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Abstract 

The rapid development of spatially resolved transcriptomics has made it possible 

to analyze spatial gene expression patterns in complex biological tissues. To identify 

such genes, we propose a novel and robust nonparametric information-based approach, 

SPRI, to recognize their spatial patterns. SPRI directly models spatial transcriptome 

raw count data without model assumptions, which transforms the problem of spatial 

expression pattern recognition into the detection of dependencies between spatial 

coordinate pairs with gene read count as the observed frequencies. SPRI was used to 

analyze four recent published spatially resolved transcriptome data, and all results 

showed that SPRI outperforms prior methods, by robustly detecting more genes with 

significant spatial expression patterns, and revealing biological insights that cannot be 

identified by other methods. 

 

Introduction 

In recent years, the rapid development of high-throughput spatial transcriptome 

technologies enables the understanding of spatially resolved gene expression patterns 

in complicated tissues [1, 2]. Some of them are based on fluorescence in situ 

hybridization (FISH), which can locate each RNA transcripts in the sample [3, 4]. 

Others are based on sequencing technology, including spatial transcriptome (ST), Slide-

Seq, 10x Visium, etc [5-7]. This technology first partitions tissue into small regions 

(spots) to associates all transcripts within one spot with known spatial coordinate 

barcodes, and then sequences them to capture the expression levels of thousands of 

genes in the spot. Such technology provides an efficient spatial approach for new 

biological discoveries and understanding of multiple biological processes in disease [8, 

9]. 

Identification of genes with spatial expression patterns (SE genes) is an essential 

step in analysis of spatial transcriptome data. For this task, the several existing methods 

can be divided into two groups: normalized data based method and raw count data based 

method. Trendsceek [10] uses a two-dimensional point process to describe the spatial 

location distribution of cells, while gene expression levels are described by a probability 
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distribution of scalar values. SpatialDE [11] constructs multidimensional Gaussian 

distribution for normalized gene expression. MERINGUE [12] is based on spatial 

autocorrelation and cross-correlation for normalized gene expression. BinSpect [13] is 

based on enrichment analysis of spatial network neighbors in binarized high gene 

expression state. Without normalization, SPARK [14] uses a generalized linear spatial 

model with a series of custom spatial kernel functions to describe the raw count data 

using Poisson distribution. However, these existing methods still have limitations: 1) 

most of them are based on normalized gene expression data, thus fail to consider the 

variance in raw counts. 2) Prior methods are based on certain statistical assumptions 

that limit their ability to identify various possible spatial distribution patterns. For 

example, Trendsceek focuses on modeling two points in space; SpatialDE assumes that 

the data obey Gaussian distribution; MERINGUE and BinSpect focus on modeling 

spatial neighbors, assuming that differences between neighbors are comparable; and 

SPARK requires settings of specific spatial kernel functions. 3) They only assign 

significance to rank genes, however low P or Q values do not necessarily mean real 

spatial patterns [15]. 

In this work, we propose nonparametric Spatial Pattern Recognition using 

Information based method, SPRI, which models raw count data directly without model 

assumptions to give the rank of gene spatial expression patterns. SPRI firstly converts 

the spatial gene pattern problem into an association detection problem between (x, y) 

coordinate values with observed raw count data, and then estimates associations using 

an information-based method, TIC [16, 17], which calculates the total mutual 

information with all possible x-y-grids. Without unnecessary assumptions, SPRI can 

detect more SE gene patterns with higher accuracy.  

 

Results 

Simulations. 

The overview of SPRI is shown in Fig. 1a. Unlike Trendsceek, SpatialDE, 

MERINGUE and BinSpect, which are based on normalized gene expression data with 

assumption that the sum of RNA transcripts of each cell is equal, SPRI directly models 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.09.479510doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.09.479510
http://creativecommons.org/licenses/by-nc-nd/4.0/


the raw count data. Unlike SPARK, which is based on statistical hypothesis of Gaussian 

distribution and certain spatial gene pattern kernel assumptions, SPRI converts the 

spatial gene pattern problem to association detection problem between coordinates 

values of (x, y) using observed count data as observed frequencies, and it then estimates 

the association using the information-based approach, TIC to calculates the total mutual 

information with all possible x-y-grids. Without these unnecessary assumptions, SPRI 

can detect more SE gene patterns theoretically. To evaluate the performance of SPRI, 

we compared it with five recently developed methods with precision plots, including 

SPARK, SpatialDE, Trendsceek, MERINGUE and BinSpect on four simulated data 

(Fig. 1b, Supplementary Fig. 1).  

Following comparison strategy in ref. [10, 14], the simulated patterns are set as 

Hotspot, Streak, Step gradient and Linear gradient respectively. To explore the 

robustness of these methods, we also tried different parameters for the simulation data 

to estimate the standard deviation in the plot. See the details in Supplementary Notes. 

As can be seen, for all four simulation patterns, SPRI outperforms all other prior 

methods on the task of identifying spatial expression (SE) genes. Among these methods, 

SPARK, MERINGUE and BinSpect is the second best one followed by SpatialDE and 

Trendsceek on different simulated patterns respectively, which is consistent with 

previous studies [12-14].  

 

Mouse olfactory bulb data (MOB Replicate 11). 

The first dataset we used to test SPRI is replicate layer 11 of mouse olfactory bulb 

(MOB Replicate 11) [7], which has 16,218 genes measured on 260 spots. SPRI ranks 

the genes using TIC scores. To test the significance of the top-ranked genes, we 

performed a permutation test to compute P value for the top 10% genes and then used 

FDR correction to compare with existing methods, including SPARK, SpatialDE, 

Trendsceek, MERINGUE and BinSpect. As can be seen in Fig. 2a, SPRI can identify 

more potential genes. Following SPARK paper, we named the genes with a FDR cutoff 

of 0.05 as SE genes. For MOB Replicate 11 data, SPRI identified 1,102 genes, while 

SPARK identified 772 genes (overlap with SPRI= 312; Supplementary Fig. 2a), 
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SpatialDE identified 67 genes (overlap with SPRI = 47), Trendsceek did not identified 

any SE genes, MERINGUE identified 720 genes (overlap with SPRI= 315), and 

BinSpect identified 804 genes (overlap with SPRI= 309).  

We firstly compared the SE genes identified by SPRI with known marker gene list 

to further validate our method. A list of 2,030 cell type-specific marker genes was 

downloaded from a recent single-cell RNA sequencing research of olfactory bulbs [18]. 

Fisher’s exact test was used to quantify the gene overlap. As shown in Fig. 2b, SPRI 

demonstrates higher enrichment than other methods. Secondly, the proportion of top 

SPARK-ranked SE genes that were also identified by SPRI as SE genes and the 

proportion of top SPRI-ranked genes that were also identified by SPARK as SE genes 

were compared (Fig. 2c). The results showed that SPRI can covers more top SPARK 

ranked genes. The comparison with other methods can be found in Supplementary Fig. 

2d. Thirdly, the comparison of expression levels for SE genes shows that SPRI SE 

genes can detect more highly expressed genes than existing methods. As shown in Fig. 

2d, the expression level uniquely detected by SpatialDE was close to zero, and the level 

uniquely detected by SPARK, MERINGUE and BinSpect are comparable. In contrast, 

the level of SE genes identified by SPRI only is closest to that of SE genes found by all 

five methods, which is the highest.  

To visually evaluate the SE genes detected by SPRI, we also clustered the 1,102 

SE genes identified by SPRI and obtained five major spatial patterns (Supplementary 

Fig. 2f). The first three patterns correspond to three cell layers of mouse olfactory layer 

respectively: mitral cell layer (pattern I), glomerular layer (pattern II), and the granular 

cell layer (pattern III). The top SPRI-ranked genes were selected to visualize these three 

spatial patterns (Fig. 2e), of which Scg2 [19] and Gabrb3 [20] were identified only by 

SPRI. The in situ hybridization images from the Allen Brain Atlas further cross-

validated these genes exhibiting spatial expression patterns (Fig. 2f).  

 We next explore the biological insights found by SPRI. Manual inspection of the 

top five SE genes uniquely identified by SPRI and other methods (Supplementary Fig. 

3) indicates that SPRI genes are more spatially variable, and all of them are found 

associated with brain functions, supported by literature, including Cst3, Fth1, Mdh1, 
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Rtn4 and Ddx5. For example, the B/B polymorphism of Cst3 can lead to reduced 

secretion of cystatin C and decreased efficiency of signal peptide cleavage, which in 

turn increases the risk of Alzheimer's disease [21]. Fth1 was found to be associated with 

ferritinophagy and ferroptosis, which is an important regulatory mechanism in 

Parkinson's disease [22]. Mdh1 is a key bioenergetic protein in the TCA cycle of the 

mouse brain, which is irreversibly oxidized and accumulated in the aged brain [23]. 

Rtn4 is a mylein-associated glycoprotein, and studies have shown that knockdown of 

Rtn4 would causes symptoms of schizophrenia-like behavior [24]. Ddx5 acts as a 

transcriptional regulator of LINC01116 to the IL-1β promoter, activating IL-1β 

expression to promote glioma proliferation [25]. In addition, functional enrichment 

analyses of SE genes detected by SPRI, SPARK, SpatialDE, MERINGUE and BinSpect 

was also performed (Methods). We firstly compared the top 10 Gene Ontology (GO) 

terms found by these five methods for the same number of genes (top 100 (Fig. 2g), 

150 and 200 in Supplementary Fig. 2g), which indicates that SPRI obtains much more 

significant GO terms than other methods. Then, functional enrichment analyses were 

performed on whole SE genes at 0.05 FDR cutoff (Fig. 2h). Totally, 1,280 GO terms 

and 84 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched 

in the SE genes identified by SPRI, while SPARK had 1,157 enriched GO terms 

(overlap with SPRI = 663; Supplementary Fig. 2b) and 83 KEGG pathways (overlap 

= 46; Supplementary Fig. 2c), SpatialDE had only 99 (overlap = 60) enriched GO 

terms and 2 KEGG pathways (overlap = 2), MERINGUE had 1,112 (overlap= 630) 

enriched GO terms and 83 KEGG pathways (overlap = 50), and BinSpect had 788 

(overlap = 531) enriched GO terms and 38 KEGG pathways (overlap = 32). The result 

shows that many enriched GO terms detected by SPRI only are associated with 

synaptogenesis and olfactory bulb development, such as synaptic vesicle localization 

(GO 0097479; SPRI P value= 2.5× 10-6, SPARK P value = 9.39× 10-3, MERINGUE P 

value = 1.68× 10-3, BinSpect P value = 3.71× 10-3, while SpatialDE did not has this 

enriched GO term). In addition, many KEGG pathways identified by SPRI only are 

directly relevant to nervous system disease, such as Parkinson disease (KEGG 

mmu05012; SPRI P value = 1.21× 10-36, SPARK P value = 1.68× 10-1, MERINGUE P 
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value = 6.93× 10-2, BinSpect P value = 5.36× 10-2). An additional functional enrichment 

analysis was also performed on SE genes identified by SPRI only, of which the result 

is consistent with that of all SPRI SE genes (Supplementary Fig. 2h).  

 

Mouse olfactory bulb data (MOB Replicate 12) 

The second dataset is replicate layer 12 of mouse olfactory bulb (MOB Replicate 

12) [7], which has 16,034 genes measured on 282 spots. As can be seen in Fig. 3a, SPRI 

identified more potential genes within a certain range of FDRs. For MOB Replicate 12 

data, SPRI identified 1,565 genes, while SPARK identified 519 genes (overlap with 

SPRI = 302; Supplementary Fig. 4a), SpatialDE identified 285 genes (overlap with 

SPRI = 184), Trendsceek only identified 46 SE genes, MERINGUE identified 523 

genes (overlap with SPRI = 317), BinSpect identified 573 genes (overlap with SPRI = 

274). 

Similar to the result of Fig. 2, the comparison of expression levels for SE genes shows 

that SPRI SE genes can detect more highly expressed genes than existing methods (Fig. 

3b). Secondly, Fig. 3c shows that SPRI can cover most top SPARK SE genes. More 

results can be found in Supplementary Fig.4d. Thirdly, SE genes identified by SPRI 

only were highly enriched in the same marker gene list [18] (Fig. 3d).  

We also clustered the SE genes identified by SPRI and obtained five major spatial 

patterns (Supplementary Fig.4f). The same three patterns with corresponding 

glomerular layer (pattern V), and the granular cell layer (pattern II), mitral cell layer 

(pattern III), were visualized by top SPRI-ranked genes (Fig. 3e), which were also 

cross-validated by the in situ hybridization images from the Allen Brain Atlas (Fig. 3f).  

We next evaluate the biological insights found by SPRI. Manual inspection of the top 

five SE genes uniquely identified by SPRI (Supplementary Fig. 5) indicates that all of 

them are found associated with mouse olfactory bulb development. In addition to Cst3 

and Ddx5 we have discussed, Actb, Tuba1a and Rplp1 were also associated with brain 

activity. Actin beta (Actb), a structural backbone housekeeping protein, supports 

accelerated axonal growth when its putative functionally acquired missense mutation 

leads to human Baraitser-Winter syndrome, characterized by mental retardation, 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.09.479510doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.09.479510
http://creativecommons.org/licenses/by-nc-nd/4.0/


cortical malformations, and sensorineural deafness [26]. Mutations in Tuba1a, the 

major alpha-tubulin expressed during brain development, cause a range of human brain 

malformation disorders [27]. Rplp1 was found to be a ribosomal protein essential for 

brain development and cell proliferation [28]. Finally, functional enrichment analyses 

were performed. The top 10 GO terms found by SPRI, SPARK, SpatialDE, 

MERINGUE and BinSpect for top genes (100 (Fig. 3g), 150 and 200; Supplementary 

Fig. 4g) were compared.  

Since MOB Replicate 11 and MOB Replicate 12 are two different layers of the same 

experiment, to evaluate their robustness, we calculated the overlap rate for the top 10 

GO terms enriched by the top SE genes on both data (Fig. 3h). Functional enrichment 

analyses were also performed on all SE genes at 0.05 cutoff of FDR, for SPRI (Fig. 3i), 

SPARK, SpatialDE, MERINGUE and BinSpect (Supplementary Fig. 4b and c). A lot 

of enriched GO terms detected by SPRI only are associated with synaptogenesis and 

olfactory bulb development, such as structural constituent of synapse (GO 0097479; 

SPRI P value = 2.47× 10-7, SPARK P value = 1.70× 10-2, SpatialDE P = 2.61× 10-2, 

MERINGUE P = 4.58× 10-3, BinSpect did not has this enriched GO term). In addition, 

many KEGG pathways identified by SPRI only are directly relevant to nervous system 

disease, such as Huntington disease (SPRI P value = 6.03× 10-37, MERINGUE P value 

= 5.84× 10-2, BinSpect P value = 5.81× 10-2, while SPARK and SpatialDE did not has 

this enriched KEGG pathways). An enrichment analysis was also performed on SE 

genes identified by SPRI only (Supplementary Fig. 4h). 

 

Human breast cancer data (Breast Cancer Layer 2) 

The third dataset is layer 2 of breast cancer (breast cancer layer 2) [7], which has 

14,789 genes measured on 250 spots. SPRI identified more potential genes within a 

certain range of FDRs (Fig. 4a). Totally, SPRI identified 1,151 SE genes, while SPARK 

identified only 290 SE genes (overlap with SPRI = 212; Supplementary Fig. 6a), 

SpatialDE identified 115 SE genes (overlap with SPRI = 59), Trendsceek only 

identified 13 SE genes, MERINGUE identified 207 SE genes (overlap with SPRI =184), 

BinSpect identified 146 SE genes (overlap with SPRI = 100). 
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Still, the expression comparison of SE genes shows that SPRI can detect more highly 

expressed genes than existing methods (Fig. 4b). Secondly, SPRI can cover most top 

SPARK SE genes (Fig. 4c), more results can be found in Supplementary Fig. 6d. We 

also compared the SE genes identified by SPRI with known marker gene list to further 

validate our method (Fig. 4d). The list of genes related to human breast cancer was 

downloaded from CancerMine database [29]. Top SPRI-ranked genes only identified 

by SPRI were also listed (Fig. 4e) to visually evaluate the correctness of SE genes 

detected by SPRI.  

We next evaluate the biological insights found by SPRI. Manual inspection of the top 

five SE genes uniquely identified by SPRI (Supplementary Fig. 7) indicates that four 

of them are found associated with breast cancer, including ACTB, TMSB10, PABPC1 

and ACTG1. Study finds differential ACTB expression in breast cancer is associated 

with metastasis and drug resistance in breast cancer [30]. TMSB10 was upregulated in 

breast cancer tissues and its overexpression promotes invasion, proliferation and 

migration of breast cancer cells [31]. The PABPC1 gene was a downstream target of 

SNHG14 and mediates SNHG14-induced oncogenesis in breast cancer [32]. ACTG1, a 

cytoskeletal protein, is thought to be a component of the cell migration machinery, and 

when destabilized is able to inhibit the migration of cancer cells [33]. In addition, 

functional enrichment analyses were performed. We firstly compared the top 10 GO 

terms found by SPRI, SPARK, SpatialDE, MERINGUE and BinSpect for the same 

number of genes (top 100 (Fig. 4f), 150 and 200; Supplementary Fig. 6e). Then, 

functional enrichment analyses were performed on all SE genes at 0.05 FDR cutoff for 

SPRI (Fig. 4g), SPARK, SpatialDE, MERINGUE and BinSpect (Supplementary Fig. 

6b and c), which shows that many enriched GO terms detected by SPRI only are 

associated with immune responses, such as synaptic vesicle localization (GO 0002433; 

SPRI P value= 5.44× 10-5, while SPARK, SpatialDE, MERINGUE and BinSpect did 

not has this enriched GO term).  

 

Human breast cancer data (BC23209_C1_stdata) 

The last dataset is BC23209_C1_stdata of breast cancer (breast cancer layer 2) [5], 
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which has 16,859 genes measured on 294 spots. SPRI identified 812 genes, while 

SPARK identified 142 genes, SpatialDE identified 210 genes, Trendsceek identified 

216 SE genes, MERINGUE identified 215 SE genes and BinSpect identified 9 SE genes, 

respectively (Fig. 5a, Supplementary Fig. 8a). Consistent with previous analysis, 

SPRI can detect more highly expressed SE genes (Fig. 5b) and can cover most top 

ranked SE genes (Fig. 5c, Supplementary Fig. 8d). We also compared the SE genes 

identified by SPRI with the same marker gene list [29] related human breast cancer (Fig. 

5d).  

After visualization of SE genes detected by SPRI (Fig. 5e), we evaluate the biological 

insights found by SPRI. Manual inspection of the top five SE genes uniquely identified 

by SPRI (Supplementary Fig. 9) indicates that three of them have been found 

associated with breast cancer, including, RPS21, PPP1CA and TXNIP. RPS21’s role in 

breast cancer is not clear now, but one transcript of RPS, AA-RPS21, is differentially 

expressed in cancerous tissues, indicating its potential driver role in breast cancer [34]. 

PPP1CA together with PRKACG and PRKAR1B were found to be the most strongly 

associated with breast cancer–specific survival [35]. Study found that inhibition of 

TXNIP via Myc drove Triple-negative breast cancers aggressiveness and was associated 

with decreased metastasis-free survival and decreased overall survival in breast cancer 

[36]. For functional enrichment analyses, we firstly compared the top 10 GO terms 

found by SPRI, SPARK, SpatialDE, MERINGUE and BinSpect for the same number 

of genes (top 100 (Fig. 5f), 150 and 200; Supplementary Fig. 8e). Then, functional 

enrichment analyses were performed on all SE genes at 0.05 FDR cutoff for SPRI (Fig. 

5g), SPARK, SpatialDE, MERINGUE and BinSpect (Supplementary Fig. 8b and c). 

Many enriched GO terms detected by SPRI only are associated with immune responses, 

such as posttranslational protein targeting to endoplasmic reticulum membrane (GO 

0006620; SPRI P value= 5.01× 10-4, while SPARK, SpatialDE, MERINGUE and 

BinSpect did not has this enriched GO term). An additional functional enrichment 

analysis was also performed on SE genes identified by SPRI only (Supplementary Fig. 

8f).  
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Discussion 

The recent rapid development of high throughput spatial transcriptomics technology 

opens a door how to understand the spatial resolved biological behaviors of genes and 

cells. One essential and initial step of such analysis is to detect genes with spatial 

expression patterns. 

In this work, we propose a novel information-based spatial pattern gene identification 

method, SPRI, to model spatial raw count data directly. It converts the SE gene 

detection problem to a dependencies mining problem between spatial coordinate pairs 

with raw gene read count as the observed frequencies. Such strategy distinguishes SPRI 

from prior existing SE methods relying on certain model or assumptions. For example, 

methods based on normalization data assume implicitly that the total number of RNA 

transcripts is identical, which is not always true [37]. Other methods modeling raw 

count, like SPARK, also rely on certain parametric statistical model/hypothesis or 

designed kernel functions, which still limits the ability to identify various possible 

spatial distribution patterns.  

To evaluate SPRI’s performance, we compared it with five existing methods on four 

publicly available datasets comprehensively. The results consistently indicate that SPRI 

can robustly identify more genes with true spatial expression patterns validated by In 

situ hybridization experiments, and that SE genes identified by SPRI uniquely are more 

spatially variable and are supported by recent studies. 

 

Methods 

SPRI: model and algorithm 

In this work, we convert the problem of identifying genes with spatial expression 

patterns into the problem of identifying dependencies on (X, Y) coordinate observations 

based on the raw count expression of genes in the two-dimensional space of cells/spots. 

 

(a) Computing the total information coefficient for each gene. The idea of TIC [17] 

is based on MIC [16], in which the range of two variables is partitioned by a grid to 
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evaluate if there is a dependency between the two variables. Specifically, given a set of 

two jointly observed data (x, y) for variables (X, Y), the mutual information 

𝐼"(𝑋, 𝑌), 𝑘, 𝑙* is computed under all k-by-l grids: 

𝐼"(𝑋, 𝑌), 𝑘, 𝑙* = ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔 2 3(4,5)
3(4)3(5)

64∈85∈9 																													⑴ 

where the number of grids kl < B. B depends on the number of samples and is usually 

set by B = n0.6. For each k-by-l grid, the maximum mutual information is retained: 

 

       𝐼∗"(𝑋, 𝑌), 𝑘, 𝑙* = max
?∈?(@,A)

𝐼((𝑋, 𝑌)|?)                  ⑵ 

 

For a fair comparison under different grid divisions, the maximum mutual information 

mk,l under each grid G are normalized to between 0 and 1, constituting characteristic 

matrix M = (mk,l).  

𝑀D(𝐷)@,A =
F∗(G,@,A)

HIJKLM{@,A}
                        ⑶ 

 

MIC and TIC are two different properties of the characteristic matrix. MIC is the 

supremum value in M, while TIC is the sum of M. Compared to MIC, which only 

considers only the maximal value of the characteristic matrix and may throw away 

meaningful information, TIC is able to obtain a smaller bias and better power by 

summing over all entries in the independent case. In other words, TIC is able to measure 

the presence or absence of dependencies between two variables. The definitions of MIC 

and TIC are as follow: 

 

           𝑀𝐼𝐶(𝐷) = max𝑀D(𝐷)@,A                     ⑷ 

 

𝑇𝐼𝐶(𝐷) = ∑ 𝑀D(𝐷)@,A@ARS(M)                    ⑸ 

 

We apply TIC to determine whether there is a dependency relationship between two-

variable (X, Y) to identify genes with spatial expression patterns, and the higher the TIC 
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value, the more likely the gene has a spatial expression pattern. For all genes we gave 

a SE gene ranking based on TIC values. 

 

(b) Background correction. Considering the effect of the spatial shape of the tissue, 

we added uniformly distributed background spot locations (Fig. 1a) to convert the 

shape to rectangle while preserving the original spot locations. The expression of the 

background is set as the statistical mean value [38] of the gene as follow: 

𝑚𝑒𝑎𝑛 = X
Y
𝑄Y +

X
\
(𝑄X + 𝑄])                  ⑹ 

where Q1, Q2, and Q3 are the first, second and third quartiles of current gene expression 

respectively. 

 

(c) Identifying statistically significant SE genes with permutation test. To compare 

with other algorithms, we performed a permutation test on the top 10% of genes in the 

TIC ranking. In the permutation test, we keep the spot locations fixed, randomly disrupt 

gene expression, and then recalculate the TIC values. The Pvalue of each gene is 

computed as follow: 

 

𝑃	𝑣𝑎𝑙𝑢𝑒 = {K|aFbcdaFbefgh,LiX,Y,]…,k}
l

              ⑺ 

 

where 𝑇𝐼𝐶L is the TIC value for the i-th permutation, and 𝑇𝐼𝐶mnop is the original TIC 

value of gene expression; N is the number of total permutation times, we set N to 10,000 

in our experiment. After getting the P values for each gene, we used Benjamini-

Yekutieli in the python package of “statsmodels” to control FDR. The genes with FDR 

<0.05 are considered as significant SE genes. 

 

 

Gene sets, cluster, visualization and functional enrichment analysis 

For these spatial transcriptomics datasets, we downloaded lists of known genes to 

validate the SE genes recognized by different methods. For the mouse olfactory bulb 
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data, we downloaded a list from of 2,030 cell type-specific marker genes identified in 

recent single-cell RNA sequencing studies in the olfactory bulb [18]. For the human 

breast cancer data, we downloaded a list of genes associated with breast cancer from 

the CancerMine database (http://bionlp.bcgsc.ca/cancermine/). These breast cancer 

related genes are composed of three parts, namely cancer drivers, oncogenes, and tumor 

suppressors. SE genes were validated by these gene lists respectively. Besides, the 

clustering code provided by SPARK author was directly used to cluster SE genes 

(FDR<0.05) identified by SPRI to five clusters following SPARK paper. Furthermore, 

we follow the visualization strategy of gene spatial expression patterns proposed by 

SPARK and the raw count was directly used in Supplementary Materials. In SPARK, 

variance-stabilizing transformation was performed on the raw count data and the log-

scale total counts was adjusted to get a relative gene-expression. Finally, the same 

number of top SE genes and whole SE genes at a 0.05 FDR cutoff identified by SPRI 

and SPARK were used for functional enrichment analysis including GO terms analysis 

and KEGG pathways analysis. Following the SPARK paper, we adopted the R package 

of “clusterProfiler (v3.18.1)” to perform all functional enrichment analysis. In the 

package, we set the P value correction method as the default 'BH' and the cutoff of FDR 

as 0.05. 

 

 

Spatial transcriptomics datasets. 

In this work, four spatial transcriptomics datasets including mouse olfactory bulb data 

and two human breast cancer data, were downloaded from Spatial Research 

(https://www.spatialresearch.org/). These spatial transcriptomics datasets consist of two 

components: the spatial locations(spots) and the gene expression (read counts) observed 

at these spatial locations. 

For the two mouse olfactory bulb datasets, we adopted the ‘MOB Replicate 11’ file and 

‘MOB Replicate 12’ file of [7] for analysis. ‘MOB Replicate 11’ file contains 16,218 

genes observed on 262 spots and ‘MOB Replicate 12’ file contains 16,034 genes 

observed on 282 spots. For the two human breast cancer datasets, we adopted the 
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‘Breast Cancer Layer 2’ file of [7] and ‘BC23209_C1_stdata’ file of [5] for analysis. 

‘Breast Cancer Layer 2’ file contains 14,789 genes observed on 251 spots and 

‘BC23209_C1_stdata’ file contains 16,859 genes observed on 294 spots. Following the 

SPARK paper, we filtered out spots less than ten total read counts. Through data 

filtering, we finally analyzed on 260 spots in ‘MOB Replicate 11’ data, 279 spots in 

‘MOB Replicate 12’ data, 250 spots in ‘Breast Cancer Layer 2’ data, 294 spots in 

‘BC23209_C1_stdata’ data. Then we select the top 10% of TIC ranked genes for 

permutation test.  

 

 

Comparison of methods 

We compare our method SPRI with five prior algorithms for spatial expression pattern 

recognition of genes, including SPARK [14], SpatialDE [11], Trendsceek [10], 

MERINGUE [12] and BinSpect [13]. SpatialDE, Trendsceek, MERINGUE and 

BinSpect are based on normalized data and SPARK is based on raw count data.  

The first method we compared with is the SPARK (R package SPARK; v1.1.0), we 

directly use SPARK's code on github for analysis 

(https://github.com/xzhoulab/SPARK-Analysis). Following the SPARK paper, we 

performed the same data preprocessing on the four spatial transcriptomic data. 

Specifically, genes that are expressed in less than 10% of the spots were filtered out, 

and only spots containing at least ten total read counts were retained. According to the 

SPARK paper, if the adjusted P value (i.e., FDR) output by SPARK is below the 

threshold of 0.05, the identified SE is significant. 

The second method we compared with is the SpatialDE (python package SpatialDE; 

v.1.1.3), we directly use SpatialDE’s code downloaded from github for analysis 

(https://github.com/Teichlab/SpatialDE). Following the SpatialDE paper, the SE gene 

is considered significant if the Q value (i.e.,FDR) was below the threshold of 0.05. 

The third method we compared with is the Trendsceek (R package trendsceek; v.1.0.0). 

We directly used the code provided from github for analysis 

(https://github.com/edsgard/trendsceek). Following the Trendsceek paper, we 
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performed the same data preprocessing on the four spatial transcriptomic data. 

Specifically, genes that express less than three spots were filtered out, and only spots 

containing at least five read counts were retained. Then the raw count data were 

processed through log10 transformation. For the real data, the top 500 variable genes 

were taken for analysis. The SE gene is considered significant if the p.bh value 

(i.e.,FDR) was below the threshold of 0.05. 

The fourth method we compared with is MERINGUE (R package MERINGUE; v.1.0). 

The code provided on github was used for analysis (https://github.com/JEFworks-

Lab/MERINGUE). Following MERINGUE paper, poor spots (fewer than 100 read 

counts) and poor genes (fewer than 100 read counts) were filtered out. For 

BC23209_C1_stdata data, poor spots (fewer than 1 read counts) and poor genes (fewer 

than 1 read counts) were filtered out. Then Benjamini–Yekutieli correction was 

performed to control FDR, the SE gene is regarded significant if the FDR was below 

the threshold of 0.05. 

The last method we compared with is the BinSpect (R package Giotto; v.1.1.0). The 

code provided from github was used for analysis (https://rubd.github.io/Giotto_site/). 

BinSpect provide two different ways in binarization, BinSpect-kmens and BinSpect-

rank. Since the difference between the results of the two approaches is not large, we 

only used BinSpect-kmens for comparison. The same data pre-processing in Visium 

data was adopted. For BC23209_C1_stdata data, all genes were included for analysis. 

Then Benjamini-Yekutieli correction was performed to control FDR, the SE gene is 

regarded significant if the FDR was below the threshold of 0.05. 

 

 

Data availability 

Four publicly available spatial transcriptomic datasets are used in this paper, including 

two mouse olfactory bulb data and two human breast cancer data 

(https://www.spatialresearch.org/). 

 

Code availability 
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SPRI is implemented in Python. All source code can be found in the supporting website: 

https://github.com/xiaoyeye/SPRI, and all the published data and code can be 

downloaded as described in the paper. 
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Figures 

 

Fig.1 | Overview of the SPRI method and results on the simulation dataset. a, 

Overview of SPRI algorithm. SPRI converts the spatial gene pattern problem to 

association detection problem between coordinates values of (x, y) with gene read count 

as the observed frequencies and then calculates their total information coefficient (TIC) 

using all possible x-y-grids. b, Precision plots for all four different simulation patterns, 

including Hotspot, Streak, Step gradient and Linear gradient, which display the 

proportion of true positive samples among retrieved genes (Y-axis) detected by the 

compared methods at different FDRs (X-axis).  
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Fig.2 | Results of the mouse olfactory bulb data (MOB Replicate 11). a, Power plot 

that displays the number of genes with SE patterns (Y-axis) detected by six different 

methods, i.e., SPRI (pink), SPARK (light blue), SpatialDE (green), Trendsceek (purple), 

MERINGUE (dark blue) and BinSpect (orange) at different FDRs (X-axis), respectively. 

b, Enrichment of SE genes that are verified in the study of Tepe et al. [18]. SE genes 

are defined uisng a 0.05 FDR cutoff and P value is calculated by Fisher’s exact test. c, 

Percentage (pink/blue) of SPRI/SPARK SE genes that are verified in SPARK/SPRI top-

ranked SE genes. d, Boxplot of the expression levels of SE genes uniquely identified 

by SPRI, SPARK, SpatialDE, MERINGUE, BinSpect and union set of the five. Each 

gray point represents the average expression of an SE gene across all spots. e, 

Visualization of gene spatial expression patterns from MOB Replicate 11 dataset for 

the two genes only detected by SPRI (Scg2 and Gabrb3) plus four genes that are 

detected by both SPRI and SPARK. The color represents relative expression level of 
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the gene (pink: high; green: low). f, In situ hybridization obtained from the Mouse Brain 

Atlas of the Allen Brain Atlas for three representative genes (Scg2, Ptgds, and Gabrb3). 

g, GO enrichment analysis on top 100 SE genes by SPRI, SPARK, SpatialDE, 

MERINGUE and BinSpect respectively. h, Bubble plot of enriched GO terms and 

KEGG pathways (purple) on the whole SE genes at FDR cutoff of 0.05 by SPRI. GO 

term is colored according to three different categories: Biological Processes (blue), 

Cellular Components (green), and Molecular Functions (yellow). 

 
  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.09.479510doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.09.479510
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Fig.3 | Results of the mouse olfactory bulb data (MOB Replicate 12). a, Power plot 

that displays the number of genes with SE patterns (Y-axis) detected by six different 

methods respectively. b, Expression levels of SE genes uniquely identified by SPRI, 

SPARK, SpatialDE, MERINGUE, BinSpect and union set of the five. c, Percentage 

(pink/blue) of SPRI/SPARK SE genes that are verified in SPARK/SPRI top-ranked SE 

genes. d, Enrichment of SE genes that are verified in the study of Tepe et al.[18]. e, 

Visualization of gene spatial expression patterns from MOB Replicate 12 dataset for 

representative genes. f, In situ hybridization obtained from the Mouse Brain Atlas of 

the Allen Brain Atlas for three genes (Cck, Ptgds, and Mbp). g, GO enrichment analysis 

on top 100 SE genes by SPRI, SPARK, SpatialDE, MERINGUE and BinSpect 

respectively. h, Overlap rate of the top 10 GO terms detected by SPRI, SPARK, 
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SpatialDE, MERINGUE and BinSpect between MOB Replicate 11 and MOB Replicate 

12 data for the same number of genes. i, Bubble plot of enriched GO terms and KEGG 

pathways (purple) on the whole SPRI SE genes.  
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Fig.4 | Results of the human breast cancer data (Breast Cancer Layer 2). a, Power 

plot that displays the number of genes with SE patterns (Y-axis) detected by six different 

methods at different FDRs (X-axis), respectively. b, Boxplot of expression levels of SE 

genes identified by SPRI, SPARK, SpatialDE, MERINGUE and BinSpect in Breast 

Cancer Layer 2 data. c, Percentage (pink/blue) of SPRI/SPARK SE genes that are 

verified in SPARK/SPRI top-ranked SE genes. d, Enrichment of SE genes that are 

verified in the study of CancerMine database. e, Visualization of gene spatial expression 

patterns for five genes that are detected by SPRI only. The first one is hematoxylin & 

eosin stained brightfield image of Breast Cancer Layer 2 from ref. [7]. f, GO enrichment 

analysis on top 100 SE genes by SPRI, SPARK, SpatialDE, MERINGUE and BinSpect 

respectively. g, Bubble plot of enriched GO terms and KEGG pathways (purple) on the 

whole SPRI SE genes at FDR = 0.05.  
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Fig.5 | Results of the human breast cancer data (BC23209_C1_stdata). a, Power 

plot that displays the number of genes with SE patterns (Y-axis) detected by six different 

methods, i.e., SPRI, SPARK, SpatialDE, Trendsceek, MERINGUE and BinSpect, at 

different FDRs (X-axis), respectively. b, Boxplot shows the expression levels of SE 

genes identified by SPRI, SPARK, SpatialDE, MERINGUE and BinSpect in 

BC23209_C1_stdata. c, Percentage (pink/blue) of SPRI/SPARK SE genes that are 

verified in SPARK/SPRI top-ranked SE genes. d, Enrichment of SE genes that are 

verified in the study of CancerMine database. e, Visualization of gene spatial expression 

patterns for five genes that are identified by SPRI only. The first one is hematoxylin & 

eosin stained brightfield image of BC23209_C1_stdata from ref. [5]. f, GO enrichment 

analysis on top 100 SE genes by SPRI, SPARK, SpatialDE, MERINGUE and BinSpect 

respectively. g, Bubble plot of enriched GO terms and KEGG pathways (purple) on the 

whole SPRI SE genes.  

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.09.479510doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.09.479510
http://creativecommons.org/licenses/by-nc-nd/4.0/

