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Abstract 27 

Understanding global patterns of genetic diversity (GD) is essential to describe, monitor, and 28 

preserve the processes giving rise to life on Earth. To date, efforts to map macrogenetic 29 

patterns have been restricted to vertebrate groups that comprise a small fraction of Earth’s 30 

biodiversity. Here, we construct the first global map of predicted insect genetic diversity. We 31 

calculate the global distribution of GD mean (GDM) and evenness (GDE) of insect 32 

assemblages, identify the global environmental correlates of insect GD, and make predictions 33 
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for undersampled regions. Based on the largest and most species-rich single-locus genetic 34 

dataset assembled to date, we find that both GD metrics follow a bimodal latitudinal gradient, 35 

where GDM and GDE correlate with contemporary climate variation. Our models explain 1/4 36 

and 1/3 of the observed variation in GDM and GDE in insects, respectively, making an important 37 

step towards describing global biodiversity patterns in the most diverse animal taxon. 38 

Introduction  39 

Describing global patterns of biodiversity is essential for understanding and protecting 40 

processes governing the distribution of life across the world. To date, such global-scale 41 

assessments have largely focused on species richness 1, phylogenetic diversity 2,3, species 42 

abundances 4,5, and functional trait diversity 6,7. These macroecological metrics have long been 43 

used to inform conservation and gain insights into mechanisms underlying eco-evolutionary 44 

patterns. Only recently, however, have the advances in high-throughput DNA metabarcoding 45 

been utilized for global studies of biodiversity 8–11.  46 

Large-scale georeferenced DNA barcode surveys 8,12 have great potential beyond their 47 

original use as a tool for identifying and delimiting species. They aid in identifying adaptive 48 

potential and ecosystem resilience to disturbance 13, and more generally, help to understand 49 

how intraspecific variation can help support critical ecological functions 14. Along with being an 50 

important new component of the macroecological toolbox for conservation action 15,16, the 51 

promise of these eco-evolutionary insights is fueling the rise of the emerging field of 52 

“macrogenetics” 17,18. Macrogenetic studies summarize the geographic distribution of average 53 

intraspecific genetic variation across species assemblages to find previously unknown patterns 54 

and processes underlying the generation and maintenance of biodiversity 19. 55 

To date, global-scale macrogenetic studies have focused solely on vertebrate groups, 56 

uncovering links between aggregated genetic diversity, species richness, and phylogenetic 57 
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diversity 20,21, while documenting latitudinal gradients in aggregated genetic diversity 22–24. 58 

Macrogenetic studies have also provided mixed support for the general influence of human 59 

disturbance on genetic diversity 20,22,25,26, while climate stability 20,26 and species’ range sizes 27 60 

have been shown to influence intraspecific genetic diversity on a global scale. 61 

The existing bias toward vertebrate macrogenetics leaves undocumented the bulk of the 62 

planet's animal biodiversity: insects. Insects are vital for maintaining critical ecosystem services 63 

and functions 28,29, yet to date insect macrogenetic studies have been restricted to the regional 64 

scale due to the immense effort required to collect, identify, and sequence such a speciose 65 

taxon 30–33. There also is little agreement as to what extent insect communities are resilient to 66 

global change 34,35, including biological invasions 36,37, habitat conversion 38, and climate change 67 

39. Here, we present the first global macrogenetic analysis of this large group, which is 68 

especially important given increasing evidence that many insect taxa may be in global decline 69 

with respect to occurrence, local richness, abundance and biomass 35,40–46.  70 

Unlike for most terrestrial vertebrates, comprehensive knowledge of species diversity, 71 

distributions, and population dynamics are poorly known for most large insect groups 47,48. 72 

These constraints on understanding broad-scale insect biodiversity patterns point to a need for 73 

a systematic global data synthesis 49. One basic challenge for insects is the species 74 

identification bottleneck underpinning large-scale biodiversity surveys that use conventional 75 

morphological methods 50,51. DNA barcoding and environmental DNA metabarcoding represent 76 

viable approaches for expedited, large-scale, global quantification of insect species diversity 52, 77 

despite some known limitations 53,54.  78 

Most macrogenetic studies of animal taxa are based on mitochondrial DNA (mtDNA) 79 

sequence data, which represent the majority of available sequences 17. Despite the limitations of 80 

using a single-locus marker 55–58, the pragmatic advantages of the ability to sample the genetic 81 

diversity of hundreds or thousands of taxa per locale potentially outweigh these considerations 82 

59,60. The Barcode of Life Consortium database (BOLD) is a rich source of single-locus mtDNA 83 
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that links quality-controlled genetic data with georeferenced metadata 8. Leveraging this 84 

resource, we compiled the largest macrogenetic dataset ever assembled: over 2.3 million 85 

globally distributed and georeferenced mtDNA sequences (cytochrome c oxidase 1 - COI) for 86 

over 95,000 operational taxonomic units (OTUs). We use these data to generate the first global 87 

map of insect genetic variation using both the commonly used genetic diversity mean (GDM) 88 

and a new measure we introduce: genetic diversity evenness (GDE). While GDM describes the 89 

magnitude of average genetic diversity among species, GDE represents the shape of the 90 

distribution of individual GD measures for all focal taxa that co-occur in a given area. 91 

Considering both these values gives us the ability to discriminate between important processes 92 

underlying community assembly and structure 61. As macrogenetic studies to date only describe 93 

average intraspecific genetic diversity (GDM), they are unable to determine whether high 94 

metrics of genetic diversity are due to high diversity within most community members or to the 95 

effects of a few taxa with extremely high diversity (Fig. 1; see Methods).  96 

We focus our analyses on several questions about the macrogenetics of insects. First, 97 

we evaluate whether the magnitude and variability of GD generally follows latitudinal trends of 98 

increasing insect species richness in the tropics62,63. Explanations for this general latitudinal 99 

gradient are often explained in terms of the wet tropics being either “museums” or conversely 100 

“cradles”, with opposite predictions with regards to range sizes 64. If geographic range size 101 

tends to correlate with GD 65, we might expect this gradient given the “museum” hypothesis that 102 

predicts that taxa in the tropics will be older, and have larger geographic range sizes 66,67, In 103 

contrast, species richness and GD may be decoupled due to the “cradle” hypothesis that 104 

predicts higher speciation rates, more population structure, and smaller range sizes leading to 105 

Rapoport’s Rule 68, the tendency for species’ range sizes to increase with increasing latitude 106 

69,70. Second, we might predict that the influence of Late Quaternary climate fluctuations to have 107 

an impact on GD through population demographic processes influenced by cyclical variation in 108 

precipitation, temperature, and glaciation patterns 71,72, where areas with more stable climatic 109 
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histories are predicted to have increased GD 72. Finally, we consider the influence of human 110 

disturbance on patterns of assemblage-wide GD, which we expect to decrease in magnitude in 111 

areas of high human influence 42. 112 

To answer these questions, we explore how well insect GDM and GDE are predicted by 113 

current and historical climate, habitat, and human disturbance. We first find environmental 114 

correlates of intraspecific insect genetic diversity globally using Bayesian generalized linear 115 

mixed models (GLMM), and then use these to predict patterns of insect GDM and GDE in 116 

undersampled regions, which includes most of the planet. In contrast to most global vertebrate 117 

biodiversity patterns documented to date, we find that insect GDM and GDE have bimodal 118 

latitudinal gradients that peak in mid-latitude regions and that both metrics are positively 119 

correlated with high temperature extremes.   120 

Results 121 

GDM and GDE were calculated from native-range insects sampled within raster grid cells at a 122 

193 km x 193 km equal-area resolution. These cells were heterogeneously distributed across 123 

the globe on every continent except Antarctica (N = 187, Fig. 2). Regions with both high GDM 124 

and high GDE (above the 90th percentile) were found in eastern North America as well as in the 125 

North American desert southwest, in eastern Africa, and in southern China (Supplementary Fig. 126 

1b). Areas with the lowest values of observed GDM and GDE were mostly distributed in 127 

northern North America and Europe (Supplementary Fig. 1d).  128 

Insect genetic diversity correlates with latitude 129 

While latitude did not significantly explain GDM or GDE across the entire planet (Table 130 

1), it was correlated with GDE after removing cells above 60º latitude, which includes areas 131 
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covered by glaciers and tundra during the last glacial maximum (LGM; median slopequadratic = 132 

0.002 [95% highest density interval (HDI): 0.001, 0.003], median R2 = 0.103 [95% HDI: 0.022, 133 

0.221]). In contrast to latitudinal diversity gradients for species richness in most taxa, insect 134 

GDE increased towards the poles (up to 60º latitude) and decreased towards the equator (Fig. 135 

3). The same pattern is seen in GDM, although the pattern does not exhibit a strong statistical 136 

trend, where the 95% HDI of the predictor overlapped zero (slopequadratic = 2e-4 [-5e-5, 4e-4], 137 

Fig. 3).  138 

Relationships between insect genetic diversity and the 139 

environment 140 

Higher GDE values were mainly found in areas that rarely freeze. We divided the globe 141 

into areas above or below the global freeze-line (long-term minimum temperature of the coldest 142 

month (MTCM) above versus below 0º C) and found that GDE is significantly higher above this 143 

line than below it (Welch’s unequal variance t-test; mean GDEabove - mean GDEbelow = 0.042; t = 144 

-5.804, df = 184.690, P < 0.001), while GDM showed no significant correlative trend against this 145 

binary metric (P = 0.525).  146 

We explored relationships among GDM, GDE, and environmental predictors within each 147 

cell using Bayesian generalized linear mixed models (GLMMs). Predictors included bioclimatic 148 

variables describing current climate, variables summarizing climate variation since the LGM 149 

(“historical climate”), a spatial habitat variation metric, a human habitat modification metric, and 150 

topographic variables. We found that GDM and GDE covary significantly with current climate 151 

and that both reach high values in the hottest regions of the planet. Notably, predictors 152 

describing human habitat modification, spatial habitat variation, and topography did not 153 

significantly predict either GD metric. After reducing the set of potential predictors to three 154 

current and historical climate variables for GDM (Supplementary Table 1) and six current and 155 
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historical climate variables for GDE (Supplementary Table 2), we were able to compare three 156 

hypotheses: H1) current climate; H2) historical climate; and H3) current + historical climate best 157 

explain the two GD metrics. We constructed models for these hypotheses using a Bayesian 158 

GLMM approach that accounts for spatial autocorrelation (SAC; see Methods) 73. The most 159 

parsimonious models were selected based on an approximate leave-one-out cross-validation 160 

procedure (LOO; see Methods) that uses the expected log predictive density (ELPD; analogous 161 

to information criteria, i.e., Akaike’s Information Criterion) as the utility function. Using this 162 

criterion, the best model for both GDM and GDE gave support to H1: current climate. The H1 163 

models for GDM and GDE included the maximum temperature of the warmest month variable 164 

(MTWM). The best fit model (H1) for GDM additionally included precipitation seasonality, while 165 

the best fit model (H1) for GDE additionally included temperature seasonality and precipitation 166 

of the wettest month (PWM) (Fig. 4, Table 2).  167 

For GDM, H1 (Table 2; Supplementary Fig. 2; R2 = 0.234 [95% HDI: 0.088, 0.385]) had 168 

the most support, but was not statistically different from H3. We selected the simpler model (H1) 169 

for interpretation and prediction. Between the two current climate predictors, MTWM trends 170 

positively with GDM (slope = 0.002 [0.001, 0.003]; Fig. 4), and precipitation seasonality trends 171 

negatively (slope = -0.001 [-0.002, -1e-4]; Fig. 4).  172 

 For GDE, H1 had the most support (Table 2; Supplementary Fig. 2; R2 = 0.327 [95% 173 

HDI: 0.152, 0.483]). MTWM was the only variable with a significant trend (Fig. 4). MTWM (slope 174 

= 0.014 [0.004, 0.025]) and temperature seasonality (slope = 0.008 [-0.004, 0.020]) both trend 175 

positively with GDE, whereas PWM trends negatively with GDE (-0.004 [-0.016, 0.008]).  176 

Over 23% and 32% of the global observed variation in GDM and GDE, respectively, can 177 

be explained by current climate (H1). There was no residual spatial autocorrelation in the final 178 

models (Table 2). In addition, all parameter posterior distributions had less than 12% overlap 179 

with their prior distributions, indicating high identifiability (Supplementary Fig. 3). 180 
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Global predictions of insect genetic diversity 181 

We then used the best-fit model (H1) to predict and map the global distribution of GDM 182 

and GDE individually and jointly at the original spatial scale used for modeling (193 km x 193 183 

km resolution) across the globe, including unsampled areas (Fig. 2, Supplementary Fig. 4). We 184 

omitted predictions in all areas exposed to environmental conditions that fell outside the model 185 

training range, including Antarctica, a large portion of northern Africa, the Arabian Peninsula, 186 

parts of central Asia, and interior Greenland (Fig. 2; shown in gray; Supplementary Fig. 5).  187 

Areas predicted to have high levels of both average genetic diversity and evenness 188 

(GDM and GDE; above the 90th percentile) include southeastern North America and southern 189 

India, while the regions with the very highest predicted values include southern and 190 

southwestern Australia, parts of the desert southwest of North America, and southern India 191 

(Supplementary Fig. 1a; Fig. 2). Areas predicted to have the lowest GDM and GDE values 192 

(below the 10th percentile for both) were found in Patagonia and the northern Nearctic and 193 

Palearctic (Supplementary Fig. 1c). When considered independently, GDM is predicted to be 194 

highest (above the 90th percentile) in the temperate forest regions of eastern North America 195 

(Supplementary Fig. 1e; Fig. 2), yet is predicted to be generally low for much of the Neotropics 196 

(Fig. 2). The very lowest GDM areas (below the 10th percentile) are distributed across the 197 

nearctic and palearctic tundra, the entire Andes mountains chain, and areas in the Himalayan 198 

mountains (Supplementary Fig. 1g). When GDE is considered independently, it is predicted to 199 

be the highest (above the 90th percentile) throughout Australia, the southeast and desert 200 

southwest of North America, as well as much of the Indian subcontinent and the outer fringes of 201 

Saharan Africa (Supplementary Fig. 1i). On the other hand, GDE is predicted to be lowest 202 

(below the 10th percentile) in northern Europe and parts of the nearctic and palearctic tundra as 203 

well as southern Patagonia in South America (Supplementary Fig. 1k; Fig. 2). 204 
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Taxon-specific patterns of GD 205 

Six insect orders contain 97.2% of all OTUs in this study (Supplementary Fig. 6; 206 

Supplementary Table 3). In order of prevalence, they include Diptera, Lepidoptera, 207 

Hymenoptera, Coleoptera (the four mega-diverse orders that include ca. 80% of known insect 208 

species), Hemiptera, and Trichoptera. The remaining 2.8% of OTUs belong to 20 additional 209 

insect orders.  210 

To investigate the influence of the three most prevalent orders (Diptera, Lepidoptera, 211 

and Hymenoptera, 84.4% of total) we removed these orders from the full dataset and 212 

reanalyzed patterns of GDE and GDM. Using Welch’s unequal variance t-tests, we found no 213 

difference in GDE estimates between the full and reduced datasets (Supplementary Fig. 7; P = 214 

0.335). However, GDM was slightly but significantly lower in the full dataset (meandiff = -0.003, 215 

df = 91.195, P = 0.002). 216 

OTU sampling across the most abundant three orders varied geographically 217 

(Supplementary Fig. 8). We calculated OTU sampling as the number of OTUs per order within 218 

each cell. Diptera dominated OTU sampling towards the poles, while Lepidoptera dominated 219 

sampling towards the tropics and in some temperate locations, and Hymenoptera typically 220 

accounted for fewer than 50% of OTUs sampled, with overrepresented sampling in Madagascar 221 

(Supplementary Fig. 8). 222 

 223 

Discussion 224 

We found clear, and in some cases surprising, global biogeographic patterns of insect 225 

genetic diversity (Fig. 2; Supplementary Fig. 1). There is a reversed latitudinal gradient for GDM 226 

and GDE, with both significantly lower in the tropics than in temperate and subtropical regions 227 
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on either side of the equator. GDM and GDE have bimodal distributions which peak in areas 228 

that were unglaciated during the last glacial maximum (LGM, < 60º latitude, 18-21,000 years 229 

ago, 74 and are generally lower in the wet tropics and in temperate areas that were glaciated or 230 

tundra-like during the LGM (> 60º latitude). This suggests that the forces underlying intraspecific 231 

genetic diversity are inherently different from those driving the classical negative latitudinal 232 

gradients in species richness and phylogenetic diversity found in major arthropod groups such 233 

as ants and spiders 75–77, as well as plants 78, which are expected to be strongly linked to insect 234 

biogeographic patterns. Bees (order Hymenoptera) are one notable exception, showing a 235 

bimodal latitudinal gradient similar to what we find, with highest richness at mid-latitudes 79. 236 

While neutral theories of biodiversity predict positive species genetic diversity correlations 237 

(SGDC) 31,80,81, there are also conditions for which one would expect weak or even negative 238 

correlations, e.g. neutral conditions paired with high mutation rates 82 or greater niche breadths 239 

result in higher genetic diversity, but fewer species in a community 83. However, many 240 

confounding factors will affect how species diversity metrics relate to GDM and GDE, and these 241 

factors may have both positive and negative effects, leading to large variation in the sign and 242 

intensity of SGDCs 84, especially at a global scale in such a broad taxonomic group such as 243 

insects.  244 

The bimodal latitudinal gradient we find also contrasts with recent macrogenetic studies 245 

of vertebrates, all of which find a negative latitudinal gradient of genetic diversity with average 246 

values peaking in the tropics and declining poleward, including mammals 20, amphibians 22, and 247 

fishes 21. Our finding of lower genetic diversity in areas that were glaciated or tundra during the 248 

LGM is consistent with a gradient of lower haplotype richness in recently unglaciated areas 249 

found in European butterflies 30 based on the same COI data from BOLD used here. Similarly, 250 

aquatic insect species have lower intraspecific genetic diversities in recently unglaciated areas 251 

of Europe compared to Neotropical areas 32.  252 
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Why would GDM and GDE be lower in areas like the wet tropics when the species 253 

diversities of most insect groups reach their peaks in these habitats 87,88? Rapoport’s Rule, the 254 

tendency for species’ range sizes to increase with increasing latitude 69,70, might explain this 255 

result because species with larger ranges tend to harbor greater genetic diversity 65,89. 256 

Macrogenetic studies tend to calculate intraspecific genetic diversity at the grid-cell level, and 257 

extratropical cells are likely dominated by species with large ranges, while tropical cells are 258 

likely dominated by species with smaller ranges. Thus, coalescent times among sampled alleles 259 

within each species in each extratropical cell will tend to be older, yielding larger average 260 

pairwise distances, the metric we use for GD 90. 261 

A few additional mechanisms may play a role in explaining higher insect extratropical 262 

GDM. Wide-ranging extratropical species can usually tolerate a broader range of climatic 263 

variation, whereas limited-range tropical species tend to have a narrow climatic niche, stronger 264 

habitat specializations, and narrower physiological tolerances (91). While peaks of GDM and 265 

GDE may be driven by larger range sizes and greater physiological tolerances of species in hot, 266 

seasonal areas, other studies have found that larger range sizes in temperate species can lead 267 

to greater population genetic structure 27. This could in turn lead to lower levels of local GDM if 268 

the spatial resolution of sampling, i.e., grid size, is smaller than the population range sizes of 269 

locally occurring species 92. However, the coarse resolution of the cells we use (37,249 km2) 270 

likely avoids this issue. 271 

It is also possible that insect GDM and GDE patterns reflect their unique life history traits 272 

and responses to short-term environmental shifts. For instance, observed and predicted 273 

patterns of GDM and GDE (Fig. 2) are higher in areas where insect diapause, the temporary 274 

suspension of development during the life cycle, is more prevalent (91). Insect diapause is 275 

thought to provide adaptive tolerance to wider abiotic conditions and may result in larger and 276 

more uniform ranges 91,93. Given the positive relationship between range size and GD 65,89, this 277 

provides a possible mechanistic relationship that connects Rapoport’s Rule and the higher and 278 
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more uniform genetic diversities found in higher latitude regions with pronounced seasonality. 279 

Another important feature of GDE is that it is lower in areas that experience frequent freezing, 280 

i.e., below the freeze-line, which may be related to the range of temperatures encountered by a 281 

species. Although this might seem counterintuitive, insect species that enter diapause in 282 

habitats that seasonally accumulate substantial snow are likely to encounter less extreme 283 

temperatures than those in more exposed habitats of temperate deserts, where large 284 

temperature oscillations are common 94. In this light, we might predict more uniform and higher 285 

levels of GD in Australia, which both is above the freeze-line and has high temperature 286 

seasonality with little snow accumulation. 287 

Since species diversity patterns of specialist insect herbivores correlate with their host 288 

plants’ 95, some of the environmental correlates associated with high GDM and GDE in insects 289 

may be more directly tied to the climatic determinants underlying global plant diversity patterns 290 

96,97. Nearly half of all insect species are herbivorous, yet this varies across orders ranging from 291 

~99% of Lepidoptera, 30-35% of Diptera and Coleoptera, yet only 10-15% of Hymenoptera 98. 292 

Insects and angiosperms have species richness patterns with similar poleward gradients 78,99 293 

and likely evolved in the tropics with subsequent adaptations for wider environmental tolerances 294 

associated with temperate radiations 100. Although the diversities of insects and plants are tightly 295 

correlated 101, we found no significant correlations between habitat heterogeneity, a derived 296 

measure of variability in remotely sensed metrics of vegetation diversity, and GDM or GDE, 297 

suggesting that specific aspects of plant community composition, rather than just plant species 298 

richness, affects insect genetic diversity. Further, host plant intraspecific genetic diversity 299 

demonstrably influences herbivorous insect community assembly 102,103. A potentially fruitful 300 

area of future investigation would be to search for links between the genetic diversity of local 301 

insect and plant assemblages. 302 

While Rapoport’s Rule may explain increasing extratropical genetic diversity, the 303 

observed bimodal latitudinal gradient emerges as genetic diversity begins to decline poleward in 304 
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the temperate regions. We hypothesize that the poleward spatial range expansions after the 305 

LGM resulted in founder effects that led to the low levels of genetic diversity we detect in these 306 

regions. This is consistent with many studies showing lower intraspecific genetic diversity in 307 

organisms inhabiting regions that were previously tundra, cold steppes, or glaciated 104, 308 

presumably due to post-glacial expansions 71. 309 

The regions predicted to have high GDE and GDM correspond with known hotspots of 310 

insect biodiversity. For instance, North American southwestern deserts have the highest 311 

butterfly phylogenetic endemism in North America 79,105. Southwestern Australian deserts also 312 

have exceptionally high arthropod endemism 106, and are among the original biodiversity 313 

hotspots identified by 107. The high GDM observed in eastern North America also corresponds 314 

with high Odonata species diversity 108.  315 

The bimodal latitudinal gradient in GDE is likely influenced by mechanisms at least 316 

partially independent of those that generate the same gradient in GDM. Higher levels of GDE, 317 

reflecting lower variability among genetic diversities, could partially result from histories of 318 

neutral community assembly processes 61. Overcast et al. (2020) found in both simulated 319 

communities and empirical arthropod, annelid, and tree datasets that ecologically neutral 320 

communities tend to have higher GDE than non-neutral, i.e., niche-structured communities. 321 

Here, the lower GDE in communities assembled via environmental filtering is likely caused by 322 

increased genetic diversity in species with stronger local ecological adaptation. While this 323 

suggests that equatorial insect communities may have stronger local niche-structured 324 

mechanisms than temperate insect communities, consistent with the idea of stronger niche 325 

conservatism in the tropics 109, this is one of many hypotheses emerging from our study. 326 

While GDM and GDE can be informative about processes underlying biodiversity 327 

patterns, interpretation of GDM and GDE in isolation (or even together) without additional 328 

information about the study system can lead to erroneous conclusions. For example, if the rare 329 

and the least genetically diverse species go locally extinct, this could raise GDM for the 330 
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remaining species. Similarly, a disturbed community with high GDE may be composed of 331 

populations with low but similar genetic diversity, such that without also measuring GDM, the 332 

low genetic diversity of the community may go unnoticed. Conversely, relatively high GDM in a 333 

community may be driven by a few hyper-dominant taxa with high GD while a remaining 334 

majority of low GD taxa. Alternatively, this same scenario of high GDM and low GDE could be 335 

found in areas that have a mix of wide-ranging endemic taxa and several invasive species with 336 

low genetic diversity 110,111. Low GDE may highlight this driver when considered in context with a 337 

priori hypotheses derived from other evidence. We recommend future macrogenetic studies at 338 

regional scales to include metrics of the average and shape of GD distributions in addition to 339 

ancillary information to effectively summarize and interpret the genetic diversity of assemblages. 340 

Genetic diversity is critical to the survival of both the insects themselves, and the 341 

complex networks of interactions to which many insects belong. High genetic diversity may 342 

facilitate adaptation to changing climates and emerging diseases, two (of many) potential 343 

drivers of the “insect apocalypse” 44. In addition, genetic diversity contributes to the diversity and 344 

stability of species interaction networks by affecting niche space and competition 112, community 345 

structure 113, and network complexity 114. At larger ecological scales, insect genetic diversity may 346 

reflect ecosystem function and structure as reliably as other traditional macroecological metrics 347 

such as species richness 115. It can augment the resilience of ecosystems that provide 348 

continuing services for humankind 14, such as disease management, curbing the spread of 349 

invasive plants, aiding sustainable agriculture, pollinating food crops, and controlling pests 13. 350 

While the metric of global human modification we considered did not significantly correlate with 351 

GDM or GDE, there are many facets of anthropogenic disturbance acting at different spatial 352 

scales that are difficult to summarize in a single metric 116. The spatiotemporal resolution of 353 

genetic sampling currently available does not permit rigorous assessment of how humanity 354 

affects insect GD at a global scale, but a concerted increase in sampling effort, especially in the 355 

data-poor regions we identify, will likely make this feasible in the not-to-distant future.  356 
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By modeling relationships between environmental data and our two complementary 357 

measures of intraspecific genetic diversity, GDE and GDM, we also make predictions about 358 

assemblage-level genetic diversity in data-poor regions of the planet. This has the potential to 359 

fill a knowledge gap that far exceeds the undersampling and taxonomic uncertainties underlying 360 

vertebrate and plant macroecological studies 117,118. We provide targets for future efforts that will 361 

fulfill global commitments to monitor and conserve genetic diversity, a biodiversity component 362 

that has rarely been assessed or used to guide conservation decisions 15, while focusing 363 

attention on a data deficient group with evidence of global population declines 119. While there 364 

have been recent arguments that the value of putatively neutral intraspecific genetic diversity is 365 

overstated in the context of conservation 120, a large body of literature indicates otherwise 121, 366 

especially if neutral genetic diversity correlates with adaptive potential 122,123. Taken together, 367 

GDM and GDE are fundamental biodiversity metrics for documenting and understanding how 368 

“the little things that run the world” can change, persist, and potentially adapt in the face of 369 

global change 124.   370 

 371 

 372 

 373 

 374 

Methods 375 

Aligning and filtering sequence data 376 

We downloaded cytochrome c oxidase 1 (COI) mitochondrial sequence data for insects 377 

directly from the BOLD webpage using the application programming interface (API) 378 

(http://www.boldsystems.org/index.php/resources/api; downloaded 19 Nov 2019). Our initial 379 
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database comprised 3,301,025 complete insect records before applying a series of quality 380 

filters. We used the BOLD database’s OTU assignments (termed barcode identification 381 

numbers; BINs), which cluster similar sequences algorithmically and map them against the 382 

BOLD database 125. After trimming end gaps from sequences, we removed exceptionally long 383 

sequences (>800 base pairs, bp) which contained a large proportion of gaps that negatively 384 

impacted alignments and the calculation of summary statistics. In addition, we removed shorter 385 

sequences (<400 bp) that the BOLD database uses for BIN identification, but which may 386 

downwardly bias GD estimates. We also only used COI sequences when georeferenced 387 

metadata with geographic coordinates were available. Sequence alignments were 388 

independently performed for each OTU within single sampled geographic raster cells, i.e., grid 389 

cells. We used default settings in Clustal Omega (v1.2.3) to align the sequences and visually 390 

assessed a subset of alignments to check for alignment errors 126. 391 

To reduce the potential impact of invasive species on our analyses, we removed trans-392 

continental invasive species from the dataset using a list of invasive insect species compiled 393 

from seven resources: Global Insect Species Database, [http://www.issg.org/database; 394 

accessed 23 May, 2020]; Invasive Species Compendium [https://www.cabi.org/isc/; accessed 395 

24 May, 2020]; Center for Invasive Species and Ecosystem Health [https://www.invasive.org/; 396 

accessed 24 May, 2020]; Invasive Alien species in South-Southeast Asia 127; Japan Ministry of 397 

the Environment [https://www.env.go.jp/en/nature/as.html; accessed 24 May, 2020]; European 398 

Alien Species Information Network [https://easin.jrc.ec.europa.eu/easin/Home; accessed 24 399 

May, 2020]. We identified all species and OTUs present on multiple continents and removed 400 

those on the invasive species list from our dataset. While some invasive species may be 401 

restricted to single continents, removal of such taxa was not possible given the lack of 402 

information on changes in insect range boundaries and species assignments.  403 
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Calculating the evenness and mean of genetic diversity (GDE and 404 

GDM) 405 

Global macrogenetic studies have so far focused on spatially defined metrics that 406 

summarize the genetic diversities calculated across all species sampled from an area of 407 

arbitrary spatial resolution 19,128. This is most commonly the average genetic diversity or, 408 

alternatively, a measure of the allelic richness derived from the total number of unique and/or 409 

common alleles of a genetic locus across all taxa within an area 129. We used two distinct 410 

summaries of genetic diversity - the mean genetic diversity (GDM) and the evenness of this GD 411 

per unit of area (GDE). To obtain the GD for each OTU per grid cell, we calculated nucleotide 412 

diversity as the average number of nucleotide differences across all pairwise sequence 413 

comparisons per OTU per base pair 90,130. Aggregated across OTUs within each grid cell, GDM 414 

is then defined as the average GD among OTUs in each grid cell, following 20. Because the 415 

distribution of GDM at the grid cell scale was highly skewed towards zero, we performed a 416 

square-root transformation to achieve a more normal distribution. All subsequent statistical 417 

analyses of GDM at the grid cell scale were based on the transformed GDM.  418 

While GDM is a standard metric in the macrogenetic toolbox, GDE is derived from a set 419 

of metrics known as Hill numbers that permit direct comparisons of diversity across scales and 420 

data types 131–133. GDE is then defined as the first-order Hill number of GD across OTUs per grid 421 

cell, corrected by sampled OTU richness 61:  422 

 423 

Where N is the number of OTUs in the assemblage and �i is the GD for a single OTU. 424 

Correcting for sampled OTU richness allows for comparison across assemblages of different 425 

numbers of OTUs. The numerator of this metric is the exponential of Shannon’s diversity index, 426 

17 

d 

D 

id 
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which is also referred to as Shannon's information measure or Shannon’s entropy in the 427 

literature 134. It is commonly used to describe evenness and variability of species abundances 428 

135,136, and here we adapt it to do the same for genetic diversities calculated from all species 429 

sampled from a particular area.  430 

A higher GDE indicates where most OTUs have a similar GD (Fig. 1), whereas a lower 431 

GDE arises when GD values across the community diverge considerably 135. Low GDE can take 432 

a variety of shapes, but the most common shape for low GDE cells in our observed data is 433 

markedly L-shaped (Fig. 1).  434 

Spatial resolution and sampling decisions   435 

To assess how the spatial scale and density of OTU sampling impacted our results and 436 

to establish a sampling strategy that maximizes the amount of information, we calculated both 437 

metrics at 1) three different spatial resolutions, and 2) three thresholds of minimum OTU sample 438 

sizes per grid cell. The spatial resolutions include 96.5 km x 96.5 km, 193 km x 193 km, and 439 

385.9 km x 385.9 km equal-area grid cells using a Behrmann cylindrical equal-area projection, 440 

which are 1°, 2°, and 4° longitude at 30°N. At each of three spatial resolutions, we considered a 441 

minimum of 100, 150, or 200 unique OTUs per grid cell, as these approach the lower bounds of 442 

the sample size needed to effectively estimate the diversity of a community using Hill numbers 443 

137. We then selected the spatial resolution and minimum number of OTUs per grid cell that 444 

maximized the average number of OTUs per grid cell, the number of grid cells, and the average 445 

number of taxonomic orders per grid cell, while minimizing variation in the number of OTUs 446 

across grid cells. With respect to numbers of sampled allele copies per OTU, we used a 447 

minimum of three individuals per OTU per grid cell. This is a conservative approach to estimate 448 

GD while still maximizing data use given that many BOLD data submissions omit duplicate 449 

alleles and that coalescent theory suggests that using average pairwise distance from 5-10 450 
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samples per OTU provides estimates of genetic diversity that are as reliable as those obtained 451 

from hundreds of samples 90.  452 

We found that a grid cell resolution of 193 km x 193 km with a minimum of 150 OTUs 453 

per grid cell minimized variation in the number of OTUs across grid cells, while maximizing the 454 

number of grid cells, the average number of OTUs per grid cell, and the average number of 455 

taxonomic orders per grid cell (Supplementary Fig. 9). This filtering criteria led to a final dataset 456 

that included 2,362,636 COI sequences from 95,540 OTUs sampled across 187 globally 457 

distributed grid cells. On average, each cell contained ten insect orders, 460 OTUs, and 4,013 458 

individuals. We calculated variation in the number of OTUs per cell as the difference between 459 

the upper and lower 90% highest density interval (HDI) of OTUs across cells yielding a 460 

difference of 1779 OTUs. 461 

Because 97.2% of OTUs are represented by six taxonomic orders (Supplementary Fig. 462 

6; Supplementary Table 3), with ~85% represented by three (Diptera, Lepidoptera, and 463 

Hymenoptera), we investigated whether and to what degree over-represented orders might be 464 

driving the signal of GDE and GDM. To examine whether any of these three most dominant 465 

orders deviate from global patterns of genetic diversity, we compared the global frequency 466 

distributions of per-cell GDM and GDE from these three orders combined with the distribution of 467 

these summary statistics for the entire data set. The distributions of per-cell GDE and GDM 468 

between these filtered data sets and the original data set were compared using Welch’s unequal 469 

variance t-tests 138.  470 

Although coalescent theory predicts that the number of allele copies per OTU per grid 471 

cell will have a limited impact on the per OTU genetic diversity 90, we examined whether this 472 

assumption was met in the data by testing for Pearson’s correlations between the per OTU GD 473 

and number of individuals per OTU (r = 0.030, P < 0.001). Similarly, to investigate whether per 474 

grid cell sampling, i.e., total number of individuals, number of individuals per OTU, and number 475 

of OTUs per cell, had an effect on GDE or GDM, we tested for Pearson’s correlations between 476 
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these quantities (all P > 0.40, Supplementary Table 4). In addition, we assessed sampling 477 

variation by taking the ten most sampled grid cells (2,748 to 13,300 OTUs per grid cell) and 478 

obtaining sampling distributions of GDM and GDE for each by resampling with replacement 150 479 

OTUs per sample (N = 1000 resamples) and calculating the summary statistics for each 480 

resample (Supplementary Fig. 10).   481 

Environmental variable selection 482 

We aggregated a total of 47 abiotic, biotic, and anthropogenic variables that potentially influence 483 

intraspecific genetic diversity in insect communities (Supplementary Table 5). We removed 484 

highly correlated variables (r  > 0.75), prioritizing variables that represent climate extremes, 485 

climate variability, habitat variability, last glacial maximum (LGM) climate stability, and human 486 

influence on the environment.  487 

We retained a final data set of 11 ecologically relevant variables: five bioclimatic 488 

variables, habitat heterogeneity, global human modification, and four metrics of climate stability 489 

(temperature and precipitation) since the LGM (Supplementary Table 5). The five bioclimatic 490 

variables describe climate extremes and variability, and were obtained from the CHELSA 491 

database 139. They include maximum temperature of the warmest month (MTWM), minimum 492 

temperature of the coldest month (MTCM), precipitation of the wettest month (PWM), 493 

precipitation of the driest month (PDM), temperature seasonality, and precipitation seasonality 494 

139,140. The habitat heterogeneity metric was calculated as the standard deviation of the 495 

Enhanced Vegetation Index, which was derived from the Moderate Resolution Imaging 496 

Spectroradiometer (MODIS) (2.5 arc-min; 141). The human modification variable is a cumulative 497 

measure of human modification to terrestrial areas 142. Measures of both the historical trend and 498 

variability of temperature and precipitation over the last 21,000 years were obtained from 20. The 499 

specific definitions of these derived metrics include “deep-time climate trend”, the change in 500 
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climate within each century, averaged across centuries, and “deep-time climate variability”, 501 

meaning the standard deviation around the change in climate, averaged across centuries. Low 502 

deep time trend values indicate regions with long-term climate stability, while low variability 503 

values indicate regions with short-term climate stability. Each variable was aggregated from its 504 

original resolution (see Supplementary Table 5) to 193 km by 193 km resolution bilinear 505 

interpolation.  506 

In addition, we explored the relationship between GDE and GDM and a binary variable 507 

delineating the globe along the freeze-line. Here, areas with a MTCM above 0ºC are considered 508 

above the global freeze-line, while areas with a MTCM below 0ºC are considered below this 509 

line. These regions have been found to correspond with sharp community turnover in birds 143 510 

and could correlate with critical life processes for insects.  511 

Modeling approach  512 

To identify the models that best explain the global distribution of GDM and GDE in 513 

insects, we applied multimodel inference using Bayesian approaches. We modeled a set of 514 

variables underlying environment, latitude, and the global freeze-line on the GDM and GDE of 515 

insect assemblages independently. The necessary complexity of the modeling procedure 516 

outlined below precluded the construction of a model including the combined effects of all 517 

variables. 518 

We prioritized constructing a simple, interpretable linear model that predicts GDM and 519 

GDE robustly across the globe by conducting model selection in two steps. First, we reduced 520 

the number of potential predictor combinations from the set of 11 variables with low collinearity 521 

using Bayesian regression coupled with projective prediction feature selection. This approach 522 

minimizes the number of predictor variables in a simple model while retaining comparable 523 

predictive power to a model that includes the full suite of predictors 144; 145. For each model we 524 
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used weakly informative priors on all slope parameters (N(0, 0.1)) and the error term (N(0, 1)). 525 

We centered and scaled all predictors to standard deviation of 1 and mean of 0 prior to 526 

modeling. We aimed to retain single candidate models of GDM and GDE. 527 

If residual spatial autocorrelation (SAC) is present, the assumption of independent and 528 

identically distributed residuals would be violated, resulting in potentially biased overprecision of 529 

parameter estimates 146. We tested for SAC in the residuals of the resulting simplified models 530 

using Moran’s I and 10,000 simulations implemented in the R package spdep v1.1-2 147. We 531 

detected significant levels of SAC in the residuals of our GDE model (Moran’s I = 0.149, P = 532 

0.008) and our GDM model (Moran’s I = 0.306, P < 0.001). 533 

Given this presence of SAC, we used a Bayesian generalized linear mixed-effects model 534 

(GLMM) implemented in the R package glmmfields v 0.1.4 to robustly model GDE and GDM 535 

while accounting for SAC 73. SAC is modeled as a random effect with a multivariate t-distribution 536 

determining the shape of the covariance matrix. Model parameters were estimated from the 537 

posterior distribution using a No U-Turn Sampler 148,149. We again tested for SAC in the 538 

residuals of these models using the same approach as above.  539 

Since the covariance structure among predictors is modified by the spatial random 540 

effects, we performed additional model selection with the simplified candidate models. The 541 

simplified models allowed for the formulation of specific hypotheses on the relationship between 542 

GD and the environment. We compared three hypotheses (see Results) using the approximate 543 

LOO cross-validation procedure outlined above. After selecting a model, we used the 544 

percentage of prior-posterior overlap to assess the identifiability of parameter estimates relative 545 

to the information provided by their prior distributions 150. Low overlap between the prior and 546 

posterior distribution of a parameter indicates that there is sufficient information in the data to 547 

overcome the influence of the prior.  548 

 We used a similar approach as above to test the effect of latitude on GDM and GDE. We 549 

constructed Bayesian GLMMs with latitude as a linear predictor and a quadratic term for GDM 550 
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and GDE. All priors were the same as those in the climate modeling procedure. We compared 551 

the fit of the linear model, quadratic model, and an intercept model using approximate LOO 552 

cross-validation. We used prior-posterior overlap to assess parameter identifiability. 553 

We also independently tested the effect of the global freeze-line on GD using Welch’s 554 

unequal variance t-tests. 555 

Global genetic diversity map generation 556 

Using the final models of GDM and GDE, we created maps of the global distribution of 557 

insect GD. We used 1000 draws from the posterior distribution to predict terrestrial 558 

environments across the globe. We included all continents except Antarctica, which had no 559 

observed data and included environments far more extreme than the observed data. We 560 

created maps of the median predicted GDM, upper, lower, and range of the 95% HDI, as well as 561 

for GDE. In addition, we created bivariate color maps of these prediction intervals for combined 562 

GDM/GDE to highlight areas where GDM and GDE vary in similar and different directions. 563 

Multivariate environmental similarity surface (MESS) maps were created to visualize 564 

how environmentally similar or different areas across the globe are compared to the model 565 

training data  151. These maps aid in identifying areas of high extrapolation and thus where 566 

uncertainty for predictions is also high. Decreasing negative MESS values represent 567 

increasingly non-analogous environments, and increasing positive values indicate increasing 568 

similarity. We used the MESS results to mask areas with non-analogous environmental space 569 

(values less than 0) on our global prediction maps, indicating areas with high prediction 570 

uncertainty. 571 
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Data availability 572 

All geographic, environmental, and genetic data are available at dryad_link (will make 573 

available upon acceptance).  574 

Computer code 575 

All code used for data processing and analysis is available at https://github.com/connor-576 

french/global-insect-macrogenetics.  577 
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Figure captions 578 

Fig. 1 579 

Diagram illustrating genetic diversity mean (GDM) and genetic diversity evenness (GDE). A 580 

local assemblage (c) is a set of operational taxonomic units (OTUs, analogous to species) 581 

sampled from a single grid cell that are a subset of a wider regional pool, whose evolutionary 582 

relationships are shown in (a). OTUs have varying amounts of genetic diversity (GD), 583 

represented by green circles with sizes corresponding to magnitude of GD. Longer branches 584 

among individuals within an OTU indicate a longer time to coalescence and therefore higher GD 585 

(b). Panel (c) illustrates four local assemblages sampled from four different grid cells from the 586 

same regional pool. The first local assemblage in (c) has high GDM and high GDE, represented 587 

by OTUs with high and similar GD and a corresponding relatively flat curve on the rank plot in 588 

(d). The second local assemblage in (c) has the same high GDM as the first assemblage in (c), 589 

but has lower GDE, indicated by dissimilar circle sizes and a steeper curve in the corresponding 590 

rank plot in (d). The third and fourth local assemblages in (c) have the same GDE as the first 591 

and second assemblages respectively, but have lower GDM, indicated by the smaller circle 592 

sizes and lower height curves on the rank plots in (d). This illustrates the complementary nature 593 

of the two metrics, where GDM describes the average magnitude of GD in a local assemblage, 594 

while GDE describes the distribution of GD in that same local assemblage. 595 
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Fig. 2  598 

The observed (a, c, e) and projected (b, d, e) distributions of GDM (a, b), GDE (c, d), and their 599 

composite (E, F) across the globe. Values for the projected maps were derived from a Bayesian 600 

GLMM model with environmental predictors. For GDM (b), the best fit model included MTWM 601 

and precipitation seasonality, while for GDE (d), the best fit model included MTWM, temperature 602 

seasonality, and PWM. The yellow lines drawn across the maps of GDE (c, d) indicate the 603 

global freeze-line, where areas north of the line and inside the polygon in South America have 604 

minimum temperatures that dip below 0°C (below the global freeze-line), and areas south of the 605 

line and outside the polygon have minimum temperatures that remain above 0° C year-around 606 

(above the global freeze-line). Areas above the freeze-line on average have higher GDE than 607 

those below the global freeze-line. We masked in gray areas with environments non-analogous 608 

to the environments used for modeling. MTWM = maximum temperature of the warmest month; 609 

PWM = precipitation of the wettest month. 610 
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Fig. 3 612 

GDM and GDE increase towards the poles until 60º latitude, the southernmost extent of 613 

glaciated and tundra sites. When removing areas that were glaciated or tundra during the LGM 614 

(N = 100), GDE (c) showed a significant positive quadratic trend with latitude, while GDM 615 

showed a qualitative positive quadratic trend (d) that was not statistically robust. The observed 616 

data are plotted in dark green and orange, while the median, 70% HDI, and 95% HDI of 617 

posterior predictions from Bayesian GLMM models are plotted in light green and orange. A 618 

bimodal distribution of GDM (b) and GDE (d) is evident in the full observed data set (N = 187). A 619 

Loess-smoothed trendline is overlaid to highlight this trend. 620 

621 

29 
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Fig. 4 622 

Distributions of observed and predicted GDE and GDM. The gray lines in (a) and (c) are 1000 623 

random samples from the posterior distribution of the GDM and GDE models. The green lines 624 

are the observed distributions of GDM and GDE. The boxplot overlaid on (c) illustrates the 625 

higher observed GDE above the global freeze-line (minimum temperature > 0° C) versus GDE 626 

below the global freeze-line (minimum temperature <= 0°). The observed differences in GDE 627 

above and below the global freeze-line are reflected in the posterior draws, which we highlight 628 

with two gray, dashed lines drawn through the medians of the observed data. The posterior 629 

distributions of the slopes for each predictor are shown in (b) and (d). The thin bars under each 630 

density plot indicate the 95% HDI and the thick bars indicate the 70% HDI. MTWM = maximum 631 

temperature of the warmest month; PWM = precipitation of the wettest month 632 

633 
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Tables 634 

Table 1 635 

Results for models of GDM, GDE, and latitude, either across the entire data set or only including 636 

areas that were not glaciated or tundra during the LGM (indicated by model names with a 637 

subscript 60).  638 

Model Term 
Median 
slope 

Lower 95% 
HDI 

Upper 
95% HDI 

Median 
R2 

Lower 
95% HDI 

Upper 
95% HDI 

GDM ~ latitude + 
latitude2 linear -0.001 -0.002 0.0001 0.186 0.063 0.327 

GDM ~ latitude + 
latitude2 quadratic -0.0001 -0.0002 0.0001 0.186 0.063 0.327 

GDE ~ latitude + 
latitude2 linear -0.006 -0.013 0.001 0.261 0.102 0.417 

GDE ~ latitude + 
latitude2 quadratic -0.001 -0.002 0.001 0.261 0.102 0.417 

GDM60 ~ latitude + 
latitude2 linear -0.0001 -0.001 0.0007 0.231 0.083 0.382 

GDM60 ~ latitude + 
latitude2

 quadratic 0.0002 -0.0001 -0.0004 0.231 0.083 0.382 

GDE60 ~ latitude + 
latitude2

 linear 0.0004 -0.0024 0.0031 0.103 0.022 0.221 

GDE60 ~ latitude + 
latitude2

 quadratic 0.002 0.001 0.003 0.103 0.022 0.221 

 639 

The bolded model has at least one predictor with a 95% highest density interval (HDI) that does 640 

not overlap with zero, indicating a significant statistical association.   641 
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Table 2 642 

Results of the spatial linear modeling of environmental correlates for GDM and GDE. 643 

Model Predictors 
Diff. in 
ELPD 

SE in 
diff. ELPD 

SE 
ELPD 

Median 
R2 

Lower 
95% HDI 

Upper 
95% HDI Moran's I 

P-value 
(Moran’s 

GDM ~ Current climate 
MTWM, precip. 
seasonality 0 0 746.215 16.704 0.234 0.088 0.385 0.040 0.2

GDM ~ Current climate 
+ historical climate 

MTWM, precip. 
seasonality, precip. 
trend -0.711 1.056 745.505 16.683 0.250 0.100 0.398 0.047 0.1

GDM ~ Historical 
climate Precip. trend -7.149 5.368 739.066 16.646 0.202 0.072 0.342 0.045 0.2

GDE ~ Current climate 
MTWM, PWM, 
temp. seasonality 0 0 346.465 11.935 0.327 0.152 0.483 -0.018 0.5

GDE ~ Current climate 
+ historical climate 

MTWM, PWM, 
temp. seasonality, 
temp. trend, temp. 
variability, precip. 
trend -3.753 1.805 342.713 12.227 0.387 0.195 0.535 0.002 0.4

Historical climate 

Temp. trend, temp. 
variability, precip. 
trend -5.099 4.359 341.366 12.076 0.291 0.119 0.454 0.018 0.3

 644 
Each hypothesis we tested (current climate, historical climate, and current climate + historical 645 

climate) had a unique set of predictors for GDM and GDE. Columns 3-6 contain summary 646 

statistics (expected log predictive density, ELPD) from approximate leave-one-out cross-647 

validation model selection for spatial Bayesian GLMMs. The “diff. in ELPD” column indicates 648 

differences in ELPD from the best fit model. In addition, columns 7-9 contain a summary of the 649 

Bayesian R2 model fit statistic. Residual spatial autocorrelation for each model was calculated 650 

using Moran’s I and 10,000 simulations were used to calculate a P-value. HDI = highest density 651 

interval; MTWM = maximum temperature of the warmest month; PWM = precipitation of the 652 

wettest month. 653 

  654 
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