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Abstract1

Knowledge of one’s own behavioral state—whether one is walking, grooming, or resting—is2

critical for contextualizing sensory cues including interpreting visual motion and tracking odor3

sources. Additionally, awareness of one’s own posture is important to avoid initiating destabilizing4

or physically impossible actions. Ascending neurons (ANs), interneurons in the vertebrate spinal5

cord or insect ventral nerve cord (VNC) that project to the brain, may provide such high-fidelity6

behavioral state signals. However, little is known about what ANs encode and where they convey7

signals in any brain. To address this gap, we performed a large-scale functional screen of AN8

movement encoding, brain targeting, and motor system patterning in the adult fly, Drosophila9

melanogaster. Using a new library of AN sparse driver lines, we measured the functional proper-10

ties of 247 genetically-identifiable ANs by performing two-photon microscopy recordings of neural11

activity in tethered, behaving flies. Quantitative, deep network-based neural and behavioral anal-12

yses revealed that ANs nearly exclusively encode high-level behaviors—primarily walking as well13

as resting and grooming—rather than low-level joint or limb movements. ANs that convey self-14

motion—resting, walking, and responses to gust-like puff stimuli—project to the brain’s anterior15

ventrolateral protocerebrum (AVLP), a multimodal, integrative sensory hub, while those that16

encode discrete actions—eye grooming, turning, and proboscis extension—project to the brain’s17

gnathal ganglion (GNG), a locus for action selection. The structure and polarity of AN projec-18

tions within the VNC are predictive of their functional encoding and imply that ANs participate19

in motor computations while also relaying state signals to the brain. Illustrative of this are20

ANs that temporally integrate proboscis extensions over tens-of-seconds, likely through recurrent21

interconnectivity. Thus, in line with long-held theoretical predictions, ascending populations con-22

vey high-level behavioral state signals almost exclusively to brain regions implicated in sensory23

feature contextualization and action selection.24

1 Introduction25

To generate adaptive behaviors, animals [1] and robots [2] must not only sense their environment but26

also be aware of their own behavioral state including low-level movements of their limbs and high-27

level behaviors such as walking and resting. This self-awareness has long been theorized to overcome28

at least two major challenges for robust, autonomous control. First, knowing if one is at rest or in29

motion permits the accurate interpretation of whether sensory cues, like visual motion during feature30

tracking or odor intensity fluctuations during plume following, result from exafference (the movement31

of objects in the world), or reafference (self-motion with respect to stationary objects) [1]. Second,32

being aware of one’s current posture enables the selection of appropriate future actions that are not33

destabilizing, or physically impossible.34

In line with these theoretical predictions, neural representations of behaviors have been observed35

widely across the brains of mice [3–5], and in the fly, Drosophila melanogaster [6–9]. Furthermore,36
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studies in Drosophila have supported roles for behavioral state signals in sensory contextualization37

(flight [6] and walking [7] modulate neurons in the visual system [8, 10]), and action selection (an38

animal’s walking speed regulates its decision to run or freeze in response to a fear-inducing stimu-39

lus [11]).40

Despite these advances, the cellular origins of behavioral state signals in the brain remain largely41

unknown. On one hand, they might arise from efference copies generated by descending neurons42

(DNs) in the brain that project to and drive downstream motor systems [1]. However, these efference43

copies would not be expected to provide the most precise readout of one’s own behavioral state: the44

brain’s descending commands will be sculpted by musculoskeletal interactions with the environment.45

Instead, a more categorically and temporally precise readout of ongoing behaviors might be obtained46

from ascending neurons in the motor system that process proprioceptive and tactile signals and then47

convey a holistic representation of behavioral states to the brain. Although these behavioral signals48

may come from a subset of primary mechanosensory neurons in the limbs [12], they are more likely49

to be computed and conveyed by second- and higher-order ascending neurons (ANs) residing in the50

spinal cord of vertebrates [13–16], or insect ventral nerve cord (VNC) [17, 18]. In Drosophila, ANs51

have been shown to process limb proprioceptive and tactile signals, likely sculpting a more complex52

and ethologically-salient readout of ongoing movements [12,19,20].53

To date only a few genetically-identifiable AN cell types have been studied in behaving animals—54

primarily in the fly, Drosophila melanogaster, which has a relatively small number of neurons that55

can also be genetically targeted for repeated investigation. These studies support the hypothesis that56

ANs are a prominent source of behavioral state signals in the brain. First, microscopy recordings of57

AN terminals in the brain have shown that Lco2N1 and Les2N1D ANs are active during walking [21],58

and that LAL-PS-ANs convey walking signals to the visual system [22]. Second, artificial activation59

of pairs of PERin ANs [23], and Moonwalker ANs [24] regulates action selection and behavioral60

persistence, respectively.61

These first insights urgently motivate the investigation of three fundamental questions via a more62

comprehensive and quantitative analysis of large AN populations. First, what information do ANs63

convey to the brain (Figure S1A)? They might encode low-level movements of the joints or limbs, or64

high-level behavioral states like whether an animal is walking, or grooming (Figure 1A-i). Second,65

where do ANs convey this information to in the brain (Figure S1B)? They might project widely66

across brain regions, or narrowly target circuit hubs with specific functions (Figure 1A-ii). Third,67

what can an AN’s patterning within the VNC tell us about its encoding and computational role (Fig-68

ure 1A-iii)? Answering these three questions would open the door to a cellular-level understanding69

of how neurons encode behavioral states by integrating proprioceptive, tactile, and other sensory70

feedback signals. It would also enable the study of how behavioral state signals are incorporated by71

brain circuits to intelligently contextualize multimodal cues and to select appropriate future actions.72

To address these questions, we developed and used a number of advanced experimental and73

analytical tools. First, we screened a library of split-Gal4 Drosophila driver lines (R.M. and B.J.D.,74

unpublished). These, along with the published MAN-spGal4 [24] and 12 sparsely expressing Gal475

lines [25], collectively allowed us to gain repeated genetic access to 247 ANs (Figure 1B; Table 1).76

Using these driver lines and a multi-color flip-out (MCFO) approach [26], we then quantified the77

projections of ANs within the brain and VNC (Figure 1C). Second, we screened the encoding78

of these ANs through two-photon microscopy functional recordings of neural activity within the79

VNC of tethered, behaving flies [27]. To overcome noise and movement-related deformations in80

imaging data, we developed and used ‘AxoID’, a deep learning-based software to semi-automatically81

identify and track axonal Regions-of-Interest (ROIs)(see Methods). Third, to precisely quantify joint82

angles and limb kinematics, we used a multicamera array to record behavior during two-photon83

imaging. We processed resulting videos using DeepFly3D, a deep learning-based 3D pose estimation84

software [28]. By combining these 3D joint positions with measured spherical treadmill rotations,85

a proxy for locomotor velocities [29], we could then segment and classify behavioral time-series and86

study the relationship between behavioral states and ongoing neural activity using linear models.87

These analyses uncovered a number of fundamental characteristics of ANs. First, as a population,88

ANs do not project broadly across the brain but principally target two hubs: (i) the anterior ven-89

trolateral protocerebrum (AVLP), a site for higher-order multimodal convergence—vision [30], olfac-90

tion [31], audition [32–34], and taste [35]—, and (ii) the gnathal ganglion (GNG), a region important91

for action selection [23, 36, 37]. Second, ANs encode high-level behavioral states, primarily walking,92

rather than low-level joint or limb movements. Third, distinct behavioral state signals are system-93

2

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 9, 2022. ; https://doi.org/10.1101/2022.02.09.479566doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.09.479566
http://creativecommons.org/licenses/by-nc-nd/4.0/


atically conveyed to different brain targets. The AVLP is informed of self-motion states like resting,94

walking, and the presence of gust-like stimuli, likely to contextualize sensory cues. By contrast, the95

GNG receives precise signals about actions—turning, eye grooming, and proboscis extension—likely96

to guide action selection.97

To understand the relationship between AN behavioral state encoding and brain projection pat-98

terns, we then performed a more in-depth investigation of seven AN classes. We observed a correspon-99

dence between the morphology of ANs in the VNC and their behavioral state encoding: ANs with100

neurites targeting all three VNC neuromeres (T1-T3) encode global locomotor states (e.g., resting101

and walking) while those with projections only to the T1 prothoracic neuromere encoded foreleg-102

dependent behaviors (e.g., eye grooming). Notably, AN axons were also present within the VNC.103

This suggests that ANs are not simply passive relays of behavioral state signals to the brain but104

that they may also help to orchestrate motor actions and/or compute state encodings. This latter105

possibility is illustrated by a class of ‘PE-ANs’ that seems to encode the number of proboscis exten-106

sions generated over tens of seconds, possibly through recurrent interconnectivity within the VNC.107

In summary, these data provide a first comprehensive view of ascending signals to the brain, opening108

the door for a cellular-level understanding of how behavioral states are computed, and how ascending109

motor signals enable the brain to contextualize sensory signals and select appropriate future actions.110

2 Results111

2.1 A large-scale screen of ascending neuron movement encoding, brain112

targeting, and motor system patterning113

We performed a functional screen of 108 driver lines that target small sets of ANs (Figure 1B)114

to address to what extent they encode low-level joint and limb movements, or high-level behavioral115

states. To quantify limb movements, we recorded each fly using six synchronized cameras (a sev-116

enth camera was used to position the fly on the ball) (Figure 1D). We processed these videos117

using DeepFly3D [28], a markerless 3D pose estimation software that outputs joint positions and118

angles (Figure 1E). We also measured spherical treadmill rotations using two optic flow sensors [29]119

and converted these into three fly-centric velocities: forward (mm/s), sideways (mm/s), and yaw120

(degree/s) (Figure 1F) that correspond to forward/backward walking, side-slip, and turning, re-121

spectively. A separate DeepLabCut [38] deep neural network was used to track proboscis extensions122

(PEs) from one camera view (Figure S2). We used a puff of CO2 to elicit behavior in sedentary123

animals.124

Synchronized with movement quantification, we recorded the activity of ANs by performing two-125

photon imaging of the cervical connective within the thoracic ventral nerve cord (VNC) [27]. The126

VNC houses motor circuits that are functionally equivalent to those in the vertebrate spinal cord (Fig-127

ure 1G, left). Neural activity was read-out as changes in the fluorescence of a genetically-encoded128

calcium indicator, OpGCaMP6f, expressed in a small number of ANs. Simultaneously, we recorded129

tdTomato fluorescence as an anatomical fiduciary. Imaging coronal (x-z) sections of the cervical con-130

nective allowed us to keep AN axons within the imaging field-of-view despite behaviorally-induced131

motion artifacts that would disrupt conventional horizontal (x-y) section imaging [27]. Sparse sp-132

Gal4 and Gal4 fluorescent reporter expression facilitated axonal region-of-interest (ROI) detection.133

To semi-automatically segment and track AN ROIs across thousands of imaging frames, we devel-134

oped and used AxoID, a deep network-based software (Figure 1G, right)(see Methods). AxoID135

also helped perform ROI detection despite significant movement-related ROI translations and defor-136

mations as well as, for some driver lines, relatively low transgene expression levels and suboptimal137

imaging signal-to-noise ratios (SNR).138

To relate AN neural activity with ongoing limb movements, we trained classifiers using 3D139

joint angles and spherical treadmill rotational velocities to accurately and automatically detect nine140

behaviors—forward and backward walking, spherical treadmill pushing, resting, eye and antennal141

grooming, foreleg and hindleg rubbing, and abdominal grooming (Figure 1H). Additionally, we142

classified non-orthogonal, co-occurring behaviors like proboscis extensions (PEs) and recorded the143

timing of CO2 puff stimuli (Video 1).144

Our final dataset consisted of neural activity recordings from 247 ANs targeted using 70 sparsely-145

labelled driver lines (more than 32 h of data). These data included (i) anatomical projection patterns,146
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and temporally synchronized (ii) neural activity, (iii) joint angles, and (iv) spherical treadmill rota-147

tions. Here we focus on the results for 157 of the most active ANs taken from 50 driver lines (more148

than 23 h of data) (Video 2). The remainder were excluded due to redundancy with other driver149

lines, a lack of neural activity, or a low SNR (as determined by smFP confocal imaging, or two-photon150

imaging of tdTomato and OpGCaMP6f). Representative data from each of these selected driver lines151

illustrate the richness of our dataset (Videos 3-52).152

2.2 Ascending neurons encode high-level behaviors153

With these data, we first asked to what extent AN activity encode low-level joint angles and leg154

movements, or high-level behaviors like walking, resting, and grooming (Figure S1A). We expected155

that, unlike primary limb mechanosensory neurons, second- and higher-order ANs would more likely156

integrate and process proprioceptive and tactile sensory signals to encode high-level behavioral states.157

This remained unknown because previous studies of AN encoding [21–23] did not quantify movements158

at high enough resolution, or study more than a few ANs in total. To address this gap, with the159

data from our large-scale functional screen, we performed a linear regression analysis to quantify160

the degree to which the movements of individual joints, legs, pairs of legs, or epochs of high-level161

behaviors could explain the time-course of AN activity. Specifically, we quantified the unique ex-162

plained variance (UEV, or ∆R2) for each movement, or behavioral regressor via cross-validation by163

subtracting a reduced model R2 from the full model R2. In the reduced model, a regressor of interest164

was shuffled while keeping the other regressors intact (see Methods). To compensate for the temporal165

mismatch between fast leg movements and slower calcium signal decay dynamics, every joint angle166

and behavioral state regressor was convolved with a decay kernel chosen to maximize the explained167

variance in neural activity.168

First we examined to what extent individual joint angles could explain the activities of 157 ANs.169

We confirmed that the vast majority of joint angles do not covary with others—with the exception170

of the middle and hindleg CTr and FTi pitch angles which were highly correlated to one another171

(Figure S3). This is important because if two regressors are highly correlated, one regressor can172

compensate when shuffling the other, resulting in a false negative outcome. We did not find any173

evidence of joint angles explaining AN activity (Figure 2A). Similarly, individual leg movements174

(tested by shuffling all of the joint angle regressors for a given leg) could not explain the variance of175

AN activity (Figure 2B). Additionally, with the exception of ANs from SS25469 whose activities176

could be explained by movements of the forelegs (Figure 2C), AN activity largely could not be177

explained by the movements of pairs of legs. By contrast, the activity of ANs could be explained178

by high-level behavioral states (Figure 2D). Most ANs encoded self-motion—forward walking and179

resting—but some also encoded specific actions like eye grooming, proboscis extensions, as well as180

responses to puff stimuli.181

Our regression approach is conservative and avoids false positives. However, because is prone to182

false negatives for infrequently occurring behaviors like abdominal grooming and hindleg rubbing, as183

an additional alternative approach, we measured the mean normalized ∆F/F for each AN for each184

high-level behavioral state. Using this complementary approach, we could confirm and extend our185

results (Figure S4). We considered results from both our linear regression and mean normalized186

∆F/F analyses when selecting neurons for further in-depth analyses.187

2.3 Ascending neurons target integrative sensory, or action selection188

brain regions as a function of their encoding189

Having identified high-level behavioral state encoding for a large population of ANs, we next won-190

dered to what extent these distinct state signals are routed to specific and distinct brain targets191

(Figure S1B). On one hand, individual ANs might project diffusely to multiple brain regions. Al-192

ternatively, they might target one, or only a few regions. For instance, locomotor signals carried by193

walking and resting encoding ANs might be conveyed to brain regions to contextualize time-varying194

visual and olfactory cues with respect to an animal’s own self-motion. On the other hand, ANs that195

signal when an animal is grooming might target action selection brain regions to prohibit future ac-196

tions that might result in unstable postures. To address these possibilities, we quantified the brain197

projections of all 157 ANs by staining and imaging the expression of spFP and MCFO reporters in198

these neurons (Figure 1C).199

4

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 9, 2022. ; https://doi.org/10.1101/2022.02.09.479566doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.09.479566
http://creativecommons.org/licenses/by-nc-nd/4.0/


Strikingly, we found that AN projections to the brain were largely restricted to two regions: the200

AVLP, a site known for multimodal, integrative sensory processing [30–35] and the GNG, a hub for201

action selection [23,36,37] (Figure 3A). ANs encoding resting and puff-responses almost exclusively202

target the AVLP (Figure S5A,B) providing a robust means for interpreting whether sensory cues203

arise from self-motion or the movement of objects in the external environment: while resting, an204

animal can perceive visual motion due to moving objects, and odor fluctuations due to gust-like puffs205

of air. By contrast, the GNG is targeted by ANs encoding a wide variety of behavioral states including206

walking, eye grooming, and proboscis extensions (Figure S5A,B). These signals may ensure that207

future actions are compatible with ongoing ones.208

Because AN dendrites and axons within the VNC might help to compute behavioral state signals,209

we next asked to what extent their projection patterns within the VNC are predictive of an AN’s210

encoding. For example, ANs encoding resting might require sampling each VNC leg neuromere (T1,211

T2, and T3) to confirm that all legs are inactive. By quantifying AN projections within the VNC212

(Figure 3B), we found that, indeed, an AN’s VNC projection pattern can be predictive of behavioral213

state encoding. As hypothesized, ANs encoding resting (e.g., SS27485) all project to every VNC leg214

neuromere (Figure S5A,C). By contrast, ANs encoding foreleg-dependent eye grooming (SS25469)215

only project within T1, the VNC neuromere that houses motor circuits that control the front legs216

(Figure S5A,C). Next, to more precisely investigate how the morphological features of ANs relate to217

behavioral state encoding, we performed a more detailed study of a diverse subset of ANs that encode218

resting, puff-responses, walking, turning, foreleg-dependent behaviors, eye grooming, and proboscis219

extensions.220

2.4 Distinct rest- and puff-encoding by morphologically similar ANs221

AN classes that encode resting and puff responses had coarsely similar projection patterns: both222

almost exclusively target the brain’s AVLP while also both sampling from all three VNC leg neu-223

romeres (T1-T3) (Figure S5). We therefore next investigated which more detailed morphological224

features might be predictive of their very divergent encoding.225

We addressed this question by closely examining the functional and morphological properties of226

specific pairs of ‘rest-ANs’ (SS27485) and ‘puff-ANs’ (SS36112). Neural activity traces of rest-ANs227

and puff-ANs could be reliably predicted by regressors for resting (Figure 4A), and puff-stimuli228

(Figure 5A), respectively. This was statistically confirmed by comparing behavior-triggered averages229

of AN responses at the onset of resting (Figure 4B), or puff stimulation (Figure 5B), respectively.230

Importantly, although CO2 puffs frequently elicited brief periods of backward walking, close analysis231

revealed that puff-ANs primarily respond to gust-like puffs and do not encode backward walking232

(Figure S6). They also did not encode responses to CO2 specifically: the same neurons responded233

equally well to air puffs (Figure S7).234

As mentioned, rest- and puff-ANs, despite their very distinct encoding, exhibit similar innervation235

patterns in the brain and VNC. However, MCFO-based single neuron analysis revealed a few subtle236

but important differences. First, rest- and puff-AN cell bodies are located in the T2 (Figure 4C)237

and T3 (Figure 5C) neuromeres, respectively. Second, although both AN classes project medially238

into all three leg neuromeres (T1-T3), rest-ANs have a simpler morphology (Figure 4D) compared239

with the more complex arborization of puff-ANs in the VNC (Figure 5D). In the brain, both AN240

types project to nearly the same ventral region of the AVLP. There, they exhibit varicose terminals241

(Figure 4E and Figure 5E). Using syt:GFP, a GFP tagged synaptotagmin (presynaptic) marker,242

we confirmed that these varicosities house synaptic terminals (Figure 4F, top and Figure 5F,243

top). Notably, in addition to smooth, likely dendritic arbors, both AN classes have axon terminals244

within the VNC (Figure 4F, bottom and Figure 5F, bottom).245

Taken together, these results demonstrate that even very subtle differences in VNC patterning246

can give rise to dramatically different AN tuning properties. In the case of rest- and puff-ANs, we247

speculate that this might be due to physically close, but distinct presynaptic partners—possibly leg248

proprioceptive afferents for rest-ANs, and leg tactile afferents for puff-ANs.249

2.5 Walk- or turn- encoding depends on the laterality of VNC projections250

Among the ANs we analyzed, most encoded walking (Figure 2D). However, this broad category of251

locomotion includes more subtle dimensions including walking direction and turning. We reasoned252
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that an AN’s patterning within the VNC may be predictive of whether it encodes locomotion broadly253

(e.g., walking) versus narrowly (e.g., turning).254

Indeed, we observed that while the activity of one pair of ANs (SS29579, ‘walk-ANs’) was re-255

markably well explained by the timing and onset of walking epochs (Figure 6A-C), for other ANs256

a broad walking regressor could account for much less variance in neural activity (Figure 2D). We257

reasoned that these ANs might instead encode narrower locomotor features like turning. For ex-258

ample, for a bilateral pair of DNa01 descending neurons, their difference in activity correlates with259

turn direction [27,39]. To see if this might also be the case for some pairs of walk-encoding ANs, we260

quantified the degree to which their difference in activity can be explained by spherical treadmill roll261

and yaw velocities—a proxy for turning behaviors (Figure 7A). Indeed, we found one pair of ANs262

(SS51046) for which turning explained a relatively large amount of variance. For this pair of ‘turn-263

ANs’, although a combination of forward and backward walking regressors poorly predicted neural264

activity (Figure 7B), a regressor based on spherical treadmill roll velocities strongly predicted the265

difference in activity between this bilateral pair of neurons (Figure 7C). When an animal turned266

right, the right (ipsilateral) turn-AN was active. Conversely, the left turn-AN was active during left267

turns (Figure 7D). During forward walking, both turn-ANs were active (Figure 7E).268

We next asked how VNC patterning might predict this distinction between broad (walk-AN)269

versus narrow (turn-AN) locomotor encoding. Both AN classes have cell bodies in the VNC’s T2270

neuromere (Figure 6D and Figure 7F). However, walk-ANs bilaterally innervate the T2 neuromere271

(Figure 6E), whereas turn-ANs unilaterally innervate T1 and T2 (Figure 7G, black). Their272

ipsilateral T2 projections are smooth and likely dendritic (Figure 7H1,I1), while their contralateral273

T1 projections are varicose and exhibit syt:GFP puncta, suggesting that they harbor presynaptic274

terminals (Figure 7H2,I2). Both walk-ANs (Figure 6D,E) and turn-ANs (Figure 7F,G) project275

to the brain’s GNG. However, only turn-ANs project to the WED (Figure 7H,I). Notably, walk-AN276

terminals in the brain (Figure 6F) are not labelled by syt:GFP (Figure 6G), suggesting that they277

may be neuromodulatory in nature and rely on another class of synaptic machinery [40].278

These data support the notion that broad versus narrow behavioral state encoding of ANs may279

arise from the laterality of VNC patterning. Additionally, we observed that pairs of broadly-tuned280

walk-ANs that bilaterally innervate the VNC are synchronously active. By contrast, pairs of narrowly-281

tuned turn-ANs are asynchronously active. This correlation between the laterality of an AN pair’s282

VNC projections and their synchrony seems to be a general principle (Figure S8).283

2.6 Foreleg-dependent actions are encoded by ANs in the anterior VNC284

In addition to locomotion, flies use their forelegs to perform complex movements including reaching,285

boxing, courtship tapping, and several kinds of grooming—eye grooming, antennal grooming, and286

foreleg rubbing. An ongoing awareness of these behavioral states is critical to select appropriate287

future actions that do not lead to instability. For example, before deciding to groom its hindlegs, an288

animal must first confirm that its forelegs are stably on the ground and not also grooming.289

We noted that some ANs project only to the VNC’s anterior-most, T1 leg neuromere (Fig-290

ure S5C). This pattern implied a potential role in encoding actions that only depend on the forelegs.291

Indeed, close examination revealed two classes of ANs that encode foreleg-related behaviors. We found292

ANs (SS42740) that were broadly active during multiple foreleg-dependent behaviors including walk-293

ing, pushing, and grooming (‘foreleg-ANs’; overlaps with R70H06) (Figure S4)(Figure 8A,B). By294

contrast, another pair of ANs (SS25469) were narrowly and sometimes asynchronously active only295

during eye grooming (‘eye groom-ANs’) (Figure S4) (Figure 9A,B). Similar to walking and turn-296

ing, we hypothesized that this broad (foreleg) versus narrow (eye groom) behavioral encoding might297

be reflected by a difference in the promiscuity and laterality of AN innervations in the VNC.298

To test this hypothesis, we compared the morphologies of foreleg- and eye groom-ANs. Both had299

cell bodies in the T1 neuromere, although foreleg-ANs were posterior (Figure 8C) and eye groom-300

ANs were anterior (Figure 9C). Foreleg- and eye groom-ANs also both projected to the dorsal T1301

neuromere with eye groom-AN neurites restricted to the tectulum (Figure 8D and Figure 9D). No-302

tably, foreleg-AN puncta (Figure 8E, bottom) and syt:GFP (Figure 8F, bottom) were bilateral303

and diffuse while eye groom-AN puncta (Figure 9E, bottom) and syt:GFP (Figure 9F, bottom)304

were largely restricted to the contralateral T1 neuromere. Projections to the brain paralleled this dif-305

ference in VNC projection promiscuity: foreleg-ANs terminated across multiple brain areas—GNG,306

AVLP, SAD, VES, IPS, and SPS (Figure 8E,F top)— while eye groom-ANs narrowly targeted the307
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GNG (Figure 9E,F top).308

These results further illustrate that AN encoding can be predicted by VNC patterning. Here,309

diffuse, bilateral projections are associated with encoding multiple behaviors that require foreleg310

movements whereas focal, unilateral projections give rise to a narrow encoding of eye grooming.311

2.7 Temporal integration of proboscis extensions by a cluster of ANs312

Flies often generate spontaneous proboscis extensions (PEs) while resting (Figure 10A, yellow313

ticks). We observed that ‘PE-ANs’ (SS31232, overlap with SS30303) (Figure 2D) become active314

during PE trains—a sequence of PEs that occur within a short period of time (Figure 10A). Close315

examination revealed that PE-AN activity slowly ramped up over the course of PE trains. This made316

them difficult to model using a simple PE regressor: their activity levels were lower than predicted317

early in PE trains, and higher than predicted late in PE trains. On average, across many PE trains,318

PE-AN activity reached a plateau by the seventh PE (Figure 10B).319

Thus, PE-AN activity seemed to convey the temporal integration or counting of discrete events [41,320

42]. Therefore, we next asked if PE-AN activity might be better predicted using a PE regressor that321

integrates the number of PEs within a given time window. Remarkably, by testing a variety of window322

sizes, we determined that the most accurate prediction of PE-AN dynamics could be obtained with323

an integration window of more than 10 s (Figure 10C, red circles). This additional integration324

window made it possible to predict both the undershoot and overshoot of PE-AN activity at the start325

and end of PE trains, respectively (Figure 10D).326

Temporal integration can be implemented using a line attractor model [43,44] based on recurrently327

connected circuits. To explore the degree to which PE-AN might support an integration of PE events328

through recurrent interconnectivity, we examined PE-AN morphologies more closely. PE-AN cell329

bodies were located in the anterior T1 neuromere (Figure 10E). From there they projected dense330

neurites into the midline of the T1 neuromere (Figure 10F). Among these neurites, we observed331

puncta and syt:GFP expression consistent with presynaptic terminals (Figure 10G,H, bottom).332

Their dense and highly overlapping arbors would be consistent with a mutual interconnectivity be-333

tween PE-ANs. These putatively recurrent connections might enable the integration of PE events334

over tens-of-seconds. This integration might filter out sparse PE events associated with feeding and335

allow PE-ANs to only signal long PE trains that might be observed during deep rest-states [45].336

These signals are conveyed to the brain’s GNG (Figure 10G,H, top).337

3 Discussion338

Animals must be aware of their own behavioral states to accurately interpret sensory cues and select339

appropriate future actions. Here, we examined how this self-awareness might be conveyed to the brain340

by studying the activity and targeting of ascending neurons within the Drosophila motor system.341

Specifically, we addressed a number of fundamental questions (Figure 1A). First, to what extent do342

ANs encode the low-level movements of joint and legs, or high-level behavioral states like walking and343

grooming? Second, are individual AN encodings narrow (conveying one movement or behavior), or344

broad (conveying multiple movements or behaviors)? Third, to what extent do ANs target multiple or345

single brain regions? Fourth, do ANs that convey distinct signals also target distinct brain regions?346

Fifth, which characteristics of an AN’s patterning in the VNC are predictive of their encoding?347

Sixth, are ANs a simple feedforward relay of signals to the brain, or might they also contribute to348

computations within the VNC? To address these questions, we performed a large-scale functional and349

anatomical screen by leveraging a library of Drosophila sparsely expressing driver lines that target350

small sets of ANs as well as new experimental and computational tools for recording and quantifying351

neural activity in behaving animals.352

3.1 Encoding of high-level behavioral states353

We discovered that ANs functionally encode high-level behavioral states (Figure 11A), predom-354

inantly those related to self-motion like walking and resting. These encodings could be further355

distinguished as either broad (e.g., walk-ANs and foreleg-ANs), or narrow (e.g., turn-ANs and eye356

groom-ANs). Similarly, neurons in the vertebrate dorsal spinocerebellar tract have been shown to be357
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more responsive to whole limb versus individual joint movements [46]. To compensate for the techni-358

cal hurdle of relating relatively rapid joint movements to slow calcium indicator kinetics, we convolved359

joint angle time-series’ with a decay kernel that would maximize the explanatory power of our re-360

gression analyses. Additionally, we confirmed that potential issues related to the non-orthogonality361

of joint angles and leg movements would not obscure our ability to explain the variance of AN neural362

activity (Figure S3). Our observation that eye groom-AN activity could be explained by movements363

of the forelegs gave us further confidence that, in principle, leg movement encoding could be detected364

(Figure 2C). Nevertheless, to further confirm the absence of low-level joint and leg movement en-365

coding, future work could directly manipulate the joints and legs of restricted animals while recording366

AN activity [47]. Finally, we sometimes observed that the activity of putative walk-encoding ANs367

was not fully explained by our walking regressor, nor our turn analysis, (e.g., SS44270, overlaps with368

SS41605). This suggests that some ANs may encode other features of locomotion.369

3.2 Predominant projection to the brain’s AVLP and GNG370

We found that the vast majority of ANs do not project diffusely across the brain but rather specifically371

target either the AVLP and GNG (Figure 11B). We hypothesize that this may reflect the roles of372

behavioral state signals in two fundamental brain computations. First, the AVLP is a known site for373

multimodal, integrative sensory convergence [30–35]. Thus, the projection of ANs encoding resting,374

walking, and gust-like puffs to the AVLP (Figure 11C) may serve to contextualize time-varying375

visual and olfactory signals to indicate if they arise from self-motion, or from objects and odors376

moving in the world. A similar role of conveying self-motion has been proposed for neurons in the377

vertebrate dorsal spinocerebellar tract [16]. Second, the GNG is thought to be an action selection378

center [23,36,37]. Thus, the projection of ANs encoding diverse behaviors—walking, turning, foreleg379

movements, eye-grooming, and proboscis extensions (Figure 11D,E)—to the GNG may serve to380

indicate whether potential future actions are compatible with ongoing behaviors. This role would381

be consistent with hierarchical control approaches proposed in robotics [2]. Notably, walk-ANs that382

project to the ventral GNG may be neuromodulatory in nature. Thus, they may be well-poised to383

rapidly shift an animal’s internal state and the relative values of potential future actions.384

Notably, the GNG is also heavily innervated by descending neurons (DNs). Because ANs and385

DNs both contribute to action selection [23,24,37,48], we speculate that they may connect within the386

GNG to form a feedback loop between the brain and motor system. Specifically, ANs that encode387

specific actions might excite DNs that drive the same actions, to generate behavioral persistence,388

and also suppress DNs that drive conflicting actions. For example, turn-ANs may excite DNa01 and389

DNa02 which control turning [27, 39, 49], and foreleg-ANs may excite aDN1 and aDN2 that control390

grooming [50]. Of course the opposite might also be true: ANs might inhibit DNs that encode the391

same action to ensure that motor actions are terminated once they have been performed. These392

competing hypotheses may soon be tested using emerging connectomics datasets [51].393

3.3 Patterning within the VNC is predictive of behavioral encoding394

The morphology of an AN’s neurites in the VNC are, to a remarkable degree, predictive of encoding395

(Figure 11C-E). We illustrate this in a few ways. First, ANs innervating all three leg neuromeres396

(T1, T2, and T3) encode global self-motion—walking, resting, and gust-like puffs. By contrast, those397

with more restricted projections to one neuromere (T1 or T2) encode discrete actions—turning, eye398

grooming, foreleg movements, and PEs. This might reflect the cost of neural wiring, a constraint that399

may encourage a neuron to sample the minimal sensory and motor information required to compute400

a particular behavioral state. Second, broadly tuned ANs (walking and foreleg-dependent behaviors)401

exhibited bilateral projections in the VNC while narrowly tuned ANs (turning and eye grooming)402

exhibited unilateral and smooth, putatively dendritic projections. This was correlated with the degree403

of synchrony in the activity of pairs of ANs (Figure S8).404

Strikingly, for all ANs that we examined in-depth, we found evidence of axon terminals within the405

VNC. Thus, ANs may not simply relay behavioral state signals to the brain but may also perform406

other roles. For example, they might contribute to motor control as components of central pattern407

generators (CPGs) that drive rhythmic movements [52], or rest-ANs might drive the muscle tone408

needed to maintain a natural resting posture. ANs might also participate in computing behavioral409

states. For example, we speculate that recurrent interconnectivity among PE-ANs might give rise410
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to their temporal integration and encoding of PE number in a manner that can be modeled by line411

attractors [43, 44]. Finally, ANs might contribute to action selection within the VNC. For example,412

eye groom-ANs might project to the contralateral T1 neuromere to suppress circuits driving other413

foreleg-dependent behaviors like walking and foreleg rubbing.414

3.4 Future work415

Here we investigated animals that were generating spontaneous and puff-induced behaviors including416

walking and grooming. However, ANs likely also encode other behavioral states, unmeasured internal417

forces like posture-maintaining muscle stiffness, or even metabolic states. This is hinted at by the fact418

that the neural activity of some ANs were not well explained by any of our behavioral regressors (e.g.,419

R87H02, R39G01, R69H10 and SS29633). Additionally, nearly one-third of the ANs we examined420

were unresponsive, possibly due to the lack of relevant context. In line with this, we found that some421

silent ANs could become very active during leg movements only when the spherical treadmill was422

removed (e.g., SS38631 and SS51017)(Figure S9). Thus, future work should examine the encoding of423

ANs in a variety of contexts including tethered flight. Finally, it would also be interesting to test the424

degree to which AN encoding is genetically hardwired or capable of adapting following motor learning425

or after injury [53, 54]. In summary, here we have shown that ANs encode high-level behaviors that426

they convey to distinct integrative sensory and action selection centers in the brain. These findings427

can accelerate our understanding of how ascending neurons in the mammalian spinal cord influence428

decision-making in the brain [15, 16, 46, 55–57], and also inspire the development of more effective429

algorithms for robotic sensory contextualization and action selection [2].430
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4 Figures431

432

Figure 1: Large-scale functional and morphological screen of ascending neuron movement
encoding and nervous system targeting. (a) Schematic of the main questions addressed. (i) To
what extent do ascending neurons (ANs) encode high-level behaviors, or low-level movements? (ii)
Where in the brain do ANs convey behavioral states? (iii) To what extent is an AN’s patterning within
the VNC predictive of its encoding? (b) Screening 108 driver lines. The projection patterns of sparse
lines with active ANs and high SNR (157 ANs) were examined in the brain and VNC. (c) These were
quantified using broad spFP and single-cell MCFO confocal imaging. (d) Overhead schematic of the
behavior measurement system used during two-photon microscopy. A camera array captures six views
of the animal. Two optic flow sensors measure ball rotations. A puff of CO2 (or air) is used to elicit
behavior from sedentary animals. (e) 2D poses are estimated for six cameras views using DeepFly3D.
These data are triangulated to quantify 3D poses and joint angles for six legs and the abdomen
(color-coded). The Femur-Tibia (FTi) joint angle is indicated (white). (f) Two optic flow sensors
measure rotations of the spherical treadmill as a proxy for forward (red), sideways (blue), and yaw
(purple) walking velocities. Positive directions of rotation (‘+’) are indicated. (g, left) A volumetric
representation of the ventral nerve cord (VNC) including a reconstruction of ANs targeted by the
SS27485-spGal4 driver (red). Indicated are the dorsal-ventral (‘Dor’) and anterior-posterior (‘Ant’)
axes, as well as the fly’s left (L) and right (R) sides. (g, right) Sample two-photon cross-section
image of the thoracic neck connective showing ANs that express OpGCaMP6f (cyan) and tdTomato
(red). AxoID is used to semi-automatically identify two axonal regions-of-interest (ROIs, white) on
the left (‘L’) and right (‘R’) sides of the connective. (h) Spherical treadmill rotations and joint angles
are used to classify behaviors. Binary classifications are then compared with simultaneously recorded
neural activity for 250 s trials of spontaneous and puff-elicited behaviors. Shown is an activity trace
from ROI 0 (green) in panel g.
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Figure 2: Ascending neurons encode high-level behaviors. Proportion of variance in AN ac-
tivity that is uniquely explained by regressors (cross-validated ∆R2) based on (a) joint movements,
(b) the movements of individual legs, (c) the movements of pairs of legs, (d) high-level behaviors.
Regression analyses were performed for 157 ANs recorded from 50 driver lines. Lines selected for
more in-depth analysis are color-coded by the behavioral class best explaining their neural activity:
SS27485 (resting), SS36112 (puff responses), SS29579 (walking), SS51046 (turning), SS42740 (foreleg
movements), SS25469 (eye grooming), and SS31232 (proboscis extensions). Non-orthogonal regressors
(PE and CO2 puffs) are separated from the others. P -values report the F-statistic of overall signifi-
cance of the complete regression model with none of the regressors shuffled (*p<0.05, **p<0.01, and
***p<0.001)
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Figure 3: Ascending neurons principally project to the brain’s AVLP and GNG and the
VNC’s leg neuromeres. Regional innervation of (a) the brain, or (b) the VNC. Data are for
157 ANs recorded from 50 driver lines and quantified through pixel-based analyses of MCFO labeled
confocal images. Manually quantified driver lines are indicated (dotted). Lines for which projections
could not be unambiguously identified are left blank. Lines selected for more in-depth evaluation
are color-coded by the behavioral state that best explains their neural activity: SS27485 (resting),
SS36112 (puff responses), SS29579 (walking), SS51046 (turning), SS42740 (foreleg-dependent behav-
iors), SS25469 (eye grooming), and SS31232 (proboscis extensions).
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Figure 4: Functional and anatomical properties of ascending neurons encoding resting.
(a) (top-left) Two-photon image of axons from an SS27485-Gal4 animal expressing OpGCaMP6f
(cyan) and tdTomato (red). ROIs are numbered. Scale bar is 5 µm. (bottom) Behavioral epochs
are color-coded. Representative ΔF/F time-series from two ROIs (green) overlaid with a prediction
(black) obtained by convolving resting epochs with a Ca2+ response function. Explained variance
is indicated (R2). (b) Mean (solid line) and 95% confidence interval (gray shading) of ΔF/F traces
during epochs of forward walking (left), resting (middle), or CO2 puffs (right). 0 s indicates the
start of each epoch. Here and in Figures 5 - 9, data more than 0.7s after onset (yellow region) are
compared with an otsu thresholded baseline (ANOVA and Tukey posthoc comparison, ***p<0.001,
**p<0.01, *p<0.05, n.s. not significant). (c) Standard deviation projection image of an SS27485-
Gal4 nervous system expressing smFP and stained for GFP (green) and Nc82 (blue). Cell bodies
are indicated (white asterisk). Scale bar is 40 µm. (d) Projection as in c but for one MCFO-
expressing, traced neuron (black asterisk). The brain’s AVLP (cyan) and VNC’s leg neuromeres
(yellow) are color-coded. Scale bar is 40 µm. (e, f) Higher magnification projections of (top) brains
and (bottom) VNCs of SS27485-Gal4 animals expressing (e) the stochastic label MCFO, or (f) the
synaptic marker, syt:GFP (green), and tdTomato (red). Insets magnify dashed boxes. Indicated are
cell bodies (asterisks), bouton-like structures (white arrowheads), and VNC leg neuromeres (‘T1, T2,
T3’). Scale bars for brain images and insets are 5 µm and 2 µm, respectively. Scale bars for VNC
images and insets are 20 µm and 10 µm, respectively.
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Figure 5: Functional and anatomical properties of ascending neurons responding to puffs.
(a) (top-left) Two-photon image of axons from an SS36112-Gal4 animal expressing OpGCaMP6f
(cyan) and tdTomato (red). ROIs are numbered. Scale bar is 5 µm. (bottom) Behavioral epochs
are color-coded. Representative ΔF/F time-series from two ROIs (green) overlaid with a prediction
(black) obtained by convolving CO2 puff periods with a Ca2+ response function. Explained variance
is indicated (R2). (b) Mean (solid line) and 95% confidence interval (gray shading) of ΔF/F traces
during epochs of forward walking (left), resting (middle), or CO2 puffs (right). 0 s indicates the
start of each epoch. (c) Standard deviation projection image for an SS36112-Gal4 nervous system
expressing smFP and stained for GFP (green) and Nc82 (blue). Cell bodies are indicated (white
asterisks). Scale bar is 40 µm. (d) Projection as in c but for one MCFO-expressing, traced neuron
(black asterisks). The brain’s AVLP (cyan) and VNC’s leg neuromeres (yellow) are color-coded.
Scale bar is 40 µm. (e, f) Higher magnification projections of (top) brains and (bottom) VNCs
of SS36112-Gal4 animals expressing (e) the stochastic label MCFO, or (f) the synaptic marker,
syt:GFP (green), and tdTomato (red). Insets magnify dashed boxes. Indicated are bouton-like
structures (white arrowheads), and VNC leg neuromeres (‘T1, T2, T3’). Scale bars for brain images
and insets are 10 µm and 2 µm, respectively. Scale bars for VNC images and insets are 20 µm and
10 µm, respectively.
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Figure 6: Functional and anatomical properties of ascending neurons encoding walking.
(a) (top-left) Two-photon image of axons from an SS29579-Gal4 animal expressing OpGCaMP6f
(cyan) and tdTomato (red). ROIs are numbered. Scale bar is 5 µm. (bottom) Behavioral epochs
are color-coded. Representative ΔF/F time-series from two ROIs (green) overlaid with a prediction
(black) obtained by convolving forward walking epochs with a Ca2+ response function. Explained
variance is indicated (R2). (b) Mean (solid line) and 95% confidence interval (gray shading) of ΔF/F
traces during epochs of forward walking. 0 s indicates the start of each epoch. (c) Fluorescence
(OpGCaMP6f) event-based ball rotations for (left) ROI 3, or (right) ROI 0. Fluorescence events
are time-locked to 0 s (green). Shown are mean and 95% confidence intervals for forward (red), roll
(blue), and yaw (purple) ball rotational velocities. (d) Standard deviation projection image for a
SS29579-Gal4 nervous system expressing smFP and stained for GFP (green) and Nc82 (blue). Cell
bodies are indicated (white asterisks). Scale bar is 40 µm. (e) Projection as in d but for one MCFO-
expressing, traced neuron (black asterisks). The brain’s GNG (yellow) and VNC’s intermediate
(green), wing (blue), and haltere (red) tectulum are color-coded. Scale bar is 40 µm. (f, g) Higher
magnification projections of (top) brains and (bottom) VNCs of SS29579-Gal4 animals expressing
(f) the stochastic label MCFO, or (g) the synaptic marker, syt:GFP (green), and tdTomato (red).
Insets magnify dashed boxes. Indicated are cell bodies (asterisks), bouton-like structures (white
arrowheads), and VNC leg neuromeres (‘T1, T2’). Scale bars for brain images and insets are 10 µm
and 2 µm, respectively. Scale bars for VNC images and insets are 20 µm and 4 µm, respectively.
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Figure 7: Functional and anatomical properties of ascending neurons encoding turning.
(a) Variance explained by side-slip and turning for driver lines encoding forward walking. (b) (top-
left) Two-photon image of axons from an SS51046-Gal4 animal expressing OpGCaMP6f (cyan) and
tdTomato (red). ROIs are numbered. Scale bar is 5 µm. (bottom) Behavioral epochs are color-
coded. Representative ΔF/F time-series from two ROIs (green) overlaid with a prediction (black)
obtained by convolving forward walking epochs with a Ca2+ response function. Explained variance is
indicated (R2). (c) The differential ΔF/F time-series obtained by subtracting the two ROIs (green)
is overlaid with a prediction (black) from spherical treadmill roll rotations convolved with a Ca2+

response function. Explained variance is indicated (R2). (d) Fluorescence (OpGCaMP6f) event-
based ball rotations for (left) ROI 0, or (right) ROI 1. Fluorescence events are time-locked to 0 s
(green). Shown are mean and 95% confidence intervals for forward (red), roll (blue), and yaw (purple)
ball rotational velocities. (e) Mean (solid line) and 95% confidence interval (gray shading) of ΔF/F
traces during epochs of forward walking. 0 s indicates the start of each epoch. (f) Standard deviation
projection image for a SS51046-Gal4 nervous system expressing smFP and stained for GFP (green)
and Nc82 (blue). Cell bodies are indicated (white asterisks). Scale bar is 40 µm. (g) Projection
as in f but for one MCFO-expressing, traced neuron (black asterisks). The brain’s GNG (yellow),
wedge (pink), and VNC’s intermediate tectulum (green), and mesothoracic leg neuromere (yellow),
are color-coded. Scale bar is 40 µm. (h, i) Higher magnification confocal z-projections of (top) brains
and (bottom) VNCs of SS51046-Gal4 animals expressing (h) the stochastic label MCFO, or (i) the
synaptic marker, syt:GFP (green), and tdTomato (red). Insets magnify dashed boxes. Indicated
are cell bodies (asterisks), bouton-like structures (white arrowheads), and VNC leg neuromeres (‘T1,
T2’). Scale bars for brain images and insets are 10 µm and 2 µm, respectively. Scale bars for VNC
images and insets are 20 µm and 2 µm, respectively.
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Figure 8: Functional and anatomical properties of ascending neurons encoding foreleg-
dependent behaviors. (a) (top-left) Two-photon image of axons from an SS42740-Gal4 animal
expressing OpGCaMP6f (cyan) and tdTomato (red). ROIs are numbered. Scale bar is 5 µm. (bot-
tom) Behavioral epochs are color-coded. Representative ΔF/F time-series from two ROIs (green)
overlaid with a prediction (black) obtaind by convolving all foreleg-dependent behavioral (forward and
backward walking as well as eye, antennal, and foreleg grooming) epochs with a Ca2+ response func-
tion. Explained variance is indicated (R2). (b) Mean (solid line) and 95% confidence interval (gray
shading) of ΔF/F traces during epochs of forward walking (left), resting (middle), or eye grooming
and foreleg rubbing (right). 0 s indicates the start of each epoch. (c) Standard deviation projection
image for an SS42740-Gal4 nervous system expressing smFP and stained for GFP (green) and Nc82
(blue). Cell bodies are indicated (white asterisks). Scale bar is 40 µm. (d) Projection as in c but
for one MCFO-expressing, traced neuron (black asterisks). The brain’s GNG (yellow), AVLP (cyan),
SAD (green), VES (pink), IPS (blue), SPS (orange), and VNC’s neck and intermediate tectulum
(orange and green, respectively), and prothoracic leg neuromere (yellow) are color-coded. Scale bar
is 40 µm. (e, f) Higher magnification confocal z-projections of (top) brains and (bottom) VNCs
for SS42740-Gal4 animals expressing (e) the stochastic label MCFO, or (f) the synaptic marker,
syt:GFP (green), and tdTomato (red). Insets magnify dashed boxes. Indicated are cell bodies (aster-
isks), and bouton-like structures (white arrowheads). Scale bars for brain images and insets are 20
µm and 2 µm, respectively. Scale bars for VNC images and insets are 20 µm and 2 µm, respectively.
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Figure 9: Functional and anatomical properties of ascending neurons encoding eye groom-
ing. (a) (top-left) Two-photon image of axons from an SS25469-Gal4 animal expressing OpG-
CaMP6f (cyan) and tdTomato (red). ROIs are numbered. Scale bar is 5 µm. (bottom) Behavioral
epochs are color-coded. Representative ΔF/F time-series from two ROIs (green) overlaid with a
prediction (black) obtained by convolving eye grooming epochs with a Ca2+ response function. Ex-
plained variance is indicated (R2). (b) Mean (solid line) and 95% confidence interval (gray shading)
of ΔF/F traces during epochs of forward walking (left), eye grooming (middle), or foreleg rubbing
(right). 0 s indicates the start of each epoch. (c) Standard deviation projection image for an SS25469-
Gal4 nervous system expressing smFP and stained for GFP (green) and Nc82 (blue). Cell bodies are
indicated (white asterisks). Scale bar is 40 µm. (d) Projection as in c but for one MCFO-expressing,
traced neuron (black asterisks). The brain’s GNG (yellow) and VNC’s intermediate, neck and wing
tectulum (green, red, and blue respectively), and prothoracic leg neuromere (yellow) are color-coded.
Scale bar is 40 µm. (e, f) Higher magnification projections of (top) brains and (bottom) VNCs
for SS25469-Gal4 animals expressing (e) the stochastic label MCFO, or (f) the synaptic marker,
syt:GFP (green), and tdTomato (red). Insets magnify dashed boxes. Indicated are cell bodies (aster-
isks), and bouton-like structures (white arrowheads). Scale bars for brain images and insets are 20
µm and 2 µm, respectively. Scale bars for VNC images and insets are 20 µm and 2 µm, respectively.
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Figure 10: Functional and anatomical properties of ascending neurons integrating the
number of proboscis extensions over time. (a) (top-left) Two-photon image of axons from
an SS31232-Gal4 animal expressing OpGCaMP6f (cyan) and tdTomato (red). ROIs are numbered.
Scale bar is 5 µm. (bottom) Behavioral epochs are color-coded. Representative ΔF/F time-series
from two ROIs (green) overlaid with a prediction (black) obtained by convolving proboscis extension
epochs with a Ca2+ response function. Explained variance is indicated (R2). (b) ΔF/F, normalized
with respect to the neuron’s 90th%ile across the time-series, as a function of proboscis extension (PE)
number within a PE train for ROIs 0 (solid boxes, filled circles) and 1 (dashed boxes, open circles).
(c) Explained variance (R2) between ΔF/F time-series and a prediction from convolving proboscis
extension epochs with a Ca2+ response function and a time-window. Time-windows that maximize
the correlation for ROIs 0 (solid line) and 1 (dashed line) are indicated (red circles). (d) Behavioral
epochs are color-coded. Representative ΔF/F time-series from two ROIs (green) are overlaid with a
prediction (black) obtained by convolving proboscis extension epochs with a Ca2+ response function
as well as a time window indicated in panel B (red circles). Explained variance is indicated (R2). (e)
Standard deviation projection image for a SS31232-Gal4 nervous system expressing smFP and stained
for GFP (green) and Nc82 (blue). Cell bodies are indicated (white asterisks). Scale bar is 40 µm.
(f) Projection as in e but for one MCFO-expressing, traced neuron (black asterisks). The brain’s
GNG (yellow) and VNC’s intermediate tectulum (green), and prothoracic leg neuromere (yellow)
are color-coded. Scale bar is 40 µm. (g, h) Higher magnification projections of (top) brains and
(bottom) VNCs for SS31232-Gal4 animals expressing (g) the stochastic label MCFO, or (h) the
synaptic marker, syt:GFP (green), and tdTomato (red). Insets magnify dashed boxes. Indicated are
cell bodies (asterisks), and bouton-like structures (white arrowheads). Scale bars for brain images
are 10 µm. Scale bars for VNC images and insets are 20 µm and 2 µm, respectively.
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Figure 11: Summary of ascending neuron functional encoding, brain targeting, and VNC
patterning. (a) Our functional screen shows that ANs encode high-level behaviors in a narrow
(e.g., eye grooming), or broad (e.g., foreleg movements) manner. (b) Corresponding anatomical
analysis shows that ANs primarily target the AVLP, a multimodal, integrative brain region, and the
GNG, a region associated with action selection. (c, d) By comparing functional encoding with brain
targeting and VNC patterning, we find that (c) signals critical for contextualizing object motion—
walking, resting, and gust-like stimuli—are sent to the AVLP, while (d) signals indicating diverse
ongoing behaviors are sent to the GNG, potentially to influence future action selection. (e) Broad
(e.g., walking), or narrow (e.g., turning) behavioral encoding arises from diffuse and bilateral, or
restricted and unilateral VNC innervations, respectively. (c-e) AN projections are color-coded by
behavioral encoding. Axons and dendrites are not distinguished from one another. Brain and VNC
regions are labelled. Frequently innervated brain regions—the GNG and AVLP—are highlighted
(light orange). Less frequently innervated areas are outlined. The midline of the central nervous
system is indicated (dashed line).
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5 Materials and Methods457

5.1 Fly stocks458

Split-Gal4 (spGal4) lines (SS*****) were generated by the Dickson laboratory and the FlyLight459

project (Janelia Research Campus, Ashburn VA USA; see Table 1). GMR lines, MCFO-5 (R57C10-460

Flp2::PEST in su(Hw)attP8; ; HA-V5-FLAG), MCFO-7 (R57C10-Flp2::PEST in attP18;;HA-V5-461

FLAG-OLLAS) [26], and UAS-syt:GFP (Pw[+mC]=UAS-syt.eGFP1, w[*]; ; ) were obtained from the462

Bloomington Stock Center. UAS-OpGCaM6f; UAS-tdTomato (; P20XUAS-IVS-Syn21-OpGCamp6F-463

p10 su(Hw)attp5; Pw[+mC]=UAS-tdTom.S3) was a gift from the Dickinson laboratory (Caltech,464

Pasadena CA USA). UAS-smFP (; ; 10xUAS-IVS-myr::smGdP-FLAG (attP2)) was a gift from the465

McCabe laboratory (EPFL, Lausanne CH). Experimental animals were kept at 25◦C and 70% hu-466

midity on a 12-12 h day-light cycle.467

5.2 In vivo two-photon calcium imaging experiments468

Two-photon imaging was performed on 3-6 days post-eclosion (dpe) female flies as described in [27]469

with minor changes in the recording configuration. We imaged coronal sections of AN axons in the470

cervical connective to avoid having neurons move outside the field of view due to behavior-related471

tissue deformations. Imaging was performed using a Galvo-Galvo scanning system. Image dimensions472

ranged from 256 x 192 pixels (4.3 fps) to 320 x 320 pixels (3.7 fps), depending on the location of axonal473

regions-of-interest (ROIs) and the degree of displacement caused by animal behavior. During two-474

photon imaging, a 7-camera system was used to record fly behaviors as described in [28]. Rotations475

of the spherical treadmill, and the timing of puff stimuli were also recorded. Air or CO2 puffs (0.08476

L/min) were controlled using either a custom Python script, or manually with an Arduino controller.477

Puffs were delivered through a syringe needle positioned in front of the animal to stimulate behavior478

in sedentary animals, or to interrupt ongoing behaviors. To synchronize signals acquired at different479

sampling rates—optic flow sensors, two-photon images, puff stimuli, and videography—signals were480

digitized using a BNC 2110 terminal block (National Instrument, USA) and saved using ThorSync481

software (Thorlabs, USA). Sampling pulses were then used as references to align data based on the482

onset of each pulse. Then signals were interpolated using custom Python scripts.483

5.3 Immunofluorescence tissue staining and confocal imaging484

Fly brains and VNCs from 3-6 dpe female flies were dissected and fixed as described in [27] with485

small modifications in staining including antibodies and incubation conditions (see details below).486

Both primary (rabbit anti-GFP at 1:500, Thermofisher RRID: AB 2536526; mouse anti-Bruchpilot /487

nc82 at 1:20, Developmental Studies Hybridoma Bank RRID: AB 2314866) and secondary antibodies488

(goat anti-rabbit secondary antibody conjugated with Alexa 488 at 1:500; Thermofisher, RRID:489

AB 143165; goat anti-mouse secondary antibody conjugated with Alexa 633 at 1:500; Thermofisher,490

RRID: AB 2535719) for smFP and nc82 staining were performed at room temperature for 24h.491

To perform high-magnification imaging of MCFO samples, nervous tissues were incubated with pri-492

mary antibodies: rabbit anti-HA-tag at 1:300 dilution (Cell Signaling Technology, RRID:AB 1549585),493

rat anti-FLAG-tag at 1:150 dilution (DYKDDDDK; Novus, RRID:AB 1625981), and mouse anti-494

Bruchpilot/nc82 at 1:20 dilution. These were diluted in 5% normal goat serum in PBS with 1%495

Triton-X (PBSTS) for 24 h at room temperature. The samples then were rinsed 2-3 times in PBS496

with 1% Triton-X (PBST) for 15 min before incubation with secondary antibodies: donkey anti-497

rabbit secondary antibody conjugated with AlexaFluor 594 at 1:500 dilution (Jackson ImmunoRe-498

search Labs, RRID:AB 2340621), donkey anti-rat secondary antibody conjugated with AlexaFluor499

647 at 1:200 dilution (Jackson ImmunoResearch Labs, RRID:AB 2340694), and donkey anti-mouse500

secondary antibody conjugated with AlexaFluor 488 at 1:500 dilution (Jackson ImmunoResearch501

Labs, RRID:AB 2341099). These were diluted in PBSTS for 24 h at room temperature. Again,502

samples were rinsed 2-3 times in PBS with 1% Triton-X (PBST) for 15 min before incubation with503

the last diluted antibody: rabbit anti-V5-tag (GKPIPNPLLGLDST) conjugated with DyLight 550504

at 1:300 dilution (Cayman Chemical, 11261) for another 24 h at room temperature.505

To analyze single neuron morphological patterning, we crossed spGal4 lines with MCFO-7 [26].506

Dissection and MCFO staining were performed by Janelia FlyLight according to the FlyLight ‘IHC-507
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MCFO’ protocol: https://www.janelia.org/project-team/flylight/protocols. Samples were508

imaged on an LSM710 confocal microscope (Zeiss) with a Plan-Apochromat 20x /0.8 M27 objective.509

To prepare samples expressing tdTomato and syt:GFP, we chose to only stain tdTomato to min-510

imize false positive signals for the synaptotagmin marker. Samples were incubated with a diluted511

primary antibody: rabbit polyclonal anti-DsRed at 1:1000 dilution (Takara Biomedical Technology,512

RRID: AB 10013483) in PBSTS for 24 h at room temperature. After rinsing, samples were then513

incubated with a secondary antibody: donkey anti-rabbit secondary antibody conjugated with Cy3514

(Jackson ImmunoResearch Labs, RRID:AB 2307443). Finally, all samples were rinsed 2–3 times for515

10 min each in PBST after staining and then mounted onto glass slides with bridge coverslips in516

Slowfade mounting-media (Thermofisher, S36936).517

Confocal imaging was performed as described in [27]. In addition, high-resolution images for518

visualizing fine structures were captured using a 40x oil-immersion objective lens with an NA of519

1.3 (Plan-Apochromat 40x/1.3 DIC M27, Zeiss) on an LSM700 confocal microscope (Zeiss). The520

zoom factor was adjusted based on the ROI size of each sample between 84.23×84.23 µm2 and521

266.74×266.74 µm2. For high-resolution imaging, z-steps were fixed at 0.33 µm. Images were de-522

noised, their contrasts were tuned, and standard deviation z-projections were generated using Fiji523

( [58]).524

5.4 Two-photon image analysis525

Raw two-photon imaging data were converted to gray-scale *.tiff image stacks for both green and red526

channels using custom Python scripts. RGB image stacks were then generated by combining both527

image stacks in Fiji ( [58]). We used AxoID to perform ROI segmentation and to quantify fluorescence528

intensities. Briefly, AxoID was used to register images using cross-correlation and optic flow-based529

warping [27]. Then, raw and registered image stacks underwent ROI segmentation, allowing %ΔF/F530

values to be computed across time from absolute ROI pixel values. Simultaneously, segmented RGB531

image stacks overlaid with ROI contours were generated. Each frame of these segmented image stacks532

was visually examined to confirm AxoID segmentation, or to perform manual corrections using the533

AxoID GUI. In these cases, manually corrected %ΔF/F and segmented image stacks were updated.534

5.5 Behavioral data analysis535

To reduce computational and data storage requirements, we recorded behaviors at 30 fps. This is536

nearly the Nyquist frequency for rapid walking (up to 16 step cycles/s [59]).537

3D joint positions were estimated using DeepFly3D [28]. Due to the amount of data collected,538

manual curation was not practical. We therefore classified points as outliers when the absolute value539

of any of their coordinates (x, y, z) was greater than 5 mm (much larger than the fly’s body size).540

Furthermore, we made the assumption that joint locations would only be incorrectly estimated for541

one of the three cameras used for triangulation. The consistency of the location across cameras could542

be evaluated using the reprojection error. To identify a camera with a bad prediction, we calculated543

the reprojection error only using two of the three cameras. The outlier was then replaced with the544

triangulation result of the pair of cameras with the smallest reprojection error. The output was545

further processed and converted to angles as described in [60].546

We classified behaviors based on a combination of 3D joint angle dynamics and rotations of the547

spherical treadmill. First, to capture the temporal dynamics of joint angles, we calculated wavelet548

coefficients for each angle using 15 frequencies between 1 Hz and 15 Hz [61, 62]. We then trained a549

histogram gradient boosting classifier [63] using joint angles, wavelet coefficients, and ball rotations as550

features. Because flies perform behaviors in an unbalanced way (some behaviors are more frequenty551

than others), we balanced our annotations using SMOTE [64]. The model was validated using 5-fold,552

three times repeated, stratified cross-validation. Fly speeds and heading directions were estimated553

using optical flow sensors [27]. To further improve the accuracy of the onset of walking we applied554

empirically-determined thresholds (pitch: 0.0038; roll: 0.0038; yaw: 0.014) to the rotational veloci-555

ties of the spherical treadmill. The rotational velocities were smoothed and denoised using a moving556

average filter (length 81). All frames that were not previously classified as grooming or pushing (and557

for which the spherical treadmill was classified as moving) were labeled as ‘walking’. These were558

furthered subdivided into forward or backward walking depending on the sign of the pitch velocity.559

Conversely, frames for which the spherical treadmill was not moving were labeled as ‘resting’. To560
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reduce the effect of optical flow measurement jitter, walking and resting labels were processed using561

a hysteresis filter that only changes state if at least 15 consecutive frames are in a new state. Classifi-562

cation in this manner was generally effective but most challenging for kinematically similar behaviors563

like eye- and antennal-grooming, or hindleg rubbing and abdominal grooming (Figure S10).564

Proboscis extension (PE) events were classified based on the length of the proboscis (Figure S2).565

First, we trained a deep network [38] to identify the tip of the proboscis and a static landmark566

(the ventral part of the eye) from side-view camera images. Then, the distance between the tip of567

proboscis and this static landmark was calculated to obtain the PE length for each frame. A semi-568

automated PE event classifier was made by first denoising the traces of PE distances using a median569

filter with a 0.3 s running average. Traces were then normalized to be between 0 (baseline values)570

and 1 (maximum values). Next, PE speed was calculated using a data point interval of 0.1 s to571

detect significant changes in PE length. This way, only peaks larger than a manually set threshold of572

0.03 Δnorm.length/0.1 s were considered. Because the peak speed usually occurred during the rising573

phase of a PE, a kink in PE speed was identified by multiplying the peak speed with an empirically-574

determined factor ranging from 0.4 to 0.6, and finding that speed within 0.5 s prior to the peak speed.575

The end of a PE was the time-point at which the same speed was observed within 2 s after the peak576

PE speed. This filtered out occasions where the proboscis remained extended for long periods of time.577

All quantified PE lengths and durations were then used to build a filter to remove false positives.578

PEs were then binarized to define PE epochs.579

To quantify animal movements when the spherical treadmill was removed, we manually thresh-580

olded the variance of pixel values from a side view camera within a region of the image that included581

the fly. Pixel value changes were calculated using a running window of 0.2 s. Next, the standard582

deviation of pixel value changes was generated using a running window of 0.25 s. This trace was then583

smoothed and values lower than the empirically-determined threshold were called ‘resting’ epochs.584

The remainder were considered ‘movement’ periods.585

5.6 Regression analysis of PE integration time586

To investigate the integrative nature of the PE-AN responses, we convolved PE traces with uniform587

time windows of varying sizes. This convolution was performed such that the fluorescence at each time588

point would be the sum of fluorescence during the previous ‘window size’ frames (i.e., not a centered589

sliding window but one that only uses previous time points), effectively integrating over the number590

of previous PEs. This integrated signal was then masked such that all time points where the fly was591

not engaged in PE were set to zero. Then, this trace was convolved with a calcium indicator decay592

kernel, notably yielding non-zero values in the time intervals between PEs. We then determined the593

explained variance as described elsewhere and finally chose a window size maximizing the explained594

variance.595

5.7 Linear modeling of neural fluorescence traces596

Each regression matrix contains elements corresponding to the results of a ridge regression model for597

predicting the time-varying fluorescence (%∆F
F ) of ANs using specific regressors (e.g., low-level joint598

angles, or high-level behaviors). To account for slow calcium indicator decay dynamics, each regressor599

was convolved with a calcium response function. The half-life of the calcium response function600

was chosen from a range of 0.2 s to 0.95 s [65] in 0.05 s steps, in order to maximize the variance in601

fluorescence traces that convolved regressors could explain. The rise time was fixed at 0.1415 s [65].602

The ridge penalty parameter was chosen using nested 10-fold stratified cross-validation [66]. The603

intercept and weights of all models were restricted to be positive, limiting our analysis to excitatory604

neural activity. Values shown in the matrices are the mean of 10-fold stratified cross-validation. We605

calculated Unique (UEV) and All-Explained Variance (AEV) by temporally shuffling the regressor606

in question, or all other regressors, respectively [4]. We tested the overall significance of our models607

using an F-statistic to reject the null hypothesis that the model does not perform better than an608

intercept-only model. The prediction of individual traces were performed using a single regressor609

plus intercept. Therefore they were not regularized.610
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5.8 Behavior-based neural activity analysis611

For a given behavior, ΔF/F traces were compiled, cropped, and aligned with respect to their onset612

times. Mean and 95% confidence intervals for each time point were then calculated from these data.613

Because the duration of each behavioral epoch was different, we only computed mean and confidence614

intervals for epochs that had at least 5 data points.615

To test if each behavior-triggered average ΔF/F was significantly different from the baseline, first,616

we aligned and upsampled fluorescence data that were normalized between 0 (baseline mean) and617

1 (maximum) for each trial. For each behavioral epoch, the first 0.7 s of data were removed. This618

avoided contaminating signals with neural activity from preceding behaviors (due to the slow decay619

dynamics of OpGCaMP6f). Next, to be conservative in judging whether data reflected noisy baseline620

or real signals, we studied their distributions. Specifically, we tested the normality of twenty resampled621

groups of 150 bootstrapped datapoints—a size that reportedly maximizes the power of the Shapiro-622

Wilk test [67]. If a majority of results did not reject the null hypothesis, the entire recording was623

considered baseline noise and the ΔF/F for a given behavioral class was not considered significantly624

different from baseline. On the other hand, if the datapoints were not normally distributed, the625

baseline was determined using an Otsu filter. For recordings that passed this test of normality, if626

the majority of six ANOVA tests on the bootstrapped data rejected the null hypothesis and the627

datapoints of a given behavior were significantly different (***p<0.001, **p<0.01, *p<0.05) from628

baseline (as indicated by a posthoc Tukey test), these data were considered signal and not noise.629

To analyze PE-AN responses to each PE during PE trains, putative trains of PEs were manually630

identified to exclude discrete PE events. PE trains included at least 3 consecutive PEs in which each631

PE lasted at least 1 s and there was less than 3 s between each PE. Then, the mean fluorescence632

of each PE was computed for 25 PE trains (n=11 animals). The median, IQR, and 1.5 IQR were633

then computed for PEs depending on their ordered position within their PE trains. We focused our634

analysis on the first 11 PEs because they had a sufficiently large amount of data.635

5.9 Neural fluorescence-triggered averaging of spherical treadmill rota-636

tional velocities637

A semi-automated neural fluorescence event classifier was constructed by first denoising ΔF/F traces638

by averaging them using a 0.6 s running window. Traces were then normalized to be between 0639

(their baseline values) and 1 (their maximum values). To detect large deviations, the derivative of640

the normalized ΔF/F time-series was calculated at an interval of 0.1 s. Only peaks greater than an641

empirically determined threshold of 0.03 dnorm ΔF/F / 0.1 s were considered events. Because peak642

fluorescence derivatives occurred during the rising phase of neural fluorescence events, the onset of a643

fluorescence event was identified as the time where the ΔF/F derivative was 0.4-0.6x the peak within644

the preceding 0.5 s time window. The end of the event was defined as the time that the ΔF/F signal645

returned to the amplitude at event onset before the next event. False positives were removed by646

filtering out events with amplitudes and durations that were lower than the empirically determined647

threshold. Neural activity event analysis for turn-ANs was performed by testing if the mean nor-648

malized fluorescence event for one ROI was larger than the other ROI by an empirically determined649

factor of 0.2x. Corresponding ball rotations for events that pass this criteria were then collected.650

Fluorescence events onsets were then set to 0 s and aligned with spherical treadmill rotations. Using651

these rotational velocity data, we calculated the mean and 95% confidence intervals for each time652

point with at least five data points. A 1 s period before each fluorescence event was also analyzed as653

a baseline for comparison.654

5.10 Brain and VNC confocal image registration655

All confocal images, except for MCFO image stacks, were registered based on nc82 neuropil staining.656

We built a template and registered images using the CMTK munger extension [68]. Code for this657

registration process can be found at: https://github.com/NeLy-EPFL/MakeAverageBrain/tree/658

workstation. Brain and VNC images were registered to JRC 2018 templates [69] using the Compu-659

tational Morphometry Toolkit: https://www.nitrc.org/projects/cmtk. The template brain and660

VNC can be downloaded here: https://www.janelia.org/open-science/jrc-2018-brain-templates.661
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5.11 Analysis of individual AN innervation patterns662

Single AN morphologies were traced by masking MCFO confocal images using either active tracing,663

or manual background removal in Fiji [58]. Axons in the brain were manually traced using the Fiji664

plugin ‘SNT’. Most neurites in the VNC were isolated by (i) thresholding to remove background665

noise and outliers, and (ii) manually masking debris in images. In the case of ANs from SS29579,666

a band-pass color filter was applied to isolate an ROI that spanned across two color channels. The667

boundary of the color filter was manually tuned to acquire the stack for a single neuron mask.668

After segmentation, the masks of individual neurons were applied across frames to calculate the669

intersectional pixel-wise sum with another mask containing either (i) neuropil regions of the brain and670

VNC, (ii) VNC segments, or (iii) left and right halves of the VNC. Brain and VNC neuropil regions and671

their corresponding abbreviations were according to established nomenclature [70]. Neuropil region672

masks can be downloaded here: https://v2.virtualflybrain.org. These were also registered673

to the JRC 2018 template. Masks for T1, T2, and T3 VNC segments were based on previously674

delimited boundaries [37]. The laterality of a neuron’s VNC innervation was calculated as the ratio675

of the absolute difference between its left and right VNC innervations divided by its total innervation.676

Masks for the left and right VNC were generated by dividing the VNC mask across its midline.677

5.12 AxoID: a deep learning-based software for tracking axons in imaging678

data679

AxoID aims to extract the GCaMP fluorescence values for axons present on coronal section two-photon680

microscopy imaging data. In this manuscript, it is used to record activity from ascending neurons681

(ANs) passing through the Drosophila melanogaster cervical connective. Fluorescence extraction682

works by performing the following three main steps (Figure S11A). First, during a detection stage,683

ROIs corresponding to axons are segmented from images. Second, during a tracking stage, these684

ROIs are tracked across frames. Third, fluorescence is computed for each axon over time.685

To track axons, we used a two-stage approach: detection and then tracking. This allowed us to686

improve each problem separately without the added complexity of developing a detector that must also687

do tracking. Additionally, this allowed us to detect axons without having to know how many there688

are in advance. Lastly, significant movement artifacts between consecutive frames pose additional689

challenges for robustness in temporal approaches while, in our case, we can apply the detection on a690

frame-by-frame basis. However, we note that we do not leverage temporal information.691

5.12.1 Detection692

Axon detection consists of finding potential axons by segmenting the background and foreground693

of each image. An ROI or putative axon is defined as a group of connected pixels segmented as694

foreground. Pixels are considered connected if they are next to one another.695

By posing detection as a segmentation problem, we have the advantage of using standard computer696

vision methods like thresholding, or artificial neural networks that have been developed for medical697

image segmentation. Nevertheless, this simplicity has a drawback: if axons appear very close to one698

another and their pixels are connected, they may be segmented as one ROI rather than two. We try699

to address this issue using an ROI separation approach described later.700

Image segmentation is performed using deep learning on a frame-by-frame basis, whereby a net-701

work generates a binary segmentation of a single image. As a post-processing step, all ROIs smaller702

than a minimum size are discarded. Here, we empirically chose 11 pixels as the minimum size as a703

trade-off between removing small spurious regions while still detecting small axons.704

We chose to use a U-Net model [71] with slight modifications because of its, or its derivatives’,705

performance on recent biomedical image segmentation problems [72–74]. We add zero-padding to the706

convolutions to ensure that the output segmentation has the same size as the input image, thus fully707

segmenting it in a single pass, and modify the last convolution to output a single channel rather than708

two. Batch normalization [75] is used after each convolution and its non-linearity function. Finally,709

we reduce the width of the network by a factor of 4: each feature map has 4 times fewer channels710

than the original U-Net, not counting the input or output. The input pixel values are normalized to711

the range [-1, 1], and the images are sufficiently zero-padded to ensure that the size can be correctly712

reduced by half at each max-pooling layer.713

25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 9, 2022. ; https://doi.org/10.1101/2022.02.09.479566doi: bioRxiv preprint 

https://v2.virtualflybrain.org
https://doi.org/10.1101/2022.02.09.479566
http://creativecommons.org/licenses/by-nc-nd/4.0/


To train the deep learning network, we use the Adam optimizer [76] on the binary cross-entropy714

loss with weighting. Each background pixel is weighted based on its distance to the closest ROI, given715

by 1 + exp(−d3
2
) with d the Euclidean distance, plus a term that increases if the pixel is a border716

between two axons, given by exp(−d1+d2
6

2
) with d1 and d2 as the distances to the two closest ROIs,717

as in [71]. These weights aim to encourage the network to correctly segment the border of the ROI718

and to keep a clear separation between two neighboring regions. At training time, the background719

and foreground weights are scaled by b+f
2b and b+f

2f , respectively, to take into account the imbalance720

in the number of pixels, where b and f are the quantity of background and foreground (i.e., ROI)721

pixels in the entire training dataset. To evaluate the resulting deep network, we use the Sørensen-Dice722

coefficient [77,78] at the pixel level, which is equivalent to the F1-score. The training is stopped when723

the validation performance does not increase anymore.724

The network was trained on a mix of experimental and synthetic data. We also apply random725

gamma corrections to the training input images, with γ sampled in [0.7, 1.3] to keep reasonable726

values, and to encourage robustness against intensity variations between experiments. The target727

segmentation of the axons on the experimental data was generated with conventional computer vision728

methods. First, the images were denoised with the non-local means algorithm [79] using the Python729

implementation of OpenCV [80]. We used a temporal window size of 5, and performed the denoising730

separately for the red and green channels, with a filter strength h = 11. The grayscale result was731

then taken as the per-pixel maximum over the channels. Following this, the images were smoothed732

with a Gaussian kernel of standard deviation 2 pixels, and thresholded using Otsu’s method [81]. A733

final erosion was applied and small regions below 11 pixels were removed. All parameter values were734

set empirically to generate good qualitative results. In the end, the results were manually filtered to735

keep only data with satisfactory segmentation.736

Because the experimental data have a fairly simply visual structure, we constructed a pipeline in737

Python to generate synthetic images visually similar to real ones. This was achieved by first sampling738

an image size for a given synthetic experiment, then by sampling 2D Gaussians over it to simulate739

the position and shape of axon cross-sections. After this, synthetic tdTomato levels were uniformly740

sampled and GCaMP dynamics were created for each axons by convolving a GCaMP response kernel741

with Poisson noise to simulate spikes. Then, the image with the Gaussian axons was deformed742

multiple times to make different frames with artificial movement artifacts. Eventually, we sampled743

from the 2D Gaussians to make the axons appear pixelated, and added synthetic noise to the images.744

In the end, we chose a deep learning-based approach because our computer vision pipeline alone745

was not be robust enough. Our pipeline is used to generate a target segmentation dataset from which746

we manually select a subset of acceptable results. These results are then used to train the deep747

learning model.748

Fine-tuning At the beginning of the detection stage, an optional fine-tuning of the network can749

be applied to try to improve the segmentation of axons. The goal is to have a temporary network750

adapted to the current data for better performance. To do this, we train the network on a subset of751

experimental frames using automatically generated target segmentations.752

The subset of images is selected by finding a cluster of frames with high cross-correlation-based753

similarity. For this, we only consider the tdTomato channel to avoid the effects of GCaMP dynamics.754

Each image is first normalized by its own mean pixel intensity µ and standard deviation σ: p(i, j)←755

p(i,j)−µ
σ , where p(i, j) is the pixel intensity p at the pixel location i, j. The cross-correlation is then756

computed between each pair of normalized images pm and pn as
∑
i,j pm(i, j)· pn(i, j). Afterwards,757

we take the opposite of the cross-correlation as a distance measure and use it to cluster the frames758

with the OPTICS algorithm [82]. We set the minimal number of sample for a cluster to 20, in order759

to maintain at least 20 frames for fine-tuning, and a maximum neighborhood distance of half the760

largest distance between frames. Finally, we select the cluster of images with the highest average761

cross-correlation (i.e., the smallest average distance between its elements).762

Then, to generate a target segmentation image for these frames, we take their temporal average763

and optionally smooth it, if there are less than 50 images, to help remove the noise. The smoothing is764

done by filtering with a Gaussian kernel of standard deviation 1 pixel, then median filtering over each765

channel separately. The result is then thresholded through a local adaptive method, computed by766

taking the weighted mean of the local neighborhood of the pixel, subtracted by an offset. We apply767

Gaussian weighting over windows of 25× 25 pixels, with an offset of −0.05, determined empirically.768
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Finally, we remove regions smaller than 11 pixels. The result serves as a target segmentation image769

for all of the fine-tuning images.770

The model is then trained on 60% of these frames with some data augmentation, while the other771

40% are used for validation. The fine-tuning stops automatically if the performance on the validation772

frames drops. This avoids bad generalization for the rest of the images. The binary cross-entropy loss773

is used, with weights computed as discussed previously. For the data augmentation, we use random774

translation (±20%), rotation (±10◦), scaling (±10%), and shearing (±5◦).775

5.12.2 Tracking776

Once the regions of interest are segmented, the next step of the pipeline consists of tracking the axons777

through time. This means defining which axons exist, and then finding the ROI they correspond to778

in each frame.779

Tracking template To accomplish this, the tracker records the number of axons, their locations780

with respect to one another, and their areas. It stores this information into what we call the ‘tracker781

template’. Then, for each frame, the tracker matches its template axons to the ROIs to determine782

which regions correspond to which axons.783

The tracker template is built iteratively. It is first initialized and then updated by matching784

with all experimental data. The initialization depends on the optional fine-tuning in the detection785

step. If there is fine-tuning, then the smoothed average of the similar frames and its generated786

segmentation are used. Otherwise, one frame of the experiment is automatically selected. For this,787

AxoID considers only the frames with a number of ROIs equal to the most frequent number of ROIs,788

and then selects the image with the highest cross-correlation with the temporal average of these789

frames. It is then smoothed and taken with the segmentation produced by the detection network as790

initialization. The cross-correlation and smoothing are computed identically as in the fine-tuning.791

Each ROI in the initialization segmentation defines an axon in the tracker template, with its area792

and position recorded as initial properties.793

Afterwards, we update them by matching each experimental frame to the tracker template. It794

consists of assigning the ROI to the tracker axons, and then using these regions’ areas and positions795

to update the tracker. The images are matched sequentially, and the axons properties are taken as796

running averages of their matched regions. For example, considering the nth match, the area of an797

axon is updated as:798

area← area ∗ n+ areaROI
n+ 1

799

Because of this, the last frames are matched to a tracker template that is different from the one800

used for the first frames. Therefore, we fix the axons properties after the updates and match each801

frame again to obtain the final identities of the ROIs.802

Matching To assign axon identities to the ROIs of a frame, we perform a matching between them803

as discussed above. To solve it, we define a cost function for matching a template axon to a region804

which represents how dissimilar they are. Then, using the Hungarian assignment algorithm [83], we805

find the optimal matching with the minimum total cost (Figure S11B).806

Because some ROIs in the frame may be wrong detections, or some axons may not be correctly807

detected, the matching has to allow for the regions and axons to end up unmatched for some frames.808

Practically, we implement this by adding ”dummy” axons to the matching problem with a flat cost.809

To guarantee at least one real match, the flat cost is set to the maximum between a fixed value and810

the minimum of the costs between regions and template axons with a margin of 10%: dummy =811

max(v, 1.1·min(costs)) with v = 0.3 the fixed value. Then, we can use the Hungarian method to812

solve the assignment, and all ROIs linked to these dummy axons can be considered unmatched.813

We define the cost of assigning a frame’s ROI i to a tracker template axon k by their absolute814

difference in area plus the mean cost of an optimal inner matching of the other ROI to the other815

axons assuming i and k are already matched:816

cost(i, k) = warea|areai − areak|+
1

NROI − 1

∑
i′ 6=i

cost′(i′, k∗i′)817
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where warea = 0.1 is a weight for balancing the importance of the area, NROI is the number of ROI818

in the frame, and cost′(i′, k∗i′) is the inner cost of assigning region i′ 6= i to axon k∗i′ 6= k selected in819

an ”inner” assignment problem, see below. In other words, the cost is relative to how well the rest of820

the regions and axons match if we assume that i and k are already matched.821

The optimal inner matching is computed through another Hungarian assignment, for which we822

define another cost function. For this ”inner” assignment problem, the cost of matching an ROI i′ 6= i823

and a template axon k′ 6= k is defined by how far they are and their radial difference with respect to824

the matched i and k, plus their difference in area:825

cost′(i′, k′) =

(
wdist
ηdist

||(xi′ − xi)− (xk′ − xk)||+ wθ
ηθ
|θi′ − θk′ |

)
H

H + xyk′
+ warea|areai′ − areak′ |826

827

with ηθ = arctan

(
αθ

ηdist
||xk′ − xk||

)
828

where wdist = 1.0, wθ = 0.1, and warea = 0.1 are weighting parameters, ηdist = min(H,W ) and ηθ829

are normalization factors with H and W the height and width of the frame and αθ = 0.1 a secondary830

normalization factor. The · y operation returns the height component of a vector, and the H
H+xy

k′
831

term is useful to reduce the importance of the first terms if the axon k′ is far from axon k in the832

height direction. This is needed as the scanning of the animal’s cervical connective is done from top833

to bottom, thus we need to allow for some movement artifacts between the top and bottom of the834

image. Note that the dummy axons for unmatched regions are also added to this inner problem.835

This inner assignment is solved for each possible pair of axon-ROI to get all final costs. The overall836

matching is then performed with them. Because we are embedding assignments, the computational837

cost of the tracker increases exponentially with the number of ROIs and axons. It stays tractable in838

our case as we generally deal with few axons at a time. All parameter values used in the matching839

were found empirically by trial and error.840

Identities post-processing: ROI separation In the case of fine-tuning at the detection stage,841

AxoID will also automatically try to divide ROIs that are potentially two or more separate axons.842

We implement this to address the limitation introduced by detecting axons as a segmentation: close843

or touching axons may get segmented together.844

To do this, it first searches for potential ROIs to be separated by reusing the temporal average845

of the similar frames used for the fine-tuning. This image is initially segmented as described before.846

Then local intensity maxima are detected on a grayscale version of this image. To avoid small maxima847

due to noise, we only keep those with an intensity ≥ 0.05, assuming normalized grayscale values in848

[0, 1]. Following this, we use the watershed algorithm, with the scikit-image [84] implementation, to849

segment the ROI based on the gray level and detected maxima. In the previous stages, we discarded850

ROIs under 11 pixels to avoid small spurious detections. Similarly, here we fuse together adjacent851

regions that are under 11 pixels to only output results after the watershedding above or equal to that852

size. Finally, a border of 1 pixel width is inserted between regions created from the separation of an853

ROI.854

These borders are the divisions separating the ROI, referred to as ”cuts”. We parameterize each855

of these as a line, defined as its normal vector n and distance d to the origin of the image (top-left).856

To report them on each frame, we first normalize this line to the current ROI, and then reverse that857

process with respect to the corresponding regions on the other frames. To normalize the line to an ROI,858

we fit an ellipse on the ROI contour in a least-square sense. Then the line parameters are transformed859

into this ellipse’s local coordinates following Algorithm 1. It is essentially like transforming the ellipse860

into a unit circle, centered and axis-aligned, and applying a similar transformation to the cutting line861

(Figure S11C, middle). The choice of fitting an ellipse is motivated by the visual aspect of the862

axons in the experimental data as they are fairly similar to elongated ellipses. Considering this, a863

separation between two close ellipses could be simplified to a linear border, motivating the linear864

representation of the ROI separation.865

Because this is done as a post-processing step following tracking, we can apply that division on866

all frames. To do this, we again fit an ellipse to their ROI contours in the least-squares sense. Then,867

we take the normalized cutting line and fit it back to each of them according to Algorithm 2. This868

is similar to transforming the normalized unit circle to the region ellipse and applying the same869

transform to the line (Figure S11C, right).870
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Algorithm 1: Normalize a line with an
ellipse

Input: line, ellipse
Output: normalized line line′

/* Initialization */

n← line.normal;
d← line.distance;
c← ellipse.center;
w ← ellipse.width/2;
h← ellipse.height/2;
θ ← ellipse.rotation;
R−θ := rotation matrix of angle −θ;
/* Normalization */

d′ ← d− c · n;
n′ ← R−θ n;
n′.x← n′.x/c.y;
n′.y ← n′.y/c.x;
d′ ← d′/(w ∗ h);
line′.distance← d′/||n′||;
line′.normal← n′/||n′||;

Algorithm 2: Fit a line to an ellipse

Input: line, ellipse
Output: fitted line line′

/* Initialization */

n← line.normal;
d← line.distance;
c← ellipse.center;
w ← ellipse.width/2;
h← ellipse.height/2;
θ ← ellipse.rotation;
Rθ := rotation matrix of angle θ;
/* Fitting */

n′ ← n;
n′.x← n′.x ∗ c.y;
n′.y ← n′.y ∗ c.x;
d′ ← d ∗ (w ∗ h);
d′ ← d′/||n′||;
n′ ← n′/||n′||;
line′.normal← Rθ n′;
line′.distance← d′ + c · n′;

Finally, a new axon is defined for each cut. In each frame, the pixels of the divided region on the871

furthest side of the linear separation (with respect to the fitting ellipse center) are taken as the new872

ROI of that axon for that given frame.873

In case there are multiple cuts of the same ROI (e.g., because three axons were close), the lin-874

ear separations are ordered by distance to the center of the fitting ellipse and are then applied in875

succession. This is simple and efficient, but assumes there is little to no crossing between linear cuts.876

5.12.3 Fluorescence extraction877

With the detection and tracking results, we know where each axon is in the experimental data.878

Therefore, to compute tdTomato and GCaMP fluorophore time-series we take the average of non-879

zero pixel intensities of the corresponding regions in each frame. We report the GCaMP fluorescence880

at time t as Ft, and the ratio of GCaMP to tdTomato fluorescence at time t as Rt to gain robustness881

against image intensity variations.882

The final GCaMP fluorescence is reported as in [27]:883

∆F/F =
Ft − F
F

884

where F is a baseline fluorescence. Similarly, we report the ratio of GCaMP over tdTomato as885

in [27,85]:886

∆R/R =
Rt −R
R

887

where R is the baseline. The baseline fluorescences F and R are computed as the minimal temporal888

average over windows of 10 s of the fluorophore time series Ft and Rt, respectively. Note that axons889

can be missing in some frames. For instance, if they were not detected or leave the image during890

movement artifacts. In this case, the fluorescence of that axon will have missing values at the time891

index t in which it was absent.892

5.13 Overall workflow893

To improve the performance of AxoID, the fluorescence extraction pipeline is applied three times:894

once over the raw data, once over the data registered using cross-correlation, and once over the895

data registered using optic-flow warping. Note that the fine-tuning in the detection stage is not896

used with the raw experimental data as it is based on the cross-correlation between the frames and897
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would therefore lead to worse or redundant results with the data registered using cross-correlation.898

Eventually, the three fluorescence results can be visualized, chosen from, and corrected by a user899

through a GUI (Figure S11D).900

5.13.1 Data registration901

Registration of the experimental frames consists in transforming each image to make them similar to902

a reference image. The goal is to reduce the artifacts introduced by animal movements and to align903

axons across frames. This should help to improve the results of the detection and tracking.904

Cross-correlation Cross-correlation registration consists of translating an image so that its cor-905

relation to a reference is maximized. Note that the translated image wraps-around (e.g., pixels906

disappearing to the left reappear on the right). This aims to align frames against translations, but is907

unable to counter rotations or local deformations. We used the single step Discrete Fourier Transform908

(DFT) algorithm [86] to find the optimal translation of the frame. It first transforms the images into909

the Fourier domain, computes an initial estimate of the optimal translation, and then refines this910

result using a DFT. We based our Python implementation on previous work [87].911

For each experiment, the second frame is taken as the reference frame to avoid recording artifacts912

that sometimes appear on the first recorded image.913

Optic-flow registration Optic flow-based registration was previously published [27]. Briefly, this914

approach computes an optic flow from the frame to a reference image, then deforms it by moving915

the pixels along that flow. The reference image is taken as the first frame of the experiment. This916

method has the advantage of being able to compute local deformations, but at a high computational917

cost.918

5.13.2 AxoID GUI919

Finally, AxoID contains a GUI where a user can visualize the results, select the best one, and manually920

correct it.921

First, the user is presented with three outputs of the fluorescence extraction pipeline from the raw922

and registered data with the option of visualizing different information to select the one to keep and923

correct. Here, the detection and tracking outputs are shown, as well as other information like the924

fluorescence traces in ∆F/F or ∆R/R. One of the results is then selected and used throughout the925

rest of the pipeline.926

Following this, the user can edit the tracker template, which will then automatically update927

the ROI identities across frames. The template and the identities for each frame are shown, with928

additional information like the image used to initialized the template. The user has access to different929

tools: axons can be fused, for example, if they actually correspond to a single real axon that was930

incorrectly detected as two, and, conversely, one axon can be manually separated in two if two close931

ones are detected together. Moreover, useless axons or wrong detections can be discarded.932

Once the user is satisfied with the overall tracker, they can correct individual frames. At this933

stage, it is possible to edit the detection results by discarding, modifying, or adding ROIs onto the934

selected image. Then, the user may change the tracking results by manually correcting the identities935

of these ROIs. In the end, the final fluorescence traces are computed on the selected outputs including936

user corrections.937
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6 Supplementary Tables938

Table 1: Sparse AN driver lines and associated properties.

No. Gal4
Confocal SNR

of smFP

2P SNR of
OpGCaMP6f
and tdTomato

Number
ROIs

ROI# Encoding

Level
synchronous activity
(ROI# vs ROI#:

Corr. coef.)

Redundant
Gal4

Supp.
Video#

0 rest 0 vs 1: 0.7
1 SS36131 strong strong 2

1 rest
SS36132
SS36133

3

0 rest 0 vs 5: 0.4
1 rest 1 vs 5: 0.36
2 rest 2 vs 5: 0.49
3 unclear
4 unclear

2 SS38592 strong strong 6

5 rest

SS38598 4

0 rest 0 vs 2: 0.85
1 unclear
2 rest

3 SS27485 strong strong 4

3 rest

- 5

0 rest 0 vs 1: 0.71
4 SS41822 strong strong 2

1 rest
SS41808
SS41809
SS41820
SS41821

6

0 rest 0 vs 2: 0.84
1 rest 0 vs 3: 0.79
2 rest 1 vs 2: 0.9

5 SS38624 strong strong 4

3 rest 1 vs 3: 0.87

- 7

6 SS45605 strong strong 1 0 unclear - - 8
0 rest 0 vs 3: 0.91
1 puff 0 vs 4: 0.84
2 rest 2 vs 3: 0.77
3 rest 2 vs 4: 0.89

7 SS43652 strong medium 5

4 rest

- 9

0 puff 0 vs 1: 0.51
8 SS36112 strong strong 2

1 puff
- 10

0 unclear 2 vs 3: 0.67
1 unclear
2 puff

9 SS41806 strong strong 4

3 puff

- 11

0 off ball movement 0 vs 1: 0.88
10 SS38631 strong strong 2

1 off ball movement
- 12

0 puff 0 vs 2: 0.32
1 puff 0 vs 3: 0.33
2 puff 1 vs 2: 0.37

11 SS51029 strong medium 4

3 puff 1 vs 3: 0.4

SS51024 13

0 unresponsive 2 vs 4: 0.87
1 unresponsive
2 walk
3 unclear
4 walk

12 R85A11 strong strong 6

5 unclear

- 15

0 unclear 0 vs 3: 0.38
1 unclear 0 vs 4: 0.43
2 unclear 1 vs 3: 0.53
3 unclear 1 vs 4: 0.53

13 SS40489 - strong 5

4 unclear

- 16

0 walk 0 vs 2: 0.61
1 unclear14 SS31480 strong strong 3
2 walk

- 17

0 foreleg movement 0 vs 1: 0.69
15 SS51021 strong strong 2

1 foreleg movement
- 18

0 off ball movement 0 vs 1: 0.67
16 SS51017 strong strong 2

1 off ball movement
- 19

0 off ball movement 0 vs 1: 0.20
17 SS31456 strong strong 2

1 off ball movement
- 20

0 walk 0 vs 1: 0.63
18 SS46233 strong medium 2

1 walk
- 21

0 push 0 vs 1: 0.89
19 SS42749 strong strong 2

1 push
- 22

0 unclear 0 vs 1: 0.42
20 SS41815 strong medium 2

1 unclear
- 23

0 unclear 0 vs 1: 0.11
1 unclear 0 vs 2: 0.4121 SS29633 strong strong 3
2 unclear 1 vs 2: 0.42

- 24

2 0 unclear 0 vs 1: 0.48
22 R87H02 strong strong

1 unclear
- 25

2 0 push 0 vs 1: 0.82
23 MAN strong strong

1 push
- 26

0 walk 0 vs 1: 0.54
1 walk 0 vs 2: 0.5324 SS49172 strong strong 3
2 walk

- 27

0 walk 0 vs 1: 0.55
25 R36G04 strong strong 2

1 walk
- 28
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Table 1 continued from previous page

No. Gal4
Confocal SNR

of smFP

2P SNR of
OpGCaMP6f
and tdTomato

Number
ROIs

ROI# Encoding

Level
synchronous activity
(ROI# vs ROI#:

Corr. coef.)

Redundant
Gal4

Supp.
Video#

0 unclear 0 vs 1: 0.09
1 unclear 0 vs 2: 0.8226 R39G01 strong strong 3
2 unclear 1 vs 2: 0.19

- 29

0 walk 0 vs 1: 0.67
1 walk 0 vs 2: 0.7427 SS31219 strong strong 3
2 walk

- 30

0 unclear 0 vs 1: 0.22
28 R30A08 strong medium 2

1 unclear
- 31

0 walk 0 vs 1: 0.98
1 walk29 SS44270 strong strong 3
2 walk

SS41605 32

0 unclear 2 vs 3: 0.94
1 unclear
2 push

30 SS41605 strong strong 4

3 push

SS44270 33

0 walk 0 vs 2: 0.84
1 walk 0 vs 3: 0.89
2 walk 1 vs 2: 0.78
3 walk 1 vs 3: 0.87
4 unresponsive

31 SS29579 strong strong 6

5 walk

- 34

0 turn 0 vs 1: 0.48
32 SS51046 medium strong 2

1 turn
- 35

0 unclear 2 vs 3: 0.62
1 unclear
2 turn

33 SS29893 strong strong 4

3 turn

SS34574 36

0 turn 0 vs 1: 0.44
34 SS34574 strong strong 2

1 turn
SS29893 37

0 foreleg movement 0 vs 1: 0.98
1 foreleg movement35 R70H06 strong strong 3
2 unresponsive

SS42740
SS42707

38

0 foreleg movement 0 vs 1: 0.97
36 SS42740 strong strong 2

1 foreleg movement
R70H06
SS42707

39

0 eye groom 0 vs 1: 0.75
37 SS25469 strong strong 2

1 eye groom
SS52106
SS52107
SS52108

40

0 proboscis extension 0 vs 1: 0.81
38 SS31232 strong strong 2

1 proboscis extension
SS30303
SS25451

41

0 proboscis extension 0 vs 1: 0.89
39 SS30303 strong 2

1 proboscis extension
SS31232
SS25451

42

0 unresponsive 2 vs 4: 0.93
1 unresponsive
2 proboscis extension
3 unresponsive
4 proboscis extension
5 unresponsive

40 SS25451 strong strong 7

6 unresponsive

SS31232
SS30303

43

0 foreleg movement 0 vs 2: 0.4
1 foreleg movement 0 vs 3: 0.65
2 foreleg movement 0 vs 4: 0.61
3 foreleg movement 0 vs 5: 0.21
4 foreleg movement 1 vs 2: 0.52
5 foreleg movement 1 vs 3: 0.5

1 vs 4: 0.46

41 SS28596 strong strong 6

1 vs 5: 0.28

R86H08 44

0 unclear 0 vs 1: 0.34
42 SS40134 strong medium 2

1 unclear
- 45

0 walk 0 vs 1: 0.74
43 SS29621 strong strong 2

1 walk
- 46

0 unclear 0 vs 1: 0.21
1 unclear 0 vs 2: 0.0744 R69H10 strong strong 3
2 unclear 1 vs 2: 0.02

- 47

0 rest 0 vs 2: -0.41
1 unclear 0 vs 4: 0.86
2 unclear 2 vs 4: -0.43
3 unresponsive

45 SS51038 strong strong 5

4 rest

- 48

0 walk 0 vs 2: 0.53
1 unclear
2 walk

46 SS42008 strong strong 4

3 unclear

SS42007

0 unclear 2 vs 4: 0.25
1 unclear 2 vs 5: 0.12
2 unresponsive 3 vs 4: 0.75
3 puff 3 vs 5: 0.27
4 puff

47 SS36118 strong strong 6

5 rest

- 50

0 walk 0 vs 1: 0.74
48 SS40619 medium strong 2

1 walk - 51
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Table 1 continued from previous page

No. Gal4
Confocal SNR

of smFP

2P SNR of
OpGCaMP6f
and tdTomato

Number
ROIs

ROI# Encoding

Level
synchronous activity
(ROI# vs ROI#:

Corr. coef.)

Redundant
Gal4

Supp.
Video#

0 puff 0 vs 3: 0.83
1 puff 1 vs 3: 0.85
2 unclear 2 vs 3: 0.71

49 SS45363 strong strong 4

3 puff

- 52

0 puff
50 SS52147 medium medium 2

1 puff
0 vs 1: 0.32 - 53

51 R38F09 - strong 10 - unresponsive - - -
52 SS46269 strong strong 12 - unresponsive - - -
53 SS25470 strong strong 5 - unresponsive - SS48406 -
54 SS25478 strong strong 5 - unresponsive - - -
55 SS28382 strong strong 6 - unresponsive - - -
56 SS29574 strong strong 2 - unresponsive - - -
57 SS31899 strong strong 8 - unresponsive - - -
58 SS33380 strong strong 7 - unresponsive - - -
59 SS33433 strong strong 2 - unresponsive - - -
60 SS38012 strong strong 6 - unresponsive - SS43528 -
61 SS38386 medium strong 3 - unresponsive - - -
62 SS38687 strong strong 3 - unresponsive - - -
63 SS46290 medium medium 2 - unresponsive - - -
64 SS46300 strong medium 2 - unresponsive - - -
65 SS48406 strong strong 5 - unresponsive - SS25470 -
66 SS48409 strong strong 2 - unresponsive - SS48632 -
67 SS49982 strong medium 4 - unresponsive - - -
68 SS50004 strong strong 2 - unresponsive - - -
69 SS50013 medium medium 1 - unresponsive - - -
70 SS50652 strong medium 3 - unresponsive - - -

71 SS36132 strong - - -
not imaged
(redundant)

-
SS36131
SS36133

-

72 SS36133 strong - - -
not imaged
(redundant)

-
SS36131
SS36132

-

73 SS38598 strong - - -
not imaged
(redundant)

- SS38592 -

74 SS41808 strong - - -
not imaged
(redundant)

-

SS41822
SS41809
SS41820
SS41821

-

75 SS41809 strong - - -
not imaged
(redundant)

-

SS41822
SS41808
SS41820
SS41821

-

76 SS41820 strong - - -
not imaged
(redundant)

-

SS41822
SS41808
SS41809
SS41821

-

77 SS41821 strong - - -
not imaged
(redundant)

-

SS41822
SS41808
SS41809
SS41820

-

78 SS42007 strong - - -
not imaged
(redundant)

- SS42008 -

79 SS42707 medium - - -
not imaged
(redundant)

-
SS42740
R70H06

-

80 SS43528 strong weak - -
not imaged

(undetectable in 2P;
redundant)

- SS38012 -

81 SS48632 medium - - -
not imaged
(redundant)

- SS48409 -

82 SS51024 strong - - -
not imaged
(redundant)

- SS51029 -

83 SS52108 strong weak - -
not imaged
(redundant)

-
SS25469
SS52106
SS52107

-

84 SS52106 medium - - -
not imaged
(redundant)

-
SS25469
SS52107
SS52108

-

85 SS52107 medium - - -
not imaged
(redundant)

-
SS25469
SS52106
SS52108

-

86 R86H08 medium weak - -
not imaged
(redundant)

SS28596 -

87 SS29889
strong

(indistinguishable
brain neurons)

- - -
not imaged
(redundant)

- SS29890 -

88 SS29890
strong

(indistinguishable
brain neurons)

- - -
not imaged
(redundant)

- SS29889 -

89 SS29605 -
unreliable
expression

- -
not imaged
(unreliable
expression)

- - -
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Table 1 continued from previous page

No. Gal4
Confocal SNR

of smFP

2P SNR of
OpGCaMP6f
and tdTomato

Number
ROIs

ROI# Encoding

Level
synchronous activity
(ROI# vs ROI#:

Corr. coef.)

Redundant
Gal4

Supp.
Video#

90 SS31246
unreliable
expression

unreliable
expression

- -
not imaged
(unreliable
expression)

- - -

91 SS46696
unreliable
expression

unreliable
expression

- -
not imaged
(unreliable
expression)

- - -

92 R75E01
strong but
with glia

- - -
not imaged

(glia included)
- - -

93 SS37652 medium weak - -
not imaged

(undetectable)
- - -

94 SS41602 strong weak - -
not imaged

(undetectable)
- - -

95 SS43651 strong weak - -
not imaged

(undetectable)
- - -

96 SS44305 strong weak - -
not imaged

(undetectable)
- - -

97 SS46255 strong weak - -
not imaged

(undetectable)
- - -

98 SS41824 strong weak - -
not imaged

(undetectable)
- - -

99 SS25488 - weak - -
not imaged

(undetectable)
- - -

100 R81G07 weak weak - -
not imaged

(undetectable)
- - -

101 SS45635 weak weak - -
not imaged

(undetectable)
- - -

102 SS45648 weak weak - -
not imaged

(undetectable)
- - -

103 SS46290 weak weak - -
not imaged

(undetectable)
- - -

104 SS46847 weak weak - -
not imaged

(undetectable)
- - -

105 SS47868 weak weak - -
not imaged

(undetectable)
- - -

106 SS50282 weak weak - -
not imaged

(undetectable)
- - -

107 SS50829 weak weak - -
not imaged

(undetectable)
- - -

108 R88C08 weak weak - -
not imaged

(undetectable)
- - -
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Table 2: Activation (AD) and DNA-binding Domains (DBD) of split-Gal4 lines

Driver line AD DBD
1 SS36131 R70D06 VT033054
2 SS38592 VT016458 VT012410
3 SS27485 R75E01 R18B05
4 SS41822 VT033054 VT026646
5 SS38624 VT002081 R85H01
6 SS45605 R15E01 R41E03
7 SS43652 VT026477 R38E07
8 SS36112 VT026646 VT028606
9 SS41806 VT060737 VT028606
10 SS38631 R72A10 VT038208
11 SS51029 VT034810 VT004985
12 R85A11 - -
13 SS40489 R36B06 VT007767
14 SS31480 R68C10 VT008150
15 SS51021 VT027767 VT027005
16 SS51017 VT005404 VT027767
17 SS31456 VT013500 VT012768
18 SS46233 VT029814 VT028464
19 SS42749 R66A06 VT056770
20 SS41815 VT043377 VT014669
21 SS29633 R33F06 R76E11
22 R87H02 - -
23 MAN VT50660 VT14014
24 SS49172 VT049120 VT008188
25 R36G04 - -
26 R39G01 - -
27 SS31219 VT045153 VT019074
28 R30A08 - -
29 SS44270 VT058560 VT033054
30 SS41605 R80A11 VT038205
31 SS29579 VT023828 VT059224
32 SS51046 VT007177 VT057280
33 SS29893 R67F03 VT050658
34 SS34574 VT008537 VT050658
35 R70H06 - -
36 SS42740 VT037865 VT061717
37 SS25469 VT027704 VT044958
38 SS31232 VT063643 VT059781
39 SS30303 VT063643 VT018278
40 SS25451 VT063643 VT059224
41 SS28596 R94B04 R86H08
42 SS40134 VT028320 R49A01
43 SS29621 R22E07 R30E10
44 R69H10 - -
45 SS51038 VT030558 VT001497
46 SS42008 VT033469 VT043682
47 SS36118 VT060737 VT026477
48 SS40619 VT021853 VT050234
49 SS45363 VT062587 VT043920
50 SS52147 VT044164 VT040034
51 R38F09 - -
52 SS46269 VT023490 VT016254
53 SS25470 VT063643 VT048352
54 SS25478 VT025966 VT013121
55 SS28382 R18G02 R49C03
56 SS29574 VT008660 VT043400
57 SS31899 R26H04 R46A10
58 SS33380 R19F01 R60A06
59 SS33433 R94D12 VT060731
60 SS38012 R48E02 R93B07
61 SS38386 VT016966 VT046334
62 SS38687 R30A02 VT015159
63 SS46290 VT029750 VT043288
64 SS46300 VT043146 VT000254
65 SS48406 VT048352 VT039769
66 SS48409 VT036302 VT049125
67 SS49982 R77D08 VT029514
68 SS50004 VT017645 VT049348
69 SS50013 VT008992 VT039485
70 SS50652 R60C01 R80B01
71 SS36132 R70D06 VT025996
72 SS36133 R70D06 VT026646
73 SS38598 VT024634 VT016458
74 SS41808 VT060737 VT033054
75 SS41809 R20E05 VT033054
76 SS41820 VT060737 VT025996
77 SS41821 R20E05 VT025996
78 SS42007 VT033469 VT026646
79 SS42707 VT061717 VT045101
80 SS43528 VT025966 R93B07
81 SS48632 VT036302 R93B07
82 SS51024 VT004985 VT034810
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Table 2 continued from previous page
Driver line AD DBD

83 SS52108 VT063231 R69H06
84 SS52106 VT063231 VT063626
85 SS52107 VT063231 VT021731
86 R86H08 - -
87 SS29889 R64G04 VT008537
88 SS29890 R64G04 VT050658
89 SS29605 VT019902 VT048942
90 SS31246 VT038171 VT021780
91 SS22721 R92D09 R92A07
92 R75E01 - -
93 SS37652 VT040698 VT023490
94 SS41602 R75E01 R74C01
95 SS43651 VT026477 VT039361
96 SS44305 R21E09 VT016966
97 SS46255 R24H02 VT037862
98 SS41824 R20E05 VT026646
99 SS25488 VT029593 VT020527
100 R81G07 - -
101 SS45635 VT008882 VT014208
102 SS45648 VT008808 VT029814
103 SS46290 VT029750 VT043288
104 SS46847 VT023490 VT039485
105 SS47868 R24H02 VT002064
106 SS50282 VT037554 VT012768
107 SS50829 VT033290 VT027767
108 R88C08 - -
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7 Supplementary Figures939

Figure S1: Hypothetical ascending neuron functional encoding and brain targeting. (a)
ANs might encode high-level behaviors, or low-level limb kinematics. This encoding may be either
narrow (e.g., one behavior, or joint degree-of-freedom), or broad (e.g., several behaviors, or joint
DoFs). (b) ANs might target the brain’s (i) primary sensory regions (e.g., optic lobe, or antennal
lobe) to perform sensory gain control, (ii) multimodal and integrative sensory regions (e.g., ante-
rior ventrolateral protocerebrum, or mushroom body) to contextualize time-varying sensory cues, or
(iii) action selection centers (e.g., gnathal ganglion, or central complex) to gate action transitions.
Individual ANs may project broadly to multiple brain regions, or narrowly to one region.
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Figure S2: Semi-automated tracking of proboscis extensions. We detected proboscis extensions
using side-view camera images. (a) First, we trained a deep neural network model with manual
annotations of landmarks on the ventral eye (blue cross) and distal proboscis tip (red cross). (b) Then
we applied the trained model to estimate these locations throughout the entire dataset. (c) Proboscis
extension length was calculated as the denoised and normalized distance between landmarks. (d)
Using these data, we performed semi-automated detection of PE epochs by first identifying peaks from
normalized proboscis extension lengths. Then we detected the start (cyan triangle) and end (magenta
triangle) of these events. We removed false-positive detections by thresholding the amplitude (cyan
line) and duration (magenta line) of events. Finally, we generated a binary trace of PE epochs (shaded
area).
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Figure S3: Correlations among and between low-level joint angles and high-level be-
haviors. Pearson correlation coefficients (color-coded) for joint angles, high-level behavioral states,
proboscis extensions, and puffs.
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Figure S4: Normalized mean activity (∆F/F ) of ascending neurons during high-level be-
haviors. Normalized mean ∆F/F for a given AN across all epochs of a specific high-level behavior.
Analyses were performed for 157 ANs recorded from 50 driver lines. Lines selected for more in-depth
analysis are color-coded by the behavioral state best explaining their neural activity: SS27485 (rest-
ing), SS36112 (puff responses), SS29579 (walking), SS51046 (turning), SS42740 (foreleg-dependent
behaviors), SS25469 (eye grooming), and SS31232 (proboscis extensions). Note that fluorescence for
non-orthogonal behaviors/events may overlap (e.g., for backward walking and puff, or resting and
proboscis extensions). To minimize contamination due to signals from preceding behaviors (resulting
from the long decay kinetics of calcium indicators), conditions with less than ten epochs longer than
0.7 s are masked (white). ∆F/F signals are normalized between 0 and 1 to minimize the influence of
differences in calcium indicator expression levels on data interpretation. ANOVA and posthoc Tukey
tests to correct for multiple comparisons were performed to test if values are significantly different
from baseline. Non-significant samples are also masked (white).

Figure S5: Relationship between ascending neuron behavioral encoding, brain targeting,
and VNC patterning. (a) Variance in AN activity that can be uniquely explained by a regres-
sor (cross-validated ∆R2) for high-level behaviors. Regression analyses were performed for 157 ANs
recorded from 50 driver lines. Lines (and their corresponding ANs) selected for more in-depth analysis
are color-coded by the behavioral class that best explains their neural activity: SS27485 (resting),
SS36112 (puff responses), SS29579 (walking), SS51046 (turning), SS42740 (foreleg-dependent behav-
iors), SS25469 (eye grooming), and SS31232 (proboscis extensions). Non-orthogonal regressors (PE
and CO2 puffs) are separated from the others. P -values report the F-statistic of overall significance of
the complete regression model with no regressors shuffled (*p<0.05, **p<0.01, and ***p<0.001). The
most substantial AN (b) targeting of brain regions, or (c) patterning of VNC regions, as quantified
by pixel-based analysis of MCFO labelling. Driver lines that were manually quantified are indi-
cated (dotted cells). Projections that could not be unambiguously identified are left blank. Notable
encoding and innervation patterns are indicated by bars above each matrix.
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Figure S6: Puff-ANs respond to CO2 puffs and do not encode backward walking. Puff-ANs
(SS36112) activity (green) and corresponding spherical treadmill rotational velocities (red, blue, and
purple) during (a) long, 2 s CO2-puff stimulation (black) and associated backward walking (orange),
(b) short, 0.5 s CO2-puff stimulation, (c) periods with backward walking, and (d) the same backward
walking events as in c but only during periods without coincident puff stimulation. Shown are the
mean (solid and dashed lines) and 95% confidence interval (shaded areas) of multiple ∆F/F and ball
rotation time-series.
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Figure S7: Puff-ANs respond similarly to puffs of air, or CO2. Activity of puff-ANs (SS36112)
from three flies (a-c, d-f, and g-i, respectively) in response to puffs of air (red), or CO2 (black). (a-b,
d-e, g-h) Shown are mean (solid and dashed lines) and 95% confidence interval (shaded areas) ∆F/F
for ROIs (a, d, g) 0 and (b, e, h) 1. (c, f, i) Mean fluorescence (circles) of traces for ROIs 0 (left) or
1 (right) from 0.7 s after puff onset until the end of stimulation. Overlaid are box plots representing
the median, interquartile range (IQR), and 1.5 IQR. Outliers beyond 1.5 IQR are indicated (opaque
circles). A Mann-Whitney test (*** p<0.001, ** p<0.01, * p<0.05) was used to compare responses
to puffs of CO2 (red), or air (black).
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Figure S8: The bilaterality of an ascending neuron pair’s VNC patterning correlates
with the degree of synchronous activity. (a) A bilaterality index, quantifying the differential
innervation of left and right VNC (without distinguishing between axons and dendrites) is compared
with the Pearson correlation coefficient for activity of left and right ANs within a pair (R2 = 0.31
and p<0.001 using an F-test). (b) Bilaterality index and Pearson correlation coefficient values for
each AN pair examined.
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Figure S9: Ascending neurons that become active only in the absence of the spherical
treadmill. Representative AN recordings from ROIs 0 and 1 for (a, b) one SS51017-spGal4 animal,
or (c, d) one SS38631-spGal4 animal measured when it is (a, c) suspended without a spherical
treadmill, or (b, d) in contact with the spherical treadmill. Moving, resting, and puff stimulation
epochs are indicated. Shown are (left) representative neural activity traces and (right) summary
data including the median, interquartile range (IQR), and 1.5 IQR of AN ∆F/F values when the
animal are resting (black), or moving (blue). Outliers (values beyond 1.5 IQR) are indicated (black
circles). Statistical comparisons were performed using a Mann-Whitney test (*** p<0.001, ** p<0.01,
* p<0.05).
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Figure S10: Behavior classifier accuracy. A confusion matrix quantifies the accuracy of predictions
using 10-fold, stratified cross-validation of a histogram gradient boosting classifier. Walking and
resting are not included in this evaluation because they are predicted using spherical treadmill rotation
data. The percentage of events in each category (‘predicted’ behavior versus ground-truth, manually-
labelled ‘true’ behavior) is color-coded.
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Figure S11: AxoID, a deep learning-based algorithm tracks axonal cross-sections in two-
photon microscopy images. (a) Pipeline overview: a single image frame (left) is segmented
(middle) during the detection stage with potential axons shown (white). Tracking identities (right)
are then assigned to these ROIs. (b) To track ROIs across time, ROIs in a tracker template (bottom-
middle) are matched (red lines) to ROIs in the current segmented frame (top-middle). An undetected
axon in the tracker template (cyan) is left unmatched. (c) ROI separation is performed for fused
axons. An ellipse is first fit to the ROI’s contour and a line is fit to the separation (dashed red line).
For normalization, the ellipse is transformed into an axis-aligned circle and the linear separation is
transformed accordingly. For another frame, a transformation of the circle into a newly fit ellipse
is computed and applied to the line. The ellipse’s main axes are shown for clarity. (d) The AxoID
workflow. Raw experimental data is first registered via cross-correlation and optic flow warping.
Then, raw and registered data are separately processed by the fluorescence extraction pipeline (dashed
rectangles). Finally, a GUI is used to select and correct the results.
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8 Supplementary Videos940

Video 1: High-level behaviors, their associated 3D poses, and spherical treadmill rota-941

tional velocities. Behaviors were captured from six camera views. Illuminated text (top) indicates942

the regressor being illustrated. Also shown are corresponding 3D poses (bottom-left) and spher-943

ical treadmill rotational velocities, proboscis extension (PE) lengths, and puff stimulation periods944

(bottom-right).945

https://www.dropbox.com/s/xed6jfgyqf7ubft/Video1.mov?dl=0946

Video 2: Representative data for 50 comprehensively analyzed, AN-targeting sparse947

driver lines. Shown are: (a) spFP staining, (b) a representative two-photon microscope image,948

(c) outline of the associated cervical connective after filling the surrounding bath with fluorescent949

dye, (d) and PE length, puff stimuli, spherical treadmill rotational velocities, and AN (ROI) 4F/F950

traces. Indicated above are regressors for forward walking (‘F.W.’), backward walking (‘B.W.’),951

resting (‘Rest’), eye grooming (‘Eye groom’), antennal grooming (‘Ant. groom’), foreleg rubbing (‘Fl.952

rub’), abdominal grooming (‘Abd. groom’), hindleg rubbing (‘Hl. rub’), and proboscis extension953

(‘PE’). For each driver line, the title indicates ‘date-Gal4-reporters-fly-trial’.954

https://www.dropbox.com/s/73aymyw3quiw142/Video2.mov?dl=0955

Videos 3 - 52: Representative behavioral videos and AN two-photon imaging data for956

50 comprehensively analyzed, AN-targeting sparse driver lines.957

https://drive.switch.ch/index.php/s/Q9K5BvugJc190rV958

9 Data and code availability959

Data are available at:960

https://dataverse.harvard.edu/dataverse/AN961

962

Analysis code is available at:963

https://github.com/NeLy-EPFL/Ascending_neuron_screen_analysis_pipeline964

965

AxoID code is available at:966

https://github.com/NeLy-EPFL/AxoID967
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