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Abstract

Overlap between experiences can have both facilitative and detrimental effects for memory. Our

aim was to establish whether overlap along one dimension (e.g. contextual, semantic, temporal)

can counteract overlap-driven interference along another dimension. We hypothesized that se-

mantic overlap facilitates episodic memory formation by modulating encoding mechanisms. We

recorded scalp electroencephalography (EEG) while human participants performed a free recall

task. Half of the items from late in each study list semantically overlapped with an item presented

earlier in the list. We find that semantic overlap selectively improves memory and influences the

neural signals engaged during the study of late list items. Relative to other recalled items, late list

items that are later recalled consecutively with semantically overlapping items elicited increased

high frequency activity and decreased low frequency activity, a hallmark of successful encoding.

Our findings demonstrate that semantic overlap can protect from interference due to temporal

overlap by modulating encoding mechanisms.
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Statement of Relevance

Experiences can overlap along different dimensions, including contextual, semantic, and tempo-

ral. We tested the hypothesis that semantic overlap – shared meaning between experiences –

may protect from interference due to temporal overlap, when experiences occur close together

in time. Although evidence suggests that attention and/or encoding resources diminish across a

series of study items presented in close temporal proximity, we find that semantic overlap can en-

able recovery of these encoding resources. Specifically, items that would typically be forgotten

due to interference are better remembered and recruit distinct neural mechanisms when they

share meaning with an earlier study item. These findings indicate that encoding mechanisms

can be modulated by the degree of semantic overlap between two experiences. More broadly,

our results suggest that experiences do not exist in isolation, rather that a prior experience can

directly influence the neural mechanisms recruited to process a current experience.
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Introduction

In many situations, overlap between experiences produces interference (McGeoch, 1942; An-

derson, 2003). Dining at two different Italian restaurants can impair memory for which dish was

eaten at which restaurant. However, overlap can also facilitate inference judgments (Schlichting,

Zeithamova, & Preston, 2014) and memory performance when freely recalling lists of words

(Howard & Kahana, 2002). As experiences can overlap along many dimensions including con-

textual (Polyn, Norman, & Kahana, 2009), semantic (Howard & Kahana, 2002), and temporal

(Smith, Moore, & Long, preprint), overlap may have different consequences depending on which

dimension(s) is/are overlapping. The aim of the current study was to investigate whether overlap

in one dimension can counteract overlap-driven interference in another dimension.

When studying a list of items, individuals can attend to either episodic features – when and

where an item occurs – or semantic features – the meaning associated with an item. In free

recall, reliance on episodic features is demonstrated through temporal clustering, the tendency

to consecutively recall words that occupy neighboring positions on study lists (Kahana, 1996),

and reliance on semantic features is demonstrated through semantic clustering, the tendency

to consecutively recall words that share meaning (Bousfield, 1953). The general tendency to

cluster responses during recall suggests that overlapping episodic or semantic features at study

can facilitate subsequent memory, as clustering is typically positively correlated with overall re-

call (Sederberg, Miller, Howard, & Kahana, 2010; Healey, Crutchley, & Kahana, 2014). Likewise,

we have previously found that the neural mechanisms of successful encoding – increased high

frequency spectral activity (signals above 28 Hz) and decreased low frequency spectral activity

(signals below 28 Hz) in left prefrontal cortex and hippocampus (Long, Burke, & Kahana, 2014)

– are also recruited during the study of items that will subsequently be temporally or semantically

clustered (Long & Kahana, 2015, 2017).

Despite the apparent memory benefits described above, overlapping features can also lead to

decreased memory performance in free recall. The primacy effect in delayed recall – better

memory for early relative to late list items (Murdock, 1962) – may be due to an attentional decline
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(Azizan & Polich, 2007) and/or depletion of encoding resources (Lohnas, Davachi, & Kahana,

2020, ‘neural fatigue’) across items. In a typical study list, words do not overlap semantically,

meaning that the only available features are episodic features. Potentially, attention to episodic

features may decline as the list proceeds, leading to worse memory. Similarly, overlapping se-

mantic features across study lists can produce a build up of proactive interference, whereby

performance declines across lists (Underwood, 1957; Watkins & Watkins, 1975; Postman &

Keppel, 1977; Szpunar, McDermott, & Roediger, 2008). In both of these instances, study items

overlap in either the temporal or semantic dimension, but not both. If attention to a given feature

dimension declines during study, the introduction of a new overlapping feature could potentially

recover encoding processes and improve memory performance.

Our hypothesis is that overlap along one dimension can protect from interference due to overlap

in another dimension by modulating encoding mechanisms. Here, we specifically test whether

semantic overlap can facilitate episodic memory formation. We conducted a human scalp elec-

troencephalography (EEG) study in which participants performed a free recall task. We manip-

ulated the degree to which ‘pairs’ of individually presented words were semantically overlapping

while controlling the serial position of each word. Participants studied pairs of strongly semanti-

cally associated words (e.g. ‘dog’ and ‘cat’) and pairs of weakly semantically associated words

(e.g. ‘shore’ and ‘road’ ). The second word in each of these pairs (cat, road) appeared in a

later serial position compared to the first word in each pair (dog, shore). Due to decreasing

attention to episodic features, memory for second words should be worse than for first words,

but we hypothesize that this memory decline may be ameliorated if the second word overlaps

semantically with the first word. We separately measured behavioral performance and neural

signals for the first and second words in each pair. To the extent that the encoding of second

words is influenced by semantic overlap with a first word, we expect to find differential memory

performance and neural activity patterns for words that overlap semantically, compared to those

that do not.
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Materials and Methods

Participants

Forty (22 female; mean age 20.63 years) native English speakers from the University of Virginia

community participated. We selected a sample size of N = 40 based on other scalp EEG studies

conducted in our lab (Long & Kuhl, 2019; Smith et al., preprint). All participants had normal or

corrected-to-normal vision. Informed consent was obtained in accordance with the University

of Virginia Institutional Review Board for Social and Behavioral Research and participants were

compensated for their participation. Two participants were excluded from the final dataset: one

whose EEG recording was not started until the third run, and one whose verbal responses were

not recorded. Thus, data are reported for the remaining 38 participants. The raw, de-identified

data and the associated experimental and analysis codes used in this study will be made avail-

able via the Long Term Memory laboratory website upon publication.

Experimental Design and Statistical Analysis

Free Recall Task

Stimuli consisted of 1602 words, drawn from the Toronto Noun Pool (Friendly, Franklin, Hoffman,

& Rubin, 1982). From this set, 192 words were randomly selected for each participant. Words

were presented in lists of 16 words across a total of 12 runs.

Study phase. During each trial, participants viewed a single word presented for 2000 ms fol-

lowed by a 1000 ms inter-stimulus interval (ISI; Fig. 1). Participants were instructed to study

the presented word in anticipation of a later memory test; participants did not make any behav-

ioral responses. Each list was comprised of 16 words split into two parts (“first associates” and

“second associates,” respectively) separated by a brief 2000 ms delay and a get ready screen.

The critical manipulation was the strength of semantic association between first and second as-

sociates. Semantic association strength was determined using Word Association Space values

(WAS; Nelson, Zhang, & McKinney, 2001); ‘strong’ semantic associates had a WAS value of
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0.4 or greater and ‘weak’ semantic associates had a WAS value less than 0.4 (Long & Kahana,

2017). Each first associate was “paired” with a second associate and separated by seven inter-

vening items (a lag of eight). As an example, in Fig. 1, the dog-cat pair is comprised of strong

semantic associates (WAS = 0.86); dog is the first associate and cat is the second associate.

In comparison, the shore-road pair is comprised of weak semantic associates (WAS = 0.017).

Both strong and weak semantic associates were weakly semantically associated to all other

study words.

Math distractor phase. On each trial, participants saw a three digit math problem with a solution

(of the form, “X + Y - Z = A”). Participants had 4 seconds to verify whether the solution shown

was correct. Each math problem was followed by a minimum 1000 ms ISI. If a response was

made under 4 seconds then the ISI was 1000 ms plus the remaining time. Participants saw a

total of four math problems, randomly generated, such that the distractor interval was always 20

seconds in duration.

Free recall phase. Following the math distractor, an auditory beep cued the participant to verbally

recall any words that they could remember from the immediately preceding study phase. Par-

ticipants were given 45 seconds to recall as many words as possible in any order. Participants

were encouraged to continue trying to recall throughout the interval.

EEG data acquisition and preprocessing

EEG recordings were collected using a BrainAmp system (Brain Products, Inc.) and an ActiCap

equipped with 64 Ag-AgCl active electrodes positioned according to the extended 10-20 system.

All electrodes were digitized at a sampling rate of 1000 Hz and were referenced to electrode FCz.

Offline, electrodes were later converted to an average reference. Impedances of all electrodes

were kept below 50kΩ. Electrodes that demonstrated high impedance or poor contact with the

scalp were excluded from the average reference. Bad electrodes were determined by voltage

thresholding (see below).
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Custom Python codes were used to process the EEG data. We applied a high pass filter at

0.1 Hz, followed by a notch filter at 60 Hz and harmonics of 60 Hz to each participant’s raw

EEG data. We then performed three preprocessing steps (Nolan, Whelan, & Reilly, 2010) to

identify and correct electrodes with severe artifacts separately for each participant. First, we

calculated the mean correlation between each electrode and all other electrodes as electrodes

should be moderately correlated with other electrodes due to volume conduction. We z-scored

these means across electrodes and rejected electrodes with z-scores less than -3. Second, we

calculated the variance for each electrode as electrodes with very high or low variance across

a session are likely dominated by noise or have poor contact with the scalp. We then z-scored

variance across electrodes and rejected electrodes with a |z| ≥ 3. Finally, we expect many

electrical signals to be autocorrelated, but signals generated by the brain versus noise likely

have different forms of autocorrelation. Therefore, we calculated the Hurst exponent, a measure

of long-range autocorrelation, for each electrode and rejected electrodes with a |z| ≥ 3. Rejected

electrodes were excluded from the average re-reference. We found the average voltage across

all of the remaining electrodes for each time sample and re-referenced the data by subtracting the

average voltage from the filtered EEG data. We used wavelet-enhanced independent component

analysis (Castellanos & Makarov, 2006) to remove artifacts from eyeblinks and saccades.

EEG data analysis

In order to perform spectral decomposition, we applied a family of Morlet wavelet transforms

(wave number = 6) to all electrode EEG signals across 46 logarithmically-spaced frequencies

(2-100 Hz; Long & Kahana, 2015). After log-transforming the power, we downsampled the data

by taking a moving average across 100 ms time intervals from -4000 to 4000 ms relative to

stimulus onset and sliding the window every 25 ms, resulting in 317 time intervals (80 non-

overlapping). Power values were then z-transformed by subtracting the mean and dividing by

the standard deviation power. Mean and standard deviation power were calculated across all

trials and across time points for each frequency. We divided the z-transformed power (zPower)

into six frequency bands: low theta (3-4 Hz), high theta (6-8 Hz), alpha (10-14 Hz), beta (16-26

Hz), low gamma (28-42 Hz), and high gamma (44-100 Hz; Long & Kahana, 2017).
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Regions of Interest

We selected two regions of interest (ROIs), left frontal (Fp1, F3, F7, AF7, AF3, F1, F5) and left

parietal/occipital (P3, P7, O1, P1, P5, PO7, PO3), based on our prior work (Long & Kahana,

2017). We focused on the left hemisphere given evidence that subsequent memory effects are

typically left lateralized (Kim, 2011; Burke et al., 2014).

Behavioral data analysis

We assessed study items based on associate (first or second) and semantic association strength

(strong or weak). Strong semantic associates could be subsequently recalled and semantically

clustered (SClust), whereby the study item was recalled preceding or following its semantic as-

sociate. By definition, weak semantic associates could not be semantically clustered. Any study

item could be subsequently recalled and not clustered (NClust), whereby the study item was re-

called, but not consecutively with either a study neighbor or a semantic associate. We assessed

the tendency of participants to semantically cluster their responses by performing a semantic

conditional response probability (sCRP) analysis (Howard & Kahana, 2002), in which we calcu-

lated the probability of recalling an item as a function of having just recalled an item with a given

level of semantic association strength (WAS value) to the current item. We grouped words into

6 semantic association strength bins based on WAS values: below 0, 0 to 0.2, 0.2 to 0.4, 0.4 to

0.6, 0.6 to 0.8, and 0.8 to 1.0, where ‘below 0’ is the lowest semantic association strength bin

and ‘0.8 to 1.0’ is the highest semantic association strength bin. We also reduced the sCRP to

a single semantic clustering score by finding the difference between the average sCRP value

for the low semantic association strength bins (below 0 - 0.4) and the high semantic association

strength bins (0.4 - 1.0) for each participant (Long & Kahana, 2017).

Univariate data analysis

We performed two univariate contrasts. First, we compared spectral signals during the study

of strong second associates that were subsequently semantically clustered (SClusts) and weak

second associates that were subsequently recalled but not clustered (NClustw). Second, we
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compared the semantic subsequent clustering effect (SCEs) between first and second strong

associates. The SCEs is the difference in zPower between subsequently recalled associates that

are vs. are not semantically clustered. For each contrast, participant, electrode, and frequency,

we calculated zPower in each of the two conditions, averaged over the 2000 ms stimulus interval

for each ROI.

Statistical analyses

We used paired-sample t-tests and a repeated measures ANOVA (rmANOVA) to assess the ef-

fects of semantic association strength (strong, weak) and associate (first, second) on probability

of recall. We used an rmANOVA to assess the effects of semantic association strength (strong,

weak) and serial position (1-16) on probability of recall. We used paired-sample t-tests to com-

pare the conditional response probability for strong and weak semantic bins. We used a Pearson

correlation to measure the relationship between semantic clustering score and probability of re-

call for each associate type (strong, weak × first, second). We used rmANOVAs to assess the

effects of subsequent clustering condition (SClusts, NClustw) and frequency on zPower. We used

rmANOVAs to assess the effects of associate and frequency on the SCEs.

Results

Influence of semantic associations on free recall.

According to our hypothesis, semantic overlap may protect late list items from interference. Thus,

our first goal was to test whether first and second associates are differentially remembered by

virtue of their semantic association strength. We ran a two-way, rmANOVA to evaluate the effects

of semantic association strength (strong, weak) and associate (first, second) on probability of re-

call (Fig. 2A). We found a main effect of semantic association strength (F 1,37 = 29.16, p < 0.001,

ηp
2 = 0.44) driven by greater probability of recall for strong than weak semantic associates. We

found a main effect of associate (F 1,37 = 8.46, p = 0.006, ηp2= 0.19) driven by greater proba-

bility of recall for the first associate compared to the second associate. We found a significant
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interaction between semantic association strength and associate (F 1,37 = 8.48, p = 0.006, ηp2 =

0.19). The difference in probability of recall between strong and weak semantic associates was

greater for second (M = 0.10, SD = 0.10) compared to first (M = 0.04, SD = 0.09) associates

(t37 = 2.91, p = 0.006, d = 0.57). These results demonstrate that semantic association strength

differentially affects probability of recall of early vs. late list items. Late list items are typically

remembered less well than early list items in delayed free recall, potentially due to a build up of

interference. Our behavioral findings support our hypothesis that late list items may be protected

from this interference by virtue of semantic overlap with an early list item.

Although probability of recall is greater for strong relative to weak second associates, the pre-

vious analysis does not indicate whether this increase is consistent across all strong second

associates. We expect all semantically overlapping stimuli to be protected from interference;

however, semantic overlap may selectively increase the salience of initially presented strong

second associates, an effect that could diminish as participants encounter additional strong sec-

ond associates. To adjudicate between these possibilities, we measured probability of recall as

a function of semantic association strength and serial position. We ran a 2 × 16 rmANOVA to

evaluate the effects of semantic association strength (strong, weak) and serial position (1-16) on

probability of recall (Fig. 2B). We found a main effect of semantic association strength (F 1,37 =

27.76, p < 0.001, ηp2 = 0.43) driven by greater probability of recall for strong than weak semantic

associates. We found a main effect of serial position (F 15,555 = 13.67, p < 0.001, ηp2 = 0.27). We

did not find an interaction between semantic association strength and serial position (F 15,555 =

0.647, p = 0.836, ηp2 = 0.02). Bayes factor analysis revealed that a model without the two-way

interaction term is preferred to a model with the two-way interaction by a factor of 3117.32. The

lack of an interaction between association strength and serial position suggests that semantic

overlap protects all overlapping late list items from interference, regardless of serial position.

Our next goal was to directly link the recall improvement for strong second associates to se-

mantic processing of those items. If semantic processing yields greater probability of recall

specifically for strong second associates, then (1) participants should show a tendency to se-

mantically cluster their recalls and (2) the degree to which a participant clusters their recalls
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should be positively correlated with probability of recall selectively for strong second associates.

We measured semantic clustering by performing a semantic conditional response probability

(sCRP) analysis (Howard & Kahana, 2002). Briefly, the sCRP analysis reveals the overall ten-

dency to consecutively recall two items on the basis of their semantic association strength. We

defined three strong and three weak semantic association strength bins based on WAS values

(see Methods). Participants are more likely to make transitions between strong (M = 0.26, SD =

0.19) compared to weak semantic associates (M = 0.10, SD = 0.08; t37 = 9.15, p < 0.001; Fig.

2C). We reduced the sCRP to a single semantic clustering score (average transition probability

for strong bins - average transition probability for weak bins; Long & Kahana, 2017), and found

that there is a positive across-participant correlation between semantic clustering and memory

for strong second associates (r 37 = 0.366, p = 0.024), but no such association for memory for

the other associates (strong first, r 37 = 0.230, p = 0.164; weak first, r 37 = 0.074, p = 0.660; weak

second, r 37 = 0.228, p = 0.168). These results indicate that higher levels of semantic clustering

are associated with better recall for strong second associates.

Dissociable neural substrates for semantically clustered second associates.

We hypothesized that semantic overlap alters the encoding mechanisms recruited during the

study of late list items. To test this hypothesis, we compared spectral power during the study

of strong second associates that were subsequently semantically clustered (SClusts) and weak

second associates that were subsequently recalled but not clustered (NClustw). We selected this

contrast as it holds constant the serial position of the items and the overall memory for the items

– both conditions include only second associates that are subsequently recalled – while vary-

ing the potential influence of semantic overlap and consequent semantic processing on those

items. To the extent that semantic overlap influences encoding mechanisms for late list items,

the spectral signals during SClusts vs. NClustw items will differ. We ran a 2 × 6 rmANOVA to

evaluate the effects of condition (SClusts, NClustw) and frequency on zPower separately for our

two ROIs (Fig. 3A). Over left frontal (LF), we found a main effect of frequency (F 5,185 = 3.121,

p = 0.010, ηp2 = 0.08), no main effect of condition (F 1,37 = 0.334, p = 0.567, ηp2 = 0.01) and a

significant interaction between condition and frequency (F 5,185 = 4.193, p = 0.001, ηp2 = 0.10).
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Over left parietal/occipital (LP), we found a main effect of frequency (F 5,185 = 5.154, p < 0.001,

ηp
2 = 0.12), no main effect of condition (F 1,37 = 0.35, p = 0.558, ηp2 = 0.01) and a significant

interaction between condition and frequency (F 5,185 = 3.742, p = 0.003, ηp2 = 0.09). Relative

to NClustw items, SClusts items showed increased high frequency activity (HFAi; signals above

28Hz) and decreased low frequency activity (LFAd; signals below 28Hz). These results suggest

that late list items are processed differently based on their semantic overlap with early list items.

The difference in neural signals between strong vs. weak second associates may be the result

of either semantic-specific processing or a more general binding mechanism that links items to

their spatiotemporal context (Howard & Kahana, 2002; Sederberg, Howard, & Kahana, 2008;

Polyn et al., 2009; Lohnas & Kahana, 2014). During study, the HFAi/LFAd pattern predicts both

subsequent memory (Sederberg et al., 2006; Burke et al., 2013; Long et al., 2014) and sub-

sequent clustering (Long & Kahana, 2015, 2017) and is thought to reflect item-context binding.

Hence, the dissociation that we observe between second associates may be driven by increased

item-context binding during strong compared to weak associates, rather than selective semantic

processing of the strong associates. To test these alternatives, we directly compared the sub-

sequent semantic clustering effect (SCEs) across first and second strong associates. The SCEs

is the difference in zPower between strong associates that are subsequently semantically clus-

tered (SClusts) and strong associates that are subsequently recalled but not clustered (NClusts).

If the SCEs differs between first and second associates, this would support our hypothesis that

semantic overlap differentially impacts late list items. If the SCEs is the same across first and

second associates, this would support the alternative interpretation that a general item-context

binding mechanism underlies encoding of both early and late list items that are subsequently

clustered. We ran a 2 × 2 × 6 rmANOVA to evaluate the effects of associate (first, second),

condition (SClusts, NClusts), and frequency on zPower (Fig. 3B). A two-way interaction between

condition and frequency, with no three-way interaction between condition, frequency, and asso-

ciate, would indicate that the SCEs is the same for both first and second associates. A three way

interaction would indicate that the SCEs differs across first and second associates. We report

the results of this ANOVA in Table 1 and highlight the key findings below.
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Over both LF and LP, we find a three-way interaction between associate, frequency and con-

dition (LF: F 5,185 = 3.15, p = 0.009, ηp2 = 0.08; LP: F 5,185 = 2.33, p = 0.044, ηp2 = 0.06) and

no interaction between condition and frequency (LF: F 5,185 = 0.95, p = 0.449, ηp2 = 0.03; LP:

F 5,185 = 0.79, p = 0.558, ηp2 = 0.02). These results demonstrate that the SCEs varies across first

and second associates, providing support for our hypothesis that semantic overlap differentially

impacts late list items.

The SCEs dissociation across first and second associates indicates that semantic overlap im-

pacts the neural signals during the study of late list items. However, as our hypothesis is that

semantic overlap specifically alters encoding mechanisms, we should selectively observe the

SCEs for late list items and the SCEs for those items should exhibit the HFAi/LFAd pattern. Within

each ROI, we ran a 2 × 6 rmANOVA to evaluate the effects of condition (SClusts, NClusts) and

frequency on zPower. For first associates, we found no main effect of condition (LF: F 1,37 =

1.896, p = 0.177, ηp2 = 0.05; LP: F 1,37 = 3.835, p = 0.058, ηp2 = 0.09), a main effect of frequency

in LP (LF: F 5,185 = 1.896, p = 0.177, ηp2 = 0.05; LP: F 5,185 = 11.27, p < 0.001, ηp2 = 0.23), and

no interaction between condition and frequency (LF: F 5,185 = 0.758, p = 0.581, ηp2 = 0.02; LP:

F 5,185 = 0.627, p = 0.679, ηp2 = 0.02). Bayes factor analysis revealed that a model without the

two-way interaction term is preferred to a model with the two-way interaction by a factor of 55.08

(LF) and 57.19 (LP). For second associates, we found no main effect of condition (LF: F 1,37 =

3.11, p = 0.086, ηp2 = 0.08; LP: F 1,37 = 0.01, p = 0.919, ηp2 = 0.00), a main effect of frequency

in LP (LF: F 5,185 = 1.342, p = 0.249, ηp2 = 0.04; LP: F 5,185 = 8.416, p < 0.001, ηp2 = 0.19), and a

significant interaction between condition and frequency (LF: F 5,185 = 2.916, p = 0.015, ηp2 = 0.07;

LP: F 5,185 = 2.314, p = 0.046, ηp2 = 0.06). That we find an SCEs for second associates, but failed

to find an SCEs for first associates, provides support for our hypothesis that semantic overlap

modulates encoding mechanisms. Importantly, we find that this selective SCEs is characterized

by the HFAi/LFAd pattern – a marker of successful encoding – suggesting that semantic overlap

can enhance encoding for items that may otherwise be poorly encoded due to their position in

the study list.
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Discussion

The goal of the current study was to investigate the extent to which multiple forms of overlap

interact to protect from interference. We recorded scalp EEG while participants performed a free

recall task in which each study list was comprised of words that did and did not overlap seman-

tically. We report four key findings. First, we find that semantic overlap with a prior list item

improves memory for items presented later in the study list. Second, we find that participants’

tendency to semantically cluster is associated with an increased likelihood of specifically recall-

ing semantically overlapping late list items. Third, we find differential spectral signals during late

list item encoding; subsequently semantically clustered items are distinct from non-overlapping

items that are subsequently recalled but not clustered. Finally, we find selective high frequency

activity increases and low frequency activity decreases – a hallmark of successful encoding – for

late list items that are semantically clustered, compared to early list items that are semantically

clustered. Taken together, these results suggest that semantic overlap can modulate encoding

mechanisms to protect from interference due to temporal overlap.

Late list items are better remembered if they semantically overlap with an early list item. In

delayed free recall tasks in which no words are semantically associated, recall performance de-

creases over serial position (Murdock, 1962). This decrease in probability of recall may arise

from decreases in attention (Sederberg et al., 2006; Azizan & Polich, 2007), and/or a decline

in encoding resources (Lohnas et al., 2020; Popov & Reder, 2020; Mizrak & Oberauer, 2021).

Consistent with previous research, we find a decrease in probability of recall for late list items

that did not semantically overlap with a prior list item. However, we find that semantic overlap

counteracts this decrease in probability of recall, such that recall is increased for semantically

overlapping late list items regardless of serial position. Our interpretation is that as a list pro-

gresses, attention to episodic features declines, but that semantic overlap reorients attention to

semantic features. Potentially, as more events become linked to the same spatiotemporal con-

text, spatiotemporal features may become less salient or diagnostic (Nairne, 2002), leading to

a decrement in memory formation. It is possible that semantically overlapping items are par-

ticularly surprising or distinctive, and that this accounts for the improved recall for these items.
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However, according to this interpretation, items should be less surprising both as the study list

and the experiment as a whole progresses, yet we find a benefit for semantically overlapping

items across all serial positions. Thus our results support the interpretation that semantic over-

lap may specifically direct attention to the semantic features of an event.

In line with the interpretation that participants selectively attend to semantic features, participants

semantically clustered their responses, and in doing so, were specifically more likely to recall late

list items which overlapped semantically with early list items. Although temporal clustering has

repeatedly been positively associated with probability of recall (Sederberg et al., 2010; Healey et

al., 2014), the link between semantic clustering and recall performance is less clear, given that

study lists are typically comprised of words that are not semantically associated. Indeed, attend-

ing to semantic features in the absence of semantically overlapping items can be detrimental for

later memory (Long & Kahana, 2017), indicating that de facto reliance on semantic features is

not adaptive. Our results suggest that attending to semantic features can be selectively benefi-

cial when items that might otherwise be forgotten due to their serial position semantically overlap

with a prior list item.

Semantic overlap selectively alters the encoding mechanisms recruited during the study of late

list items. Specifically, we find that semantically clustered late list items are characterized by an

increase in high frequency activity (HFAi; signals above 28Hz) and a decrease in low frequency

activity (LFAd; signals below 28Hz), both when compared to non-overlapping late list items that

are recalled but not clustered, and when compared to semantically clustered early list items. As

the HFAi/LFAd pattern predicts both subsequent memory (Long et al., 2014) and subsequent

clustering (Long & Kahana, 2015, 2017), it may reflect the degree to which items are bound to

their spatiotemporal context (Polyn et al., 2009). However, as the HFAi/LFAd pattern is prevalent

outside of the domain of memory (Crone, Boatman, Gordon, & Hao, 2001; Bauer, Oostenvald,

Peeters, & Fries, 2006; Lachaux et al., 2007; Dalal et al., 2009), it may instead reflect task or at-

tentional demands rather than memory per se (Long & Kuhl, 2019). That we observe HFAi/LFAd

selectively for overlapping late items is most consistent with the latter account. The dissociations

that we currently observe cannot reflect a difference between subsequent remembering and
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subsequent forgetting as our contrasts only include items that were subsequently recalled. Fur-

thermore, the dissociations cannot reflect a general item-context binding mechanism promoting

subsequent semantic clustering as subsequently semantically clustered early list items did not

show the HFAi/LFAd pattern. Instead, the selectivity of the HFAi/LFAd pattern is consistent with

the interpretation that semantic overlap leads to a reorienting of attention toward semantic fea-

tures and away from temporal features. Such a reorientation is not possible for non-overlapping

late list items, or for overlapping early list items, as participants cannot know which early list

items will be paired with an overlapping item later in the list. At its core, our interpretation is

that semantic overlap changes how an item is encoded, specifically by increasing the attention

directed to the semantic features of an experience.

Together, these results show that overlap along one dimension can protect from interference

due to overlap in another dimension by modulating encoding mechanisms. An exciting direction

for future research will be to investigate the extent to which these effects generalize to other

dimensions beyond semantic overlap. Our findings demonstrate that study-phase mechanisms

are not static, but instead item processing is influenced by prior experiences. More broadly, we

contribute to a growing body of literature characterizing the facilitative and detrimental effects of

overlapping experiences on cognition.
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Table 1. Analysis of variance (ANOVA) results for associate, frequency, and condition on

zPower.
Left Frontal Left Parietal/Occipital

Effect df F p ηp
2 df F p ηp

2

Main effect of frequency (5,185) 1.45 0.208 0.04 (5,185) 14.62 < 0.001 0.28

Main effect of associate (1,37) 0.17 0.686 0.00 (1,37) 7.62 0.009 0.17

Main effect of condition (1,37) 6.20 0.017 0.14 (1,37) 2.52 0.121 0.06

Interaction of condition × associate (1,37) 0.00 0.995 0.00 (1,37) 2.55 0.119 0.06

Interaction of condition × frequency (5,185) 0.951 0.449 0.03 (5,185) 0.79 0.558 0.02

Interaction of associate × frequency (5,185) 1.71 0.134 0.04 (5,185) 5.66 < 0.001 0.13

Interaction of condition × associate × frequency (5,185) 3.15 0.009 0.08 (5,185) 2.33 0.044 0.06
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(A) Behavioral Task Design (B) Regions of Interest

CAT KEY ROAD

Fig. 1. Experiment methods. (A) During the study phase, participants studied a series of words one at
a time in anticipation of a later memory test. Each word list was split into “first associates” (e.g. “dog,”
“shore,” “key”) and “second associates” (e.g. “cat,” “road,” “ball”) which were paired with one another. Half
of the associate pairs were strongly semantically associated (e.g. “dog” and “cat”) and the other half were
weakly semantically associated (e.g. “shore” and “road”). Strong semantic associates are shown here in
blue and weak semantic associates are shown in orange for demonstration purposes only; participants
were not given any indication of semantic association strength. During the test phase, participants verbally
recalled any words that they could remember from the immediately preceding study phase, in any order.
(B) Regions of interest (ROIs): We analyzed two ROIs, left frontal and left parietal/occipital.
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(A) (C)

Strong Semantic Association
Weak Semantic Association

(B)

Strong Semantic Association
Weak Semantic Association

Fig. 2. Recall performance and memory organization. (A) Probability of recall was greater for strong
(blue) compared to weak (orange) semantic associates and was greater for first compared to second
associates. There was a significant interaction between associate and semantic association strength (p
= 0.006). (B) Probability of recall was greater for strong than weak semantic associates across serial
positions. (C) Participants were more likely to make transitions between strong compared to weak se-
mantic associates. The vertical, dashed line denotes the boundary between weak semantic bins (below
0, 0.0-0.2, 0.2-0.4) and strong semantic bins (0.4-0.6, 0.6-0.8, 0.8-1.0). Error bars denote 95% confidence
intervals. *** p < 0.001, ** p < 0.01.
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Left Frontal Left Parietal/Occipital
(A)

Left Frontal Left Parietal/Occipital

Fig. 3. Differential univariate effects for semantically clustered second associates. zPower is shown
for six frequency bands (low theta: 3-4 Hz, high theta: 6-8 Hz, alpha: 10-14 Hz, beta: 16-26 Hz, low
gamma: 28-42 Hz, high gamma: 44-100 Hz) across two regions of interest, left frontal and left pari-
etal/occipital. zPower is averaged across the stimulus interval (2000 ms). Error bars denote 95% confi-
dence intervals. (A) The top panel shows zPower for second associates that were strongly semantically
associated and subsequently semantically clustered (blue, SClusts) and second associates that were
weakly semantically associated and subsequently recalled but not clustered (orange, NClustw). (B) The
bottom panel shows the difference in zPower between strong items that were subsequently semantically
clustered and strong items that were subsequently recalled, but not clustered, for first (light blue) and sec-
ond associates (dark blue). Positive values indicate greater zPower for items later semantically clustered,
negative values indicate greater zPower for items later recalled, but not clustered.
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