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Abstract18

Changes in gene regulation were a major driver of the divergence of archaic hominins (AHs)—19

Neanderthals and Denisovans—and modern humans (MHs). The three-dimensional (3D) folding of20

the genome is critical for regulating gene expression; however, its role in recent human evolution21

has not been explored because the degradation of ancient samples does not permit experimental22

determination of AH 3D genome folding. To fill this gap, we apply novel deep learning methods for23

inferring 3D genome organization from DNA sequence to Neanderthal, Denisovan, and diverse MH24

genomes. Using the resulting 3D contact maps across the genome, we identify 167 distinct regions25

with diverged 3D genome organization between AHs and MHs. We show that these 3D-diverged26

loci are enriched for genes related to the function and morphology of the eye, supra-orbital ridges,27

hair, lungs, immune response, and cognition. Despite these specific diverged loci, the 3D genome28

of AHs and MHs is more similar than expected based on sequence divergence, suggesting that the29

pressure to maintain 3D genome organization constrained hominin sequence evolution. We also find30

that 3D genome organization constrained the landscape of AH ancestry in MHs today: regions more31

tolerant of 3D variation are enriched for introgression in modern Eurasians. Finally, we identify loci32

where modern Eurasians have inherited novel 3D genome folding from AH ancestors, which provides33

a putative molecular mechanism for phenotypes associated with these introgressed haplotypes. In34

summary, our application of deep learning to predict archaic 3D genome organization illustrates35

the potential of inferring molecular phenotypes from ancient DNA to reveal previously unobservable36

biological differences.37
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1 Highlights38

• The 3D genome organization of archaic hominins can be inferred from sequence to facilitate com-39

parisons to modern humans.40

• Loci with 3D genome folding divergence between humans and Neanderthals highlight functional41

differences in the eye, supra-orbital ridges, hair, lungs, immune response, and cognition.42

• 3D genome organization constrained recent human evolution.43

• Tolerance to variation in 3D genome organization shaped the landscape of Neanderthal ancestry44

in modern humans.45

• Neanderthal introgression contributed novel 3D genome folding patterns to Eurasians.46

2 Introduction47

The sequencing of archaic hominin (AH) and modern human (MH) genomes has transformed our un-48

derstanding of human history, evolution, and biology [1–5]. However, even with these whole-genome49

sequences available, our understanding of how and why AHs differed from MHs is limited [6]. A major50

challenge in understanding the phenotypic and sequence differences between AHs and MHs is bridging51

the gap between genetic variation and function. The evolution of hominins is largely driven by changes in52

the regulation of conserved proteins [7–13], but the mechanisms through which archaic variants influence53

gene expression, and ultimately phenotype, are incompletely understood [6, 13, 14].54

Many studies that investigate the gene regulatory differences between MHs and AHs leverage Nean-55

derthal ancestry remaining in modern Eurasians. Because MHs interbred with many AH groups over56

the past 50,000 years, more than one-third of the Neanderthal genome remains in introgressed sequences57

in MH genomes [15, 16]. These investigations have found widespread expression differences between58

Neanderthal and MH alleles [11, 12], many of which are hypothesized to contribute to trait variation59

in diverse MHs [17–21]. Phenotypes associated with Neanderthal ancestry range from immune system60

response [18, 19, 22–29], hair and skin coloration [18, 19, 30–32], metabolism [33–36], cardiopulmonary61

function [19, 37], skeletal morphology [19, 38], and behavior [18, 19]. However, since most regions of MH62

genomes have little or no evidence of introgression [11, 12, 30, 31, 39–41], considering only introgressed63

variation provides a very limited view into hominin biology and cannot address why certain regions of64

MH genomes tolerated Neanderthal DNA better than others.65

Colbran et al. [13] addressed this challenge by inferring AH gene regulation genome-wide through66

predictive models trained on gene expression data in MHs [42]. They estimated that over 1900 genes67

had different patterns of regulation between AHs and MHs. However, the specific molecular mechanisms68

through which archaic variants alter gene expression remain unclear. Gokhman et al. [43] and Batyrev69

et al. [44] aimed to elucidate these mechanisms by computationally reconstructing maps of AH DNA70

methylation. They found 2,000 differentially methylated regions that associate with genes predominantly71

related to facial and limb anatomy. Together, these illustrate the potential to mechanistically link archaic72

genotypes with regulatory functions via prediction of molecular phenotypes.73

Yet, previous work has been unable to address a fundamental aspect of gene regulation and genome74

function—the physical three-dimensional (3D) organization of the genome. Regulation of gene expres-75

sion is facilitated by the 3D looping and folding of chromatin in the cell nucleus, which is central to76

enhancer-promoter (E-P) communication and insulation [45–52]. The 3D genome also plays a role in de-77

termining cell-type identity, cellular differentiation, replication timing, and risk for multiple diseases [53–78

59]. Advances in chromosome-conformation-capture technologies (3C, 4C, 5C, Hi-C, MicroC) [60–64]79

allow quantification of genome folding at increasing resolution from chromosomal territories, megabase-80

scale topologically associating domains (TADs), to smaller-scale loops [62] and “architectural stripes,”81

which can reflect enhancer activity and gene activation [65–67]. Disrupting 3D genome folding can cause82
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inappropriate E-P interactions and alter gene expression in ways that lead to disease [49, 50, 68–72]. Ac-83

cordingly, there is preliminary evidence suggesting the 3D genome constrains variation at different scales84

of evolution [73–77] and that reorganization of chromatin may contribute to gene regulatory evolution85

and inter-species gene expression divergence [78].86

Thus, to fully understand the consequences of genetic variation between AHs and MHs, we must87

consider the 3D genome folding. However, the role of 3D genome organization in the divergence between88

AHs and MHs has never been explored because chromatin contacts cannot be assayed in ancient DNA.89

3D genome folding is facilitated by a complex interplay of CTCF binding with cohesin and other ar-90

chitectural factors [50, 62, 79, 80]. Recent deep learning methods have been developed that learn the91

sequence “grammar” underlying 3d genome folding patterns [81–84]. We hypothesized that these deep92

learning methods would allow us to infer genome-wide 3D chromatin contact maps of Neanderthals and93

Denisovans. Because the molecular mechanisms that determine genome organization, like CTCF bind-94

ing and co-localization with cohesin, are largely evolutionarily conserved [85, 86], models trained using95

human data perform well even when applied to DNA sequences from distantly related species, such as96

mouse [82]. Thus, unlike genome-wide methods for predicting organism-level phenotype (e.g., polygenic97

risk scores), these models can be applied across diverse hominins.98

To elucidate the contribution of 3D genome folding to recent hominin evolution, we apply novel deep99

learning methods for inferring 3D genome organization from DNA sequence patterns to Neanderthal,100

Denisovan, and diverse MH genomes. Using the resulting genome-wide 3D genome folding maps, we101

identify 167 loci that are divergent in 3D organization between AHs and MHs. We show that these 3D-102

diverged loci are enriched for physical links to genes related to the function and morphology of the eye,103

supra-orbital ridge, hair, lung function, immune response, and cognition. We also find that 3D genome104

organization constrained recent human evolution and patterns of introgression. Finally, we evaluate105

the legacy of introgression on the 3D organization of humans and identify examples where introgression106

imparted divergent 3D genome folding to Eurasians. In summary, our application of deep learning to107

predict archaic 3D genome folding provides a window into previously unobservable molecular mechanisms108

linking genetic differences to phenotypic consequences in hominin evolution.109

3 Results110

3.1 Reconstructing the 3D genome organization of archaic hominins111

To evaluate the role of 3D genome organization changes in recent human evolution, we apply deep112

learning to infer 3D genome organization from DNA sequences of archaic hominins (AHs) and modern113

humans (MHs) (Fig. 1). We consider the genomes of four AHs—one Denisovan and three Neanderthals,114

each named for where they were discovered (Altai mountains, Vindija and Chagyrskaya caves) [1–4]. We115

compare these to 20 diverse MHs from the 1000 Genomes Project (Table S1) [87].116

For each individual, we predict chromatin contact maps across the genome. Each contact map gives117

a 2D representation of the predicted 3D chromatin physical contacts, which will refer to as “3D genome118

organization”. We predict these maps using approximately 1 Mb (1,048,576 bp) tiled sliding windows119

overlapping by half with Akita, a convolutional neural network (CNN) trained on high-quality experi-120

mental chromatin contact maps (Hi-C and Micro-C) [82]. Each resulting contact map represents pairwise121

physical 3D contact frequencies at approximately 2 kb (2,048 bp) resolution for a single individual. Pre-122

vious work demonstrated that Akita accurately infers 3D contact organization at this resolution [82]. We123

only consider windows with full (100%) sequence coverage in the MH reference, and we conservatively124

mask missing archaic sequence with the human reference sequence (Figs. S1,S2,S3 and Methods).125

We compare contact maps from two genomes using a “3D divergence” score, namely, one minus126

the Spearman’s rank correlation coefficient (1 − ρ) for all pixels in the maps. Genomic windows with127

more different 3D genome maps have higher 3D divergence and, conversely, a window with lower 3D128

divergence will reflect more 3D similarity (Fig. 1). Other divergence metrics (e.g., based on Pearson’s129

correlation coefficient and mean squared difference) are strongly correlated (Fig. S4). Akita is trained130
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simultaneously on Hi-C and Micro-C across five cell types in a multi-task framework. In the main text131

we focus on predictions from the highest resolution cell type, human foreskin fibroblast (HFF). Results132

are similar when considering other cell types (e.g. embryonic stem cells) (Fig. S5), likely because of133

limited cell-type-specific differences in both available experimental data and model predictions [82].134

Figure 1: Reconstructing the 3D genome organization of archaic hominins. We infer 3D genome
organization from sequence across the genomes of modern humans (MHs, green) and archaic hominins (AHs, purple). Using
approximately 1 Mb (1,048,576 bp) sliding windows (overlapping by half), we input the genome sequences into Akita, a
convolutional neural network, to predict 3D genome contact maps [82]. The resulting contact maps are compared between
MHs and AHs to identify regions that have similar 3D genome organization (left, low divergence) and regions that have
different 3D organization (right, high divergence).

3.2 Archaic hominin and modern human genomes exhibit a range of 3D135

divergence136

Reconstructing the genome-wide 3D genome organization of AHs and MHs revealed genomic windows137

with a range of 3D divergence (Fig. 2A). Most of the genome has very similar 3D genome organization138

between AHs and MHs (circle example in Fig. 2A-B). However, we also found regions of AH-MH 3D139

genome divergence. Some of these differences are changes in predicted chromatin contact intensity but140

similar overall organization (diamond example in Fig. 2A-B). Others reveal reorganization with evidence141

of new sub-organization (neo-TADs or -loops) or lost structures (fused TADs or loops) (indicated with an142

“x” example in Fig. 2A-B). At the 95th percentile of observed divergence, differences in the contact maps143

are substantial. However, because the 3D divergence measure considers the entire window, strong focal144

changes may not rank as highly as structural differences that influence a large segment of the window145

(diamond vs. “x” examples in Fig. 2B).146

To illustrate genome-wide patterns of divergence in 3D organization, we plotted the average divergence147

of each of the AHs to five modern African individuals from different subpopulations (Fig. 2C). We show148

the landscape of 3D divergence across the entire genome for all four AHs in Fig. S6. Some AH-MH149

divergences are shared across all four archaics, while others are specific to a single lineage like the150

Denisovan individual (Fig. 2C). We only considered sub-Saharan Africans in these comparisons, because151

they have low levels of AH introgression. We consider how introgressed variation in Eurasians influences152

3D divergence in a subsequent section.153

3.3 3D genome organization diverges between AH and MH at 167 genomic154

loci155

To consistently identify regions with divergent 3D genome organization between AH and MH, we com-156

pared the 3D contact maps at each locus for each AH to 20 MH (African) individuals. We applied157
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Figure 2: 3D genome divergence between archaic hominins (AHs) and modern humans
(MHs) varies across the genome. (A) Distribution of 3D genome divergence between AHs and modern humans
MHs for 1 Mb windows across the genome. Most windows have similar 3D genome organization between MHs and AHs (low
3D divergence). The cumulative density function (CDF) of this distribution is overlaid in gray with percentiles on the right
vertical axis. (B) We highlight four examples (shapes) along the 3D divergence distribution illustrating low 3D divergence
(left) to high divergence (right). Each example compares a representative African MH (top, HG03105) to a Neanderthal
(bottom, Vindija) in terms of both raw score and relative percentile of 3D divergence. Examples with scores near the
95th percentile have visible contact map differences, but the type of differences vary from re-organization (neo-TADs or
TAD-fusions) to altered contact intensity (stronger vs. weaker TAD/loop). Green and purple triangles indicate regions
with increased contact frequency in MH versus AH, respectively. (C) Average 3D divergence along chromosome 7 between
AHs and five representative African MHs. The error band indicates the 95% confidence interval (CI). Comparing the 3D
genomes of Neanderthals (purple) or Denisova (blue) with MHs reveals windows of both similarity and divergence (peaks).
Featured examples (gray overlays) highlight regions of 3D divergence that are shared (e.g., shared across all archaics) or
lineage-specific (e.g., specific to the Denisovan individual).
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a conservative procedure that required all 20 AH-MH comparisons to be more 3D divergent than all158

MH-MH comparisons (Fig. 3A). In other words, the differences between the 3D genome organization159

of an AH to all MHs must be more extreme than the differences between each MHs to all other MHs.160

Furthermore, we required the average AH-MH 3D divergence to be in the 80th percentile of the most161

diverged. This identified regions with consistent 3D differences between AHs and MHs (Fig. 3A, left)162

while excluding regions with a large 3D diversity in modern humans (Fig. 3A, right) (Methods).163

We find 167 total AH-MH consistently 3D diverged loci: 67, 70, 71, and 73 for Altai, Vindija,164

Chagyrskaya, and Denisova compared to MHs, respectively (Fig. 3B). 3D diverged loci are found through-165

out the genome on every chromosome (Fig. 3B). As suggested by Fig. 2C, some 3D divergences are shared166

by all four AHs (N = 7), and many are shared by all three Neanderthals (N = 43) (Fig. 3B). We sum-167

marize the AH-MH 3D divergent windows in Tables S2,S3 and report a larger set of windows based on168

less conservative criteria in Table S4.169

To illustrate the properties of a AH-MH 3D divergent window, we highlight a divergent locus on170

chromosome 2 that is nearby several immune genes (Fig. 3C). MHs have an approximately 140 kb loop171

linking the promoter of ICOS at 204.80 Mb to a CTCF motif at 204.94 Mb. This CTCF motif is172

overlapped by many ChIP-seq peaks for transcription factors (TFs) involved in determining chromatin173

folding (CTCF, RAD21, SMC3, and ZNF143). The contact maps for both Vindija and Altai Neanderthal174

show a more prominent “architectural stripe”—an asymmetric loop-like contact often reflecting enhancer175

activity [65–67]—starting near the promoter of ICOS. However, in contrast to MHs, the loop does not176

end at the same CTCF site and instead has greater contact frequency with a CTCF site at 205.2 Mb.177

Thus, the resulting loop in Neanderthals is predicted to be over 400 kb—three times as large as the MH178

loop.179

To determine which AH-MH nucleotide differences cause the largest change in the contact maps, we180

used in silico mutagenesis (Methods). Using an African MH (HG03105) background, we inserted every181

allele unique to the AH genome one-by-one and measured the resulting 3D genome divergence. This182

identifies the archaic variant resulting in the largest 3D organization changes between the AH and MH183

genomes, a G to C change at chr2:204,937,347 (Methods). This change disrupts a high information-184

content site in the CTCF binding site described above. All MHs carry an ancestral C allele, but Vindija185

and Altai have a derived G allele. In summary, we predict that the Neanderthal-derived allele weakens186

CTCF binding leading to reduced insulation between ICOS, a T-cell costimulator, with downstream187

contacts.188

3.4 Regions with 3D divergence highlight AH-MH phenotypic differences189

To explore the functional effects of AH-MH 3D genome divergence, we tested for phenotypic annotation190

enrichment. We considered the 43 loci with shared divergence between MHs and all three Neanderthals191

(Fig. 3B). Although the loci were identified at approximately 1 Mb resolution, most 3D modifications192

disrupt a smaller sub-window. Thus, as described in the example above (Fig. 3C), we used in silico193

mutagenesis to identify the AH-MH sequence change(s) that produced the largest disruption in the194

contact maps. We will refer to these as “3D-modifying variants” (Methods). We then intersected the195

predicted 3D-modifying variants with experimentally defined TADs to determine the genes to which they196

are physically linked. Ultimately, we found 88 physical links to protein-coding genes (85 unique genes)197

for the 45 3D-modifying variants in the 43 Neanderthal-MH 3D divergent loci (Tables S2,S5).198

We tested if these genes are enriched for phenotypic annotations using both gene-phenotype links199

from rare disease (OMIM Human Phenotype Ontology [HPO] terms) and common disease databases200

(GWAS Catalog 2019) [88–92]. 3D genome organization perturbation has been linked to both types201

of disease: large-scale disruption leading to severe disease and subtle changes in regulatory insulation202

contributing to complex traits disease [69–72, 74]. We find links to 271 and 208 candidate traits from203

the rare and common disease ontologies, respectively. For each trait, we test if the observed overlap204

with 3D divergent loci is more than expected by chance using an empirically-generated null distribution205

(Methods). In summary, this sequential process links 3D divergent windows to variants to TADs to genes206

6

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 8, 2022. ; https://doi.org/10.1101/2022.02.07.479462doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.07.479462
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: Regions with 3D divergence between MHs and AHs highlight loci linked to
phenotypic differences. (A) We identified genomic windows with 3D divergence between AH and MH by comparing
distributions of pairwise divergence in 3D contact maps. We used a conservative procedure that required all 20 comparisons
of each AH to 20 MH (African) individuals (purple, n = 20) to be more 3D-diverged than all MH-MH comparisons (green,

n =
(20
2

)
= 190) and the mean of the AH-MH divergences (purple) to be in the 95th percentile of most diverged. The left

plot shows an example that meets these criteria (chr2:204,472,320-205,520,896). The right shows an example where there is
diversity in 3D genome organization, but not an AH-MH divergence (chr1:4,194,304-5,242,880). (B) We identified 167 AH-
MH 3D divergent windows across the genome. Many are shared (Euler-diagram), but some are unique to a single lineage,
with the most unique divergence in the Denisovan. (C) Contact maps for the example Neanderthal-MH 3D divergent
window shown in A (zoomed to chr2:204,722,176-205,166,592). All MHs have a smaller domain insulated by a CTCF site
(red star). In Neanderthals (Vindija and Altai), the CTCF motif is disrupted with a C instead of a G (red dashed box,
chr2:204,937,347). We predict that this leads to ectopic connections with the promoter of ICOS (T-cell costimulator).
(D) Phenotype enrichment for the 43 Neanderthal 3D diverged loci identified in B (white dashed line). We computed
functional annotation enrichment for genes physically linked to 3D-modifying variants at these 3D divergent loci using
HPO (top, n = 271) and GWAS catalog (bottom, n = 208) annotations (Methods). Within each phenotypic domain, traits
are organized along the vertical axis by significance and along the horizontal axis by enrichment (also indicated by size).
Genes nearby AH-MH 3D divergence are enriched for functions related to the retina and visual field, skeletal morphology
(notably, supra-orbital ridge), hair, lung function, immune and medication response, and cognitive traits. Significance lines
represent the P -value thresholds that controls the FDR with q = 0.05 (dotted) and q = 0.1 (dashed). (COPD: chronic
obstructive pulmonary disease, AS: ankylosing spondylitis, IBD: inflammatory bowel disease, EA: educational attainment)
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and, ultimately, phenotypes (Fig. S7).207

With the HPO annotations, we found enrichment for effects of these genes related to the eye208

(retinopathies, optic atrophy, constricted visual field [most significant association: 27× enriched, P =209

2 × 10−5]), skeletal system (notably, supraorbital ridge morphology [12×, P = 0.002]), and hair (e.g.210

low anterior hairline [12×, P = 0.003]) (Fig. 3D, top). In the GWAS Catalog annotations, we find211

enrichment related to intelligence and cognition (13×, P = 0.0002), lung function (NO levels, COPD212

[35×, P = 0.0008]), response to certain medications (30×, P = 0.002), immunologic response (ankylosing213

spondylitis, allergy, inflammatory bowel disease [12×, P = 0.004]), and brain region volumes (putamen,214

subcortex [17×, P = 0.006]) (Fig. 3D, bottom). Trait enrichments for 3D-modifying variants found in215

Denisova are highlighted in Fig. S8. Because Denisova and Neanderthal share many alleles, some similar216

traits are enriched (retinopathy, intelligence, lung function, etc.); however, overall, we find fewer enriched217

traits.218

In summary, genomic loci with 3D divergence between Neanderthals and MHs are enriched for physical219

proximity to genes associated with a diversity of traits related to the skeleton, eye, hair, lung, immune220

response, brain region volume, and cognitive ability. These findings align with and expand what we know221

from both the fossil-record and previous work based on variants in MHs [11, 14–20]. Importantly, our222

approach permitted the interrogation of variants unobserved in MHs (76% of predicted 3D-modifying223

variants), and it provides a putative molecular mechanism for the phenotypic differences.224

3.5 Relationship between sequence divergence and 3D divergence225

Given that we observe 3D differences between AH and MH genomes, we quantified the relationship226

between 3D and sequence divergence on both genome-wide and more local scales. First, we computed227

the genome-wide 3D genome divergence for all pairs of AH and MH individuals. We find the mean 3D228

genome divergence largely follows sequence divergence (Figs. 4A,S9). Neanderthals are the most similar229

in 3D genome organization to other Neanderthals, then to the Denisova, and then to MHs (mean 3D230

divergences: 9.8×10−4, 3.4×10−3, and 4.3×10−3, respectively). Genome-wide 3D divergence also tracks231

with sequence divergence within the Neanderthal: Vindija and Chagyrskaya are more similar than they232

are to the outgroup Altai (Vindija-Chagyrskaya mean 3D divergence of 8.4 × 10−4 vs. Vindija-Altai of233

1.0 × 10−3) [3].234

Next, we evaluated if sequence divergence and 3D divergence are correlated on the local scale. We235

find a very weak positive relationship between 3D and sequence divergence at the 1 Mb window level236

(Fig. 4B, r2 = 0.01, P = 2.3 × 10−13). As suggested by the weak correlation, many windows with low237

sequence divergence have high 3D divergence, and many windows with high sequence divergence have238

low 3D divergence.239

Given the weak relationship between sequence and 3D divergence, we sought to identify some proper-240

ties of sequence differences that result in large 3D divergence. Based on the importance of CTCF-binding241

in maintaining 3D genome organization [50, 62, 79, 80], we quantified the effects of AH-MH nucleotide242

differences overlapping CTCF binding motifs. Disruption of CTCF binding sites is important, but not243

all disruptions are likely to influence 3D divergence. Leveraging additional functional genomics data on244

CTCF binding and TAD boundaries, we find that the quantity, quality, and context (e.g., strength of a245

motif and proximity to a TAD boundary) influence whether AH-MH sequence divergence will result in246

a 3D organization divergence (Fig. S10). For example, if a window has at least one AH-MH nucleotide247

difference overlapping a strong CTCF-bound motif near a TAD boundary (within 15 kb), the AH-MH 3D248

divergence is 1.64-times greater (P = 0.00077, N = 260/4999 windows, Fig. 4B). Thus, we are observ-249

ing complex sequence patterns underlying 3D genome folding that could not be determined by simply250

considering sequence divergence or intersecting AH variants with all CTCF sites. This is concordant251

with previous results which suggest that 3D genome folding is governed by a complex CTCF binding252

grammar [50, 80, 82, 83].253
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Figure 4: 3D genome organization constrained human sequence divergence. (A) 3D genome
divergence (lower triangle) follows patterns of sequence divergence (upper triangle). AHs have more similar 3D genome
organization to each other than to 15 MHs from different 1000G super-populations. Clustering is based on sequence
divergence; see Fig. S9 for clustering by 3D genome divergence and data for each sub-population. (B) Sequence divergence
is only very modestly correlated with 3D genome divergence (r2 = 0.011, P = 2.3×10−13, N = 4999). Each point represents
a 1 Mb window from a genome-wide comparison between the 3D genome organization of a Neanderthal (Vindija) and African
MH (HG03105) individual and the black line with band represents a linear regression with 95% CI. Windows with large
3D divergence are enriched for MH-AH nucleotide (nt) differences overlapping a strong CTCF-bound motif within 15 kb
of a TAD boundary (red) (two-tailed Mann–Whitney U P = 0.00077). (C) To evaluate whether 3D genome organization
constrained sequence divergence, we estimate the null distribution of expected 3D divergence based on sequence differences
between the Neanderthal (Vindija) and African MH (HG03105) genomes. We shuffle observed nucleotide differences (stars)
while preserving tri-nucleotide context (colored rectangles) and predict 3D genome organization for 100 shuffled sequences
for each window. Under a model of no sequence constraint due to 3D organization, observed 3D divergence would equal
the expected 3D divergence (O = E). Alternatively, observing more 3D divergence than expected would suggest positive
selection on sequence changes that cause 3D divergence (O > E). Finally, observing less 3D divergence than expected
would suggest negative pressure on sequence changes that cause 3D divergence (O < E). (D) Observed 3D divergence is
significantly less than the mean expected 3D divergence based on sequence (O < E: 88.4% of N = 4, 999 windows below
the diagonal, binomial-test P < 5 × 10−324). The mean expected 3D divergence is on average 1.78-times higher than the
observed 3D divergence (t-test P = 1.8× 10−48). 3D divergence scores greater than 0.05 and nucleotide differences greater
than 2250 are clipped to the baseline for visualization purpose
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3.6 Maintenance of 3D genome organization constrained sequence diver-254

gence in recent hominin evolution255

Next, we evaluated if the pressure to maintain 3D genome organization constrained recent human se-256

quence evolution. We estimated whether the amount of 3D divergence between AHs and MHs is more257

or less than expected given the observed sequence divergence. To compute the expected 3D divergence258

distribution for each 1 Mb window, we shuffled observed nucleotide differences between an African MH259

(HG03105) and AH (Vindija Neanderthal) 100 times and applied Akita to predict the resulting 3D260

genome divergence (Fig. 4C). We controlled for the non-uniform probability of mutation across sites261

using a model that preserved the tri-nucleotide context of all variants in each window with each shuffle.262

For each 1 Mb window, we compared the observed 3D divergence with the expected 3D divergence from263

the 100 shuffled sequences with the same nucleotide divergence.264

If the 3D genome does not influence sequence divergence, the observed 3D divergence would be265

similar to the expected 3D divergence (Fig. 4C, bottom-middle). Alternatively, if the observed 3D266

divergence is greater than expected based on sequence divergence (Fig. 4C, bottom-left), this suggests267

positive selection on variation contributing to 3D differences. Finally, if the observed 3D divergence is268

less than expected based on sequence divergence (Fig. 4C, bottom-right), this suggests negative pressure269

on variation contributing to 3D differences.270

We find that observed 3D divergence is significantly less than expected based on sequence divergence271

(Fig. 4D). 88.4% of 1 Mb windows have less 3D divergence that expected based on their observed272

sequence differences (binomial-test P < 5 × 10−324). Genome-wide, the mean expected 3D divergence273

is 78% higher than the observed 3D divergence (t-test P = 1.8 × 10−48). This suggests that, in recent274

hominin evolution, pressure to maintain 3D genome organization constrained sequence divergence. This275

aligns with previous studies that demonstrated depletion of variation at 3D genome-defining elements276

(e.g., TAD boundaries, CTCF sites) [73–77], but it specifically implicates 3D genome folding.277

3.7 3D genome organization constrained introgression in MHs278

Eurasian individuals have on average 2% AH ancestry due to introgression; however, AH ancestry is not279

evenly distributed throughout the genome [2, 15, 31]. Our previous analyses demonstrate that AH and280

MH exhibit a range of 3D genome organization divergence across the genome (Fig. 2C) and that pressure281

to maintain 3D genome organization constrained sequence divergence (Fig. 4D). Thus, we hypothesized282

that for a given genomic window, its tolerance to 3D genome organization variation in MHs would283

influence the probability that introgressed AH DNA is maintained in MH.284

To test this, we first quantified the levels of 3D genome diversity for 20 modern Africans in 1 Mb sliding285

windows across the genome. We then computed the average African-African 3D genome divergence and286

term this “3D genome variability”. Genomic windows with low 3D genome variability have similar 3D287

genome organization among all Africans, suggesting these loci are less tolerant of 3D folding changes. In288

contrast, regions with high 3D genome variability suggest a diversity of 3D genome organization present.289

Finally, we computed the amount of introgressed sequence in Eurasian populations for each window290

(Methods, [93]).291

Genomic windows with high levels of introgression across Eurasians are enriched for windows with292

higher 3D genome variability (Fig. 5A, Mann-Whitney U P = 0.0007). On average, windows with293

evidence of introgression have 72% higher 3D genome variability than windows without introgression.294

Moreover, the magnitude of 3D genome variability is predictive of the average amount (proportion of295

bp) of introgressed sequence remaining in a 1 Mb window (P = 5.7 × 10−9, Fig 5B, vertical axis). Even296

when conditioning on sequence variability, 3D genome variability provides additional information about297

the amount of AH ancestry in a window (Fig 5B, conditional P = 5.7 × 10−4). In other words, even if298

two windows have the same level of sequence variability in MHs, windows that are more 3D variable are299

more likely to retain introgressed sequence. We also find that 3D genome variability is more strongly300

predictive of introgression shared among all three super-populations than an introgressed sequence unique301
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to a single super-population (Supplemental Text, Tables S7,S8). Using earlier introgressed Neanderthal302

haplotype predictions from Vernot et al. [15] and other thresholds yield similar results (Figs. S11,S12).303

Because we compute variability in Africans with very low levels of AH ancestry, the increased 3D genome304

variability in MHs is not a result of introgression.305

These results suggest that 3D genome organization shaped the landscape of AH introgression in306

modern Eurasian genomes. Previous findings demonstrated Neanderthal ancestry is depleted in regions307

of the genome with strong background selection, evolutionary conservation, and annotated molecular308

function (e.g. genes and regulatory elements) [11, 30, 31, 40, 41]. Our results expand this to implicate309

the 3D genome as a contributor to the landscape of AH ancestry in MHs today.310

Figure 5: 3D variable windows in MH have more evidence of AH introgression. (A) Windows
with high levels of introgression across present-day non-African populations (purple, N = 187) are more 3D-variable in mod-
ern Africans (horizontal axis) than windows without evidence of introgression (green, N = 2, 799; two-tailed Mann–Whitney
U P = 0.0007). Vertical lines represent the distribution means. Introgression is called based on Sprime [93]. To focus on
regions consistently tolerant of AH ancestry, we considered introgression shared across 1000 Genomes super-populations
and covering at least 70% of bases in a 1 Mb window (Methods). Results from other introgression sets and thresholds
are similar (Figs. S11–S12 and Tables S7–S8). (B) The relationship between sequence variability (horizontal axis) and
3D genome variability (vertical axis) with amount of AH ancestry in a window. Darker purple indicates a higher pro-
portion of introgression in a 1 Mb genomic window. Sequence variability (P = 1.9 × 10−49) and 3D genome variability
(P = 5.7 × 10−9) both independently predict amount of introgression. Additionally, even when controlling for sequence
variability in a window, 3D genome variability is informative about the amount of introgression (P = 5.7 × 10−4).

3.8 Introgression shaped the 3D genome organization of present-day Eurasians311

Given the differences between AH and MH 3D genome organization at many loci, we hypothesized that312

introgressed AH sequences could have introduced novel 3D contact patterns to Eurasian MHs. To test313

this, we integrated Eurasians into our previous comparisons of AHs and African MHs.314

For example, we found an AH-MH 3D divergent window on chromosome 7 with a striking pattern of315

3D genome diversity across modern Eurasians (Fig. 6A). As required to be an AH-MH divergent locus,316
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the 3D genome divergence between all Africans and AH (Vindija Neanderthal) was consistently high.317

And, out of 15 Eurasians, 11 had similar divergent organization compared to the Neanderthal 3D contact318

map. However, four Eurasians had very low 3D divergence from the Neanderthal.319

When examining the contact maps of this window, all Africans have a large approximately 450 kb loop320

domain starting near the promoter of IGFBP3, a gene encoding insulin-like growth factor binding protein321

3 (Fig. 6B). In contrast, Neanderthals (Vindija, Chagyrskaya, and Altai) have two smaller sub-domains322

insulated by a CTCF site. Using in silico mutagenesis, we identify that the variant with the largest323

effect on 3D organization is a G to A change at chr7:46,169,621 (rs12536129). The derived A allele,324

which strengthens the CTCF motif, appeared along the Neanderthal lineage. The four Eurasians (two325

Europeans (EUR), two South Asians (SAS)) with 3D genome organization very similar to Neanderthals326

all have an introgressed haplotype carrying the Neanderthal-derived A allele overlapping this CTCF site327

[94]. None of the other 11 Eurasians have introgression at this site (although some have introgression in328

the larger 1 Mb window). Across human populations, this introgressed allele remains at high-frequency329

today, especially in Peru (28% AMR, 2% EAS, 16% EUR, 11% SAS, 0% AFR, Fig. S13A).330

In addition to influencing the strength of a CTCF site, this introgressed allele is also an eQTL in331

GTEx for the physically linked gene IGFBP3, Insulin-like growth factor-binding protein 3 (Fig. S13B,332

P = 0.00014 in artery tissue) [42]. In MHs, this variant is associated with traits including standing333

height (P = 9.9 × 10−7), fat distribution (trunk fat ratio, impedance measures, P = 1.3 × 10−5), and334

diastolic blood pressure (P = 2.1 × 10−5) (Fig. S13C).335

Of the 191 3D-modifying variants identified in 167 AH-MH 3D diverged windows, 45 are observed336

in MHs (Table S2). Of note, 18 are common (> 5% MAF) and 6 are at high frequency (> 10%) in337

at least one MH 1000 Genomes Project (1KGP) super-population which motivates the hypothesis that338

some introgressed 3D changes were adaptive. We find very modest non-significant enrichment for these339

loci in previously proposed adaptive haplotypes [94] (2.3-fold enrichment, P = 0.24). We annotate all340

3D-modifying variants with their nearby genes, allele frequency, and eQTL associations in Table S5.341

Given these examples of Neanderthal introgression contributing novel 3D folding to present-day342

Eurasians, we searched for similar patterns genome-wide. We considered 4,749 autosomal 1 Mb windows343

for 15 Eurasians (total n = 71, 235) to quantify the relationship between the amount of introgression344

and 3D similarity to Neanderthals. We find that the amount of introgression (bp per window) is signifi-345

cantly correlated with 3D divergence to the Vindija Neanderthal (P = 0.00011, Fig. 6C). Results from346

comparisons to the other Neanderthals are consistent (Fig. S14). On average, in a 1 Mb window, if an347

individual has 80% Neanderthal ancestry, their 3D genome is 2.4 times more similar to the Neanderthal348

3D genome than if they have no (0%) Neanderthal ancestry.349

In summary, we find that Eurasians with more Neanderthal ancestry in a window have more Neanderthal-350

like 3D genome folding patterns. Furthermore, at an example locus, we demonstrate how the influence351

of Neanderthal introgression on 3D genome organization highlights a putative molecular mechanism for352

the effect of Neanderthal ancestry on human traits.353

4 Discussion354

The role of 3D genome organization in human biology is increasingly recognized [62, 73–77]; however,355

current techniques for measuring 3D folding cannot be applied to the study of ancient DNA. Further-356

more, despite methodological improvements in assays of the 3D genome, high-resolution experiments357

across many diverse individuals, species, and cell types remain prohibitive. To address these gaps, we358

provide a framework for inferring 3D genome organization at population-scale that facilitates evaluation359

of previously untestable hypotheses.360

First, we apply this framework to resurrect archaic 3D genome organization. We find that 3D genome361

organization constrained sequence divergence and patterns of introgression in hominin evolution. We362

catalog genomic regions where AH and MH 3D genome organization diverged and illustrate how this novel363

mechanism links sequence differences to phenotypic differences. Importantly, our approach permitted364
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Figure 6: Introgression introduced novel 3D genome organization patterns to modern
Eurasians. (A) Comparison of the 3D contact maps between Neanderthal (Vindija) and 20 MHs for a window on
chromosome 7 reveals that most MHs (yellow, green) have different 3D organization compared to Neanderthals. In contrast,
four MHs with introgression (purple boxes) overlapping chr7:46,169,621 (red star) have similar 3D organization compared
to Neanderthals across this part of the genome (purple). (AFR: African, SAS: Southeast Asian, EAS: East Asian, EUR:
European) This example 3D-divergent locus (B) was introgressed into MH and remains at high frequency (28% AMR,
2% EAS, 16% EUR, 11% SAS, 0% AFR, Fig. S13). At this locus (zoomed to chr7:45,883,392-46,436,352), Neanderthals
and individuals with introgression have two domains insulated by a CTCF site (red box). In MHs without introgression,
this motif is disrupted with a G instead of an A (star, chr7:46,169,621, rs12536129) leading to a larger fused domain and
differential contacts with the promoter of IGFBP3. (C) The amount of introgression in a 1 Mb window (number of bp,
horizontal axis) is significantly correlated with the similarity of an individual’s 3D genome organization to a Neanderthal’s
(Vindija) genome organization (vertical axis) (P = 0.00011, n = 71, 235 1 Mb windows across 15 Eurasians). The error
bars signify 95% bootstrapped CIs and the error band signifies the 95% bootstrapped CI for the linear regression estimate.
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the evaluation of variants unobserved in MHs, and it provides a putative molecular mechanism for AH-365

MH phenotypic differences including those that may have been selected against after hybridization (e.g.366

cognitive and brain morphology traits) [11, 19, 30, 31, 39–41]. Finally, we identify regions in which367

introgression introduced AH 3D genome folding that are novel to MHs in Eurasians with Neanderthal368

ancestry. Together, these results illustrate the power of imputing unobservable molecular phenotypes to369

resolve evolutionary questions about functional divergence.370

Second, we anticipate that our framework for comparing and interpreting hundreds of genome-wide371

3D genome contact maps will be helpful for testing hypotheses beyond archaic DNA. In the interpretation372

of genetic variants of unknown significance, it will be key to consider the effect of inter-individual and373

inter-species variation on 3D genome architecture, especially given recent evidence that even common374

DNA sequence variants can influence 3D organization and human phenotypic variation [72]. Our work375

establishes the groundwork to answer many diverse questions. For example, we illustrate how in silico376

mutagenesis can highlight the role of a variant in 3D genome organization and how to integrate this377

with other functional annotations. This allows us to examine the 3D effects of variants never before378

observed in MHs, which is essential to non-coding variant interpretation from the lens of both evolution379

and disease. Our new measure of “3D genome variability” provides genome-wide quantification of how380

different regions tolerate variation in 3D genome folding. We also demonstrate a simulation approach381

for testing how 3D genome folding constrains sequence evolution across the genome. Finally, we develop382

a method to robustly identify 3D divergent windows between populations. With the recent growth of383

3D genome in silico predictors [81–84], we anticipate that our work can provide a foundation for both384

hypothesis generation and prioritization of experimental resources.385

Although our approach provides many novel benefits, it also has limitations that we hope future work386

will address. First, our comparisons likely underestimate 3D diversity. We only investigate windows387

of the genome with complete sequence coverage. Because of ancient sample degradation, we do not388

have full coverage of AH genomes. We use a conservative approach to effectively mask regions of the389

genome lacking coverage in AHs (Fig. S1 and Methods). Furthermore, we only consider the effects single390

nucleotide variants. We do not consider structural variation (SV) due to the challenges of calling SV391

accurately in ancient samples. We anticipate new methods in ancient DNA sequencing will allow us392

to model the 3D genome organization of AHs more completely. Second, our 3D genome organization393

comparisons are based on a correlation-based metric. We demonstrate concordance with comparisons394

using other more biologically informed methods (Fig. S4); however, more sophisticated methods to395

quantify the type and resolution of change (e.g. neo-TAD vs TAD-fusion event, scale of TAD vs. loop)396

would benefit the 3D genome community [81]. Third, although Akita is trained simultaneously across397

five cell types, 3D genome organization is largely conserved across cell types and predictors only identify398

limited cell-type-specific differences. Therefore, we focused on the highest resolution predictions in a399

single context (HFF). As more high-resolution Hi-C and Micro-C becomes available across diverse cell400

types, our framework can be applied to identify cell-type-specific AH-MH differences.401

Several practical caveats must be considered when interpreting some of our results. For example,402

to conduct in silico mutagenesis we manipulate every single nucleotide separately against the same403

background rather than considering the prohibitively large number of possible combinatorial variant404

sets. Additionally, while our null model of genome divergence accounts for context-dependent mutation405

probabilities, we suggest that future study of the influence of 3D folding on genome evolution would406

benefit from the use of forward-time genomic simulations. The annotations that link 3D-modifying407

variants to genes and functions are also based on studies in MHs (HPO and GWAS). It is possible,408

though unlikely, that a gene disrupted in MHs would not lead to the same traits in AHs. Finally, given409

the scope of our study and the nature of archaic DNA, direct experimental validation is not possible with410

current technology. To date, Gorkin et al. [72] provides the largest set of Hi-C across 19 MH individuals in411

the same cell type (LCL GM12878). However, the resolution is too low to call chromatin loops (40 kb vs.412

2 kb in our analyses), and 13 of the 19 individuals are African and have almost no Neanderthal ancestry.413

Thus, we use complementary experimental data, like CTCF ChIP-seq and experimentally-derived TAD414

maps, to provide independent support for the influence of variants on 3D genome organization and to415
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link variants with genes in true physical proximity. Moreover, even if high-resolution Hi-C were available416

across many Eurasians, an experimental approach would still not capture all AH variation, highlighting417

the necessity of our computational approach.418

In conclusion, our framework for inferring archaic 3D genome organization provides a window into419

previously unobservable molecular mechanisms which shaped the sequence and phenotypic evolution of420

hominins.421

5 Methods422

5.1 Modern human and archaic genomes423

Obtaining genomes424

All genomic analysis was conducted using the GRCh37 (hg19) genome assembly and coordinates (ww425

w.ncbi.nlm.nih.gov/assembly/GCF 000001405.13/). Genomic variation within modern humans426

(MH) came from 1000 Genomes Project (1KGP), Phase 3 from Auton et al. [87]. All MH genomes were427

selected randomly from each subpopulation with a filter for females only to facilitate comparisons of the428

X chromosome. The 1KGP individuals used are listed in Table S1. Archaic genomes are from Prüfer429

et al. [1] (Altai), Prüfer et al. [2] (Vindija), Mafessoni et al. [3] (Chagyrskaya), and Meyer et al. [4]430

(Denisova).431

Building individual genomes432

We constructed full-length genomes for each MH or AH based upon the genotyping information in their433

respective vcf file. Given the difficulty of distinguishing heterozygous genotypes in the ancient DNA434

samples, we treated all individuals as if they were homozygous (pseudo-haploid). We built each individual435

genome using GATK’s FastaAlternateReferenceMaker tool [95]. If an individual had an alternate allele436

(homozygous or heterozygous), we inserted it into the reference genome to create a pseudo-haploid, or437

“flattened” genome for each individual. This procedure is illustrated in step 1 of Fig. S1.438

Accounting for missing data in the archaic genomes439

Ancient DNA is both fragmented and degraded. These characteristics present challenges to both se-440

quencing and alignment, resulting in gaps in coverage, particularly in genomic regions of low complexity.441

To account for this missing data, we “masked” all genomic regions lacking archaic genotyping information442

by reverting nucleotide states to the hg19 reference. For analyses that compared 3D genome organization443

between MHs and AHs, we masked both MH and AH genomes. This procedure is illustrated in steps 2-4444

of Fig. S1. Archaic genome coverage is shown in Fig. S2. For analyses that only considered MHs (e.g.445

quantifying 3D genome variability across the genome in MHs), this masking procedure was not applied.446

5.2 3D genome organization predictions with Akita447

After the genomes were prepared, we input them into Akita for predictions using a 1 Mb sliding window448

(1,048,576 bp) overlapping by half (e.g. 524,288-1,572,864, 1,048,576-2,097,152, 1,572,864-2,621,440).449

Although Akita is trained simultaneously on Hi-C and Micro-C across five cell types in a multi-task450

framework to achieve greater accuracy, we focus on predictions in the highest resolution maps, human451

foreskin fibroblast (HFF). We note that the results are similar when considering other cell types (e.g.452

embryonic stem cells), likely because of limited cell-type-specific differences (Fig. S5). Akita considers453

the full window to generate predictions, but the resulting predictions are generated for only the middle454

917,504 bp. Each contact map is a prediction for a single individual, and each cell represents physical455

3D contacts at approximately 2 kb (2,048 bp) resolution. The value in each cell is log2(obs/exp)-456

scaled to account for the distance-dependent nature of chromatin contacts. Darker red pixels indicate457

more physical contacts and darker blue pixels denote fewer physical contacts. For all analyses, we only458
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considered windows with full (100%) coverage in the hg19 reference genome for a total of 4749 autosomal459

and 250 chromosome X windows. Fudenberg et al. [82] provides further details on the CNN architecture460

and training data used.461

5.3 3D genome comparisons462

After predictions were made on all 1 Mb windows for all individuals, we compared the resulting pre-463

dictions using a variety of measures. All measures are scaled to indicate divergence: higher indicates464

more difference while lower indicates more similarity. In the maintext we transform the Spearman’s rank465

correlation coefficient (1 − ρ) to describe 3D divergence. We consider measures based on the Pearson466

correlation coefficient (1−r) and mean squared difference ( 1
n

∑n
i=1(xi−yi)2) in Fig. S4. Percentiles of 3D467

divergence shown in Fig. 2A-B are calculated with reference to a universe of 4 AHs × 5 African MHs ×468

4999 genomic windows for a total of 99,980 comparisons. Figs. 4A,S9 averages the 3D divergence (1− ρ)469

across all 4999 1 Mb windows (lower triangle) to compare to the average number of bp differences (after470

the masking procedure described above) in the same pair of individuals (upper triangle). Clustering is471

done with the “complete” (Farthest Point) method.472

5.4 Sequence comparisons473

Some analyses compare 3D genome divergence with sequence divergence. To calculate the sequence474

divergence between two individuals, we counted the proportion of bases at which the two individuals475

differ in the 1 Mb window. For comparisons of divergence when including AHs, we applied the same476

masking procedure as used to facilitate 3D genome comparisons (i.e. windows with missingness in AHs477

are filled with hg19 reference).478

5.5 CTCF motif overlap479

We consider how nucleotide differences in a window (between Neanderthal [Vindija] and an African MH480

[HG03105]) impacts 3D genome divergence in Figs. 4B,S10. We stratified variants by if they overlap a481

bound CTCF motif and their distance to TAD boundaries. CTCF motifs are from Vierstra et al. [96].482

CTCF-bound open chromatin candidate cis-regulatory elements (cCREs) in the HFF cell type are from483

Abascal et al. [97]. TAD boundaries in the HFF cell type are from processed MicroC data from Akgol484

Oksuz et al. [98]. These annotations were all lifted over to hg19 [99]. A window was considered to have485

a CTCF-overlapping variant if an AH-MH nucleotide difference intersected a CTCF-bound HFF cCRE486

and a CTCF motif. Results were further stratified by varying levels of motif strength (“match score” in487

the top 10th,25th, 50th, or any percentile), distance to TAD boundary (within 15 kb, 30 kb, or anywhere),488

and whether the CTCF motif overlap occurs in the middle 50% of the 1 Mb window or not.489

5.6 Empirical distribution of expected 3D genome divergence490

To compute the expected 3D divergence in a window given the observed sequence divergence, we generate491

genomes with shuffled nucleotide differences. We match these shuffled differences to the same number492

and tri-nucleotide context of the observed sequence differences between the Neanderthal (Vindija) and an493

African MH (HG03105) genome (Fig. 4C). Variants are not shuffled into masked regions of the genome.494

For each 1 Mb window of the genome (N = 4999) we generate 100 shuffled sequences. We calculate495

an empirical distribution of expected 3D divergence from comparing the contact maps of the shuffled496

sequences with the MH sequence. Finally, we compare the average expected 3D divergence from this497

distribution to the observed AH-MH 3D divergence.498
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5.7 AH-MH 3D divergent loci499

Identifying loci500

To identify loci with AH-MH 3D genome organization divergence, we compared the 3D contact map at501

each 1 Mb loci between each AH and 20 African MHs. To call a region as divergent, we required all 20502

AH-MH comparisons to be more 3D divergent than all MH-MH comparisons (Fig. 3A). This identifies503

regions with consistent 3D differences between AHs and MHs while excluding regions with a large 3D504

diversity in modern humans. We also required the minimum AH-MH 3D divergence to be in the 80th505

percentile or greater of most 3D diverged (Fig, 2A, 3D divergence > 0.0042). Because 20 MHs do not506

capture the full MH genome diversity, it is possible that these criteria would still capture 3D patterns507

segregating in modern Africans that are not truly AH-MH diverged. Thus, we removed any windows508

where the 3D-modifying variant determined by in silico mutagenesis (below) was observed in 1KGP509

MHs if it was not introgressed (LD of r2 = 1 with introgressed variants called by Browning et al. [93] or510

Vernot et al. [15]). For the counts of AH-MH divergent windows (Fig. 3B), we considered overlapping 1511

Mb windows as a single observation. We summarize and report the AH-MH 3D divergent windows in512

Tables S2,S3 and a larger set of windows based on less conservative criteria in Table S4.513

In silico mutagenesis514

To identify the variant(s) contributing to the most prominent 3D differences in each identified AH-515

MH divergent window, 3D-modifying variants, we use in silico mutagenesis. For example, for an Altai516

Neanderthal divergent window, we identify every bp difference that is unique to the Altai genome when517

compared to 20 African MH genomes. In the background of the MH (HG03105) genome, we insert each518

different Altai allele one-at-a-time. We then compare the resulting contact map between the original519

MH genome and the MH genome with each Altai allele. We then identify both the allele resulting in the520

largest 3D divergence and any other variants that contribute to a 3D divergence >= 0.0042 and term521

these “3D-modifying variants” (Table S2,S5).522

Phenotype ontology enrichment523

To test if AH-MH 3D-modifying variants are enriched near genes related to particular phenotypes we524

follow a procedure visually described in Fig. S7. 3D-modifying variants (above) are linked to genes in525

their TAD because this provides evidence of physical proximity. TADs are defined as regions between526

TAD boundaries as defined with MicroC data in HFF from Akgol Oksuz et al. [98] (lifted over to hg19).527

Genes are defined as the longest transcript from protein-coding genes (NM prefix) from NCBI RefSeq528

downloaded from the UCSC Table Browser [100]. Genes are linked to phenotypes from the Human529

Phenotype Ontology (HPO) and GWAS Catalog 2019 downloaded from Enrichr [90–92]. Annotations530

are further grouped into phenotypic systems via system-level annotations from Gene ORGANizer [101]531

and manual curation. HPO largely considers rare disease annotations and has 1779 terms with 3,096532

genes annotated [88]. The GWAS Catalog largely considers common disease annotations and has 737533

terms with 19,378 genes annotated [89]. Through this procedure, we counted the number of ontology534

terms linked to the set of 3D-modifying variants. We considered 3 different sets, those shared (intersect)535

by all Neanderthals (Fig. 3), those in any Neanderthal (union), and those in Denisova (Fig. S8, Table S2).536

We test enrichment for ontology terms linked to at least one 3D-modifying variant. While the537

annotations are downloaded from Enrichr, we did enrichment analyses with a more appropriate null. For538

each set, we shuffle the observed 3D-modifying variants into the background genome. We defined the539

background genome as any place where a 3D-modifying variant could have been identified (i.e. regions540

with full coverage in modern humans used for Akita predictions). We then use the same procedure541

(Fig. S7 to link the shuffled variants to genes and then ontology terms. We repeat this shuffle 500,000542

times to create an empirical distribution for how many times we would observe each annotation under543

the null. We used these distributions to calculate an enrichment and P -value for each ontology term.544

The FDR-corrected significance level was determined empirically using these null observations (a subset545
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of n = 50, 000). We select the highest p-value threshold that led to a V/R < Q where V is the mean546

number of expected false discoveries and R is the observed discoveries (which includes both true and547

false positives).548

5.8 Relationship between 3D genome organization and introgression549

3D genome variability550

To consider how 3D organization may have constrained where we observe introgression in the genome,551

we calculated 3D genome variability across the genome in MHs. Because we are not comparing these552

predictions with AH 3D genome organization, we did not mask the genomes before 3D genome predictions553

(above). In the same 1 Mb sliding windows across the genome, we predicted the contact maps for 20554

modern Africans (because they have no or very little introgression). For each window, we calculate the555

3D genome divergence between all 190
(
20
2

)
pairs of contact maps. We then computed the “3D genome556

variability” by taking the mean of these 190 divergences for each 1 Mb window across the genome. High557

3D genome variability indicates a high average pairwise 3D divergence (i.e. diversity of 3D organization),558

while low 3D genome variability indicates low pairwise 3D divergence (i.e. similar 3D organization across559

all individuals).560

Genomic windows with evidence of introgression561

To define genomic regions with Neanderthal ancestry we used “segments” identified by Browning et al.562

[93] using Sprime, a heuristic scoring strategy that compares high-LD regions in a target admixed pop-563

ulation (i.e., Europeans) with an unadmixed outgroup (i.e., Africans) to identify putatively introgressed564

regions. We considered a set of Sprime-identified segments shared (intersection) among East Asians565

(EAS), EUR, and SAS. We repeat the analysis using a more stringent subset of Sprime segments that566

(1) have at least 30 putatively introgressed variants that could be compared to the Altai Neanderthal567

genome and (2) had a match rate of at least 30% to the Altai Neanderthal allele (Neanderthal filter).568

We also considered the introgressed Neanderthal haplotypes previously identified by Vernot et al. [15]569

identified using the S* statistic. Finally, we consider introgressed segments unique to a single population570

(EAS, EUR, or SAS). Because these introgression calls only consider autosomes, we do not use the X571

chromosome for these analyses. Results from these sets of Neanderthal ancestry are in Figs. 5,S11,S12572

and Tables S7,S8.573

In the main text (Fig. 5), we compare the 3D genome variability between 1 Mb windows with no574

introgression (0%) versus windows where at least 70% of the bp have evidence of introgression. Other575

thresholds are shown in Fig. S11.576

Predicting the amount of introgression577

To test if 3D genome variability can be uniquely informative to predict tolerance of introgression,578

we conducted a simple linear regression. We predict the amount of introgression in a 1 Mb window579

while conditioning on the amount of sequence variability in a window. Y = B0 + B1X3D variability +580

B2XSequence Variability, where Y is the proportion of the 1 Mb window with evidence of introgression581

defined using the previously described sets of Neanderthal ancestry. For comparison, we also conducted582

some regressions where Y was modeled from only 3D variability or sequence variability alone. Results583

from these models are in Figs. 5B,S12, Tables S7,S8.584

5.9 Individual-level introgression calls585

We used introgression calls in 1KGP individuals from Chen et al. [94], which applied IBDmix with the586

Altai Neanderthal genome to identify introgressed segments in MHs. We identified windows with AH-MH587

divergence with evidence of introgression by intersecting with the introgression calls.588
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We also test the relationship between the amount of introgression an individual has and their 3D589

divergence from AHs. For each window, we compare the amount of introgression (% of bp) for an590

individual in a 1 Mb window with that individual’s 3D divergence from Neanderthals. We do this591

analysis for 15 Eurasians across 4,749 1 Mb autosomal windows (total n = 71, 235). In Fig. 6C we592

compare Eurasians to the Vindija Neanderthal 3D genome and in Fig. S14 we compare to Altai and593

Chagyrskaya. We also repeat the analysis removing windows with no evidence (0% bp) of introgression.594

5.10 eQTL and PheWAS analysis595

eQTL analysis and plots were generated using the Genotype-Tissue Expression (GTEx) Project (V8596

release) Portal (lifted over to hg19) [42]. PheWAS results are from the GWAS Atlas and consider 4756597

traits [102]. Allele frequencies come from 1KGP Phase 3 [87].598

5.11 Examples599

The examples visualized in Figs. 3,6 are annotated using the UCSC genome browser [99]. They were each600

manually zoomed to highlight the regions of interest. We use ENCODE open chromatin candidate cis-601

regulatory elements (cCREs) [97] to highlight promoters (promoter-like signature, pink) and enhancers602

(proximal [orange] and distal [yellow] enhancer-like signature) combined from all cell types downloaded603

from the UCSC table browser (lifted over to hg19) [100]. We use Transcription Factor (TF) ChIP-seq604

Clusters (130 cell types) from ENCODE 3 [103, 104] downloaded from UCSC table browser [100]. We605

show the motif sequence logo with reference to the positive strand of hg19.606

5.12 Data analysis and figure generation607

The datasets we generated are available in the GitHub repository “neanderthal-3d-genome” available608

here https://github.com/emcarthur/neanderthal-3D-genome/ which will be formally cited and609

versioned upon publication.610

All genomic coordinates and analysis refer to Homo sapiens (human) genome assembly GRCh37611

(hg19), unless otherwise specified. All P values are two-tailed, unless otherwise specified. All measures612

of central tendencies are means, unless otherwise specified. Data and statistical analyses were conducted613

using Python 3.6.10 (Anaconda distribution), Jupyter Notebook, BedTools v2.26, and PLINK 1.9 [105,614

106]. Figure generation was significantly aided by Matplotlib, Seaborn, and Inkscape [107–109].615

5.13 Data availability616

The publicly available data used for analysis are available in the following repositories. MH genome vcfs617

are from 1000 Genomes Project (1KGP) (ftp.1000genomes.ebi.ac.uk/vol1/ftp/data collections618

/1000 genomes project/release/20190312 biallelic SNV and INDEL/[87]. Archaic genotypes are619

from the following repositories: Altai Neanderthal [1] (ftp.eva.mpg.de/neandertal/Vindija/VCF/620

Altai/), Denisova (ftp.eva.mpg.de/neandertal/Vindija/VCF/Denisova/) [4], Vindija Neanderthal621

[2] (ftp.eva.mpg.de/neandertal/Vindija/VCF/Vindija33.19/), and Chagyrskaya Neanderthal [3]622

(ftp.eva.mpg.de/neandertal/Chagyrskaya/VCF/). Introgressed variants and segments are from623

Sprime Version 1 (https://data.mendeley.com/datasets/y7hyt83vxr)[93]. An alternative set of624

introgressed variants and segments are from S* (https://drive.google.com/drive/folders/0B9Pc625

7 zItMCVWUp6bWtXc2xJVkk?resourcekey=0-Cj8G4QYndXQLVIGPoWKUjQ)[15]]. Individual level 1KGP626

introgression calls are from the Akey Lab (https://drive.google.com/drive/folders/1mDQaDFS-j2627

2Eim5 y7LAsTTNt5GWsoow)[94].628

CTCF motifs are from genome-wide motif scans v1.0 (https://resources.altius.org/~jvierst629

ra/projects/motif-clustering/releases/v1.0/, all models in the CTCF archetype motif cluster,630

lifted-over to hg19)[96], CTCF-bound open chromatin candidate cis-regulatory elements (cCREs) in the631

HFF cell type (https://screen.encodeproject.org/ > Downloads > by cell type > HFF-Myc male632
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newborn originated from foreskin fibroblast, lifted-over to hg19)[97], TAD boundaries in the HFF cell633

type are from processed MicroC data available at the 4D nucleome data portal (https://data.4dn634

ucleome.org/experiment-set-replicates/4DNES9X112GZ/, lifted-over to hg19)[98]. RefSeq genes,635

TF ChIP-seq Clusters, enhancer and promoter cCREs are downloaded from the UCSC Table Browser636

(https://genome.ucsc.edu/cgi-bin/hgTables)[100]. Gene ontology annotations are downloaded637

from Enrichr (https://maayanlab.cloud/Enrichr/#libraries)[90–92]. System-level groupings of638

disease ontology terms were aided by Gene ORGANizer annotations(http://geneorganizer.huji.ac.639

il/downloads/)[101]. eQTL data is from the GTEx Portal (https://www.gtexportal.org/, lifted-over640

to hg19)[42]. PheWAS results are from the GWAS Atlas (https://atlas.ctglab.nl/)[102].641

5.14 Code availability642

Akita is in the “basenji” GitHub repository available here https://github.com/calico/basenji/tree643

/master/manuscripts/akita [82]. The “neanderthal-3d-genome” GitHub repository (above) contains644

a Jupyter notebook with custom code used for data analysis and all figure generation.645
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6 Supplementary Information1

6.1 Supplementary Text2

When evaluating the relationship between 3D genome variability and introgression (Results section3

3.7:“3D genome organization constrained introgression in MHs”), we considered a variety of subsets4

of genomic windows to fully explore these results. We show that the maintext results (Fig. 5) repli-5

cate when using earlier introgressed Neanderthal haplotype predictions from Vernot et al. [15] and other6

thresholds (Figs. S11,S12). We also find that 3D genome variability is more strongly predictive of in-7

trogression shared among all three super-populations than an introgressed sequence unique to a single8

super-population (Table S7). We hypothesize this is because the maintenance of a haplotype across9

diverse populations indicates stronger tolerance of the AH 3D organization pattern in diverse human10

genomic contexts. Additionally, 3D variability is relatively more informative about the amount of in-11

trogression when only considering windows of the genome with any introgressed sequence present (Ta-12

ble S8). Thus, we hypothesize that in 1 Mb windows with strong purifying selection against a large-effect13

introgressed variant (e.g., a deleterious protein-coding variant), 3D genome variability is less relevant.14

Ultimately, the pressures shaping the landscape of introgression across the genome were multi-factorial,15

but we demonstrate that 3D genome organization likely played a role.16
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6.2 Supplementary Figures17
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TGCCGCTAACAACCACTCGGTCGTTGCTGACGCNNNNNNNNNNNNNNNNNNATGATCGTACGCTATTAAGGGATTGACTG

TGCCGCTAACATCCACTCGGTCGTTGCTGACGTTNNNNNNNNNNNNTCATTAGGATCGTACGCTATTTAGGGATAGACTG

TACCGCTAACAAAAACTCGGTCGTTTCTGACGTNNNNNNNNNNNNNNNNNNNNNNTCGTACGCTATGTAGGGATTGACTA

TGCCGCTAGCAACCTCTCTGTCGTCGCTGACGTTTGTATTCTAGTCTCATTATGATCGTACGCTACTCAGGGATTGACTG

TGCCGCTAACAACCTCTCGGTCGTCGCTGACGTTTGTAGTCTAGTCTCATTATGATCGTACGCTATTCAGGGATTGACTGhg19 human reference genome

1K G human genome

Vindija Neanderthal

Chagyrskaya Neanderthal

Altai Neanderthal

Denisova

Flattened human genome TGCCGCTAGCAACCTCTCTGTCGTCGCTGACGTTTGTATTCTAGTCTCATTATGATCGCACGCTACTCAGGGATTGACTG

"Flatten" diploid genome into a pseudo-haploid 
genome. Find all alternative alleles in an individual and 
insert them into the reference genome. (It does not matter 
if the individual is heterozygous or homozygous alternate).

Find regions of missingness in archaic genomes. 

Regions to mask                               NNNNNNNNNNNNNNNNNNNNNNNN

Masked human genome 

Using the regions to mask from step (2), replace masked sections with human reference

TGCCGCTAGCAACCTCTCTGTCGTCGCTGACGTTTGTAGTCTAGTCTCATTATGATCGCACGCTACTCAGGGATTGACTG

Masked Vindija Neanderthal genome 

Using the regions to mask from step (2), replace masked sections in 
archaic genome of choice with human reference

TGCCGCTAACAACCACACGGTCGTTGCTGACGTTTGTAGTCTAGTCTCATTATGATCGTACGCTATTTAGGGATTGACTG

*

**

Predict & Compare 3D genome organization with Akita 
(using masked genomes) Neanderthal 3D organization Human 3D organizationcompare

Figure S1: Handling missingness in the archaic hominin genomes. We constructed full-length
genomes for each MH or AH based upon their genotyping information. Here, we illustrate a schematic of the procedure
used to account for the challenges of archaic DNA. (1) Given the difficulty of distinguishing heterozygous genotypes in
the ancient DNA samples, we treated all individuals as if they were homozygous (pseudo-haploid). If an individual had
an alternate allele (homozygous or heterozygous), we inserted it into the reference genome to create a pseudo-haploid, or
“flattened” genome for each individual (hightlighted in red boxes). (2) Because of gaps in coverage resulting from the
challenges of ancient DNA, particularly in genomic regions of low complexity, we “masked” all genomic regions lacking
archaic genotyping information by reverting nucleotide states to the hg19 reference (yellow box). For analyses that compared
3D genome organization between MHs and AHs, and MHs we do this masking procedure for both [3] MHs (green box)
and [4] AHs (blue box) to facilitate appropriate comparisons. [5] We run Akita on each processed genome separately and
then compare the resulting contact maps. By filling both genomes with the same sequence, there will be no differences
between the AH-MH predictions or resulting comparisons. Although AHs and MHs certainly did not have the same genome
sequences in these regions of missingness, we preferred this as a conservative approach to minimize identifying regions of
interest if there were missing data. For example, we illustrate that at the nucleotide *, although we observe an MH
alternative allele (T), it gets masked and replaced with the hg19 reference (G) because that locus is not comparable to AH
genomes. Many of the regions of missingness are shared by all or most of the AHs because those regions are just inherently
difficult to sequence (Fig. S2). However, at the nucleotide **, we illustrate another example where an allele observed in the
Vindija genome (C) is masked with hg19 reference (A) so that it facilitates comparisons between the AHs (some of which
have missingness at that locus).
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Figure S2: Archaic hominin sequence coverage across the genome. Ancient DNA fragmentation
and degradation present challenges to both sequencing and alignment resulting in gaps in coverage, particularly in genomic
regions of low complexity. Here, we show coverage across the genome for the 4 AHs. The horizontal axis represents genomic
loci at the same sliding approximately 1 Mb window resolution (N = 4, 999) used to do all analyses (Methods). The vertical
axis unit is the proportion of bp with coverage (for the 1 Mb window). Bins without full coverage in modern humans (often
near centromeres or telomeres) are excluded from all analyses and this figure. The bottom trace (black, labeled “all”)
represents the union of the missing segments for all 4 AHs. These regions are masked (Methods, Fig. S1) to facilitate 3D
genome and sequence variation comparisons.
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Figure S3: 3D divergence in 1 Mb genomic window is weakly correlated with coverage.
Because we mask archaic missingness (Methods, Fig. S1,S2), regions with less coverage have more masking and the resulting
processed sequences may have less AH-MH sequence variation. For 1 Mb windows across the genome (N = 4999), we
compare AH (Vindija Neanderthal) and African MH (HG03105) 3D divergence (vertical axis) with the amount of coverage
in that window (horizontal axis). The amount masked is equal to 1− coverage. 3D divergence is positively correlated with
coverage (r2 = 0.001, P = 0.01). This is likely because there is more opportunity to find variation that results in contact
map changes when less of the region is masked; however, this correlation is very weak suggesting that more coverage of the
archaic genomes may not uncover many additional examples of divergent organization.
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Figure S4: Alternative measures of contact map comparison correlate with the 3D diver-
gence derived from the Spearman’s rank correlation coefficient. In the main text, we compare
chromatin contact maps using a 3D divergence score based on Spearman’s rank correlation coefficient (1 − ρ). Here, for
the same windows across the genome (N = 4999), we compare AH (Vindija Neanderthal) and African MH (HG03105)
predictions using this Spearman-derived 3D divergence to others based on (A) Pearson’s correlation coefficient (1 − r)
(r2 = 0.964) and (B) mean squared difference ( 1

n

∑n
i=1(xi − yi)

2) (r2 = 0.383). We also compare (C) these alternative

measures (mean squared difference vs. Pearson’s correlation) to each other (r2 = 0.378). The correlations between all
measures are highly significant (all P < 5 × 10−324).
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Figure S5: 3D genome organization comparisons with chromatin contact maps from em-
bryonic stem cell (ESC) are similar to those from human foreskin fibroblast (HFF). For the
same windows across the genome (N = 4999), we compare AH (Vindija Neanderthal) and African MH (HG03105) predic-
tions in embryonic stem cell (ESC) (vertical axis) versus human foreskin fibroblast (HFF) (horizontal axis) cell types. The
comparisons across cell types are highly correlated regardless of the measure used to quantify their divergence. We consider
comparison measures defined using the (A) Spearman correlation (r2 = 0.95), (B) Pearson correlation (r2 = 0.96), and
(C) mean squared difference (r2 = 0.88) (all P < 5 × 10−324).
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Figure S6: AH-MH 3D divergence across the whole genome. Across the genome, we plotted the
average divergence of each of the AHs to five modern African individuals from different subpopulations. The horizontal
axis represents genomic loci at the same sliding 1 Mb window resolution (N = 4, 999) used to do all analyses (Methods).
This expands Fig. 2C from chr7 to the whole genome. The error band indicates the 95% CI. Comparing the 3D genomes
of Neanderthals (purple) or Denisova (blue) with MHs reveals windows of both similarity and divergence (peaks).
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Figure S7: Method for linking 3D divergent windows to test phenotype ontology term
enrichment. To test if differences in AH-MH 3D organization are enriched near genes related to particular phenotypes
we follow a procedure that sequentially links 3D divergent windows to variants to TADs to genes and, ultimately, to
phenotypes. We identify AH-MH 3D divergent windows in Fig. 3A–B. We consider three different sets of AH-MH divergent
windows, those shared (intersect) by all Neanderthals, those in any Neanderthal (union), and those in Denisova. Results
from the set shared by all Neanderthals (N = 43 windows) are shown in the main text (Fig. 3D). In each 1 Mb 3D divergent
window, we identify the variant(s) contributing to the most prominent 3D differences using in silico mutagenesis (lightning
bolt) (Methods). 3D-modifying variants are then linked to protein-coding genes (black bars) in their TAD (gray rectangle)
because this provides evidence of physical proximity. Genes are linked to phenotypes from the Human Phenotype Ontology
(HPO) and genome-wide association studies (GWAS) Catalog 2019. Through this procedure, we counted the number of
ontology terms linked to the set of 3D-modifying variants. We test enrichment for ontology terms linked to at least one
3D-modifying variant using a shuffling approach to create an empirical distribution for how many times we would observe
each annotation under the null. We used these distributions to calculate an enrichment and P -value for each ontology term.
The specific data sets used in this procedure are detailed in the Methods. Counts of the number of windows, 3D-modifying
variants, genes, and phenotypes for each set are in Table S2. Results for enrichment are in Figs. 3D,S8.
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Figure S8: Phenotype ontology enrichment across other sets of AH-MH 3D divergent
windows implicate similar phenotypes. When testing if differences in AH-MH 3D organization are enriched
near genes related to particular phenotypes, we used three different sets of AH-MH 3D divergent windows (rows) and two
different sets of gene-phenotype links (columns). The top set is from 43 3D-divergent windows shared by Neanderthals
(intersect) (also shown in the main text, Fig. 3D). The middle is from 110 divergent windows in any Neanderthal (union).
The bottom is from 73 divergent windows in Denisova. Each volcano plot has enrichment on the horizontal axis and
significance on the vertical axis which were calculated with reference to a shuffled null distribution (n = 500, 000, Methods).
Each point represents one ontology term. Only terms linked to the 3D divergent windows in each set were tested for
enrichment or depletion. The most significant 10 terms are labeled if P < 0.05 (dotted line). Similar to the Neanderthal
(intersection) set, phenotypes related to the retina, hair, immune response, skeleton, cognition, and lung capacity are
highlighted. Additional phenotypes at nominal significance include traits related to the heart, muscle, cancer, and bone
density. Details about the process to link the 3D divergent windows to genes and phenotypes are in the Methods and
Fig. S7. Details about the number of windows, variants, and phenotypes considered for each set are in Table S2.
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Figure S9: Full pairwise heatmaps clustered by both sequence 3D divergence and sequence
divergence. We calculated the mean genome-wide 3D divergence for all pairs of AH and MH individuals (oranges)
to compare with the genome-wide mean sequence divergence (grays). Fig. 4A displays these heatmaps when clustered by
sequence divergence. Fig. 4A is reproduced in (A) with the full labels of all 1KGP individuals and their sub- and super-
population information. (B) We also show the heatmap clustered by 3D genome divergence. Overall, global patterns of 3D
genome divergence follow global patterns of sequence divergence. Lists of 1KGP individuals used and their abbreviation
codes are defined in Table S1.
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Figure S10: 3D genome divergence depends on both the strength and context of the CTCF
motif disrupted. Based on the importance of CTCF-binding in maintaining 3D genome organization, we quantified
the effects of AH-MH nucleotide differences overlapping CTCF binding motifs on 3D divergence. Given the complexity
in the “grammar” of encoding 3D genome organization, we hypothesized that not all CTCF disruptions are equally likely
to influence 3D divergence. Fig. 4B demonstrates this. But, here we replicate this with other thresholds and filters. We
considered if each 1 Mb window (N = 4, 999) had a sequence difference between a Neanderthal (Vindija) and a MH
(HG03105) genome that overlapped a CTCF site. We plotted the distribution of 3D divergence in a window by whether
there was a “CTCF overlapping variant” (red) or not (blue). We further filtered windows by multiple annotations describing
the context and strength of the CTCF site overlapped. First, we stratified windows by if the “CTCF overlapping variant”
occurs within the middle half of the 1 Mb window (right vertical axis). Second, we stratified windows by the proximity
of the “CTCF overlapping variant” to a TAD boundary (anywhere, within 30 kb, or within 15 kb) (left vertical axis).
Finally, we stratified windows by the strength of the overlapped CTCF motif in percentiles (any, top 50%, 25%, or 10%)
(horizontal axis). All three features describing context and strength are informative about the likelihood of 3D divergence.
For example, when filtering for the strongest CTCF motifs overlapped by a variant, 3D divergence increases 1.96-fold
compared to 1.11-fold if strength is ignored (bottom left vs. bottom right). When considering by proximity to TAD
boundaries, 3D divergence always increases when a “CTCF overlapping variant” is closer to a TAD boundary (4th row vs.
6th row). This illustrates that our approach has learned the complex sequence patterns underlying 3D genome folding that
could not be determined by simply intersecting AH variants with all CTCF sites.
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Figure S11: Windows with evidence of AH introgression are more 3D variable in MHs even
when using different definitions of introgression. Genomic windows with high levels of introgression across
present-day non-African populations (purple distribution) are more 3D-variable in modern Africans (horizontal axis) than
windows without evidence of introgression (green distribution). In the main text, we considered introgression defined by
segments from Browning et al. [93] (first column) covering at least 70% of bases in a 1 Mb window (second row). This
identifies 187 autosomal 1 Mb windows with introgression and 2,799 without (same figure as Fig. 5A). Here, we show
that this trend is consistent even when using different sets of introgressed haplotypes (columns) and thresholds for overlap
(rows). Sprime segments are from Browning et al. [93]. Sprime segments with Neanderthal-matching filter are a subset of
the Browning et al. [93] introgressed segments that have 30 putatively introgressed variants that could be compared to the
Altai Neanderthal genome and had a match rate of at least 30% to the Altai Neanderthal allele. S* Vernot segments are
from Vernot et al. [15]. Vertical lines represent the distribution means. P -values are from a two-tailed Mann–Whitney U
test.
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Figure S12: 3D variable windows in MH have more evidence of AH introgression even when
using different definitions of introgression. For three different sets of introgressed haplotypes (A-C), we
plot the relationship between sequence variability (horizontal axis) and 3D genome variability (vertical axis) with amount
of AH ancestry in a window (purples). Darker purple indicates a higher proportion of introgression in a 1 Mb genomic
window. 3D genome variability is defined as the average modern-African pairwise 3D genome diversity. Sequence variability
is defined as the average pairwise nucleotide differences per modern-African in a 1 Mb window. P -values correspond to
the significance of sequence variability or 3D genome variability to predict amount of introgression in a 1 Mb window.
3D genome variability is predictive of the amount of introgression both independently and when conditioned on sequence
variability for all three sets of introgression. For, A,B, and C, respectively, introgressed haplotypes are from Sprime
segments, Sprime segments with a Neanderthal-sequence match filter, and S* segments. A is shown in the maintext in
Fig. 5B. Sprime segments are from Browning et al. [93]. Sprime segments with Neanderthal-matching filter are a subset
of the Browning et al. [93] introgressed segments that have 30 putatively introgressed variants that could be compared to
the Altai Neanderthal genome and had a match rate of at least 30% to the Altai Neanderthal allele. Vernot segments are
from Vernot et al. [15].
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Figure S13: rs12536129 is a high-frequency introgressed allele with regulatory and phe-
notypic associations. In Fig. 6A–B, we describe an AH-MH 3D divergent window that was introgressed into some
modern Eurasians. In silico mutagenesis of this window revealed a G to A change at chr7:46,169,621 (rs12536129) associ-
ated with the largest change in 3D genome organization. (A) Across human populations, this introgressed allele remains
at high-frequency today, especially in Peru (28% AMR, 2% EAS, 16% EUR, 11% SAS, 0% non-admixed sub-Saharan
AFR). Purple bars represent the frequency of the introgressed Neanderthal-derived allele. (B) This introgressed allele is
also an eQTL in GTEx for the physically linked gene IGFBP3, Insulin-like growth factor-binding protein 3 (P = 0.00014
in artery tissue) [42]. (C) In MHs, this variant is associated with traits including standing height (P = 9.9 × 10−7), fat
distribution (trunk fat ratio, impedance measures, P = 1.3 × 10−5), and diastolic blood pressure (P = 2.1 × 10−5). This
figure was generated with the GWASAtlas from Watanabe et al. [102] and is sorted by domain and P -value. The dotted
line represents a highly conservative Bonferroni corrected P -value (1.05 × 10−5) for testing 4756 traits (including many
correlated traits and GWASs in which the SNP was not tested).
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Figure S14: Amount of introgression is negatively correlated with 3D divergence to all
Neanderthal individuals. The amount of introgression in a 1 Mb window (number of bp, horizontal axis) is
significantly correlated with the similarity of an individual’s 3D genome organization to a Neanderthal’s genome organization
(vertical axis). This is demonstrated across all three Neanderthal individuals: Vindija in the top panel (also shown in
Fig. 6C), Chagyrskaya in the middle, and Altai at the bottom. We hypothesize the trend is weakest in Altai because
it is less related to the introgressing Neanderthal population compared to the Vindija Neanderthal [2]. The left column
considers all 4,749 autosomal 1 Mb windows for 15 Eurasians (total n = 71, 235, 1KGP individuals in Table S1). In the right
column, this trend also holds when you remove 1 Mb windows with no (0 bp) introgression in the 15 considered Eurasian
individuals n = 11, 346. The P -values are the significance of the correlation. The error bars signify 95% bootstrapped
confidence intervals and the error band signifies the 95% bootstrapped confidence interval for the linear regression estimate.
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6.3 Supplementary Tables18

Superpopulation Subpopulation ID Subpopulation Description
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EAS CDX HG00978 Chinese Dai in Xishuangbanna, China
EAS CHB NA18595 Han Chinese in Beijing, China
EAS CHS HG00560 Han Chinese South
EAS JPT NA19077 Japanese in Tokyo, Japan
EAS KHV HG01851 Kinh in Ho Chi Minh City, Vietnam
EUR CEU NA12006 Utah residents (CEPH) with Northern and Western European ancestry
EUR FIN HG00285 Finnish in Finland
EUR GBR HG00261 British in England and Scotland
EUR IBS HG01519 Iberian populations in Spain
EUR TSI NA20795 Toscani in Italia
SAS BEB HG03823 Bengali in Bangladesh
SAS GIH NA20876 Gujarati Indian in Houston, TX
SAS ITU HG03772 Indian Telugu in the UK
SAS PJL HG03016 Punjabi in Lahore, Pakistan
SAS STU HG04099 Sri Lankan Tamil in the UK
AFR GWD HG03539 Gambian in Western Division, The Gambia
AFR LWK NA19378 Luhya in Webuye, Kenya
AFR MSL HG03212 Mende in Sierra Leone
AFR YRI NA18870 Yoruba in Ibadan, Nigeria
AFR ESN HG03105* Esan in Nigeria
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s
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iv
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AFR ESN HG03105 Esan in Nigeria
AFR ESN HG03499 Esan in Nigeria
AFR ESN HG03511 Esan in Nigeria
AFR ESN HG03514 Esan in Nigeria
AFR ESN HG02922 Esan in Nigeria
AFR GWD HG03539 Gambian in Western Division, The Gambia
AFR GWD HG03025 Gambian in Western Division, The Gambia
AFR GWD HG03028 Gambian in Western Division, The Gambia
AFR GWD HG03040 Gambian in Western Division, The Gambia
AFR GWD HG03046 Gambian in Western Division, The Gambia
AFR LWK NA19378 Luhya in Webuye, Kenya
AFR LWK NA19017 Luhya in Webuye, Kenya
AFR LWK NA19434 Luhya in Webuye, Kenya
AFR LWK NA19445 Luhya in Webuye, Kenya
AFR LWK NA19019 Luhya in Webuye, Kenya
AFR MSL HG03212 Mende in Sierra Leone
AFR MSL HG03086 Mende in Sierra Leone
AFR MSL HG03085 Mende in Sierra Leone
AFR MSL HG03437 Mende in Sierra Leone
AFR MSL HG03378 Mende in Sierra Leone

Table S1: 1000 Genomes Project (1KGP) individual genomes used for 3D genome predic-
tions. The top set of individuals were used in the initial 3D genome survey (Figs. 2, 4A) and introgression analyses
(Fig. 6). The bottom set of African individuals was used to more robustly call AH-MH 3D genome divergence windows
(Fig. 3) and to calculate MH 3D genome variability (Fig. 5). For consistency, the genome of HG03105 was used for all
examples.
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See supplementary excel file for large tables.

Table S3: AH-MH 3D divergent windows. Coordinates (in hg19) for 167 AH-MH 3D divergent windows
identified in Fig. 3A–B. Windows were identified at approximately 1 Mb resolution (Methods) and overlapping windows were
merged. The “AH” column details for which AH(s) the 3D divergent window was identified (A: Altai, C: Chagyrskaya, D:
Denisova, V: Vindija). If a window was identified in two different AHs but they were only partially overlapping, the specific
coordinates are reported in the “AH” column. For example, at chr13:92798976-94371840, Altai and Chagyrskaya have a
3D divergent window identified at chr13:92798976-93847552, while Vindija has a slightly longer window at chr13:92798976-
94371840. Table S5 reports the 3D-modifying variants identified in each window.

See supplementary excel file for large tables.

Table S4: AH-MH 3D divergent windows with less strict thresholds. In addition to the AH-MH
divergent windows characterized in the maintext (Figs. 3A–B) and reported in Tables S2,S3, we report a set of AH-MH
windows using less stringent criteria. Instead of requiring all 20 AH-MH comparisons to be more 3D divergent than all
MH-MH comparisons, we required the average AH-MH comparison to be more 3D divergent than all MH-MH comparisons.
We considered regions in the 75th percentile most diverged using either the mean squared error (MSE) or Spearman-based
(1− ρ) measures. Otherwise, the procedure to identify AH-MH 3D divergent windows is the same as in the Methods. This
identifies 252 windows. Although the windows were identified at approximately 1 Mb resolution (Methods), overlapping
windows were merged. The “AH” column details for which AH(s) the 3D divergent window was identified (A: Altai, C:
Chagyrskaya, D: Denisova, V: Vindija). If a window was identified in two different AHs but they were only partially
overlapping, the specific coordinates are reported in the “AH” column. For example, at chr14:69206016-70778880, Altai
and Vindija have a 3D divergent window identified at chr14:69206016-70778880, while Chagyrskaya has a slightly shorter
window at chr14:69206016-70254592. Table S6 reports the 3D-modifying variants identified in each window.

See supplementary excel file for large tables.

Table S5: 3D-modifying variants identified inside AH-MH 3D divergent windows. Each 3D-
modifying variant that was identified in an AH-MH 3D divergent window (Fig. 3A–B, Table S3) is reported and described.
Columns one through four detail the position (in hg19) and alleles. Column five details for which AH(s) the variant and
window was found (A: Altai, C: Chagyrskaya, D: Denisova, V: Vindija). It also provides the 3D divergence score. The
format is “AH : in silico mutagenesis 3D divergence score : AH-MH 3D-divergent window”. For example, chr1:74305804 is a
3D-modifying variant identified in the 1 Mb window chr1:73924608-74973184 in Chagyrksyaka, Altai, and Vindija with a 3D
divergence of 0.0279 in in silico mutagenesis (Methods). Many 3D-modifying variants are identified in overlapping windows.
For example, chr1:159131001 is a 3D-modifying variant identified in both chr1:158859264-159907840 and chr1:158334976-
159383552 with 3D divergences of 0.0048 and 0.0049 from in silico mutagenesis, respectively. Column six provides the
coordinates of the TAD in which the 3D-modifying variant is located and column seven provides the protein coding
genes within that TAD. Column eight provides overlap with GTEx eQTL in the format “gene:P -value:tissue”. Column
nine provides overlap with putatively adaptive high-frequency haplotypes from Chen et al. [94]. Column ten provides
1KGP phase 3 allele frequencies by super-population (note: “AFR” includes admixed individuals from the Caribbean and
southwestern USA). If alelle frequencies are not present, this variant was not introgressed. Column ten provides a CTCF
motif match score for 3D-modifying variants that overlapped CTCF sites defined by Vierstra et al. [96]. For details about
all the resources used for these annotations, see the Methods.

See supplementary excel file for large tables.

Table S6: 3D-modifying variants identified in AH-MH divergent windows with less strict
thresholds. Each 3D-modifying variant that was identified in an AH-MH 3D divergent windows with less strict thresh-
olds is reported. See Table S4 for a list of these windows and the criteria used to identify them. Columns one through four
detail the position (in hg19) and alleles. Column five details for which AH(s) the variant and window was found (A: Altai,
C: Chagyrskaya, D: Denisova, V: Vindija). It also provides the 3D divergence score and the measure (Spearman-based
[spe] or mean squared error [mse]) used to identify the variant. The format is “AH : in silico mutagenesis 3D divergence
score based on 1 − ρ : in silico mutagenesis 3D divergence score based on MSE : AH-MH 3D-divergent window”. For
example, chr1:74305804 is a 3D-modifying variant identified in the window chr1:73924608-74973184 in Chagyrksyaka, Al-
tai, and Vindija by the Spearman-based and MSE measures (with 3D divergence 0.0279 and 0.0015, respectively). This
variant is also identified for the overlapping window chr1:73400320-74448896 in Chagyrksyaka, Altai, and Vindija with the
Spearman-based measure (0.0063, but not identified with the MSE).
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Sequence variability 3D genome variability

marginal P conditional P marginal P conditional P

Browning
introgressed
haplotypes

introgression SHARED
across populations

1.9E-49 1.3E-44 5.7E-09 0.00057

introgression UNIQUE to
one population

0.039 0.019 0.14 0.066

Browning
introgressed
haplotypes with
Neanderthal filter

introgression SHARED
across populations

1.1E-28 3.3E-25 1.2E-07 0.00047

introgression UNIQUE to
one population

0.067 0.014 0.00054 0.00013

Vernot introgressed
haplotype

introgression SHARED
across populations

0.015 0.054 0.0015 0.005

introgression UNIQUE to
one population

0.48 0.79 0.0094 0.012

Table S7: Both 3D genome and sequence variability are more important in predicting
introgression shared across super-populations than introgression unique to a single super-
population. When considering the relationships between 3D genome variability, sequence variability, and amount of
introgression (Supplemental Text, Figs. 5, S12), we consider introgression that was shared across 1KGP super-populations
(EAS, EUR, SAS) (white rows) compared to introgression unique to only one super-population (gray rows). We find
that 3D genome variability (last two columns) is more strongly predictive of introgression shared among all three super-
populations. The analysis was replicated on three sets of introgressed haplotypes. Browning introgressed haplotypes are
Sprime segments Browning haplotypes with Neanderthal-matching filter are a subset of the Browning et al. [93] introgressed
segments that have 30 putatively introgressed variants that could be compared to the Altai Neanderthal genome and had
a match rate of at least 30% to the Altai Neanderthal allele. Vernot haplotypes are S* segments from Vernot et al. [15].
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Sequence variability 3D genome variability

marginal P conditional P marginal P conditional P

Browning
introgressed
haplotypes

ALL windows (N = 4749) 1.90E-49 1.30E-44 5.70E-09 0.00057
ONLY windows with any
evidence of introgression
(N = 1950)

0.0004 0.0072 1.90E-06 3.00E-05

Browning
introgressed
haplotypes with
Neanderthal filter

ALL windows (N = 4749) 1.10E-28 3.30E-25 1.20E-07 0.00047
ONLY windows with any
evidence of introgression
(N = 1604)

0.042 0.19 0.0001 0.00038

Vernot introgressed
haplotype

ALL windows (N = 4749) 1.50E-02 5.40E-02 0.0015 0.005
ONLY windows with any
evidence of introgression
(N = 2657)

3.40E-05 8.40E-07 0.00068 1.60E-05

Table S8: Compared to sequence variability, 3D variability is a relatively more informative
predictor of amount of introgression when considering windows of the genome with any
introgression. When considering the relationships between 3D genome variability, sequence variability, and amount
of introgression (Supplemental Text, Figs. 5, S12), we consider a subset of windows with any evidence of introgression
(gray rows) compared to all windows (white rows). 3D variability is relatively more informative about the amount of
introgression when only considering windows of the genome with any introgressed sequence present (last column). The
analysis was replicated on three sets of introgressed haplotypes. Browning introgressed haplotypes are Sprime segments
Browning haplotypes with Neanderthal-matching filter are a subset of the Browning et al. [93] introgressed segments that
have 30 putatively introgressed variants that could be compared to the Altai Neanderthal genome and had a match rate
of at least 30% to the Altai Neanderthal allele. Vernot haplotypes are S* segments from Vernot et al. [15].
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