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Abstract

The rapid development of spatially resolved transcriptomics has made it possible
to analyze spatial gene expression patterns in complex biological tissues. To identify
such genes, we propose a novel and robust nonparametric information-based approach,
SPRI, to recognize their spatial patterns. SPRI directly models spatial transcriptome
raw count data without model assumptions, which transforms the problem of spatial
expression pattern recognition into the detection of dependencies between spatial
coordinate pairs with gene read count as the observed frequencies. SPRI was used to
analyze four recent published spatially resolved transcriptome data, and all results
showed that SPRI outperforms prior methods, by robustly detecting more genes with
significant spatial expression patterns, and revealing biological insights that cannot be

identified by other methods.

Introduction

In recent years, the rapid development of high-throughput spatial transcriptome
technologies enables the understanding of spatially resolved gene expression patterns
in complicated tissues [1, 2]. Some of them are based on fluorescence in situ
hybridization (FISH), which can locate each RNA transcripts in the sample [3, 4].
Others are based on sequencing technology, including spatial transcriptome (ST), Slide-
Seq, 10x Visium, etc [5-7]. This technology first partitions tissue into small regions
(spots) to associates all transcripts within one spot with known spatial coordinate
barcodes, and then sequences them to capture the expression levels of thousands of
genes in the spot. Such technology provides an efficient spatial approach for new
biological discoveries and understanding of multiple biological processes in disease [8,
9].

Identification of genes with spatial expression patterns (SE genes) is an essential
step in analysis of spatial transcriptome data. For this task, the several existing methods
can be divided into two groups: normalized data based method and raw count data based
method. Trendsceek [10] uses a two-dimensional point process to describe the spatial

location distribution of cells, while gene expression levels are described by a probability
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distribution of scalar values. SpatialDE [11] constructs multidimensional Gaussian
distribution for normalized gene expression. MERINGUE [12] is based on spatial
autocorrelation and cross-correlation for normalized gene expression. BinSpect [13] is
based on enrichment analysis of spatial network neighbors in binarized high gene
expression state. Without normalization, SPARK [14] uses a generalized linear spatial
model with a series of custom spatial kernel functions to describe the raw count data
using Poisson distribution. However, these existing methods still have limitations: 1)
most of them are based on normalized gene expression data, thus fail to consider the
variance in raw counts. 2) Prior methods are based on certain statistical assumptions
that limit their ability to identify various possible spatial distribution patterns. For
example, Trendsceek focuses on modeling two points in space; Spatial DE assumes that
the data obey Gaussian distribution; MERINGUE and BinSpect focus on modeling
spatial neighbors, assuming that differences between neighbors are comparable; and
SPARK requires settings of specific spatial kernel functions. 3) They only assign
significance to rank genes, however low P or Q values do not necessarily mean real
spatial patterns [15].

In this work, we propose nonparametric Spatial Pattern Recognition using
Information based method, SPRI, which models raw count data directly without model
assumptions to give the rank of gene spatial expression patterns. SPRI firstly converts
the spatial gene pattern problem into an association detection problem between (x, y)
coordinate values with observed raw count data, and then estimates associations using
an information-based method, TIC [16, 17], which calculates the total mutual
information with all possible x-y-grids. Without unnecessary assumptions, SPRI can

detect more SE gene patterns with higher accuracy.

Results
Simulations.

The overview of SPRI is shown in Fig. 1a. Unlike Trendsceek, SpatialDE,
MERINGUE and BinSpect, which are based on normalized gene expression data with

assumption that the sum of RNA transcripts of each cell is equal, SPRI directly models
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the raw count data. Unlike SPARK, which is based on statistical hypothesis of Gaussian
distribution and certain spatial gene pattern kernel assumptions, SPRI converts the
spatial gene pattern problem to association detection problem between coordinates
values of (x, y) using observed count data as observed frequencies, and it then estimates
the association using the information-based approach, TIC to calculates the total mutual
information with all possible x-y-grids. Without these unnecessary assumptions, SPRI
can detect more SE gene patterns theoretically. To evaluate the performance of SPRI,
we compared it with five recently developed methods with precision plots, including
SPARK, SpatialDE, Trendsceek, MERINGUE and BinSpect on four simulated data
(Fig. 1b, Supplementary Fig. 1).

Following comparison strategy in ref. [10, 14], the simulated patterns are set as
Hotspot, Streak, Step gradient and Linear gradient respectively. To explore the
robustness of these methods, we also tried different parameters for the simulation data
to estimate the standard deviation in the plot. See the details in Supplementary Notes.
As can be seen, for all four simulation patterns, SPRI outperforms all other prior
methods on the task of identifying spatial expression (SE) genes. Among these methods,
SPARK, MERINGUE and BinSpect is the second best one followed by SpatialDE and
Trendsceek on different simulated patterns respectively, which is consistent with

previous studies [12-14].

Mouse olfactory bulb data (MOB Replicate 11).

The first dataset we used to test SPRI is replicate layer 11 of mouse olfactory bulb
(MOB Replicate 11) [7], which has 16,218 genes measured on 260 spots. SPRI ranks
the genes using TIC scores. To test the significance of the top-ranked genes, we
performed a permutation test to compute P value for the top 10% genes and then used
FDR correction to compare with existing methods, including SPARK, SpatialDE,
Trendsceek, MERINGUE and BinSpect. As can be seen in Fig. 2a, SPRI can identify
more potential genes. Following SPARK paper, we named the genes with a FDR cutoff
of 0.05 as SE genes. For MOB Replicate 11 data, SPRI identified 1,102 genes, while
SPARK identified 772 genes (overlap with SPRI= 312; Supplementary Fig. 2a),
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SpatialDE identified 67 genes (overlap with SPRI = 47), Trendsceek did not identified
any SE genes, MERINGUE identified 720 genes (overlap with SPRI= 315), and
BinSpect identified 804 genes (overlap with SPRI= 309).

We firstly compared the SE genes identified by SPRI with known marker gene list
to further validate our method. A list of 2,030 cell type-specific marker genes was
downloaded from a recent single-cell RN A sequencing research of olfactory bulbs [18].
Fisher’s exact test was used to quantify the gene overlap. As shown in Fig. 2b, SPRI
demonstrates higher enrichment than other methods. Secondly, the proportion of top
SPARK-ranked SE genes that were also identified by SPRI as SE genes and the
proportion of top SPRI-ranked genes that were also identified by SPARK as SE genes
were compared (Fig. 2¢). The results showed that SPRI can covers more top SPARK
ranked genes. The comparison with other methods can be found in Supplementary Fig.
2d. Thirdly, the comparison of expression levels for SE genes shows that SPRI SE
genes can detect more highly expressed genes than existing methods. As shown in Fig.
2d, the expression level uniquely detected by SpatialDE was close to zero, and the level
uniquely detected by SPARK, MERINGUE and BinSpect are comparable. In contrast,
the level of SE genes identified by SPRI only is closest to that of SE genes found by all
five methods, which is the highest.

To visually evaluate the SE genes detected by SPRI, we also clustered the 1,102
SE genes identified by SPRI and obtained five major spatial patterns (Supplementary
Fig. 2f). The first three patterns correspond to three cell layers of mouse olfactory layer
respectively: mitral cell layer (pattern I), glomerular layer (pattern II), and the granular
cell layer (pattern IIT). The top SPRI-ranked genes were selected to visualize these three
spatial patterns (Fig. 2e), of which Scg2 [19] and Gabrb3 [20] were identified only by
SPRI. The in situ hybridization images from the Allen Brain Atlas further cross-
validated these genes exhibiting spatial expression patterns (Fig. 2f).

We next explore the biological insights found by SPRI. Manual inspection of the
top five SE genes uniquely identified by SPRI and other methods (Supplementary Fig.
3) indicates that SPRI genes are more spatially variable, and all of them are found

associated with brain functions, supported by literature, including Cst3, Fthi, Mdhl,
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Rtn4 and Ddx5. For example, the B/B polymorphism of Cst3 can lead to reduced
secretion of cystatin C and decreased efficiency of signal peptide cleavage, which in
turn increases the risk of Alzheimer's disease [21]. Fth] was found to be associated with
ferritinophagy and ferroptosis, which is an important regulatory mechanism in
Parkinson's disease [22]. Mdhl is a key bioenergetic protein in the TCA cycle of the
mouse brain, which is irreversibly oxidized and accumulated in the aged brain [23].
Rtn4 is a mylein-associated glycoprotein, and studies have shown that knockdown of
Rtn4 would causes symptoms of schizophrenia-like behavior [24]. Ddx5 acts as a
transcriptional regulator of LINCO01116 to the IL-1B promoter, activating IL-183
expression to promote glioma proliferation [25]. In addition, functional enrichment
analyses of SE genes detected by SPRI, SPARK, Spatial DE, MERINGUE and BinSpect
was also performed (Methods). We firstly compared the top 10 Gene Ontology (GO)
terms found by these five methods for the same number of genes (top 100 (Fig. 2g),
150 and 200 in Supplementary Fig. 2g), which indicates that SPRI obtains much more
significant GO terms than other methods. Then, functional enrichment analyses were
performed on whole SE genes at 0.05 FDR cutoff (Fig. 2h). Totally, 1,280 GO terms
and 84 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched
in the SE genes identified by SPRI, while SPARK had 1,157 enriched GO terms
(overlap with SPRI = 663; Supplementary Fig. 2b) and 83 KEGG pathways (overlap
= 46; Supplementary Fig. 2¢), SpatialDE had only 99 (overlap = 60) enriched GO
terms and 2 KEGG pathways (overlap = 2), MERINGUE had 1,112 (overlap= 630)
enriched GO terms and 83 KEGG pathways (overlap = 50), and BinSpect had 788
(overlap = 531) enriched GO terms and 38 KEGG pathways (overlap = 32). The result
shows that many enriched GO terms detected by SPRI only are associated with
synaptogenesis and olfactory bulb development, such as synaptic vesicle localization
(GO 0097479; SPRI P value= 2.5x 10, SPARK P value = 9.39x 10, MERINGUE P
value = 1.68x 1073, BinSpect P value = 3.71x 10, while SpatialDE did not has this
enriched GO term). In addition, many KEGG pathways identified by SPRI only are
directly relevant to nervous system disease, such as Parkinson disease (KEGG

mmu05012; SPRI P value = 1.21x 1073, SPARK P value = 1.68x 10"}, MERINGUE P
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value = 6.93% 102, BinSpect P value = 5.36x 102). An additional functional enrichment
analysis was also performed on SE genes identified by SPRI only, of which the result

is consistent with that of all SPRI SE genes (Supplementary Fig. 2h).

Mouse olfactory bulb data (MOB Replicate 12)

The second dataset is replicate layer 12 of mouse olfactory bulb (MOB Replicate
12) [7], which has 16,034 genes measured on 282 spots. As can be seen in Fig. 3a, SPRI
identified more potential genes within a certain range of FDRs. For MOB Replicate 12
data, SPRI identified 1,565 genes, while SPARK identified 519 genes (overlap with
SPRI = 302; Supplementary Fig. 4a), SpatialDE identified 285 genes (overlap with
SPRI = 184), Trendsceek only identified 46 SE genes, MERINGUE identified 523
genes (overlap with SPRI = 317), BinSpect identified 573 genes (overlap with SPRI =
274).
Similar to the result of Fig. 2, the comparison of expression levels for SE genes shows
that SPRI SE genes can detect more highly expressed genes than existing methods (Fig.
3b). Secondly, Fig. 3¢ shows that SPRI can cover most top SPARK SE genes. More
results can be found in Supplementary Fig.4d. Thirdly, SE genes identified by SPRI
only were highly enriched in the same marker gene list [18] (Fig. 3d).
We also clustered the SE genes identified by SPRI and obtained five major spatial
patterns (Supplementary Fig.4f). The same three patterns with corresponding
glomerular layer (pattern V), and the granular cell layer (pattern II), mitral cell layer
(pattern III), were visualized by top SPRI-ranked genes (Fig. 3e), which were also
cross-validated by the in sifu hybridization images from the Allen Brain Atlas (Fig. 3f).
We next evaluate the biological insights found by SPRI. Manual inspection of the top
five SE genes uniquely identified by SPRI (Supplementary Fig. 5) indicates that all of
them are found associated with mouse olfactory bulb development. In addition to Cst3
and Ddx5 we have discussed, Acth, Tubala and Rplpl were also associated with brain
activity. Actin beta (Actb), a structural backbone housekeeping protein, supports
accelerated axonal growth when its putative functionally acquired missense mutation

leads to human Baraitser-Winter syndrome, characterized by mental retardation,
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cortical malformations, and sensorineural deafness [26]. Mutations in Tubala, the
major alpha-tubulin expressed during brain development, cause a range of human brain
malformation disorders [27]. Rplpl was found to be a ribosomal protein essential for
brain development and cell proliferation [28]. Finally, functional enrichment analyses
were performed. The top 10 GO terms found by SPRI, SPARK, SpatialDE,
MERINGUE and BinSpect for top genes (100 (Fig. 3g), 150 and 200; Supplementary
Fig. 4g) were compared.

Since MOB Replicate 11 and MOB Replicate 12 are two different layers of the same
experiment, to evaluate their robustness, we calculated the overlap rate for the top 10
GO terms enriched by the top SE genes on both data (Fig. 3h). Functional enrichment
analyses were also performed on all SE genes at 0.05 cutoff of FDR, for SPRI (Fig. 3i),
SPARK, SpatialDE, MERINGUE and BinSpect (Supplementary Fig. 4b and ¢). A lot
of enriched GO terms detected by SPRI only are associated with synaptogenesis and
olfactory bulb development, such as structural constituent of synapse (GO 0097479;
SPRI P value = 2.47x 1077, SPARK P value = 1.70x 102, SpatialDE P = 2.61x 1072,
MERINGUE P = 4.58x 1073, BinSpect did not has this enriched GO term). In addition,
many KEGG pathways identified by SPRI only are directly relevant to nervous system
disease, such as Huntington disease (SPRI P value = 6.03x 1037, MERINGUE P value
= 5.84x 102, BinSpect P value = 5.81x 1072, while SPARK and SpatialDE did not has
this enriched KEGG pathways). An enrichment analysis was also performed on SE

genes identified by SPRI only (Supplementary Fig. 4h).

Human breast cancer data (Breast Cancer Layer 2)

The third dataset is layer 2 of breast cancer (breast cancer layer 2) [7], which has
14,789 genes measured on 250 spots. SPRI identified more potential genes within a
certain range of FDRs (Fig. 4a). Totally, SPRI identified 1,151 SE genes, while SPARK
identified only 290 SE genes (overlap with SPRI = 212; Supplementary Fig. 6a),
SpatialDE identified 115 SE genes (overlap with SPRI = 59), Trendsceek only
identified 13 SE genes, MERINGUE identified 207 SE genes (overlap with SPRI =184),
BinSpect identified 146 SE genes (overlap with SPRI = 100).
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Still, the expression comparison of SE genes shows that SPRI can detect more highly
expressed genes than existing methods (Fig. 4b). Secondly, SPRI can cover most top
SPARK SE genes (Fig. 4¢), more results can be found in Supplementary Fig. 6d. We
also compared the SE genes identified by SPRI with known marker gene list to further
validate our method (Fig. 4d). The list of genes related to human breast cancer was
downloaded from CancerMine database [29]. Top SPRI-ranked genes only identified
by SPRI were also listed (Fig. 4e) to visually evaluate the correctness of SE genes
detected by SPRI.

We next evaluate the biological insights found by SPRI. Manual inspection of the top
five SE genes uniquely identified by SPRI (Supplementary Fig. 7) indicates that four
of them are found associated with breast cancer, including ACTB, TMSB10, PABPC1
and ACTGI. Study finds differential ACTB expression in breast cancer is associated
with metastasis and drug resistance in breast cancer [30]. TMSB10 was upregulated in
breast cancer tissues and its overexpression promotes invasion, proliferation and
migration of breast cancer cells [31]. The PABPCI gene was a downstream target of
SNHG 14 and mediates SNHG 14-induced oncogenesis in breast cancer [32]. ACTGI, a
cytoskeletal protein, is thought to be a component of the cell migration machinery, and
when destabilized is able to inhibit the migration of cancer cells [33]. In addition,
functional enrichment analyses were performed. We firstly compared the top 10 GO
terms found by SPRI, SPARK, SpatialDE, MERINGUE and BinSpect for the same
number of genes (top 100 (Fig. 4f), 150 and 200; Supplementary Fig. 6e). Then,
functional enrichment analyses were performed on all SE genes at 0.05 FDR cutoff for
SPRI (Fig. 4g), SPARK, SpatialDE, MERINGUE and BinSpect (Supplementary Fig.
6b and c), which shows that many enriched GO terms detected by SPRI only are
associated with immune responses, such as synaptic vesicle localization (GO 0002433;
SPRI P value= 5.44x 107, while SPARK, SpatialDE, MERINGUE and BinSpect did

not has this enriched GO term).

Human breast cancer data (BC23209_C1_stdata)

The last dataset is BC23209 C1 _stdata of breast cancer (breast cancer layer 2) [5],
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which has 16,859 genes measured on 294 spots. SPRI identified 812 genes, while
SPARK identified 142 genes, SpatialDE identified 210 genes, Trendsceek identified
216 SE genes, MERINGUE identified 215 SE genes and BinSpect identified 9 SE genes,
respectively (Fig. Sa, Supplementary Fig. 8a). Consistent with previous analysis,
SPRI can detect more highly expressed SE genes (Fig. Sb) and can cover most top
ranked SE genes (Fig. Sc, Supplementary Fig. 8d). We also compared the SE genes
identified by SPRI with the same marker gene list [29] related human breast cancer (Fig.
5d).

After visualization of SE genes detected by SPRI (Fig. 5e), we evaluate the biological
insights found by SPRI. Manual inspection of the top five SE genes uniquely identified
by SPRI (Supplementary Fig. 9) indicates that three of them have been found
associated with breast cancer, including, RPS21, PPP1CA and TXNIP. RPS21’s role in
breast cancer is not clear now, but one transcript of RPS, A4-RPS21, is differentially
expressed in cancerous tissues, indicating its potential driver role in breast cancer [34].
PPPI1CA together with PRKACG and PRKARIB were found to be the most strongly
associated with breast cancer—specific survival [35]. Study found that inhibition of
TXNIP via Myc drove Triple-negative breast cancers aggressiveness and was associated
with decreased metastasis-free survival and decreased overall survival in breast cancer
[36]. For functional enrichment analyses, we firstly compared the top 10 GO terms
found by SPRI, SPARK, SpatialDE, MERINGUE and BinSpect for the same number
of genes (top 100 (Fig. 5f), 150 and 200; Supplementary Fig. 8e). Then, functional
enrichment analyses were performed on all SE genes at 0.05 FDR cutoff for SPRI (Fig.
Sg), SPARK, SpatialDE, MERINGUE and BinSpect (Supplementary Fig. 8b and c).
Many enriched GO terms detected by SPRI only are associated with immune responses,
such as posttranslational protein targeting to endoplasmic reticulum membrane (GO
0006620; SPRI P value= 5.01x 10, while SPARK, SpatialDE, MERINGUE and
BinSpect did not has this enriched GO term). An additional functional enrichment

analysis was also performed on SE genes identified by SPRI only (Supplementary Fig.
8f).
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Discussion

The recent rapid development of high throughput spatial transcriptomics technology
opens a door how to understand the spatial resolved biological behaviors of genes and
cells. One essential and initial step of such analysis is to detect genes with spatial
expression patterns.

In this work, we propose a novel information-based spatial pattern gene identification
method, SPRI, to model spatial raw count data directly. It converts the SE gene
detection problem to a dependencies mining problem between spatial coordinate pairs
with raw gene read count as the observed frequencies. Such strategy distinguishes SPRI
from prior existing SE methods relying on certain model or assumptions. For example,
methods based on normalization data assume implicitly that the total number of RNA
transcripts is identical, which is not always true [37]. Other methods modeling raw
count, like SPARK, also rely on certain parametric statistical model/hypothesis or
designed kernel functions, which still limits the ability to identify various possible
spatial distribution patterns.

To evaluate SPRI’s performance, we compared it with five existing methods on four
publicly available datasets comprehensively. The results consistently indicate that SPRI
can robustly identify more genes with true spatial expression patterns validated by /n
situ hybridization experiments, and that SE genes identified by SPRI uniquely are more

spatially variable and are supported by recent studies.

Methods

SPRI: model and algorithm
In this work, we convert the problem of identifying genes with spatial expression
patterns into the problem of identifying dependencies on (X, Y) coordinate observations

based on the raw count expression of genes in the two-dimensional space of cells/spots.

(a) Computing the total information coefficient for each gene. The idea of TIC [17]

is based on MIC [16], in which the range of two variables is partitioned by a grid to
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evaluate if there is a dependency between the two variables. Specifically, given a set of

two jointly observed data (x, y) for variables (X, Y), the mutual information

I ((X ,Y), k, l) is computed under all k-by-/ grids:

1((,1), k1) = Byer Bxex p(x, y)log (222 (1)

where the number of grids &/ < B. B depends on the number of samples and is usually

set by B = n”%. For each k-by-/ grid, the maximum mutual information is retained:
(OO k1) = max 10X, Vle) @

For a fair comparison under different grid divisions, the maximum mutual information
my,; under each grid G are normalized to between 0 and 1, constituting characteristic

matrix M = (mx,).

_ __I'okh
M)y, = log min{k,1} ¥

MIC and TIC are two different properties of the characteristic matrix. MIC is the
supremum value in M, while TIC is the sum of M. Compared to MIC, which only
considers only the maximal value of the characteristic matrix and may throw away
meaningful information, TIC is able to obtain a smaller bias and better power by
summing over all entries in the independent case. In other words, TIC is able to measure
the presence or absence of dependencies between two variables. The definitions of MIC

and TIC are as follow:
MIC(D) = max M(D)y, (4)

TIC(D) = i<y M(D), (5)

We apply TIC to determine whether there is a dependency relationship between two-

variable (X, Y) to identify genes with spatial expression patterns, and the higher the TIC
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value, the more likely the gene has a spatial expression pattern. For all genes we gave

a SE gene ranking based on TIC values.

(b) Background correction. Considering the effect of the spatial shape of the tissue,
we added uniformly distributed background spot locations (Fig. 1a) to convert the
shape to rectangle while preserving the original spot locations. The expression of the

background is set as the statistical mean value [38] of the gene as follow:

mean = %Qz +i(Q1 + Q3) ©)
where Q1, 02, and Qs are the first, second and third quartiles of current gene expression

respectively.

(c) Identifying statistically significant SE genes with permutation test. To compare
with other algorithms, we performed a permutation test on the top 10% of genes in the
TIC ranking. In the permutation test, we keep the spot locations fixed, randomly disrupt
gene expression, and then recalculate the TIC values. The Pvalue of each gene is

computed as follow:

{(M|TIC;>TICtryei=1,2,3..,M}
" )

P value =

where TIC; is the TIC value for the i-th permutation, and TICy,,,. is the original TIC
value of gene expression; N is the number of total permutation times, we set N to 10,000
in our experiment. After getting the P values for each gene, we used Benjamini-
Yekutieli in the python package of “statsmodels” to control FDR. The genes with FDR

<0.05 are considered as significant SE genes.

Gene sets, cluster, visualization and functional enrichment analysis
For these spatial transcriptomics datasets, we downloaded lists of known genes to

validate the SE genes recognized by different methods. For the mouse olfactory bulb
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data, we downloaded a list from of 2,030 cell type-specific marker genes identified in
recent single-cell RNA sequencing studies in the olfactory bulb [18]. For the human
breast cancer data, we downloaded a list of genes associated with breast cancer from
the CancerMine database (http://bionlp.bcgsc.ca/cancermine/). These breast cancer
related genes are composed of three parts, namely cancer drivers, oncogenes, and tumor
suppressors. SE genes were validated by these gene lists respectively. Besides, the
clustering code provided by SPARK author was directly used to cluster SE genes
(FDR<0.05) identified by SPRI to five clusters following SPARK paper. Furthermore,
we follow the visualization strategy of gene spatial expression patterns proposed by
SPARK and the raw count was directly used in Supplementary Materials. In SPARK,
variance-stabilizing transformation was performed on the raw count data and the log-
scale total counts was adjusted to get a relative gene-expression. Finally, the same
number of top SE genes and whole SE genes at a 0.05 FDR cutoff identified by SPRI
and SPARK were used for functional enrichment analysis including GO terms analysis
and KEGG pathways analysis. Following the SPARK paper, we adopted the R package
of “clusterProfiler (v3.18.1)” to perform all functional enrichment analysis. In the
package, we set the P value correction method as the default 'BH' and the cutoff of FDR
as 0.05.

Spatial transcriptomics datasets.

In this work, four spatial transcriptomics datasets including mouse olfactory bulb data
and two human breast cancer data, were downloaded from Spatial Research
(https://www.spatialresearch.org/). These spatial transcriptomics datasets consist of two
components: the spatial locations(spots) and the gene expression (read counts) observed
at these spatial locations.

For the two mouse olfactory bulb datasets, we adopted the ‘MOB Replicate 11’ file and
‘MOB Replicate 12’ file of [7] for analysis. ‘MOB Replicate 11’ file contains 16,218
genes observed on 262 spots and ‘MOB Replicate 12’ file contains 16,034 genes

observed on 282 spots. For the two human breast cancer datasets, we adopted the
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‘Breast Cancer Layer 2’ file of [7] and ‘BC23209 C1 stdata’ file of [5] for analysis.
‘Breast Cancer Layer 2’ file contains 14,789 genes observed on 251 spots and
‘BC23209 C1 stdata’ file contains 16,859 genes observed on 294 spots. Following the
SPARK paper, we filtered out spots less than ten total read counts. Through data
filtering, we finally analyzed on 260 spots in ‘MOB Replicate 11° data, 279 spots in
‘MOB Replicate 12’ data, 250 spots in ‘Breast Cancer Layer 2’ data, 294 spots in
‘BC23209 C1 stdata’ data. Then we select the top 10% of TIC ranked genes for

permutation test.

Comparison of methods

We compare our method SPRI with five prior algorithms for spatial expression pattern
recognition of genes, including SPARK [14], SpatialDE [11], Trendsceek [10],
MERINGUE [12] and BinSpect [13]. SpatialDE, Trendsceek, MERINGUE and
BinSpect are based on normalized data and SPARK is based on raw count data.

The first method we compared with is the SPARK (R package SPARK; v1.1.0), we
directly use SPARK's code on github for analysis
(https://github.com/xzhoulab/SPARK-Analysis). Following the SPARK paper, we
performed the same data preprocessing on the four spatial transcriptomic data.
Specifically, genes that are expressed in less than 10% of the spots were filtered out,
and only spots containing at least ten total read counts were retained. According to the
SPARK paper, if the adjusted P value (i.e., FDR) output by SPARK is below the
threshold of 0.05, the identified SE is significant.

The second method we compared with is the SpatialDE (python package SpatialDE;
v.1.1.3), we directly use SpatialDE’s code downloaded from github for analysis
(https://github.com/Teichlab/Spatial DE). Following the SpatialDE paper, the SE gene
is considered significant if the O value (i.e.,FDR) was below the threshold of 0.05.
The third method we compared with is the Trendsceek (R package trendsceek; v.1.0.0).
We  directly wused the code provided from github for analysis

(https://github.com/edsgard/trendsceek). Following the Trendsceek paper, we
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performed the same data preprocessing on the four spatial transcriptomic data.
Specifically, genes that express less than three spots were filtered out, and only spots
containing at least five read counts were retained. Then the raw count data were
processed through logl0 transformation. For the real data, the top 500 variable genes
were taken for analysis. The SE gene is considered significant if the p.bh value
(i.e.,FDR) was below the threshold of 0.05.

The fourth method we compared with is MERINGUE (R package MERINGUE; v.1.0).
The code provided on github was used for analysis (https://github.com/JEFworks-
Lab/MERINGUE). Following MERINGUE paper, poor spots (fewer than 100 read
counts) and poor genes (fewer than 100 read counts) were filtered out. For
BC23209 C1 _stdata data, poor spots (fewer than 1 read counts) and poor genes (fewer
than 1 read counts) were filtered out. Then Benjamini—Yekutieli correction was
performed to control FDR, the SE gene is regarded significant if the FDR was below
the threshold of 0.05.

The last method we compared with is the BinSpect (R package Giotto; v.1.1.0). The
code provided from github was used for analysis (https://rubd.github.io/Giotto_site/).
BinSpect provide two different ways in binarization, BinSpect-kmens and BinSpect-
rank. Since the difference between the results of the two approaches is not large, we
only used BinSpect-kmens for comparison. The same data pre-processing in Visium
data was adopted. For BC23209 Cl1 _stdata data, all genes were included for analysis.
Then Benjamini-Yekutieli correction was performed to control FDR, the SE gene is

regarded significant if the FDR was below the threshold of 0.05.

Data availability
Four publicly available spatial transcriptomic datasets are used in this paper, including
two mouse olfactory bulb data and two human breast cancer data

(https://www.spatialresearch.org/).

Code availability


https://doi.org/10.1101/2022.02.09.479510
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.09.479510; this version posted February 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

SPRIis implemented in Python. All source code can be found in the supporting website:
https://github.com/xiaoyeye/SPRI, and all the published data and code can be

downloaded as described in the paper.
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Fig.1 | Overview of the SPRI method and results on the simulation dataset. a,
Overview of SPRI algorithm. SPRI converts the spatial gene pattern problem to
association detection problem between coordinates values of (x, y) with gene read count
as the observed frequencies and then calculates their total information coefficient (TIC)
using all possible x-y-grids. b, Precision plots for all four different simulation patterns,
including Hotspot, Streak, Step gradient and Linear gradient, which display the
proportion of true positive samples among retrieved genes (Y-axis) detected by the

compared methods at different FDRs (X-axis).
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Fig.2 | Results of the mouse olfactory bulb data (MOB Replicate 11). a, Power plot
that displays the number of genes with SE patterns (Y-axis) detected by six different
methods, i.e., SPRI (pink), SPARK (light blue), SpatialDE (green), Trendsceek (purple),
MERINGUE (dark blue) and BinSpect (orange) at different FDRs (X-axis), respectively.
b, Enrichment of SE genes that are verified in the study of Tepe et al. [18]. SE genes
are defined uisng a 0.05 FDR cutoff and P value is calculated by Fisher’s exact test. ¢,
Percentage (pink/blue) of SPRI/SPARK SE genes that are verified in SPARK/SPRI top-
ranked SE genes. d, Boxplot of the expression levels of SE genes uniquely identified
by SPRI, SPARK, SpatialDE, MERINGUE, BinSpect and union set of the five. Each
gray point represents the average expression of an SE gene across all spots. e,
Visualization of gene spatial expression patterns from MOB Replicate 11 dataset for
the two genes only detected by SPRI (Scg2 and Gabrb3) plus four genes that are
detected by both SPRI and SPARK. The color represents relative expression level of
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the gene (pink: high; green: low). f, In situ hybridization obtained from the Mouse Brain
Atlas of the Allen Brain Atlas for three representative genes (Scg2, Ptgds, and Gabrb3).
g, GO enrichment analysis on top 100 SE genes by SPRI, SPARK, SpatialDE,
MERINGUE and BinSpect respectively. h, Bubble plot of enriched GO terms and
KEGG pathways (purple) on the whole SE genes at FDR cutoff of 0.05 by SPRI. GO
term is colored according to three different categories: Biological Processes (blue),

Cellular Components (green), and Molecular Functions (yellow).
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Fig.3 | Results of the mouse olfactory bulb data (MOB Replicate 12). a, Power plot

that displays the number of genes with SE patterns (Y-axis) detected by six different

methods respectively. b, Expression levels of SE genes uniquely identified by SPRI,

SPARK, SpatialDE, MERINGUE, BinSpect and union set of the five. ¢, Percentage

(pink/blue) of SPRI/SPARK SE genes that are verified in SPARK/SPRI top-ranked SE

genes. d, Enrichment of SE genes that are verified in the study of Tepe et al.[18]. e,

Visualization of gene spatial expression patterns from MOB Replicate 12 dataset for

representative genes. f, In situ hybridization obtained from the Mouse Brain Atlas of

the Allen Brain Atlas for three genes (Cck, Ptgds, and Mbp). g, GO enrichment analysis

on top 100 SE genes by SPRI, SPARK, SpatialDE, MERINGUE and BinSpect

respectively. h, Overlap rate of the top 10 GO terms detected by SPRI, SPARK,
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Spatial DE, MERINGUE and BinSpect between MOB Replicate 11 and MOB Replicate
12 data for the same number of genes. i, Bubble plot of enriched GO terms and KEGG

pathways (purple) on the whole SPRI SE genes.
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Fig.4 | Results of the human breast cancer data (Breast Cancer Layer 2). a, Power
plot that displays the number of genes with SE patterns (Y-axis) detected by six different
methods at different FDRs (X-axis), respectively. b, Boxplot of expression levels of SE
genes identified by SPRI, SPARK, SpatialDE, MERINGUE and BinSpect in Breast
Cancer Layer 2 data. ¢, Percentage (pink/blue) of SPRI/SPARK SE genes that are
verified in SPARK/SPRI top-ranked SE genes. d, Enrichment of SE genes that are
verified in the study of CancerMine database. e, Visualization of gene spatial expression
patterns for five genes that are detected by SPRI only. The first one is hematoxylin &
eosin stained brightfield image of Breast Cancer Layer 2 from ref. [7]. f, GO enrichment
analysis on top 100 SE genes by SPRI, SPARK, SpatialDE, MERINGUE and BinSpect
respectively. g, Bubble plot of enriched GO terms and KEGG pathways (purple) on the
whole SPRI SE genes at FDR = 0.05.
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Fig.5 | Results of the human breast cancer data (BC23209_C1_stdata). a, Power
plot that displays the number of genes with SE patterns (Y-axis) detected by six different
methods, i.e., SPRI, SPARK, SpatialDE, Trendsceek, MERINGUE and BinSpect, at
different FDRs (X-axis), respectively. b, Boxplot shows the expression levels of SE
genes identified by SPRI, SPARK, SpatialDE, MERINGUE and BinSpect in
BC23209 C1 stdata. ¢, Percentage (pink/blue) of SPRI/SPARK SE genes that are
verified in SPARK/SPRI top-ranked SE genes. d, Enrichment of SE genes that are
verified in the study of CancerMine database. e, Visualization of gene spatial expression
patterns for five genes that are identified by SPRI only. The first one is hematoxylin &
eosin stained brightfield image of BC23209 C1_stdata from ref. [5]. f, GO enrichment
analysis on top 100 SE genes by SPRI, SPARK, SpatialDE, MERINGUE and BinSpect
respectively. g, Bubble plot of enriched GO terms and KEGG pathways (purple) on the
whole SPRI SE genes.
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