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ABSTRACT   

Background: Antimicrobial Resistance (AMR) has a detrimental impact on human health on Earth and it 
is equally concerning in other environments such as space due to microgravity, radiation and confinement, 

especially for long-distance space travel. The International Space Station (ISS) is ideal for investigating 

microbial diversity and virulence. The shotgun metagenomics data of the ISS generated during the Microbial 

Tracking – 1 (MT-1) project and resulting metagenome-assembled genomes (MAGs) across three flights 

in eight different locations during 12 months were used in this study. The objective of this study was to 

identify the AMR genes associated with whole genomes of 227 cultivable strains, 21 shotgun metagenome 

sequences, and 24 MAGs retrieved from the ISS environmental samples that were treated with propidium 
monoazide (PMA; viable microbes). 

Results: We have analyzed the data using a deep learning model, allowing us to go beyond traditional cut-

offs based only on high DNA sequence similarity and extending the catalog of AMR genes. Our results in 

PMA treated samples revealed AMR dominance in the last flight for Kalamiella piersonii, a bacteria related 

to urinary tract infection in humans. The analysis of 227 pure strains isolated from the MT-1 project revealed 
hundreds of antibiotic resistance genes from many isolates, including two top-ranking species that 

corresponded to strains of Enterobacter bugandensis and Bacillus cereus. Computational predictions were 

experimentally validated by antibiotic resistance profiles in these two species, showing a high degree of 

concordance. Specifically, disc assay data confirmed the high resistance of these two pathogens to various 

beta-lactam antibiotics. 

Conclusion: Overall, our computational predictions and validation analyses demonstrate the advantages 
of machine learning to uncover concealed AMR determinants in metagenomics datasets, expanding the 

understanding of the ISS environmental microbiomes and their pathogenic potential in humans. 

 

 

Keywords: ISS, Metagenomics, Antibiotic resistance, Machine learning, Space Omics, Microbiome, Built-

environment, Microbial Tracking-1, NGS 

 

 

 
 
 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.07.479455doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.07.479455


3 

BACKGROUND 

According to the World Health Organization, the widespread use of antibiotics worldwide and the slow 
discovery of major types on antibiotics in the last thirty years has made antibiotic resistance one of the 

biggest threats to human health, food security, and development (WHO, 2015). Accordingly, with NASA 

setting the course to return to the Moon with the Artemis mission and eventually venture out to Mars, 

maintaining the health of astronauts during long-term spaceflight is of paramount importance (Afshinnekoo 

et al., 2020). One area of particular concern is the reported increase in virulence and antibiotic resistance 

of microorganisms in space experiments (Juergensmeyer et al., 1999; Nickerson et al., 2004; Taylor, 2015; 

Zea et al., 2017; Wilson et al., 2017; Aunins et al., 2018; Urbaniak et al., 2018). Combined with a depressed 
or altered immune response in astronauts (Sonnenfeld and Shearer, 2002; Garrett-Bakelman et al., 2019), 

there is an increased risk of opportunistic microbial infection. Spaceflight promotes biofilm formation (Kim 

et al., 2013), and bacteria cultured from astronauts during flight were more resistant than isolates obtained 

from the same individual either pre- or post-flight (Tixador et al., 1985). Mutations also occurred more 

frequently in long-term spaceflights (Fukuda et al., 2000). An alternative non-mutually exclusive hypothesis 

to increased virulence or microbial resistance to antibiotics is that spaceflight conditions might alter the 

stability of pharmaceuticals (Du et al., 2011). In any case, bacterial infections might be more challenging to 

treat in space. 

The International Space Station (ISS) is a closed-built environment with its own environmental microbiome 

shaped by microgravity, radiation, and limited human presence (Venkateswaran et al., 2014). We and 

others have shown that microbiomes are dynamic, diverse and sometimes intertwined at the ISS. Be NA 

et al. (2017) analyzed antibiotic resistance and virulence genes from dust and vacuum filter samples of ISS 

(treated with propidium monoazide, or PMA), demonstrating that human skin-associated microbes impact 
the ISS microbiome. Indeed, the skin and intestinal microbiomes of astronauts that spent 6 to 12 months in 

the ISS have been shown to be altered (Voorhies et al., 2019). In addition, the salivary microbiome of 

astronauts changed as a result of spaceflight, potentially activating microbes that promote viral replication 

(Urbaniak et al., 2020) and altering the abundance of some antimicrobial resistance (AMR) genes (Morrison 

et al., 2021). The ISS itself also presents specific core microbiome signatures on its surfaces that we 

characterized recently using shotgun metagenome and amplicon sequencing (Singh et al., 2018; Urbaniak 

et al., 2018; Checinska Sielaff et al., 2019), analogous to microbiome signatures found in specific 

geographies on Earth (Danko et al., 2021).  

Further analyses across several missions have revealed that the microbiome of the crew's skin resembled 

those of the surfaces inside the ISS collected by the crewmember on the same flight (Avila-Herrera et al., 

2020). To better understand the composition of these bacterial populations we and others have 

characterized shotgun whole genome sequencing (WGS) of several ISS microorganisms (Singh et al., 

2019; Bijlani et al., 2020; Bijlani et al., 2020b). Although most of them have been found to be non-pathogenic 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.07.479455doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.07.479455


4 

to humans, there are exceptions such as antibiotic-resistant Enterobacter bugandensis strains that could 

have an increased chance of pathogenicity (Singh et al., 2018b).  

Computational analyses of microbiome data collected in Earth have shown that AMR can be predicted from 

genomic sequence of pure cultures alone (Hendriksen et al., 2019; Su et al., 2019), but a consensus 

approach on the best way to detect AMRs in metagenomic datasets has yet to be established (Ruppé et 

al., 2019). Generally, predictions are restricted to high identity (high sequence similarity to databases) cut-

offs, requiring a ‘best-hit’ on an appropriate AMR database with a sequence identity greater than 80% by 

many programs such as ResFinder (Zankari et al., 2012). Although the ‘best-hit’ approach has a low false-

positive rate, the false-negative rate can be very high, and a large number of actual Antibiotic Resistance 
Genes (ARGs) are predicted as non-ARGs, thus concealing the identification of potentially functional ARGs 

(Arango-Argoty et al., 2018). Another method of identification is to link the immune repertoire of the 

astronaut to the peptides of the microbes on the ISS, but this requires complex coordination with crew 

sampling and is rare (Danko et al., 2020). However, it has been shown recently that deep learning, a class 

of machine learning algorithms, can expand the catalog of AMR genes and increase the accuracy of the 

predictions based on metagenomic data (Arango-Argoty et al., 2018; Boolchandani et al., 2019; Hadjadj et 

al., 2019). We then hypothesized that the characterization of AMR from sequencing data at the ISS could 

be investigated from an artificial intelligence perspective using a robust deep learning framework. For that, 
we analyzed whole-genome sequences of 227 pure strains (cultivable microbes), metagenome sequences 

of 21 environmental samples, and 24 MAGs retrieved from PMA treated samples (Fig. 1). 

RESULTS 

Predictions based on short metagenomics sequences and ORFs partly overlap with previous 
analyses and reveal new AMR determinants at the ISS surface microbiome 

The first shotgun metagenome sequences of intact microbial cells (Propidium monoazide-PMA treated) 

without whole genome amplification was performed by Singh et al. (2018). There, samples were taken in 8 

locations across three flights (F1, F2, F3) during a period of 12 months. A detailed description of sampling 
procedures and locations can be found in Singh et al. (2018). To deploy a deep learning approach for 

predicting antibiotic resistance genes from metagenomic data, we used DeepARG, a computational 

resource proven to be more accurate than traditional approaches (Arango-Argoty et al., 2018). The model 

was trained using a merged database created after carefully curating three major databases (CARD, ARDB 

and UNIPROT). We first run DeepARG-SS (DeepARG for short reads) using the recommended prediction 

probability cut-off of 0.8 to obtain read counts of AMR genes (Fig. 2a). As in the seminal paper (Singh et 

al., 2018), quantification of antibiotics associated with AMR revealed ‘beta lactams’ ranking first and 
‘peptide’ second, and generally more AMR reads counts observed in Flight 3 (F3) than in previous two 

flights (Fig. 2a). However, reads counts in certain antibiotics such as pleuromutilin, mupirocin and rifamycin 

were found largely in Flight 2 (Fig. 2a). Our read counts correlate (r = 0.86, p = 6.879e-7; Pearson's product-
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moment correlation) with read counts obtained for antimicrobial resistance by Singh et al., (2018) (Fig. 2b). 

Taken together, these suggest a partial overlap with results obtained in Singh et al. (2018) analyzed using 

the traditional approach. 

While more AMR reads counts were found in Flight 3, we also observed variability between the different 

locations and flights, and an increasing number of read counts associated with time. For instance, location 

4 (L4, surface of the dining table) increased the number of AMR reads counts with successive flights (Fig. 
2b-c). While resistance to ‘beta lactams’ was evenly distributed across flights and locations, resistance to 

‘polymyxin’ and specially ‘peptide’ represents a more significant proportion of AMR counts in locations of 

Flight 3 (Fig. 2c). In addition, we also observed the widespread presence of reads related to Macrolides, 
Lincosamides, Streptogamines (MLS), and tetracycline resistance. 

To investigate the possible association between AMR patterns and specific microbes, we assembled the 

short reads into Metagenome-Assembled Genomes (MAGs; see Methods), identified their Open Reading 

Frames (ORFs), and repeated the prediction of ARGs using DeepARG-LS (Arango-Argoty et al., 2018). 

Fig. 3a shows the distribution of DeepARG classification probabilities and best-hit identity of ARGs in MAGs 
from the ISS. As we can retrieve highly probable ARGs (probability > 0.8) presenting low sequence identity 

(for many ARGs, identity is <40%), this method is likely more advantageous than using the ‘best-hit’ 

approach only. Compared to DeepARG-SS results obtained previously, the analysis of MAGs did not reveal 

significant differences in the number of ARGs predicted in the ORFs for the different flights (Fig. 3b). 
However, interestingly the results show a smaller number bacterial species having ARGs in Flight #1 (F1) 

when compared to Flights #2 and #3 (Fig. 3b-c) (data is shown for MAGs with at least 1 predicted ARG; 

the total number of MAGs analyzed is 24). Specifically, the number of locations is smaller in Flight 1 (3) 

than in F2 (n = 6) and F3 (n = 7) (Fig. 3b). Many ARGs were identified in K. piersonii MAGs in multiple 
locations during F3, showing AMR patterns related to (glyco)peptide, fluoroquinolone and MLS. (Fig. 3c). 

Of note, the K. piersonii strain closely related to one found at the ISS has been related to human urinary 

tract infection (Rheka et al., 2020). The potentially very pathogenic microbe E. bugandensis was found in 

location 2 (forward side panel wall of the Waste and Hygiene Compartment) in flight 1, presenting more 

than 40 ARGs. In addition, in the original study, Pantoea species were found to be the dominant genus in 

samples in 5 out of 7 locations sampled from Flight 3, especially at location 5 (surface rack). In our re-

analysis, we observed Pantoea brenneri and Pantoea dispersa having ARGs related to beta-lactams and 

peptide (Singh et al., 2018), as well as to triclosan and polymyxin resistance.  

Overall, by applying a deep learning approach, our results partially agree with earlier findings while 

providing new insights into previously unobserved antibiotic resistance classes (of the 30 antibiotic 

resistance categories included in the model). Specifically, the re-analysis of short sequences and MAGs 

from the ISS reveals dominance of K. piersonii antibiotic resistance in different locations of Flight 3 (Fig. 
3c). 
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Distribution of antibiotic resistance genes in scaffolds of Microbial Tracking-1 strains isolated 
from the ISS 

We then applied DeepARG-LS to 227 Microbial Tracking-1 (MT-1) isolates (Mason and Venkateswaran 

labs, published and unpublished WGS of MT-1 pure strains isolated from ISS environment). We found a 

range of 2 to 92 ARGs in 184 out of 227 isolates (Fig. 4a; Table 1). Our machine learning approach allowed 

us to go beyond the traditional cut-off based only on high sequence DNA similarity (Fig. S1). These results 

suggest a widespread presence of potential ARGs in the isolates, with ‘multi-drug’ class being first, followed 

by glycopeptides, beta-lactams, bacitracin and tetracyclines. The ‘multi-drug’ antibiotic class was defined 

by aggregating several antibiotic names from the CARD and ARDB databases (efflux, multi-drug and 
na_antimicrobials). We then used BLAST to match isolates showing AMR sequences predicted by 

DeepARG to microbial species (Fig. 4a) and identified Bacillus cereus and E. bugandensis, which were 

previously profiled organisms on the ISS (Venkateswaran et al., 2017; Singh et al., 2018b) as the top 2 

ranking species with a high number of ARGs. We have previously shown that five E. bugandensis isolates 

were almost equivalent to nosocomial earth isolates showing resistance to multi-drug antibiotic compounds, 

fluoroquinolones, and fosfomycin (Singh et al., 2018b). In addition, E. bugandensis strains were shown to 

be resistant to 9 antibiotics (Urbaniak et al., 2018). Our results reinforce the potential pathogenicity of this 

microbe. Nonetheless, antimicrobial resistance was not examined for B. cereus strains in Venkateswaran 
et al. (2017). B. cereus is a food poisoning microorganism that might be a concern for crew members' 

health. In addition, we found novel ARGs associated with other species such as K. pneumoniae, Pantoea, 

Paenibacillus polymyxa, B. velezensis, E. faecalis, Sphingomonas, and, with a lower number of ARGs, 

several species of Staphylococcus. E. faecalis virulence was previously shown to be affected by 

microgravity (Hammond et al., 2013). 

To experimentally validate machine learning predictions on previously unobserved AMR patterns above, 

we performed Antibacterial Susceptibility Tests (AST) for the species found to be potentially most 

pathogenic, in our case E. bugandensis and B cereus as they have a higher number of ARGs (Table S1; 
Fig. 4a). For that, we use disc diffusion on strains isolated at the ISS for the following antimicrobials: 
Cefazolin (beta−lactam), Cefoxitin (beta−lactam), Ciprofloxacin (quinolone), Erythromycin (MLS), 

Gentamycin (aminoglycoside), Oxacillin (beta−lactam), Penicillin (beta−lactam), Rifampin (rifamycin) and 

Tobramycin (aminoglycoside) (Fig. 4b). The prediction patterns closely matched the AST results (Fig. 4b), 

although DeepARG failed to detect Rifampin resistance, especially for E. bugandensis. 

Although different antibiotics have different inhibitory zone cut-offs for a strain to be considered as resistant 

(Table S2), remarkably we found an inverse correlation between the zone of inhibition and ARG count for 

B. cereus (r= -0.637, Pearson's product-moment correlation, p= 2.2e-7) and E. bugandensis (r= -0.517; p= 

0.0002765) (Fig. 4c), demonstrating the applicability and high accuracy of computational prediction of AMR 

for microbiome data obtained in space. 
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DISCUSSION 

Many ARGs that present high probability but low sequence identity to known sequences will be missed 
using traditional ‘best-hit’ approaches that require a high degree of sequence identity. To solve this, 

computational methods have been developed to identify AMR in genomes and metagenomes (Arango-

Argoty et al., 2018; Berglund et al., 2019; Chowdhury et al., 2019; Lakin et al., 2019; Ruppé et al., 2019). 

Despite these developments, a consensus approach to detect AMR in metagenomics datasets is yet to be 

defined (Ruppé et al., 2019). The objective of this study was to identify the AMR genes associated with 

cultivated strains and metagenomes generated from the ISS environmental surfaces using an accurate 

deep learning approach (Fig. 1).  

Firstly, we re-analyzed shotgun metagenome sequences of 21 environmental samples that were treated 

with PMA (viable microbes), and their associated 24 metagenome-assembled genomes (MAG) retrieved 

from the PMA-treated samples. The re-analysis showed increased read counts associated with AMR and 

in more locations when considering MAGs, in flight 3 (Fig. 2). This could be explained due to the ISS crew 

being replaced during Flight 3. The abundance of Enterobacteriaceae in Flight 3 was discussed in Singh et 
al., (2018b). In addition, K. piersonii spread across four different locations (L1, L5, L7, L8) at Flight 3, 

presenting resistance to specific antibiotics (glyco/peptide, fluoroquinolone and MLS) (Fig. 3c). We have 

previously isolated strains from Locations 1, 2, 5, 6, and 7, defining a novel bacterial genus from the ISS 

samples (Singh et al., 2019). While K. piersonii do have virulence genes in the genome, a dichotomy was 

found as disc diffusion tests revealed multi-drug resistance, while the PathogenFinder algorithm predicted 

K. piersonii strains as non-human pathogens. All seven K. piersonii isolates were resistant to cefoxitin 

(beta_lactam class in DeepARG), erythromycin (MLS), oxacillin (beta_lactam), penicillin (beta_lactam), and 

rifampin. At the same time, all strains were susceptible to cefazolin, ciprofloxacin (quinolone), and 
tobramycin (aminoglycoside) (Singh et al., 2019). The DeepARG database does not include some of these 

antibiotics, but we found AMR sequences related to resistance to (glyco)peptide, fluoroquinolone, and MLS, 

validating some previous results. Therefore, PathogenFinder (Cosentino et al., 2013) results in Singh et al. 

(2019) suggesting K. piersonii as a non-human pathogen should be treated with caution. Furthermore, the 

strain YU22 (closest match is IIIF1SW-P2T detected as ISS) isolated in urine microbiome of a kidney stone 

patient has shown to be an uropathogenic bacteria, showing many virulence factors that are needed for 

host cell invasion and colonization (Rheka et al., 2020). 

Secondly, the whole genome sequences (WGS) of 227 pure strains (cultivable microbes) were analyzed to 

identify AMR genes (Fig. 4a). We found the human pathogens E. bugandensis and B. cereus presenting 

many potential ARGs in the MT-1 scaffolds. Up to five strains isolated from the ISS have been closely 

related to the type strain EB-247T and two clinical isolates (153_ECLO and MBRL 1077) and share similar 

AMR patterns (Singh et al., 2018b). 112 genes were found to be involved in virulence, disease, and defence 

in the ISS strains (Singh et al., 2018b). Our re-analysis confirms the multi-drug resistance to antibiotics for 
the ISS isolates, which is the highest among all the isolates. Unlike in Singh et al. (2018b), we found 
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fluoroquinolone resistance low, and null for fosfomycin. Conversely, B. cereus is a gram-positive bacterium 

commonly found in food. After infection, most emetic patients recover within 24 hours, but in some cases, 

the toxin can be fatal via a fulminant hepatic failure (Mahler et al., 1997; Dierick et al., 2005). Overall, multi-

drug resistance was found widespread in many microbes. Third, phenotypic antibiotic resistance testing 
data obtained from traditional antibiotic tests generated for biosafety level 2 (BSL-2) strains were compared 

with the computational approaches that predicted the presence of the AMR genes, showing an excellent 

agreement for the antibiotics tested (Fig. 4b-c). A disadvantage of the deep learning model used is that the 

prediction can disentangle the family of antibiotics but not specific compounds. 

Many studies have shown the association between several microorganisms (bacterial, as well as phage 
and non-phase viral sequences) and several cancer features. Although it is unclear whether this 

corresponds to correlation or causation, the microbiome can undoubtedly be used as a cancer biomarker. 

For instance, certain strains of Fusobacterium spp. can be utilized as an independent diagnostic assay for 

colon cancer (Zhang et al., 2019). Therefore, a better understanding of the microbial communities and their 

degree of pathogenicity in surface-human microbiomes in space could also be useful for human health 

monitorization with detection and prognostic values in long term space travel. We are currently collecting 

more data for Microbial Tracking-2 (MT-2) and MT-3 missions. We plan to extend the AMR catalog, 

characterize microbe diversity, and monitor the evolution of AMR in longer time periods to discover new 
factors involved in pathogenicity of microorganisms exposed to space conditions. 
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METHODS 
Metagenome-Assembled Genomes (MAGs) methodology 

The paired-end 100-bp metagenomic reads from NCBI Short Read Archive (SRA) under the bio-project 

number PRJNA438545 were processed with Trimmomatic (Bolger et al., 2014) to trim adapter sequences 

and low-quality ends, with a minimum Phred score of 20 across the entire length of the read used as a 

quality cut-off. Reads shorter than 80-bp were removed after trimming. Remaining high-quality reads were 

subsequently assembled using metaSPAdes (Nurk et al., 2017). Contigs were binned using Metabat2 
v2.11.3 (Kang et al., 2015). Recovered genomes were evaluated with CheckM (Parks et al., 2015), and a 

recovered genome was considered good with at least 90% completeness and at most 10% contamination. 

Each genome was subsequently annotated with the help of Rapid Annotations using Subsystems 

Technology (RAST), and near identifications were predicted (Aziz et al., 2008). 

Isolates from Microbial Tracking 1 mission 

To create the whole-genome sequences (WGS) of these strains, shotgun libraries were prepared using the 

Illumina Nextera Flex protocol (Singh et al., 2018b), using NovaSeq 6000 S4 flow cell 2150 paired-end (PE) 

sequencing. Verification of the quality of the raw sequencing data was carried out using FastQC v0.11.7 

(Andrews, 2015). Quality control for adapter trimming and quality filtering were performed using fastp 

v0.20.0 (Chen et al., 2018), and then SPAdes v3.11.1 (Bankevich et al., 2012) was used to assemble all 
the cleaned sequences. Fastp quality control was based on the following three parameters: (i) correction 

of mismatches in overlapped regions of paired-end reads, (ii) trimming of autodetected adapter sequences, 

and (iii) quality trimming at the 59 and 39 ends. To determine the quality of the assembled sequences, the 

number of contigs, the N50 value, and the total length were calculated using QUAST v5.0.2 (Gurevich et 

al., 2013). Default parameters were used for all software. The average nucleotide identity (ANI) (Yoon et 

al., 2017) was calculated using OrthoANIu by comparing each of the scaffolds to the WGS of the respective 

type strains. 

Identification of ORFs in microbial DNA sequences 

Glimmer (Gene Locator and Interpolated Markov ModelER) v3.02 was used with default parameters to 

identify the coding regions and distinguish them from non-coding DNA in MAGs and MT-1 scaffolds that 
could be used as an input in DeepARG-LS. Minimum gene length was indicated as 50 bp (‘glimmer3 -g50’). 

Glimmer reads DNA sequences in a FASTA file format and predicts genes in them using an Interpolated 

Context Model (Delcher et al., 2007). 

Prediction of antibiotic resistance genes in short reads and full-gene length sequences 

DeepARG version 2 (Arango-Argoty et al., 2018), a deep learning-based approach for predicting Antibiotic 

Resistance Genes (ARGs) and annotation, was run with the ‘--reads’ option (DeepARG-SS) for NGS reads 
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and the ‘--genes’ option (DeepRG-LS) for longer gene-like sequences obtained with Glimmer. The 

DeepARG model consists of four dense hidden layers of 2000, 1000, 500, and 100 units that propagate a 

bit score distribution. The output layer of the deep neural network consists of 30 units that correspond to 

the antibiotic resistance categories (102 antibiotics consolidated into 30 antibiotic categories). The model 
was trained with a curated database of 14,933 genes from three databases (CARD, ARDB, and UNIPROT) 

(Arango-Argoty et al., 2018). Default options were used: 50% minimum percentage of identity to consider, 

significance of the prediction probability cut-off of 0.8 as recommended (Arango-Argoty et al., 2018), and 

E-value of alignments (default 1e-10). The software was downloaded from 

https://bitbucket.org/gusphdproj/deeparg-ss. 

Microbial Nucleotide BLAST 

Nucleotide-Nucleotide BLAST 2.10.1+ (https://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to identify 

microbial species associated to MT-1 scaffolds. Sequences producing significant alignments were ranked 

and the species associated to maximum Score (bits) and minimum E-value was deemed as the closest 

match. 

Phenotypic antibiotic resistance testing 

Disc assays experiments were performed as in Urbaniak et al., (2018). The isolates were streaked from 

glycerol stocks onto R2A plates. A single colony was inoculated into 5 mL Tryptic Soy Broth (TSB) and 
grown overnight at 30°C. Aliquots of 100 µL were plated on TSA. Agar diffusion discs (BD BBLTM Sensi-

DiscTM, Franklin Lakes, NJ) were placed aseptically on a plate and the strains were incubated at 37°C for 

24 h. The tested antibiotics included: 30-µg cefazolin (CZ-30); 30-µg cefoxitin (FOX-30), 5-µg ciprofloxacin 

(CIP-5), 15 µg erythromycin (E-15), 10-µg gentamicin (GM-10), 1-µg oxacillin (OX), 10-µg penicillin (P-10), 

5-µg rifampin (RA-5), and 10-µg tobramycin (NN-10). The diameter of inhibition zones was measured for 

each antibiotic disk and recorded in millimeters. The resistance results were compared with the zone 

diameter interpretive charts provided by the manufacturer. When the spontaneous mutants were present 

in response to some antibiotics, they were isolated, subcultured and tested for the specific antibiotic 
resistance. 

Data availability 

Raw metagenomics reads from three flights on multiple locations were downloaded from NASA GeneLab 

repository https://genelab.nasa.gov (GLDS-69). Microbial tracking-1 (MT-1) datasets were obtained from 

GLDS-67, GLDS-302, GLDS-303, GLDS-309, GLDS-311 and GLDS-350. The rest of the samples are 

deposited at DDBJ/ ENA/GenBank or are unpublished. 
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FIGURES 

Figure 1. Overview of sample collection and data analysis for the characterization of antibiotic 
resistance at the ISS using deep learning. The data are processed in a step-wise fashion including data 

QC, mapping, quantification, and matching to time of collection and mission. The figure has been generated 

using BioRender (http://biorender.com). 

Figure 2. Prediction of ARGs using a pre-trained DeepARG-SS model. (a) Distribution of ARG read 

counts across antibiotic classes for the three flights (F1, F2, F3). (b) Correlation of read counts found by 
DeepARG-SS and those in Singh et al. (2018). Pearson's product-moment correlation r = 0.86, (p = 6.879e-

07) for the three flights and their locations. (c) Read counts of ARG class across flights for each location 

for PMA-treated samples in Singh et al. (2018). The antibiotic class (multi-drug) is not shown. Results are 

for ARGs with probability > 0.8.   

Figure 3. ARGs detected in ORFs in metagenome-assembled genomes (MAGs) from PMA-treated 
samples. (a) Distribution of DeepARG classification probability and best-hit identity in MAGs retrieved from 

the ISS. (b) Total number of ARGs predicted for each flight and location. (c) Number of ARGs precited for 

each MAG.  Most common antibiotic class (multi-drug) not shown. The black arrows indicate Kalamiella 

piersonii . 

Figure 4. Heatmap and clustering of ARG counts detected in MT-1 pure strains isolated from the ISS 
and AST validations. (a) Heatmap with ARG count. The barplots illustrate the number of ARGs across 

rows and across columns. Species were identified using BLAST. Only ARGs with probability > 0.8 were 

considered, as recommended. (b) Antibacterial Susceptibility Tests (AST) on E. bugandensis and B cereus 

strains for several antibiotics (top), and comparison with machine learning predictions shown in Fig. 4a 

(bottom). (c) Scatterplot of zone of inhibition value (in mm.) and ARG count shown in (b), together with a 

linear model fit. Pearson's product-moment correlation values are indicated. 

 

SUPPLEMENTARY INFORMATION 

Additional file 1: Figure S1. Distribution of DeepARG classification probability and best-hit identity in 

MT-1 pure strains isolated from the ISS. The blue dashed line indicates 50% sequence identity. 

Additional file 2: Table S1. Rank of MT-1 isolates, ordered by number of ARGs predicted, shown in 

Figure 4a. Species information obtained from Microbial Nucleotide BLAST. 

Additional file 3: Table S2. Phenotypic antibiotic resistance testing results for E. bugandensis and B 

cereus. 

Additional file 4: File S1. Raw results of the DeepARG analyses (zip compressed). 
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