 1: 11 ms, run 2: 4 ms, run 3: 5 ms; see Figure 3c). 403 

Analysis of accuracy data in pair recognition test. Participants were not able to indicate above 404 

chance level whether the trailing object was likely or unlikely given the leading object in the 405 

antedating (b = 0, CI = [-0.15, 0.14], BF10 = 0.70), blocked (b = -0.05, CI = [-0.17, 0.07], BF10 = 406 

0.09) or control (b = 0, CI = [-0.13, 0.14], BF10 = 0.07) conditions. Response errors did not differ 407 
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between the blocked and control conditions (b = 0.06, CI = [-0.01, 0.21], BF10 = 0.10), indicating no 408 

blocking for the explicit knowledge of incidentally learned associations. 409 

Experiment 3 410 

 Although Experiment 2 did not show any blocking effect, the data remained inconclusive: 411 

without a robust expectation effect in the antedating condition, which is a prerequisite for a valid 412 

blocking procedure (Rescorla & Wagner, 1972), we could not clearly establish whether participants 413 

were able to learn any temporal associations between the leading and trailing stimuli. In other 414 

words, it could be that learning was overall too weak in order for blocking to occur. Again, attention 415 

to the stimuli could likely have been a modulatory factor. It is well-known that attention to the 416 

stimuli is a prerequisite for statistical learning (Richter & de Lange, 2019; Turk-Browne et. al., 417 

2005). In Experiment 2, the leading images were not task-relevant and they were easier to ignore 418 

(they appeared in the periphery) than Experiment 1 (where they appeared in the center of the screen, 419 

at fixation). Therefore, we created a slight modification in Experiment 3. We made the leading 420 

stimulus task-relevant with the intention to draw more attention to it under the hypothesis that this 421 

would enhance learning of the association and allow us to examine blocking with larger sensitivity. 422 

Method 423 

Participants 424 

The experiment was performed online by using the Gorilla platform (Anwyl-Irvine et al., 425 

2020), and participants were recruited through the Prolific platform (https://www.prolific.co/). 92 426 

participants performed the experiment. 42 of them were excluded before they finished the 427 

experiment based on a priori exclusion criteria (see section ‘Exclusion and inclusion criteria’ 428 

above). As a result, fifty participants (18 females; mean age 25.80, range 18-40 years) were 429 

included in the data analysis. This final number of included participants was based on the same 430 

power analysis used for Experiment 2. 431 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.07.479428doi: bioRxiv preprint 

https://www.prolific.co/
https://doi.org/10.1101/2022.02.07.479428
http://creativecommons.org/licenses/by-nc-nd/4.0/


STATISTICAL LEARNING IS NOT ERROR-DRIVEN 19 

All participants had normal or corrected to normal vision, normal hearing and no history of 432 

neurological or psychiatric conditions. They provided written informed consent and received 433 

financial reimbursement (8 euro per hour) for their participation in the experiment. The study 434 

followed the guidelines for ethical treatment of research participants by CMO 2014/288 region 435 

Arnhem-Nijmegen, The Netherlands. 436 

Experimental design 437 

The design and procedure of Experiment 3 was identical in all respects to Experiment 2, apart 438 

from the addition of an oddball detection task involving the leading stimuli in the training phases: 439 

participants were required to press a specific button as soon as they saw an animate leading stimulus 440 

(see Figure 4a). The aim of the animate detection task was to ensure that participants also paid 441 

attention to the leading stimuli, such that the association would be better learnt. For each 442 

participant, 4 animate leading stimuli (i.e., 2 for antedating leading stimulus and 2 for blocked 443 

leading stimulus) were randomly chosen from a pool of 8 stimuli derived from Brady et al. (2008). 444 

In addition, given that we observed fast extinction in Experiments 1 and 2, the number of trials in 445 

the test phase was decreased to 192 trials (i.e., 16 pair repetitions). 446 

Data analysis 447 

The data analysis of Experiment 3 was identical in all respects to Experiment 2, apart from the 448 

following: we adjusted the priors of the main effect of Expectation and Exposure and the prior of 449 

their interaction based on the posteriors of Experiment 2. Each prior was centered according to the 450 

median of the respective posterior estimate, and its standard deviation equated to the posterior 451 

estimate error times two to make the priors weakly informative. Note that specifying the priors in 452 

this way turns the results of Experiment 2 into the combined evidence from Experiments 1 and 2. 453 

Crucially, the pattern of results from Experiment 2 was exactly the same when priors were centered 454 

at zero.  455 
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Results 456 

Analyses of RT data in test phase. Firstly, we compared the reaction times of expected and 457 

unexpected trials in the antedating condition (see Table 8). We observed faster reaction times in 458 

expected (460 ms) than in unexpected (477 ms) trials (b = 10.81, CI = [5.04, 16.16], BF10 > 214.11, 459 

see Figure 4b), indicating successful learning of conditional probabilities and the consequent 460 

behavioral benefit of expectation in terms of response speed. In addition, we evaluated how this 461 

learning effect changed across exposure. Again, we observed an interaction effect between 462 

expectation and exposure (b = -9.01, CI = [-16.83, -1.18], BF10 = 3.65), indicating that learning 463 

showed rapid extinction (expectation effect for run 1: 26 ms, run 2: 11 ms; see Figure 4c).  464 

Next, we modeled the blocked and control conditions to test whether we found blocking (see 465 

Table 9 and Figure 4d). There was a weak evidence for an interaction effect between expectation 466 

and condition (b = -9.48, CI = [-18.26, -0.45], BF10 = 0.53, see Figure 4b), with the BF being 467 

smaller than one, however, pointing rather at the absence of an interaction. We performed separate 468 

analyses for the blocked and control conditions to test for the presence of an expectation effect in 469 

each condition respectively. The reaction times in expected (481 ms) and unexpected (489) trials 470 

were not different from each other in the control condition (b = 4.36, CI = [-0.73, 9.51], BF10 = 471 

1.16, see Table S5). On the other hand, reaction times were clearly faster in expected (469 ms) than 472 

in unexpected (488 ms) trials of the blocked condition (b = 10.11, CI = [4.82, 15.16], BF10 = 473 

277.17, see Table S6). Interestingly, this is exactly the opposite pattern of what would be expected 474 

under blocking, and rather supports better learning of the associations among blocked stimuli than 475 

control stimuli. Extinction was not different between B and C conditions (b = -1.63, CI = [-14.19, 476 

11.00], BF10 = 0.14; expectation effect in blocked condition for run 1: 13 ms, run 2: 18 ms; 477 

expectation effect in control condition for run 1: 6 ms, run 2: 3 ms; see Figure 4c). 478 

Analysis of accuracy data in pair recognition test. Participants were able to indicate whether 479 

the trailing object was likely or unlikely given the leading object in the antedating (b = 0.39, CI = 480 
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[0.26, 0.51], BF10 > 1000), blocked (b = 0.29, CI = [0.17, 0.42], BF10 = 349.97) and control (b = 481 

0.39, CI = [0.24, 0.54], BF10 > 1000) conditions. Response errors did not differ between the blocked 482 

and control conditions (b = -0.1, CI = [-0.08, 0.29], BF10 = 0.17), indicating the absence of blocking 483 

effect for the explicit knowledge of incidentally learned associations. 484 

Discussion 485 

Statistical learning allows us to detect and learn structure in the environment, with direct 486 

benefits for directing our limited processing resources more efficiently to optimize behavior. This 487 

results, for example, in more efficient behavioral processing (Fiser & Aslin, 2001, 2002; Hunt & 488 

Aslin, 2001; Saffran et. al., 1996, 1999) and more efficient neural processing (Batterink & Paller, 489 

2017; Henin et. al., 2021; Richter et. al., 2018; Richter & de Lange, 2019; Turk-Browne et. al., 490 

2009) for predictable than unpredictable events. While the benefits of statistical learning are 491 

obvious, the mechanisms of statistical learning itself are less clear. In this study, we used a Kamin 492 

blocking paradigm (Kamin, 1969) to determine whether statistical learning is error-driven. We find 493 

no evidence of blocking during statistical learning, suggesting that statistical learning does not 494 

critically depend on prediction error.  495 

Selective attention clearly mediated the effectiveness of our blocking procedure. Experiment 496 

1 showed cue competition among the two concurrently presented leading stimuli, the shape and the 497 

object, in the forms of overshadowing (Boddez et. al., 2014; Pavlov, 1927; Schmidt & De Houwer, 498 

2019). Specifically, the leading shape was overshadowed by the leading object. Originally, 499 

overshadowing was conceived as a direct consequence of error-driven learning (Rescorla & 500 

Wagner, 1972; Schmidt & De Houwer, 2019). However, it is becoming increasingly clear that 501 

perceptual saliency and feature relevance, which both strongly modulate attention, is at the core of 502 

overshadowing and of cue competition phenomena more generally (Endo & Takeda, 2004; Lau et. 503 

al., 2020; Luque et. al., 2018; Mackintosh, 1976; Pavlov, 1927; but see Murphy & Dunsmoor, 504 

2017). Top-down selective attention is clearly implicated too, as dual task settings diminish the 505 
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blocking effect (De Houwer & Beckers, 2003; Vandorpe et. al., 2005). Experiment 2 further 506 

underscored the key modulatory role of attention in learning: reduced attention to our leading 507 

stimuli hampered statistical learning in the antedating condition. This echoes earlier findings 508 

showing that attention to signals containing regularities is critical for instantiating the behavioral 509 

(Turk Browne et. al., 2005; Zhao et. al., 2013) and neural (Richter & de Lange, 2019) consequences 510 

of statistical learning. Therefore, in Experiment 3 we controlled for any possible effects of attention 511 

by directing participants’ attention to both leading and trailing images. Intriguingly, Experiment 3 512 

showed strong learning of the associations for the blocked (B) stimulus condition; in fact, learning 513 

was even stronger for B stimuli compared to control (C) condition, a phenomenon which is 514 

sometimes referred to as ‘augmentation’ (Batson & Batsell, 2000; Beesley & Shanks, 2012; Vadillo 515 

& Matute, 2010). This pattern of results is opposite to the predictions of Kamin blocking and 516 

suggests that prediction error is not essential for statistical learning.  517 

We speculate that selective attention may provide a parsimonious explanation for the 518 

observed augmented learning in the blocked condition. Several recent studies show that attentional 519 

allocation may proceed in order to maximize learning. For example, observers preferentially attend 520 

to stimuli that are not completely predictable or unpredictable (Gottlieb et al., 2013; Kidd et al., 521 

2012; Poli et al., 2020). In other words, their attention is drawn to stimuli that offer maximum 522 

information gain (though see Mather, 2013 for a discussion on the effects of familiarity on 523 

attention). In our experiment, the association between the antedating leading object (A) and the 524 

trailing object was learnt during the first training phase. Therefore, participants’ attention may have 525 

shifted to the novel blocked (B) leading image during the second training phase, enhancing learning 526 

of the association between the blocked leading image and the trailing image. On the other hand, in 527 

the control (C) condition, two novel leading objects were presented in the second training phase. In 528 

line with overshadowing, these two leading objects may have competed for associative strength 529 
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with the trailing object and hence their individual predictive power was reduced (Rescorla & 530 

Wagner, 1972). 531 

Considering the existing literature more broadly, there is mounting evidence for the absence 532 

of blocking in associative learning (Maes, 2016; but see Soto, 2018). Across three consecutive 533 

experiments, while progressively ruling out potential alternative explanations, we provide 534 

converging evidence specifically in statistical learning. We observed that participants learned the 535 

temporal association between antedating leading stimuli and trailing stimuli. However, such 536 

learning did not prevent participants from creating new subsequent associations in the blocked 537 

condition. This result supports the conclusion that incidental and automatic learning of simple 538 

temporal transitions between adjacent regularities does not depend on the use of prediction errors; 539 

instead, it may be a direct function of the amount of exposure. Moreover, it seems that the 540 

independence from prediction errors enables learning of additional contingencies (absence of a 541 

blocking effect) which might otherwise not be learned (blocked). At the computational level, such 542 

learning mechanism is compatible with chunking models of statistical learning (PARSER; 543 

Perruchet & Vinter, 1998; Perruchet, 2019), which may be implemented via fast Hebbian learning 544 

(Hebb, 1949) in functionally specific areas (Conway, 2020; Reber, 2013). This is in line with 545 

evidence of pair coding in the inferior temporal cortex of macaques during incidental statistical 546 

learning of adjacent visual object regularities (Meyer & Olson, 2011). 547 

However, not all instances of statistical learning may follow this simple exposure-driven 548 

principle. In particular, learning more complex regularities may require error-driven mechanisms. 549 

Interestingly, observers are more aware of non-adjacent than adjacent regularities, even though the 550 

former ones are more complex (Romberg & Saffran, 2013). Furthermore, unimodal (e.g. visual-551 

visual) regularities are learned quickly and automatically, whereas crossmodal (e.g. audio-visual) 552 

regularities cannot be learned through simple incidental exposure, but may instead require active 553 

intentional learning (Walk & Conway, 2016). These results have recently led to the suggestion that 554 
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different neuro-cognitive mechanisms of statistical learning may be at work depending on 555 

information complexity (Conway, 2020). Non-adjacent statistical structure, links between stimuli of 556 

different nature (i.e. crossmodal stimuli) or associations that depend on specific contexts cannot be 557 

formed via simple chunking mechanisms that rely on exposure-driven strengthening of synaptic 558 

connections within a specific area (Reber, 2013). Instead, transient midbrain activity may act as the 559 

teaching signal that functionally couples task-relevant brain areas, for example those responsible for 560 

processing stimuli across different sensory modalities (den Ouden et al., 2009; 2010). Finally, 561 

explicit and intentional associative learning in the form of causal inference likely is error-driven (De 562 

Houwer & Beckers, 2003; De Houwer et. al., 2005). Here, observers first learn that event A is the 563 

cause of outcome X. Then, in a subsequent phase where they observe B together with A, both of 564 

which are followed by X, they do not interpret B as a possible cause of X. Crucially, task 565 

instructions influence this process: when A is not described as the cause of outcome X, but simply 566 

as a likely preceding event, the blocking effect is significantly reduced (De Houwer & Beckers, 567 

2003). Thus, the effortful evaluation of causal associations is required for the blocking effect to 568 

occur in such instances (Vandorpe et. al., 2005). To sum up, the present study shows a clear absence 569 

of Kamin blocking during incidental statistical learning of adjacent regularities. Thereby, it supports 570 

the conclusion that observers can attune themselves to simple environmental regularities by mere 571 

exposure, without the use of prediction errors. This suggests that incidental statistical learning may 572 

be implemented by a qualitatively different learning algorithm than intentional learning of rules and 573 

regularities. 574 
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Table 1 752 

General experimental design (Kamin blocking paradigm). 753 

Training phase 
1 

Training phase 
2 

Test phase 

A → X AB → X A → X 

 CD → Y B → X 

D → Y 

 754 

Table 2 755 

Fixed effects of the model of antedating condition on reaction times in Experiment 1. Estimate, 756 
estimation error, lower/upper limit of 95% profile confidence intervals, bayes factor. 757 

Predictors Estimate Est. Error CI (95%) BF10 

Intercept 502.44 8.42 485.21 – 518.66  

Expectation 11.23 2.25 6.80 – 15.59 >1000 

Exposure -15.14 3.51 -22.08 – -8.19 >1000 

Expectation × 
Exposure 

-9.28 3.01 -15.26 – -3.38 9.01 

 758 

Table 3 759 

Fixed effects the model of blocked and control conditions on reaction times in Experiment 1. 760 
Estimate, estimation error, lower/upper limit of 95% profile confidence intervals, bayes factor. 761 

Predictors Estimate Est. Error CI (95%) BF10 

Intercept 494.45 8.34 478.02 – 510.93   

Expectation 10.88 1.6 7.76 – 13.98 >1000 

Condition 4.30 1.95 0.38 – 8.10 0.27 

Exposure -19.10 3.08 -25.19 – -13.08 >1000 

Expectation × 
Condition 

1.85 2.91 -3.95 – 7.51 0.05 

Expectation × 
Exposure 

-7.19  2.24 -11.61 – -2.87 8.61 
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Condition × 
Exposure 

-3.00 2.26 -7.49 – 1.40 0.11 

Expectation × 
Condition × 
Exposure 

-2.29 4.48 -11.17 – 6.13 0.10 

 762 

Table 4 763 

Fixed effects the model of antedating condition on reaction times split by stimulus type in 764 
Experiment 1. Estimate, estimation error, lower/upper limit of 95% profile confidence intervals, 765 
bayes factor. 766 

Predictors Estimate Est. Error CI (95%) BF10 

Intercept 502.27 8.42 485.68 – 518.72  

Expectation 10.37 2.18 6.15 – 14.62 114.90 

Leading stimulus 
type 

56.95 5.6 46.13 – 67.99 >1000 

Exposure -15.35 3.52 -22.36 – -8.31 >1000 

Expectation × 
Leading stimulus 
type 

-10.00 4.37 -18.57 – -1.48 1.21 

Expectation × 
Exposure 

-7.26 2.61 -12.36 – -2.18 2.06 

Leading stimulus 
type × Exposure 

10.55 3.81 3.02 – 18.15 3.19 

Expectation × 
Leading stimulus 
type × Exposure 

1.12 5.38 -9.32 – 11.81 0.07 

 767 

Table 5 768 

Fixed effects the model of blocked and control conditions on reaction times split by stimulus type in 769 
Experiment 1. Estimate, estimation error, lower/upper limit of 95% profile confidence intervals, 770 
bayes factor. 771 

Predictors Estimate Est. Error CI (95%) BF10 

Intercept 494.13 8.29 477.45 – 510.54  
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Expectation 9.30 1.65 6.05 – 12.49 >1000 

Condition 4.58 1.96 0.71 – 8.47 0.53 

Leading stimulus 
type 

-79.57 6.11 -91.88 – -67.48 >1000 

Exposure -19.54 3.03 -25.49 – -13.66 >1000 

Expectation × 
Condition 

1.97 2.60 -3.13 – 7.09 0.50 

Expectation × 
Leading stimulus 
type 

18.40 3.62 11.52 – 25.41 >1000 

Condition × 
Leading stimulus 
type 

-6.78 3.88 -14.36 – 0.89 0.24 

Expectation × 
Exposure 

-5.79 1.90 -9.53 – -2.06 3.63 

Condition × 
Exposure 

-3.45 1.98 -7.35 – 0.37 0.14 

Leading stimulus 
type × Exposure 

-8.64 2.93 -14.29 – -2.90 2.28 

Expectation × 
Condition × 
Leading stimulus 
type 

4.90 5.55 -6.18 – 15.80 0.10 

Expectation × 
Condition × 
Exposure 

-3.96 3.77 -11.36 – 3.41 0.08 

Expectation × 
Leading stimulus 
type × Exposure 

-17.54 3.70 -24.82 – -10.32 >1000 

Condition × 
Leading stimulus 
type × Exposure 

-0.21 3.74 -7.41 – 7.13 0.05 

Expectation × 
Condition x 
Leading stimulus 
type × Exposure 

14.37 7.56 -0.59 – 28.99 0.46 

 772 

Table 6 773 
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Fixed effects the model of antedating condition on reaction times in Experiment 2. Estimate, 774 
estimation error, lower/upper limit of 95% profile confidence intervals, bayes factor. 775 

Predictors Estimate Est. Error CI (95%) BF10 

Intercept 512.83 18.97 475.52 – 549.47  

Expectation 4.95 2.51 -0.07 – 9.96 0.33 

Exposure -18.40 4.29 -26.74 – -10.02 259.48 

Expectation × 
Exposure 

-8.17 3.70 -15.39 – -0.91 0.77 

 776 

Table 7 777 

Fixed effects the model of blocked and control conditions on reaction times in Experiment 2. 778 
Estimate, estimation error, lower/upper limit of 95% profile confidence intervals, bayes factor. 779 

Predictors Estimate Est. Error CI (95%) BF10 

Intercept 515.30 19.42 476.89 – 533.55  

Expectation 3.82 1.61 0.64 – 6.90 0.49 

Condition -1.68 2.33 -6.23 – 2.94 0.04 

Exposure -21.29 4.38 -29.92 – 12.70 >1000 

Expectation × 
Condition 

3.34 3.28 -3.11 – 9.85 0.08 

Expectation × 
Exposure 

-3.47 2.51 -8.35 – 1.42 0.13 

Condition × 
Exposure 

1.12 2.58 -3.86 – 6.15 0.06 

Expectation × 
Condition × 
Exposure 

0.37 5.08 -9.60 – 10.22 0.10 

 780 

Table 8 781 

Fixed effects the model of antedating condition on reaction times in Experiment 3. Estimate, 782 
estimation error, lower/upper limit of 95% profile confidence intervals, bayes factor. 783 

Predictors Estimate Est. Error CI (95%) BF10 

Intercept 474.88 10.37 454.81 – 495.21  
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Expectation 10.81 2.83 5.04 – 16.16 214.11 

Exposure -23.39 3.70 -30.63 – -16.08 >1000 

Expectation × 
Exposure 

-9.01 4.00 -16.83 – -1.18 3.65 

 784 

Table 9 785 

Fixed effects the model of blocked and control conditions on reaction times in Experiment 3. 786 
Estimate, estimation error, lower/upper limit of 95% profile confidence intervals, bayes factor. 787 

Predictors Estimate Est. Error CI (95%) BF10 

Intercept 487.75 9.52 469.42 – 506.90  

Expectation 7.92 2.18 3.57 – 12.23 98.81 

Condition 5.87 3.71 -1.38 – 13.26 0.18 

Exposure -29.01 4.09 -36.93 – -20.88 >1000 

Expectation × 
Condition 

-9.48 4.49 -18.26 – -0.45 0.54 

Expectation × 
Exposure 

-1.05 2.92 -6.78 – 4.67 0.46 

Condition × 
Exposure 

-3.33 3.20 -9.63 – 2.97 0.11 

Expectation × 
Condition × 
Exposure 

-1.63 6.45 -14.19 – 11.00 0.14 

  788 
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Figure 1 789 

 790 

Experimental procedure and results of Experiment 1  791 

 Note. (a) Experiment 1 comprised two training phases (training phase 1 and training phase 2) and a 792 
test phase. On every trial throughout the experiment, participants saw a pair of consecutively 793 
presented stimuli, i.e., a leading image followed by a trailing image. In training phase 1, the 794 
antedating leading stimulus (i.e., A), which could be either a shape or object, was followed by a 795 
specific trailing object. In training phase 2, a novel blocked leading stimulus (i.e., B) was presented 796 
in compound, along with the antedating (A) leading stimulus (i.e., AB), and followed by the same 797 
trailing object from the antedating stimulus in training phase 1. In addition, we introduced novel 798 
control compound leading (i.e., CD) and trailing (i.e., Y) stimuli. In the test phase, antedating, 799 
blocked or control leading stimuli were followed by the associated (expected) or not associated 800 
(unexpected) trailing object. Throughout the experiment, participants performed a categorization 801 
task on the trailing object. They reported, as fast as possible, whether the trailing object was 802 
electronic or non-electronic. (b) Across participants' mean reaction times as a function of 803 
Expectation (expected / unexpected) and Condition (antedating / blocked / control). Participants 804 
responded faster to expected than unexpected trailing objects in each condition. There was no 805 
difference between blocked and control conditions. (c) Across participants' mean reaction time 806 
difference between expected and unexpected trials as a function of time. Please note that we split 807 
data into successive runs for visualization purposes only; data analysis was performed with number 808 
of trials as a continuous fixed factor (Exposure). Associations were rapidly extinguished during the 809 
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test phase. Extinction was not different between conditions. (d) Posterior coefficient estimates of 810 
effects of the model jointly analyzing blocked and control conditions with error bars representing 811 
95% confidence intervals. Estimates indicate significant results when they do not overlap with zero. 812 

Figure 2 813 

Results of Experiment 1 as a function of Stimulus Type 814 

 815 

Note. (a-b) Across participants' mean reaction times as a function of Expectation (expected / 816 
unexpected) and Condition (antedating / blocked / control) in leading objects (a) and leading shapes 817 
(b). The difference between expected and unexpected reaction times was larger for stimulus pairs 818 
with leading objects, compared to leading shapes. (c-d) Across participants' mean reaction time 819 
difference between expected and unexpected trials as a function of time in leading objects (c) and 820 
leading shapes (d). The decrease in reaction time difference between expected and unexpected trials 821 
over exposure showed rapid extinction in learning only in leading objects. (e-f) Posterior coefficient 822 
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estimates of effects of the model jointly analyzing blocked and control conditions with error bars 823 
representing 95% confidence intervals in leading objects (e) and leading shapes (f). Estimates 824 
indicate significant results when they do not overlap with zero.  825 

Figure 3 826 

Experimental procedure and results of Experiment 2 827 

 828 

Note. (a) The design and procedure of experiment 2 was identical in all respects to experiment 1, 829 
apart from the fact that the leading stimulus was an object presented in the left or right side of the 830 
fixation point, and it was followed by the trailing object presented in the left or right side of the 831 
fixation point. (b) Across participants' mean reaction times as a function of Expectation (expected / 832 
unexpected) and Condition (antedating / blocked / control). Reaction times were faster to expected 833 
than unexpected trailing objects in blocked and control conditions. There was no difference between 834 
blocked and control condition in terms of reaction time difference between expected and 835 
unexpected trials, providing evidence for the absence of blocking effect. (c) Across participants' 836 
mean reaction time difference between expected and unexpected trials as a function of time. The 837 
decrease in reaction time difference between expected and unexpected trials over exposure showed 838 
rapid extinction in learning antedating condition. (d) Posterior coefficient estimates of effects of the 839 
model jointly analyzing blocked and control conditions with error bars representing 95% confidence 840 
intervals. Estimates indicate significant results when they do not overlap with zero.  841 
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Figure 4 842 

Experimental procedure and results of Experiment 3 843 

 844 

Note. (a) The design and procedure of experiment 3 was identical in all respects to experiment 2, 845 
apart from the addition of an oddball detection task on the leading stimuli in the training phases: 846 
participants reported as soon as they saw an animate leading stimulus. (b) Across participants' mean 847 
reaction times as a function of Expectation (expected / unexpected) and Condition (antedating / 848 
blocked / control). Reaction times were faster to expected than unexpected trailing objects in each 849 
condition. The reaction time difference between expected and unexpected trials was greater in 850 
blocked than control trials, providing evidence for the absence of blocking effect and the 851 
augmentation of learning. (c) Across participants' mean reaction time difference between expected 852 
and unexpected trials as a function of time. The decrease in reaction time difference between 853 
expected and unexpected trials over exposure showed rapid extinction in learning antedating 854 
condition. (d) Posterior coefficient estimates of effects of the model jointly analyzing blocked and 855 
control conditions with error bars representing 95% confidence intervals. Estimates indicate 856 
significant results when they do not overlap with zero.  857 
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Supplementary information 858 

Supplementary text 859 

In addition to the Bayesian analysis reported in the main text, we conducted classic frequentist 860 

analyses using R (i.e., ANCOVA of reaction time data in the test phase and one-way ANOVA of 861 

accuracy data in the pair recognition test) for comparability with previous studies and to verify that 862 

our conclusions do not depend on the analytical framework employed. 863 

Analyses of RT data in test phase using ANCOVA 864 

In line with the Bayesian analysis, we first conducted a one-way ANCOVA to determine 865 

whether there was a significant difference between reaction times of expected and unexpected trials 866 

in the antedating condition, while controlling for the amount of exposure. Secondly, we performed a 867 

2 (Expectation: expected, unexpected) × 2 (Condition: control, blocked) ANCOVA to determine 868 

whether there was a significant difference between reaction times of expected and unexpected trials 869 

in the control and blocked conditions, while controlling for the amount of exposure. To determine 870 

the effect of Stimulus Type in Experiment 1, we conducted a 2 (Expectation: expected, unexpected) 871 

× 2 (Stimulus Type: object, shape) ANCOVA and a 2 (Expectation: expected, unexpected) × 2 872 

(Condition: control, blocked) × 2 (Stimulus Type: object, shape) ANCOVA. In line with the 873 

primary analysis, the contrasts of these factors were coded as successive difference contrasts. 874 

In Experiment 1, the main effect of Expectation was significant in the antedating condition 875 

after controlling for Exposure (F(1, 2382) = 31014.445, p < 0.001, partial η2 =  0.93). The main 876 

effects of Expectation (F(1, 4721) = 0.470, p = 0.49, partial η2 =  9.95e-5) and Condition (F(1, 877 

4721) = 0.012, p = 0.91, partial η2 =  2.46e-6) were not significant across control and blocked trials 878 

The Expectation × Condition interaction was not significant (F(1, 4721) = 0.858, p = 0.35, partial η2 879 

=  1.82e-4).  880 
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In the analysis split by stimulus type in Experiment 1, in the antedating condition, the main 881 

effect of expectation was significant after controlling for exposure (F(1, 4502) = 45911.333, p < 882 

0.001, partial η2 =  0.91), but the main effect of leading stimulus type (F(1, 4502) = 0.001, p = 0.98, 883 

partial η2 =  1.40e-7) and the interaction effect between expectation and leading stimulus type (F(1, 884 

4502) = 0.001, p = 0.98, partial η2 = 1.60e-7) were not significant. In blocked and control 885 

conditions, the main effect of expectation (F(1, 8348) = 0.211 p = 0.65, partial η2 =  2.53e-5), 886 

leading stimulus type (F(1, 8348) = 0.176,  p = 0.68, partial η2 =  2.11e-5) and condition (F(1, 8348) 887 

= 0,  p = 0.99, partial η2 =  1.95e-8) and the interaction between expectation and leading stimulus 888 

type (F(1, 8348) = 0.005,  p = 0.95, partial η2 =  5.62e-7), and the interaction between expectation 889 

and condition (F(1, 8348) = 0.689,  p = 0.41, partial η2 =  8.25e-5), and the interaction between 890 

leading stimulus type and condition (F(1, 8348) = 0.864,  p = 0.35, partial η2 =  1.03e-4) and the 891 

interaction between expectation, leading stimulus type and condition (F(1, 8348) = 0.531,  p = 0.47, 892 

partial η2 =  6.36e-5) were not significant. Overall, in Experiment 1, the ANCOVA analysis 893 

confirmed the results of the Bayesian mixed effect model analysis reported in the main text: in the 894 

antedating condition, we found successful learning of repeated stimulus pairs and the consequent 895 

behavioral benefit of expectation in terms of response speed; crucially, we found no blocking effect 896 

for incidentally learned stimulus pairs. 897 

In Experiment 2, the main effect of Expectation was significant in the antedating condition 898 

after controlling for Exposure (F(1, 1177) = 7357.152, p < 0.001, partial η2 =  0.86). The main 899 

effects of Expectation (F(1, 2314) = 0.002, p = 0.96, partial η2 =  7.18e-7) and Condition (F(1, 900 

2314) = 0. 375, p = 0.54, partial η2 = 1.62e-4) were not significant across control and blocked trials. 901 

The Expectation × Condition interaction was not significant (F(1, 2314) = 0.05, p = 0.94, partial η2 902 

=  2.16e-6). Overall, in Experiment 2, the ANCOVA analysis showed successful learning of 903 

repeated stimulus pairs in the antedating condition; crucially, we again found no blocking effect for 904 

incidentally learned stimulus pairs. 905 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.07.479428doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.07.479428
http://creativecommons.org/licenses/by-nc-nd/4.0/


STATISTICAL LEARNING IS NOT ERROR-DRIVEN 44 

In Experiment 3, the main effect of Expectation was significant in the antedating condition 906 

after controlling for Exposure (F(1, 792) = 106e+4, p < 0.001, partial η2 =  0.93). Across control 907 

and blocked trials, the main effect of Expectation (F(1, 1577) = 4.329, p = 0.04, partial η2 =  2.74e-908 

3) was significant, but the main effect of Condition (F(1, 1577) = 0. 621, p = 0.43, partial η2 = 909 

3.93e-4) was not significant. The Expectation × Condition interaction was not significant (F(1, 910 

1577) = 0.202, p = 0.65, partial η2 =  1.28e-4). Overall, in Experiment 3, the ANCOVA analysis 911 

confirmed the results of the Bayesian mixed effect model analysis: in the antedating condition, we 912 

found successful learning of repeated stimulus pairs; crucially, we found no blocking effect for 913 

incidentally learned stimulus pairs. 914 

Analyses of accuracy data in pair recognition test using ANOVA and t-test 915 

In line with the Bayesian analysis, we first conducted a one-sample t-test to determine 916 

whether the level of accuracy was above chance level in each condition. Secondly, we performed a 917 

one-way (Condition: control – blocked) ANOVA to test for the blocking effect.  918 

In Experiment 1, the level of accuracy was above chance level in the antedating (t(99) = 919 

6.862, p < 0.001, Cohen’s d = 0.68), blocked (t(99) = 4.117, p < 0.001, Cohen’s d = 0.41) and 920 

control (t(99) = 3.164, p < 0.01, Cohen’s d = 0.32) conditions. Secondly, the one-way ANOVA 921 

showed that the main effect of Condition (F(1, 198) = 0.69, p = 0.41, partial η2 =  3.47e-3) was not 922 

significant. Overall, in Experiment 1, the ANOVA analysis confirmed the results of the Bayesian 923 

mixed effect model analysis reported in the main text: we found clear explicit knowledge of 924 

incidentally learned associations in each condition and no blocking effect for such explicit 925 

knowledge. 926 

In Experiment 2, the level of accuracy was below chance level in the antedating (t(49) = -927 

0.035, p = 0.97, Cohen’s d = -5.08e3), blocked (t(49) = -0.812, p = 0.42, Cohen’s d = -0.11) and 928 

control (t(49) = 0.076, p = 0.94, Cohen’s d = 0.01) conditions. Secondly, the one-way ANOVA 929 

showed that the main effect of Condition (F(1, 98) = 0.2374, p = 0.54, partial η2 =  3.80e-3) was not 930 
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significant. Overall, in Experiment 2, the ANOVA analysis confirmed the results of the Bayesian 931 

mixed effect model analysis reported in the main text: we found no explicit knowledge of 932 

incidentally learned associations in each condition and, consequently, no blocking effect.  933 

In Experiment 3, the level of accuracy was above chance level in the antedating (t(49) = 934 

6.368, p < 0.001, Cohen’s d = 0.90), blocked (t(49) = 4.599, p < 0.001, Cohen’s d = 0.65) and 935 

control (t(49) = 5.481, p < 0.001, Cohen’s d = 0.78) conditions. Furthermore, the main effect of 936 

Condition (F(1, 98) = 1.012, p = 0.31, partial η2 =  0.01) was not significant, indicating the absence 937 

of blocking effect for the explicit knowledge of incidentally learned associations. Overall, in 938 

Experiment 3, the ANOVA analysis confirmed the results of the Bayesian mixed effect model 939 

analysis reported in the main text: we found clear explicit knowledge of incidentally learned 940 

associations in each condition and no blocking effect for such explicit knowledge. 941 

Supplementary tables 942 

Table S1 943 

Fixed effects the post-hoc model of antedating condition on reaction times of leading objects in 944 
Experiment 1. Estimate, estimation error, lower/upper limit of 95% profile confidence intervals, 945 
bayes factor. 946 

Predictors Estimate Est. Error CI (95%) BF10 

Intercept 475.08 9.53 456.05 – 493.87  

Expectation 15.19 3.66 7.98 – 22.46 175.97 

Exposure -20.33 4.36 -28.85 – -11.90 >1000 

Expectation × 
Exposure 

-8.22 3.94 -16.06 – -0.75 0.78 

 947 

Table S2 948 

Fixed effects the post-hoc model of antedating condition on reaction times of leading shapes in 949 
Experiment 1. Estimate, estimation error, lower/upper limit of 95% profile confidence intervals, 950 
bayes factor. 951 
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Predictors Estimate Est. Error CI (95%) BF10 

Intercept 529.39 7.58 514.68 – 544.25  

Expectation 5.44 2.36 0.83 – 10.05 0.61 

Exposure -9.94 3.43 -16.74 – -3.24 6.47 

Expectation × 
Exposure 

-6.51 3.50 -13.21 – 0.30 0.36 

 952 

Table S3 953 

Fixed effects the post-hoc model of blocked and control conditions on reaction times of leading 954 
objects in Experiment 1. Estimate, estimation error, lower/upper limit of 95% profile confidence 955 
intervals, bayes factor. 956 

Predictors Estimate Est. Error CI (95%) BF10 

Intercept 456.23 9.63 437.31 – 475.28  

Expectation 18.73 2.95 12.83 – 24.50 >1000 

Condition 1.22 2.91 -4.46 – 6.83 0.04 

Exposure -23.80 3.46 -30.64 – -16.99 >1000 

Expectation × 
Condition 

4.51 4.24 -3.96 – 12.81 0.11 

Expectation v 
Exposure 

-14.54 2.96 -20.38 – -8.76 >1000 

Condition × 
Exposure 

3.21 5.94 -8.19 – 14.73 0.12 

Expectation × 
Condition × 
Exposure 

-3.43 2.86 -9.11 – 2.16 0.14 

 957 

Table S4 958 

Fixed effects the post-hoc model of blocked and control conditions on reaction times of leading 959 
shapes in Experiment 1. Estimate, estimation error, lower/upper limit of 95% profile confidence 960 
intervals, bayes factor. 961 

Predictors Estimate Est. Error CI (95%) BF10 

Intercept 530.92 7.75 515.88 – 546.07  
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Expectation 0.11 1.69 -3.27 – 3.44 0.03 

Condition 7.98 2.59 2.88 – 13.02 2.47 

Exposure -15.42 3.26 -21.85 – -9.02 >1000 

Expectation × 
Condition 

-0.46 3.06 -6.56 – 5.59 0.04 

Expectation × 
Exposure 

2.96 2.34 -1.56 – 7.60 0.10 

Condition × 
Exposure 

-3.31 2.45 -8.08 – 1.55 0.13 

Expectation × 
Condition × 
Exposure 

-11.22 4.64 -20.32 – -2.27 1.55 

 962 

Table S5 963 

Fixed effects the post-hoc model of control condition on reaction times in Experiment 3. Estimate, 964 
estimation error, lower/upper limit of 95% profile confidence intervals, bayes factor. 965 

Predictors Estimate Est. Error CI (95%) BF10 

Intercept 491.09 9.73 472.16 – 510.23  

Expectation 4.36 2.59 -0.73 – 9.51 1.16 

Exposure -30.03 4.33 -38.34 – -21.45 >1000 

Expectation × 
Exposure 

-2.02 3.71 -9.26 – 5.21 0.62 

 966 

Table S6 967 

Fixed effects the post-hoc model of blocked condition on reaction times in Experiment 3. Estimate, 968 
estimation error, lower/upper limit of 95% profile confidence intervals, bayes factor. 969 

Predictors Estimate Est. Error CI (95%) BF10 

Intercept 485.56 9.70 466.60 – 504.68  

Expectation 10.11 2.65 4.82 – 15.16 277.17 

Exposure -27.38 3.94 -35.05 – -19.58 >1000 

Expectation × 
Exposure 

-0.95 3.68 -8.26 – 6.25 0.57 
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