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Abstract
Understanding global patterns of genetic diversity (GD) is essential for describing, monitoring,

and preserving life on Earth. To date, efforts to map macrogenetic patterns have been restricted

to vertebrates that comprise only a small fraction of Earth’s biodiversity. Here, we construct the

first global map of predicted insect GD, derived from open data. We calculate the GD mean

(GDM) and evenness (GDE) of insect assemblages across the globe, identify environmental

correlates of insect GD, and make predictions. Based on the largest single-locus genetic

dataset assembled yet, we find that GDE follows a quadratic latitudinal gradient peaking in the
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subtropics. Both GDM and GDE correlate with seasonally hot temperatures, as well as climate

stability since the LGM. Our models explain 27.9% and 24.0% of the observed variation in GDM

and GDE in insects, respectively, making an important step towards understanding global

biodiversity patterns in the most diverse animal taxon.

Introduction
Resolving global patterns of biodiversity is essential for understanding how life is

distributed across the world and where it is most important to protect it. As yet, global-scale

assessments have largely focused on species richness 1, phylogenetic diversity 2,3, species

abundances 4,5, and functional trait diversity 6,7. These macroecological metrics have long been

used to inform conservation and gain insights into mechanisms underlying eco-evolutionary

patterns. Only recently, however, have advances in DNA barcoding and metabarcoding been

utilized for global studies of biodiversity 8–11.

Large-scale georeferenced DNA barcode surveys 8,12 have great potential beyond their

original use as a tool for assessing biodiversity. They help identify adaptive potential and

ecosystem resilience to disturbance 13, and more generally catalyze understanding of how

intraspecific variation correlates with critical ecological functions 14. DNA barcode surveys

provide data for the emerging field of “macrogenetics”, 15,16 which has the potential to inform

conservation action 17,18.  Macrogenetic studies summarize the geographic distribution of

intraspecific genetic variation across species assemblages to inform conservation strategies

and develop hypotheses for the generation and maintenance of biodiversity 19. While there have

been recent arguments that the value of putatively neutral intraspecific genetic diversity is

overstated in the context of conservation 20, a large body of literature indicates otherwise 21,

especially if neutral genetic diversity correlates with adaptive potential 22,23.

Previous global-scale macrogenetic studies have focused on vertebrate groups,

uncovering links between global patterns in aggregated intraspecific genetic diversity, species
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richness, and phylogenetic diversity 24,25, while documenting latitudinal gradients 26–28.

Macrogenetic studies have also provided mixed support for the influence of human disturbance

on genetic diversity 24,26,29,30, while climate stability 24,30 and species’ range sizes 31 have been

shown to affect intraspecific genetic diversity on a global scale.

The bias toward vertebrate macrogenetics leaves undocumented the bulk of the planet's

animal biodiversity: insects. Insects are vital for maintaining critical ecosystem services and

functions 32,33, yet existing insect macrogenetic studies have been restricted to regional scales

due to the immense effort required to collect, identify, and sequence such a species-rich taxon

34–39. Studies on the resilience of insect communities to global change 40,41, including biological

invasions 42,43, habitat conversion 44, and climate change 45 arrive at conflicting conclusions.

Here, we present the first global macrogenetic analysis of insects, which is especially timely

given increasing evidence that many insect taxa may be in global decline with respect to

occurrence, local richness, abundance and biomass 41,46–52.

Comprehensive knowledge of species diversity, distributions, and population dynamics is

largely lacking for large insect groups 53,54. These constraints on understanding broad-scale

insect biodiversity patterns point to a need for systematic global data synthesis 55,56. Insect

species identification is a severe bottleneck constraining large-scale biodiversity surveys that

use conventional morphological methods 56–58. DNA barcoding and metabarcoding are viable

approaches for rapid, large-scale, global quantification of insect biodiversity 59, despite some

known limitations 60,61.

Most macrogenetic studies of animal taxa are based on mitochondrial DNA (mtDNA)

sequence data, the most abundant type sequence data in public repositories 15. These

single-locus markers have drawbacks: notably, the genetic diversity that mtDNA captures is

from a single draw from the stochastic coalescent process operating within a lineage, and thus

may be subject to selection in addition to neutral demographic processes 62–67. However, the

ability to sample the genetic diversity of thousands of taxa per locale outweighs these
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theoretical considerations 68,69. While there are ongoing initiatives to collect and document whole

genome data from many taxa, such as the Earth BioGenome Project 70 and GEOME 71, global

sampling will only be achieved at great expense in time and resources.

The Barcode of Life Consortium database (BOLD) is a rich source of single-locus

mtDNA that links quality-controlled genetic data with georeferenced metadata 8. Leveraging this

resource, we compiled and analyzed the largest animal macrogenetic dataset ever assembled:

over 2.3 million globally distributed and georeferenced mtDNA sequences (cytochrome c

oxidase 1 - COI) for over 95,000 operational taxonomic units (OTUs) within the class Insecta.

We use these data to generate the first global map of insect genetic variation using the

commonly used genetic diversity mean (GDM) and a new measure we adapt from

macroecology: genetic diversity evenness (GDE). While GDM describes the average genetic

diversity among species, GDE represents the evenness of the distribution of individual genetic

diversity (GD) measures for all focal taxa that co-occur in a given area 72. Existing macrogenetic

studies, which are inherently correlative, have only described average intraspecific genetic

diversity (GDM), and are therefore unable to determine whether high average genetic diversities

are due to high diversity within most community members or to the effects of a few taxa with

extremely high diversity (Fig. 1; see Methods). The two metrics present complimentary

information when considered together, with demonstrated utility in discriminating among

possible processes generating natural community assemblages 73.

We focus our analyses on several questions about the macrogenetics of insects. First,

we evaluate whether the magnitude and variability of GD follows latitudinal trends of increasing

insect species richness in the tropics 74,75. The classic latitudinal gradient is often stated in terms

of the wet tropics being either “museums” or “cradles” of diversity, with opposite predictions for

range sizes 76. If geographic range size tends to correlate with GD 77, we might expect this

gradient given the “museum” hypothesis, which predicts that taxa in the tropics will be older, and

have larger geographic range sizes 78,79, In contrast, species richness and GD may be
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decoupled due to the “cradle” hypothesis that predicts higher speciation rates, more population

structure, and smaller range sizes, consistent with Rapoport’s Rule 80: the tendency for species’

range sizes to increase with increasing latitude 81,82. Second, we predict that the influence of

Late Quaternary climate fluctuations has deflated GD in previously glaciated areas due to recent

founder effects associated with expansion from stable Pleistocene refugia 83,84. Finally, we

consider the influence of human disturbance on patterns of assemblage-wide GD, which we

expect to decrease the magnitude and evenness of GD in areas of high human influence due to

general reductions in abundance with the potential proliferation of disturbance-adapted species

48.

To answer these questions, we explore how well insect GDM and GDE are predicted by

current and historical climate, habitat, and human disturbance. We first find environmental

correlates of intraspecific insect genetic diversity globally using Bayesian generalized linear

mixed models (GLMM), and then use these to predict patterns of insect GDM and GDE in

undersampled regions, which includes most of the planet. In contrast to most documented

global vertebrate biodiversity patterns, we find that insect GDE has a latitudinal gradient that

peaks in the arid subtropics before steeply declining in higher latitudes and that both GDM and

GDE are positively correlated with high temperature extremes.

Results

GDM and GDE were calculated from insects native to the raster grid cells in which they were

sampled at 193 km x 193 km equal-area resolution, for six minimum OTU thresholds (10, 25,

50, 100, 150, 200) to account for the potential impact of sampling biases. These cells were

heterogeneously distributed across the globe and on every continent except Antarctica (N100 =

245, Fig. 2, Supplementary Fig. 1). Genetic diversity patterns and modeling results were mostly

consistent across minimum OTU thresholds (Supplementary Fig. 1, Supplementary Materials).
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For conciseness, we highlight results for a minimum OTU threshold of 100, which balanced

per-cell and global sampling magnitude with per-cell and global sampling variance

(Supplementary Fig. 2). In addition, this threshold resulted in the lowest bias and highest

accuracy when predicting trained models to withheld test data (Supplementary Fig. 3). This

filtering criterion led to a final dataset that included 2,415,425 COI sequences from 168,894

OTUs sampled across 245 globally distributed grid cells. On average, each cell included ten

insect orders, 689 OTUs, and 9,859 individuals. Regions with both high GDM and high GDE

(above the 90th percentile) were found in eastern North America, the North American desert

southwest,  southern South America, southern Africa, and southwestern Australia

(Supplementary Fig. 4b). Areas with the lowest values of both observed GDM and GDE were

mostly distributed in northern North America and Europe (Supplementary Fig. 4d).

Insect genetic diversity correlates with latitude

Latitude had a negative quadratic relationship with GDE across the globe at 𝛼 = 0.05

(spatial modified t-test; Fig. 2; Table 1; r100 = -0.360; p100 = 0.022). Latitude was not significantly

linearly correlated with GDE (p100 = 0.064). In contrast to GDE, latitude did not vary significantly

linearly (p100 = 0.924) or quadratically with GDM (Fig. 2; Table 1; p100 = 0.767).

When considering the top three most sampled orders independently, we found that

latitude had a negative quadratic relationship with GDE in Diptera (r100 = -0.468; p100 = 0.001)

and Lepidoptera (r100 = -0.360; p100 = 0.043), but not in Hymenoptera (p100 = 0.352) (Fig. 3).

Latitude did not significantly vary with GDM in all orders (Fig. 3).
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Relationships between insect genetic diversity and the

environment

Higher GDE values were associated with areas that rarely freeze (Fig. 2d, Fig. 4c). To

capture this relationship as a binary predictive variable, we divided the globe into areas that do

or do not freeze, which is delineated by whether the long-term minimum temperature of the

coldest month (MTCM) is above or below 0º C. We found that GDE is significantly higher in

areas that do not freeze (spatial modified t-test; r100 = 0.338; p100 = 0.013), while GDM was not

correlated with this binary metric (P = 0.484).

We found that GDM and GDE covary significantly with current and historical climate, and

that both are positively correlated with maximum temperature of the warmest month and climate

stability variables (Fig. 2, Fig. 4).  We considered 49 environmental variables that could possibly

structure the genetic diversity of insect assemblages (Supplementary Table 1). After removing

strongly correlated variables (r > 0.75), we retained 11 bioclimatic variables describing current

climate, variables summarizing climate variation since the LGM (“historical climate”), a habitat

heterogeneity metric, a human habitat modification metric, and topographic variables. After

removing additional variables that did not contribute substantial predictive power according to

projection predictive variable selection (see Methods), we used Bayesian generalized mixed

models (GLMMs) that account for spatial autocorrelation in the residuals to explain

environmental relationships and make predictions 85. The resulting GLMMs explained 27.9% of

the training data variation in GDM (95% highest density interval (HDI): [14.6%, 40.7%]) and

24.0% of the training data variation in GDE (95% HDI: [10.1%, 39.0%]) (Fig. 4a,c). When

projecting the models to withheld test data (75% training, 25% testing, stratified by continent),

we found that predictions for all OTU thresholds were strongly correlated with observed data for

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.02.09.479762doi: bioRxiv preprint 

https://paperpile.com/c/yDYx5o/zHFrt
https://doi.org/10.1101/2022.02.09.479762
http://creativecommons.org/licenses/by-nc-nd/4.0/


GDE (Supplementary Fig. 3; R2
100 = 0.515, slope100 = 0.961, y-intercept100 = 0.019) and GDM

(Supplementary Fig. 3; R2
100 = 0.510, slope100 = 1.114, y-intercept100 = -0.007).

The GLMM for GDM included eight variables related to current climate: precipitation

seasonality, precipitation of the wettest month (PWM), precipitation of the driest month (PDM),

maximum temperature of the warmest month (MTWM), and four variables summarizing climate

change since the last glacial maximum (LGM): temperature trend, temperature variation,

precipitation trend, and precipitation variation (Fig. 4b, Supplementary Fig. 5). In contrast, the

GLMM for GDE only included three variables, all related to current climate: temperature trend,

PWM, and MTWM (Fig. 4d, Supplementary Fig. 5). Notably, predictor variables describing

human habitat modification, habitat heterogeneity, and topography did not significantly predict

either GD metric (Supplementary Tables 2 and 3)

There was no residual spatial autocorrelation in the final GLMMs (Table 2,

Supplementary Fig. 6), and residual error in test data prediction did not have obvious spatial

biases (Supplementary Fig. 3). All parameter posterior distributions had less than 13% overlap

with their prior distributions, indicating high model identifiability (Supplementary Fig. 7).

Global predictions of insect genetic diversity

We then used the best-fit GLMM to predict and map the global distribution of GDM and

GDE individually and jointly across the globe, including for unsampled areas (Fig. 2,

Supplementary Fig. 8). To prevent model extrapolation into areas of non-analog environments,

we omitted predictions in all areas with environmental conditions that fell outside the model

training range, including Antarctica, a large portion of northern Africa, the Arabian Peninsula,

parts of central Asia, and interior Greenland (Fig. 2; shown in gray; Supplementary Fig. 9).
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Areas predicted to have high levels of both GDM and GDE (above the 90th percentile)

include eastern North America, the North American desert southwest, southern South America,

southern Africa, and southwestern Australia (Supplementary Fig. 4a; Fig. 2). Areas predicted to

have the lowest GDM and GDE values (below the 10th percentile for both) were found in

northern North America and Europe (Supplementary Fig. 4c). When considered independently,

GDM is predicted to be highest (above the 90th percentile) in eastern and southwestern North

America, southeastern Asia, southern Australia, northern Madagascar, and southern Argentina

(Supplementary Fig. 4e; Fig. 2), and is predicted to be lowest (below the 10th percentile) for the

Nearctic and Palearctic tundra, Europe, Australasia, Central America, the northwest coast of

South America, and northern sections of the Amazon (Fig. 1g). When GDE is considered

independently, it is predicted to be the highest (above the 90th percentile) throughout

subtropical Australia, the southeastern U.S., the deserts of southwestern US and northern Mexico,

the transition between Saharan and sub-Saharan Africa, and South Asia (Supplementary Fig.

4i). On the other hand, GDE is predicted to be lowest (below the 10th percentile) in Europe and

parts of the Nearctic and Palearctic tundra as well as northern Madagascar and a region in

central China overlapping the Tibetan plateau (Supplementary Fig. 4k; Fig. 2). Maps of the

upper and lower 95% highest density interval (HDI) predictions are available in Supplementary

Fig. 8.

Taxon-specific patterns of GD

Six insect orders represent 97.2% of all OTUs in this study (Supplementary Fig. 10;

Supplementary Table 4). In order of prevalence, they include Diptera, Lepidoptera,

Hymenoptera, Coleoptera (the four mega-diverse orders that include ca. 80% of known insect

species), Hemiptera, and Trichoptera. The remaining 2.8% of OTUs belong to 20 additional

insect orders. Although Coleoptera has more described species than the other three
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megadiverse orders, it comprises less than 10% of OTUs represented in the data, possibly due

to the common practice of using Malaise traps in flying insect surveys, where Diptera and

Hymenoptera dominate sampling 86. Across orders, 74.7% of all OTUs occupied a single grid cell

with less than one percent occupying more than 11 grid cells (Supplementary Fig. 11)

To investigate the influence of the three most prevalent orders (Diptera, Lepidoptera, and

Hymenoptera, 84.2% of total) we removed these orders from the full dataset and reanalyzed

patterns of GDE and GDM. Using Welch’s unequal variance t-tests, we found no significant

difference in GDE estimates between the full dataset and the dataset with the most prevalent

outliers removed (Supplementary Fig. 12; p100 = 0.065). However, GDM was slightly but

significantly lower in the full dataset (meandiff = ​​-0.004, df = 122.44, P < 0.001).

OTU sampling across the most abundant three orders varied geographically

(Supplementary Fig. 13). When we calculated OTU sampling as the number of OTUs per order

within each cell, Diptera dominated OTU sampling towards the far northern latitudes, while

Lepidoptera dominated sampling south of these far northern latitudes, from North America and

Europe towards the equator, and Hymenoptera typically accounted for fewer than 50% of OTUs

sampled, with overrepresented sampling in Madagascar (Supplementary Fig. 13).

Discussion

We found a surprising quadratic latitudinal gradient in genetic diversity evenness (GDE),

which peaks at subtropical latitudes, and decreases near the equator and towards the poles

(Fig. 2). This relationship is significant for GDE, with a peak that corresponds to arid subtropical

areas, while GDM does not significantly vary with latitude. Although our approach is correlative

and thus not as suitable as simulation models for direct inference of processes 87, these results

suggest that forces underlying intraspecific genetic diversity are inherently different from those

driving the classical negative latitudinal gradients in species richness and phylogenetic diversity
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found in most arthropod taxa, including ants, butterflies, and spiders 88,89 90–92, as well as plants

93, which are expected to be strongly linked to insect biogeographic patterns. Bees (order

Hymenoptera) may be a notable exception, as current estimates show a latitudinal gradient

similar to GDE with highest richness at mid-latitudes 94. However, when we fit quadratic

correlations to the three most common orders separately, Hymenoptera was the only taxon with

GD metrics that did not match the general trend (Fig. 3). The negative quadratic latitudinal

correlation of GDE and the lack of a correlation with GDM suggests a departure from

expectations of species genetic diversity correlation (SGDC) predictions 35,95–97. However, many

confounding factors could affect how species diversity metrics relate to GDM and GDE, and

these factors may have both positive and negative effects, leading to large variation in the

direction and strength of SGDCs 98, especially at a global scale in such a large taxonomic group

such as insects. Sampling biases, especially for the overrepresented North American and

European regions, may also influence this relationship, although we find no evidence of a

correlation between sampling effort and the two GD metrics in our data (Supplementary Fig. 14,

Supplementary Table 5). Moreover, both metrics are calculated using mtDNA, which is a single,

non-recombining locus that is likely shaped by demographic history and selection 67,99. While

intraspecific mtDNA diversity data is insufficient for making detailed inference of demographic

history or phylogenetic reconstruction 67, we instead treat it as an important variable to study at

the macroscale, rather than as a population genetic marker. Macrogenetics is a relatively new

field and thus basic expectations regarding observed patterns are still not established. Our

study is a step in the direction of establishing this foundational knowledge and suggests

avenues for ways to test specific hypotheses.

The latitudinal gradient of GDE peaking in the subtropics also contrasts with recent

macrogenetic studies of vertebrates, all of which find a negative latitudinal gradient of average

genetic diversity peaking in the tropics and declining poleward, including mammals 20,

amphibians 26, and fishes 100. Why would GDE be lower in areas like the wet tropics when the
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species diversities of most insect groups reach their peaks in these habitats 101,102? Rapoport’s

Rule, the tendency for species’ range sizes to increase with increasing latitude 81,82, might

partially explain this result because species with larger ranges tend to harbor greater genetic

diversity 77,103. This expectation has recently been empirically observed 31, as well as

investigated in a theoretical macrogenetic context whereby GD relates to species’ ranges

following a power law 104. Assuming that Rapoport’s Rule is a general tendency in the two large

insect orders Diptera and Lepidoptera, sampled coalescent times among sampled individuals

within larger ranged subtropical species are expected to be older and to yield consistently

higher values of GD that aggregate to higher GDE within grid cells 105. This is especially likely if

species’ ranges are larger than the 193 x 193 km grid-cells we chose and if subdivision exists

within the range of a species 106,107. The inflation of GD from large-ranged species in the

assemblage results in more even and generally higher genetic diversities and is reflected in the

positive correlation between GDE and GDM (Fig. 2d,e). However, we do not find a relationship

between GDM and latitude.

We are hypothesizing that both larger ranges and climatic stability could have a positive

effect on GD, yet they are different processes and do not necessarily co-occur. For example, a

climatically stable area might also coincide with small and variable range sizes, and conversely

an area that experiences cycles of glaciation may also coincide with many large ranged species.

But in both cases, GD is predicted to be deflated. Only for those areas with many large ranged

species occupying relatively stable climates does one predict elevated GD consistently across

species to yield higher values of both GDE and GDM. Additionally, we find that OTUs occupy

more grid cells between 40° and 60° latitude (Supplementary Fig. 14), matching our expectation

for larger ranges at higher latitudes, although we acknowledge that sampling bias may

contribute to this pattern as well.

If larger ranges correspond to OTUs found in more than one grid cell in the higher

latitude areas, and this in turn affects GDE in aggregate samples, it could be that the observed
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peak in GDE is partially driven by processes related to geographic patterns in physiological

tolerances that affect the size of a species range. Wide-ranging extratropical insect species can

usually tolerate a broader range of climatic variation, whereas limited-range tropical insect

species tend to have a narrow climatic niche, stronger habitat specializations, and narrower

physiological tolerances 108. Insect diapause is thought to provide this adaptive tolerance to

wider abiotic conditions and may result in larger and more uniform range sizes across an

assemblage 108,109. The positive relationship between range size and GD 77,103 provides a

possible mechanistic relationship that connects Rapoport’s Rule and the more uniformly high

genetic diversities found in the subtropics. In this case, increasing GDE with latitude may be

driven by uniformly larger range sizes that result from greater physiological tolerances in

harsher environments. While this is consistent with both GDM and GDE being most strongly

associated with the seasonally hot conditions (MWTM) found in the subtropics (Fig. 4), this

relationship drastically breaks down in the colder temperate and subarctic regions (Fig. 2) that

frequently freeze, especially for GDE (Fig. 4).

Could it be that the uniformity of larger range sizes (and corresponding genetic

diversities) decline in these colder regions because insect species that enter diapause in

habitats that seasonally accumulate substantial snow are likely to encounter less extreme

temperatures than those in more exposed habitats such as subtropical deserts 110? This is not

likely, as there is no evidence that the range sizes of insect species become smaller in areas

that experience frequent freezing, and it is much more likely that the steep decline in GDE in

these areas stems from late-Pleistocene glacial cycling. In this light, we might predict more

uniform and higher levels of GD in subtropical and temperate arid regions that have both high

climatic variability and seasonality and were not glaciated during the LGM.

Indeed, our finding of lower GDE in areas that were glaciated or tundra during the LGM

is less surprising in the context of the predictions of species that expanded poleward from

Pleistocene refugia with lower GD values arising from founder expansion dynamics 111–113. While
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a significant poleward decline is found only in GDE, with the decline in GDM being apparent at

extreme latitudes but not significant, this arises from a large number of zero GD OTUs that are

co-distributed with a small number of hyper-diverse OTUs in these northern regions. Indeed, this

pattern is largely consistent with a gradient of lower haplotype richness in recently unglaciated

areas found in European butterflies 34 based on the same COI data from BOLD used here.

Similarly, aquatic insect species have lower intraspecific genetic diversities in recently

deglaciated areas of Europe compared to Neotropical areas 36, as does an assemblage of

Anopheles taxa co-distributed across the Indo-Burma biodiversity hotspot 114.

In contrast to the declines of GDE in previously glaciated areas, it could be that the peak

of GDE in the subtropics, and more generally the correspondence of GDM and GDE with

seasonally high temperatures, is the result of climates which have remained stable since the

LGM (Fig. 4). Moreover, GDM and GDE have contrasting relationships with seasonally high

precipitation (PWM), where GDM increases with PWM, while GDE decreases, corresponding

with inflated GDE in arid, hot regions rather than the wet tropics (Fig. 2, 4).

The regions predicted to have higher and more uniform GD correspond with some

known hotspots of insect biodiversity. For instance, the deserts of southwestern US and northern

Mexico have the highest butterfly phylogenetic endemism in North America 94,115. Southwestern

Australian deserts also have exceptionally high arthropod endemism 116, and are among the

original biodiversity hotspots identified by Myers et al. 117. One possible explanation is that these

areas are more climatically stable and hence may harbor more uniform demographics that

manifest as elevated GDE values. However, much of the global pattern in GDE that we find is

dominated by Diptera and Lepidoptera (Fig. 3). Therefore, we caution against making broad

generalizations about such a broad taxonomic group.

Areas with higher levels of GDE could also partially emerge from different levels along

the continuum of fundamental community assembly processes 118. Although the spatial scale is

not always in line with the grid-cells we employ, Overcast et al. 73 found in simulated and
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empirical (arthropod, annelid, and trees) communities to have elevated GDE under ecologically

neutral conditions in contrast to non-neutral,  or “niche-structured”, conditions. In these specific

model-dependent cases, the lower GDE in communities assembled via environmental filtering is

likely caused by increased genetic diversity in hyper-dominant species with stronger local

ecological adaptation. In line with the process-explicit modeling, our observation of GDE

increasing from the tropics to the subtropics shows that equatorial insect communities may have

stronger local niche-structured mechanisms (i.e., less ecologically neutral conditions) than

subtropical temperate insect communities. This would be consistent with the idea of stronger

niche conservatism in the tropics. 119

While this is one of many hypotheses emerging from our study, the correlative

approaches we use are a crucial first step to developing a better understanding of the

processes underlying biodiversity. To more directly test such hypotheses, process-explicit

models will be required to uncover causal processes that drive the structure of genetic diversity

as well as discriminate among the processes that do not 120,121. These models will be especially

valuable in revealing the underlying mechanisms of unexpected correlations found here and in

other macrogenetic studies 122.

Genetic diversity is critical to the survival of insects and their complex interactions with

other organisms 123–125. High genetic diversity may facilitate adaptation to changing climates,

emerging diseases, and pollutants: three (of many) potential drivers of the “insect apocalypse”

50. In addition, genetic diversity contributes to the diversity and stability of species interaction

networks by affecting niche space and competition 126, community structure 127, and network

complexity 128. At larger ecological scales, insect genetic diversity may reflect ecosystem

function and structure as reliably as other traditional macroecological metrics such as species

richness 129. It can also augment the resilience of ecosystems that provide continuing services

for humankind 14, such as disease management, curbing the spread of invasive plants, aiding

sustainable agriculture, pollinating food crops, and controlling pests 13. While the metric of global
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human modification we considered did not significantly correlate with GDM or GDE, there are

many facets of anthropogenic disturbance acting at different spatial scales that are difficult to

summarize in a single metric 130. For well-studied systems, shifts in GDM and GDE may reflect

the loss of rare species with less genetic diversity or community shifts toward wide-ranging taxa,

including invasive species, and could thus be used in long-term monitoring schemes 131,132.

Although large-scale data curation efforts are underway 133, the spatiotemporal resolution of

genetic sampling currently available does not permit rigorous assessment of how humanity

affects insect GD at a global scale, but a concerted increase in sampling effort, especially in the

data-poor regions we identify, will likely make this feasible in the not-too-distant future.

By modeling relationships between environmental data and two complementary

measures of intraspecific genetic diversity, GDE and GDM, we can make assemblage-level

genetic diversity predictions for data-poor regions of the planet, while flagging and masking

those with high uncertainty 134 (Fig. 2). These genetic diversity maps have the potential to fill a

knowledge gap that far exceeds the undersampling and taxonomic uncertainties underlying

vertebrate and plant macroecological studies 135,136. They can also highlight genetic diversity as

an important biodiversity component that has yet been assessed for relatively few taxa 17, while

focusing attention on a data-deficient group with evidence of global population declines and

strong connections to ecosystem functions and services 137. Taken together, GDM and GDE are

fundamental biodiversity metrics for documenting and understanding “the little things that run

the world” 138.
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Methods

Aligning and filtering sequence data

The barcoding region of the mitochondrial locus cytochrome c oxidase 1 (COI)  was

selected as a genetic marker that can be deployed to study genetic diversity at the

macrogenetic scale. We downloaded COI mitochondrial sequence data for insects directly from

the BOLD webpage using the application programming interface

(http://www.boldsystems.org/index.php/resources/api; downloaded 19 Nov 2019). Our initial

database comprised 3,301,025 complete insect records before applying a series of quality

filters. We used the BOLD database’s OTU assignments (termed barcode identification

numbers; BINs), which cluster similar sequences algorithmically and map them against the

BOLD database139. After trimming end gaps from sequences, we removed exceptionally long

sequences (>800 base pairs, bp) which contained a large proportion of gaps that negatively

impacted alignments and the calculation of summary statistics. In addition, we removed shorter

sequences (<400 bp) that the BOLD database uses for BIN identification and may downwardly

bias GD estimates. We only retained COI sequences from georeferenced specimens. Sequence

alignments were independently performed for each OTU within single sampled geographic

raster cells, i.e., grid cells. We used default settings in Clustal Omega (v1.2.3) to align the

sequences and visually assessed both a random subset of alignments and alignments with

genetic diversity values at the tails of the distribution to check for alignment errors 140.

To reduce the potential impact of invasive species on our analyses, we removed

trans-continental invasive species from the dataset using a list of invasive insect species

compiled from seven resources: Global Insect Species Database,

[http://www.issg.org/database; accessed 23 May, 2020]; Invasive Species Compendium
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[https://www.cabi.org/isc/; accessed 24 May, 2020]; Center for Invasive Species and Ecosystem

Health [https://www.invasive.org/; accessed 24 May, 2020]; Invasive Alien species in

South-Southeast Asia 141; Japan Ministry of the Environment

[https://www.env.go.jp/en/nature/as.html; accessed 24 May, 2020]; European Alien Species

Information Network [https://easin.jrc.ec.europa.eu/easin/Home; accessed 24 May, 2020]. We

identified all species and OTUs present on multiple continents and removed those on the

invasive species list from our dataset. While some invasive species may be restricted to single

continents, removal of such taxa was not possible given the lack of information on changes in

insect range boundaries and species assignments.

Calculating the evenness and mean of genetic diversity (GDE and

GDM)

Previous global macrogenetic studies focused on spatially defined metrics that

summarize genetic diversities calculated across all species sampled from an area of arbitrary

spatial resolution 19,142. This is most commonly the average genetic diversity or, alternatively, a

measure of the allelic richness derived from the total number of unique and/or common alleles

of a genetic locus across all taxa within an area 143. We used two distinct summaries of the

former measure of genetic diversity (GD) - the mean (GDM) and evenness (GDE) of genetic

diversity per unit of area. To obtain the GD for each OTU per grid cell, we calculated the

average number of nucleotide differences across all pairwise sequence comparisons per OTU

per base pair 105,144 (a.k.a. nucleotide diversity). Aggregated across OTUs within each grid cell,

GDM is then defined as the average GD among OTUs in each grid cell, following Theodoridis et

al. 24. Because the distribution of GDM at the grid cell scale was highly skewed towards zero, we

performed a square-root transformation to achieve a more normal distribution, consistent with
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Theodoridis et al.24’s approach. All subsequent statistical analyses of GDM at the grid cell scale

were based on the transformed GDM.

While GDM is a standard metric in the macrogenetic toolbox, GDE is derived from a set

of metrics often used in ecological studies of biodiversity. Hill numbers  permit direct

comparisons of diversity across scales and data types 145–147. GDE is then defined as the

first-order Hill number of GD across OTUs per grid cell, corrected by sampled OTU richness 73:

Where N is the number of OTUs in the assemblage and 𝜋i is the GD for a single OTU.

Correcting for sampled OTU richness allows for comparison across assemblages of different

numbers of OTUs. The numerator of this metric is the exponential of Shannon’s diversity index,

which is also referred to as Shannon's information measure or Shannon’s entropy in the

literature 148. It is commonly used to describe evenness and variability of species abundances

149,150, and here we adapt it to do the same for genetic diversities calculated from all species

sampled from a particular area.

High values of GDE indicate areas where most OTUs have a similar GD (Fig. 1),

whereas lower GDE arises when GD values across the community diverge considerably 149. The

distribution of GD values within an area of low GDE can take a variety of shapes, but the most

common in our observed data is markedly L-shaped whereby most OTUs have low or zero GD

along with a small number of OTUs with large GD (Fig. 1d).

Spatial resolution and sampling decisions

To assess how the spatial scale and density of OTU sampling impacted our results and

to establish a sampling strategy that maximizes the amount of information, we calculated both
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metrics at 1) three different spatial resolutions, and 2) six different thresholds of minimum OTU

sample sizes per grid cell. The spatial resolutions include 96.5 km x 96.5 km, 193 km x 193 km,

and 385.9 km x 385.9 km equal-area grid cells using a Behrmann cylindrical equal-area

projection, which are 1°, 2°, and 4° longitude at 30°N.  We considered a minimum of 10, 25, 50,

100, 150, or 200 unique OTUs per grid cell. We chose the spatial resolution that balanced the

average number of OTUs per grid cell, the number of grid cells, the average number of

taxonomic orders per grid cell, and variation in the number of OTUs across grid cells

(Supplementary Fig. 2). After choosing an appropriate spatial resolution for our analysis, we

performed the modeling procedure outlined below for all minimum OTU thresholds. While

retaining results across the range of minimum OTUs per grid cell, we focus our analysis using

the threshold that results in the least-biased and most precise estimates of GD when predicting

a trained model onto withheld test data. With respect to numbers of sampled allele copies per

OTU, we used a minimum of three individuals per OTU per grid cell. This is a sensible approach

to estimate GD while still maximizing data use because BOLD data submissions may omit

duplicate alleles and coalescent theory suggests that using average pairwise distance from 5-10

samples per OTU provides estimates of genetic diversity that are as reliable as those obtained

from hundreds of samples 105. To explore this sampling dynamic explicitly, we conducted

coalescent simulation experiments comparing how the calculation of GD varies given identical

samples with and without duplicate alleles removed. These simulations showed that retaining

only unique haplotypes resulted in a small, consistently upward bias in GD values. Additionally,

increasing values of effective population size (Ne) decreased this bias, with estimates of GD

with and without duplicate alleles converging for Ne values greater than ~10e5 (Supplementary

Materials, Supplementary Fig. 15).

Because 97.2% of OTUs are represented by six taxonomic orders (Supplementary Fig.

10; Supplementary Table 4), with 84.2% represented by three (Diptera, Lepidoptera, and

Hymenoptera), we investigated whether and to what degree over-represented orders might be
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driving the signal of GDE and GDM. We compared the global frequency distributions of per-cell

GDM and GDE with these three orders removed with the distribution of these summary statistics

for the entire data set. The distributions of per-cell GDE and GDM between these filtered data

sets and the original data set were compared using Welch’s unequal variance t-tests 151. In

addition, we mapped the observed distribution of GDM and GDE for the three orders to

compare their geographical variation in GD with the full data sets.

Although coalescent theory predicts that the number of allele copies per OTU per grid

cell will have a limited impact on the per OTU genetic diversity 105, we examined whether this

assumption was met in the data by testing for Pearson’s correlations between the per OTU GD

and number of individuals per OTU. The relationship was statistically significant, but extremely

weak (r100 = 0.029, p100 < 0.001). Similarly, to investigate whether per grid cell sampling, i.e.,

total number of individuals, number of individuals per OTU, and number of OTUs per cell, had

an effect on GDE or GDM, we tested for Pearson’s correlations between these quantities (no

relationship, all P > 0.20, Supplementary Table 5; Supplementary Fig. 16). We also assessed

sampling variation by taking the ten most sampled grid cells (2,748 to 13,300 OTUs per grid

cell) and obtaining sampling distributions of GDM and GDE for each by resampling with

replacement 100 OTUs per sample (N = 1000 resamples) and calculating the summary

statistics for each resample (Supplementary Fig. 17). Finally, we considered the spatial

distribution of OTUs by visualizing the distribution of the number of grid cells occupied by each

OTU.

Environmental variable selection

We aggregated a total of 49 abiotic, biotic, and anthropogenic variables that potentially influence

intraspecific genetic diversity in insect communities (Supplementary Table 1). We removed

highly correlated variables (r  > 0.75), prioritizing variables that represent climate extremes,
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climate variability, habitat variability, last glacial maximum (LGM) climate stability, and human

influence on the environment.

We retained a final data set of 11 ecologically relevant variables: five bioclimatic

variables, habitat heterogeneity, global human modification, and four metrics of climate stability

(temperature and precipitation) since the LGM (Supplementary Table 1). The five bioclimatic

variables describe climate extremes and variability, and were obtained from the CHELSA

database 152. They include maximum temperature of the warmest month (MTWM), minimum

temperature of the coldest month (MTCM), precipitation of the wettest month (PWM),

precipitation of the driest month (PDM), temperature seasonality, and precipitation seasonality

152,153. The habitat heterogeneity metric was calculated as the standard deviation of the

Enhanced Vegetation Index, which was derived from the Moderate Resolution Imaging

Spectroradiometer (MODIS) (2.5 arc-min; 154). The human modification variable is a cumulative

measure of human modification to terrestrial areas 155. Measures of both the historical trend and

variability of temperature and precipitation over the last 21,000 years were obtained from 24. The

specific definitions of these derived metrics include “deep-time climate trend”, the change in

climate within each century, averaged across centuries, and “deep-time climate variability”,

meaning the standard deviation around the change in climate, averaged across centuries. Low

deep time trend values indicate regions with long-term climate stability, while low variability

values indicate regions with short-term climate stability. Each variable was aggregated from its

original resolution (see Supplementary Table 1) to 193 km by 193 km resolution through bilinear

interpolation.

In addition, we explored the relationship between GDE and GDM and a binary variable

delineating the globe into areas that do or do not freeze, which is delineated by whether the

long-term minimum temperature of the coldest month (MTCM) is above 0º C versus below 0º C.

These regions correspond with sharp community turnover in birds 156 and could correlate with

critical life processes for insects.
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Modeling approach

We applied a Bayesian modeling approach to identify the environmental conditions that

best explain the global distribution of GDM and GDE in insects. We independently modeled the

relationship between the set of 11 uncorrelated, ecologically relevant variables (see above) and

per grid-cell GDM and GDE values. To assess the predictive ability of the model, we split the

data set into 75% training and 25% testing sets, stratifying the sampling by continent to

maximize spatial representation of sampling in both data sets. All model selection and model

fitting was performed on the training set, while predictive performance of the best fit model was

assessed by predicting the withheld test data set.

We prioritized constructing a simple, interpretable linear model that predicts GDM and

GDE across the globe by first reducing the number of potential variable combinations, followed

by a Bayesian hierarchical generalized linear mixed model (GLMM) approach that accounts for

spatial autocorrelation 85. We reduced the number of potential predictor variable combinations

from the set of 11 variables with low collinearity using Bayesian regression coupled with

projective prediction feature selection. This approach minimizes the number of variables in a

simple model while retaining comparable predictive power to a model that includes the full suite

of predictor variables 157, 158. For each model we used regularizing priors on all slope parameters

(N(0, 0.1)) and the error term (N(0, 1)). We centered and scaled all variables to a standard

deviation of 1 and mean of 0 prior to modeling.

If residual spatial autocorrelation (SAC) is present, the assumption of independent and

identically distributed residuals would be violated, resulting in potentially biased overprecision of

parameter estimates 159. We tested for SAC in the residuals of the resulting simplified models

using Moran’s I and 10,000 simulations implemented in the R package spdep v1.1-2 160. We

detected significant levels of SAC in the residuals of our GDE model (Moran’s I = 0.149, P =

0.008) and our GDM model (Moran’s I = 0.306, P < 0.001).
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Given this presence of SAC, we used a Bayesian generalized linear mixed-effects model

(GLMM) implemented in the R package glmmfields v 0.1.4 to model the relationship between

the variables and the two GD metrics (GDE and GDM) while accounting for SAC 85. SAC is

modeled as a random effect with a multivariate t-distribution determining the shape of the

covariance matrix. Model parameters were estimated from the posterior distribution using a No

U-Turn Sampler 161,162. Further model specifications are provided in the Supplementary

Materials. We again tested for SAC in the residuals of these models using the same approach

as above. The proportion of variance explained by the models were assessed with Bayesian R2

163, modified to account for spatial autocorrelation error. After selecting a model, we used the

percentage of prior-posterior overlap to assess the identifiability of parameter estimates relative

to the information provided by their prior distributions 164. Low overlap between the prior and

posterior distribution of a parameter indicates that there is sufficient information in the data to

overcome the influence of the prior.

We tested for the statistical significance of a linear or quadratic relationship between

latitude and GDM and GDE while accounting for spatial autocorrelation using a modified t-test of

spatial association, implemented in the R package SpatialPack v0.3 165,166. This was done for the

full data set and independently for the three most sampled orders. We also independently tested

the effect of whether an area freezes or not on the two GD metrics using the same modified

t-test of spatial association.

Global genetic diversity map generation

Using the final models of GDM and GDE, we created maps of the global distribution of

insect GD. We used 1000 draws from the posterior distribution to predict terrestrial

environments across the globe. We included all continents except Antarctica, which had no

observed data and included environments far more extreme than the observed data. We

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.02.09.479762doi: bioRxiv preprint 

https://paperpile.com/c/yDYx5o/zHFrt
https://paperpile.com/c/yDYx5o/dGbZI+5japX
https://paperpile.com/c/yDYx5o/Q6LM
https://paperpile.com/c/yDYx5o/EJ5wW
https://paperpile.com/c/yDYx5o/3LP54+BWXnx
https://doi.org/10.1101/2022.02.09.479762
http://creativecommons.org/licenses/by-nc-nd/4.0/


created maps of the median predicted GDM and GDE, along with the upper and lower 95% HDI.

In addition, we created bivariate color maps of these prediction intervals for combined

GDM/GDE to highlight areas where GDM and GDE vary in similar and different directions.

To avoid making poor predictions into areas with environments that are non-analogous

to the areas used to train the models, we used multivariate environmental similarity surface

(MESS) maps (Supplementary Fig. 9). MESS maps visualize how environmentally similar or

different areas across the globe are compared to the model training data 167.  Subsequently, we

used the MESS results to mask areas with non-analogous environmental space (values less

than 0) on our global prediction maps, indicating areas with high prediction uncertainty.

Data availability

All geographic and genetic sequence data, in addition to raw model output, are available at

figshare_link (will make available upon acceptance). All environmental data are publicly

available and links are provided in Supplementary Table 1.

Computer code

All code used for data processing and analysis is available at

https://github.com/connor-french/global-insect-macrogenetics. A code snapshot is available at

figshare_link.
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Figures

Fig. 1

Diagram illustrating genetic diversity mean (GDM) and genetic diversity evenness (GDE). A

local assemblage (c) is a set of operational taxonomic units (OTUs, analogous to species)

sampled from a single grid cell that are a subset of a wider regional pool with evolutionary

relationships shown in (a). OTUs have varying amounts of genetic diversity (GD), represented

by blue circles with sizes corresponding to magnitude of GD. Longer branches among

individuals within an OTU indicate a longer time to coalescence and therefore higher GD (b).

Panel (c) illustrates four local assemblages sampled from four different grid cells from the same

regional pool. The first local assemblage in (c) has high GDM and high GDE, represented by

OTUs with high and similar GD and a corresponding relatively flat curve on the rank plot in (d).

The second local assemblage in (c) has the same high GDM as the first assemblage in (c), but

has lower GDE, indicated by dissimilar circle sizes and a steeper curve in the corresponding

rank plot in (d). The third and fourth local assemblages in (c) have the same GDE as the first

and second assemblages respectively, but have lower GDM, indicated by the smaller circle

sizes and lower height curves on the rank plots in (d). This illustrates the complementary nature

of the two metrics, where GDM describes the average magnitude of GD in a local assemblage,

while GDE describes the distribution of GD in that same local assemblage.
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Fig. 2

The observed (a, c, e) and projected (b, d, e) distributions of genetic diversity mean (GDM) (a,

b), evenness (GDE) (c, d), and their composite (e, f) across the globe. Values for the projected

maps were derived from a spatial Bayesian generalized linear mixed model model with

environmental predictor variables. For GDM (b), the best fit model included MTWM and

precipitation seasonality, while for GDE (d), the best fit model included MTWM, temperature

seasonality, and PWM. Latitudinal trends in GDM (a) and GDE (c) are included as insets of the

observed maps, where latitude had no significant relationship with GDM and a negative

quadratic relationship with GDE (spatially modified t-test, Table 1). The yellow lines drawn

across the maps of GDE (c, d) delineate areas that do or do not freeze, where areas north of

the line and inside the polygon in South America have minimum temperatures that dip below

0°C, and areas south of the line and outside the polygon have minimum temperatures that

remain above 0°C year-around. Areas that do not freeze on average have higher GDE than

those that do freeze. We masked in gray areas with environments non-analogous to the

environments used for modeling. MTWM = maximum temperature of the warmest month; PWM

= precipitation of the wettest month.
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Fig. 3
The observed distributions of genetic diversity mean (GDM) (a, c, e) and evenness (GDE) (b, d,

f) for the top three most sampled taxa, Diptera (a, b) (34.0% of OTUs), Lepidoptera (c, d)

(32.4%), and Hymenoptera (e, f) (17.3%). The same filtering criteria were applied here as in the

full analysis, where only cells with at least 100 OTUs and at least three sequences per OTU

were considered. Latitude did not significantly vary with GDM for all orders (spatially modified

t-test), but did vary with GDE for Diptera (b) and Lepidoptera (d).
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Fig. 4

Distributions of observed and predicted genetic diversity mean (GDM) and evenness (GDE).

The gray lines in (a) and (c) are 1000 random samples from the posterior distribution of the

GDM and GDE models. The blue and red lines are the observed distributions of GDM and GDE,

respectively. The boxplot overlaid on (c) illustrates the higher observed GDE in areas that do not

freeze (minimum temperature > 0° C) versus GDE in areas that do freeze (minimum

temperature <= 0°). The boxplot center represents the median of the data, while the lower and

upper hinges correspond to the first and third quartiles. The whiskers extend to the largest value

no further than 1.5 times the inter-quartile range from the hinge. The observed differences in

GDE are reflected in the posterior draws, which we highlight with two gray, dashed lines drawn

through the medians of the observed data. Bayesian R2 posterior distributions are shown as

insets in (a) and (c). The posterior distributions of the slopes for each predictor variable are

shown in (b) and (d). The thin bars under each density plot indicate the 95% HDI and the thick

bars indicate the 90% HDI. PWM = precipitation of the wettest month; PDM = precipitation of the

driest month; MTWM = maximum temperature of the warmest month; Temp. Trend = historical

temperature trend since the last glacial maximum; Precip. Trend = historical precipitation trend

since the LGM.
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Tables

Table 1

Results for spatially modified t-test correlations between GDM, GDE, and latitude.

Model Term r F-statistic DOF p-value
GDM ~ latitude linear -0.018 0.009 29.596 0.924

GDM ~ latitude2 quadratic 0.053 0.089 0.767 0.767

GDE ~ latitude linear -0.280 3.617 42.562 0.064

GDE ~ latitude2 quadratic -0.360 5.730 38.550 0.022

Correlations were inferred for both linear and quadratic relationships. The bolded row indicates

the relationship that is significant at 𝛼 = 0.05. r = Pearson’s correlation coefficient, DOF =

degrees of freedom.
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Table 2

Results of the spatial linear modeling of environmental correlates for GDM and GDE.

Response
Predictor
variables

Media
n R2

Lowe
r 95%
HDI

Upper
95%
HDI

Moran's
I

p-value
(Moran
’s I)

GDM

Precip. seasonality,
PWM, PDM, temp.
trend, precip.
variation, MTWM,
temp. range, precip.
trend 0.279 0.146 0.407 -0.038 0.738

GDE
Temp trend, PWM,
MTWM 0.240 0.101 0.390 -0.043 0.708

Columns 3-5 contain a summary of the Bayesian R2 model fit statistic. Residual spatial

autocorrelation for each model was calculated using Moran’s I and 10,000 simulations were

used to calculate a p-value. HDI = highest density interval; PWM = precipitation of the wettest

month; PDM = precipitation of the driest month; MTWM = maximum temperature of the warmest

month; Temp. Trend = historical temperature trend since the last glacial maximum (LGM);

Precip. Trend = historical precipitation trend since the LGM.

34

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.02.09.479762doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.09.479762
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

1. Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity

and conservation. Proc. Natl. Acad. Sci. U. S. A. 110, E2602–10 (2013).

2. Jarzyna, M. A., Quintero, I. & Jetz, W. Global functional and phylogenetic structure of avian

assemblages across elevation and latitude. Ecol. Lett. 24, 196–207 (2021).

3. Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10

(1992).

4. Howard, C., Stephens, P. A., Pearce-Higgins, J. W., Gregory, R. D. & Willis, S. G. The

drivers of avian abundance: patterns in the relative importance of climate and land use.

Glob. Ecol. Biogeogr. 24, 1249–1260 (2015).

5. Callaghan, C. T., Nakagawa, S. & Cornwell, W. K. Global abundance estimates for 9,700

bird species. Proc. Natl. Acad. Sci. U. S. A. 118, (2021).

6. Cardoso, P., Pekár, S., Jocqué, R. & Coddington, J. A. Global patterns of guild composition

and functional diversity of spiders. PLoS One 6, e21710 (2011).

7. Safi, K. et al. Understanding global patterns of mammalian functional and phylogenetic

diversity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2536–2544 (2011).

8. Ratnasingham, S. & Hebert, P. D. N. bold: The Barcode of Life Data System

(http://www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364 (2007).

9. Lawrence, E. R. et al. Geo-referenced population-specific microsatellite data across

American continents, the MacroPopGen Database. Sci Data 6, 14 (2019).

10. Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–42 (2013).

11. Arribas, P., Andújar, C. & Salces‐Castellano, A. The limited spatial scale of dispersal in soil

arthropods revealed with whole‐community haplotype‐level metabarcoding. Molecular

(2021).

35

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.02.09.479762doi: bioRxiv preprint 

http://paperpile.com/b/yDYx5o/JB7at
http://paperpile.com/b/yDYx5o/JB7at
http://paperpile.com/b/yDYx5o/1LK7l
http://paperpile.com/b/yDYx5o/1LK7l
http://paperpile.com/b/yDYx5o/R5VLd
http://paperpile.com/b/yDYx5o/R5VLd
http://paperpile.com/b/yDYx5o/3SEJz
http://paperpile.com/b/yDYx5o/3SEJz
http://paperpile.com/b/yDYx5o/3SEJz
http://paperpile.com/b/yDYx5o/f9aTE
http://paperpile.com/b/yDYx5o/f9aTE
http://paperpile.com/b/yDYx5o/rspvo
http://paperpile.com/b/yDYx5o/rspvo
http://paperpile.com/b/yDYx5o/pSZ2F
http://paperpile.com/b/yDYx5o/pSZ2F
http://paperpile.com/b/yDYx5o/bV0K1
http://paperpile.com/b/yDYx5o/bV0K1
http://paperpile.com/b/yDYx5o/jGmdB
http://paperpile.com/b/yDYx5o/jGmdB
http://paperpile.com/b/yDYx5o/OhldQ
http://paperpile.com/b/yDYx5o/zpgmN
http://paperpile.com/b/yDYx5o/zpgmN
http://paperpile.com/b/yDYx5o/zpgmN
https://doi.org/10.1101/2022.02.09.479762
http://creativecommons.org/licenses/by-nc-nd/4.0/


12. Macher, J.-N., Macher, T.-H. & Leese, F. Combining NCBI and BOLD databases for OTU

assignment in metabarcoding and metagenomic datasets: The BOLD_NCBI _Merger.

Metabarcoding and Metagenomics vol. 1 e22262 Preprint at

https://doi.org/10.3897/mbmg.1.22262 (2017).

13. Stange, M., Barrett, R. D. H. & Hendry, A. P. The importance of genomic variation for

biodiversity, ecosystems and people. Nat. Rev. Genet. 22, 89–105 (2021).

14. Des Roches, S., Pendleton, L. H., Shapiro, B. & Palkovacs, E. P. Conserving intraspecific

variation for nature’s contributions to people. Nat Ecol Evol (2021)

doi:10.1038/s41559-021-01403-5.

15. Schmidt, C. & Garroway, C. J. The conservation utility of mitochondrial genetic diversity in

macrogenetic research. Conserv. Genet. (2021) doi:10.1007/s10592-021-01333-6.

16. Blanchet, S., Prunier, J. G. & De Kort, H. Time to Go Bigger: Emerging Patterns in

Macrogenetics. Trends Genet. 33, 579–580 (2017).

17. Hoban, S. et al. Global commitments to conserving and monitoring genetic diversity are

now necessary and feasible. Bioscience (2021) doi:10.1093/biosci/biab054.

18. Santini, L. et al. The interface between Macroecology and Conservation: existing links and

untapped opportunities. Frontiers of Biogeography 13, (2021).

19. Leigh, D. M. et al. Opportunities and challenges of macrogenetic studies. Nat. Rev. Genet.

(2021) doi:10.1038/s41576-021-00394-0.

20. Teixeira, J. C. & Huber, C. D. The inflated significance of neutral genetic diversity in

conservation genetics. Proc. Natl. Acad. Sci. U. S. A. 118, (2021).

21. DeWoody, J. A., Harder, A. M., Mathur, S. & Willoughby, J. R. The long-standing

significance of genetic diversity in conservation. Molecular ecology vol. 30 4147–4154

(2021).

22. García-Dorado, A. & Caballero, A. Neutral genetic diversity as a useful tool for conservation

biology. Conserv. Genet. 22, 541–545 (2021).

36

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.02.09.479762doi: bioRxiv preprint 

http://paperpile.com/b/yDYx5o/iudAd
http://paperpile.com/b/yDYx5o/iudAd
http://paperpile.com/b/yDYx5o/iudAd
http://paperpile.com/b/yDYx5o/iudAd
http://dx.doi.org/10.3897/mbmg.1.22262
http://paperpile.com/b/yDYx5o/iudAd
http://paperpile.com/b/yDYx5o/2hW4s
http://paperpile.com/b/yDYx5o/2hW4s
http://paperpile.com/b/yDYx5o/9b2p1
http://paperpile.com/b/yDYx5o/9b2p1
http://paperpile.com/b/yDYx5o/9b2p1
http://dx.doi.org/10.1038/s41559-021-01403-5
http://paperpile.com/b/yDYx5o/9b2p1
http://paperpile.com/b/yDYx5o/krCwF
http://paperpile.com/b/yDYx5o/krCwF
http://dx.doi.org/10.1007/s10592-021-01333-6
http://paperpile.com/b/yDYx5o/krCwF
http://paperpile.com/b/yDYx5o/BUd0j
http://paperpile.com/b/yDYx5o/BUd0j
http://paperpile.com/b/yDYx5o/EqWB4
http://paperpile.com/b/yDYx5o/EqWB4
http://dx.doi.org/10.1093/biosci/biab054
http://paperpile.com/b/yDYx5o/EqWB4
http://paperpile.com/b/yDYx5o/5YTK9
http://paperpile.com/b/yDYx5o/5YTK9
http://paperpile.com/b/yDYx5o/t1GDn
http://paperpile.com/b/yDYx5o/t1GDn
http://dx.doi.org/10.1038/s41576-021-00394-0
http://paperpile.com/b/yDYx5o/t1GDn
http://paperpile.com/b/yDYx5o/W6qxB
http://paperpile.com/b/yDYx5o/W6qxB
http://paperpile.com/b/yDYx5o/ca7hN
http://paperpile.com/b/yDYx5o/ca7hN
http://paperpile.com/b/yDYx5o/ca7hN
http://paperpile.com/b/yDYx5o/XwAjy
http://paperpile.com/b/yDYx5o/XwAjy
https://doi.org/10.1101/2022.02.09.479762
http://creativecommons.org/licenses/by-nc-nd/4.0/


23. Reed, D. H. & Frankham, R. Correlation between fitness and genetic diversity. Conserv.

Biol. 17, 230–237 (2003).

24. Theodoridis, S. et al. Evolutionary history and past climate change shape the distribution of

genetic diversity in terrestrial mammals. Nat. Commun. 11, 2557 (2020).

25. Manel, S. et al. Global determinants of freshwater and marine fish genetic diversity. Nat.

Commun. 11, 692 (2020).

26. Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535

(2016).

27. Gratton, P. et al. Which Latitudinal Gradients for Genetic Diversity? Trends in ecology &

evolution vol. 32 724–726 (2017).

28. Barrow, L. N., Masiero da Fonseca, E., Thompson, C. E. P. & Carstens, B. C. Predicting

amphibian intraspecific diversity with machine learning: Challenges and prospects for

integrating traits, geography, and genetic data. Mol. Ecol. Resour. (2020)

doi:10.1111/1755-0998.13303.

29. Millette, K. L. et al. No consistent effects of humans on animal genetic diversity worldwide.

Ecol. Lett. 23, 55–67 (2020).

30. Theodoridis, S., Rahbek, C. & Nogues‐Bravo, D. Exposure of mammal genetic diversity to

mid‐21st century global change. Ecography 44, 817–831 (2021).

31. Pelletier, T. A. & Carstens, B. C. Geographical range size and latitude predict population

genetic structure in a global survey. Biol. Lett. 14, 20170566 (2018).

32. Losey, J. E. & Vaughan, M. The Economic Value of Ecological Services Provided by

Insects. Bioscience 56, 311–323 (2006).

33. Valiente-Banuet, A. et al. Beyond species loss: the extinction of ecological interactions in a

changing world. Funct. Ecol. 29, 299–307 (2015).

34. Dincă, V. et al. High resolution DNA barcode library for European butterflies reveals

continental patterns of mitochondrial genetic diversity. Commun Biol 4, 315 (2021).

37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.02.09.479762doi: bioRxiv preprint 

http://paperpile.com/b/yDYx5o/t11LV
http://paperpile.com/b/yDYx5o/t11LV
http://paperpile.com/b/yDYx5o/F3eb
http://paperpile.com/b/yDYx5o/F3eb
http://paperpile.com/b/yDYx5o/G4AXC
http://paperpile.com/b/yDYx5o/G4AXC
http://paperpile.com/b/yDYx5o/eHmAf
http://paperpile.com/b/yDYx5o/eHmAf
http://paperpile.com/b/yDYx5o/pTdcB
http://paperpile.com/b/yDYx5o/pTdcB
http://paperpile.com/b/yDYx5o/zi1wB
http://paperpile.com/b/yDYx5o/zi1wB
http://paperpile.com/b/yDYx5o/zi1wB
http://paperpile.com/b/yDYx5o/zi1wB
http://dx.doi.org/10.1111/1755-0998.13303
http://paperpile.com/b/yDYx5o/zi1wB
http://paperpile.com/b/yDYx5o/nTGQS
http://paperpile.com/b/yDYx5o/nTGQS
http://paperpile.com/b/yDYx5o/cxiN0
http://paperpile.com/b/yDYx5o/cxiN0
http://paperpile.com/b/yDYx5o/7eapH
http://paperpile.com/b/yDYx5o/7eapH
http://paperpile.com/b/yDYx5o/hbmT1
http://paperpile.com/b/yDYx5o/hbmT1
http://paperpile.com/b/yDYx5o/Aovq0
http://paperpile.com/b/yDYx5o/Aovq0
http://paperpile.com/b/yDYx5o/o0e6
http://paperpile.com/b/yDYx5o/o0e6
https://doi.org/10.1101/2022.02.09.479762
http://creativecommons.org/licenses/by-nc-nd/4.0/


35. Papadopoulou, A. et al. Testing the Species–Genetic Diversity Correlation in the Aegean

Archipelago: Toward a Haplotype-Based Macroecology? Am. Nat. 178, 241–255 (2011).

36. Salinas-Ivanenko, S. & Múrria, C. Macroecological trend of increasing values of

intraspecific genetic diversity and population structure from temperate to tropical streams.

Glob. Ecol. Biogeogr. 30, 1685–1697 (2021).

37. Baselga, A. et al. Whole-community DNA barcoding reveals a spatio-temporal continuum of

biodiversity at species and genetic levels. Nat. Commun. 4, 1892 (2013).

38. Dapporto, L. et al. Integrating three comprehensive data sets shows that mitochondrial DNA

variation is linked to species traits and paleogeographic events in European butterflies. Mol.

Ecol. Resour. 19, 1623–1636 (2019).

39. Satler, J. D., Carstens, B. C., Garrick, R. C. & Espíndola, A. The Phylogeographic Shortfall

in Hexapods: A Lot of Leg Work Remaining. Insect Syst Divers 5, 1 (2021).

40. Wilson, R. J. & Fox, R. Insect responses to global change offer signposts for biodiversity

and conservation. Ecol. Entomol. 46, 699–717 (2021).

41. Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect

decline in the Anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. U. S. A. 118,

(2021).

42. Gallien, L. & Carboni, M. The community ecology of invasive species: where are we and

what’s next? Ecography 40, 335–352 (2017).

43. Smith-Ramesh, L. M., Moore, A. C. & Schmitz, O. J. Global synthesis suggests that food

web connectance correlates to invasion resistance. Glob. Chang. Biol. 23, 465–473 (2017).

44. Raven, P. H. & Wagner, D. L. Agricultural intensification and climate change are rapidly

decreasing insect biodiversity. Proc. Natl. Acad. Sci. U. S. A. 118, (2021).

45. Halsch, C. A. et al. Insects and recent climate change. Proc. Natl. Acad. Sci. U. S. A. 118,

(2021).

46. Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10,

38

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.02.09.479762doi: bioRxiv preprint 

http://paperpile.com/b/yDYx5o/kYkV
http://paperpile.com/b/yDYx5o/kYkV
http://paperpile.com/b/yDYx5o/r9W9
http://paperpile.com/b/yDYx5o/r9W9
http://paperpile.com/b/yDYx5o/r9W9
http://paperpile.com/b/yDYx5o/ZDvD
http://paperpile.com/b/yDYx5o/ZDvD
http://paperpile.com/b/yDYx5o/0LVU
http://paperpile.com/b/yDYx5o/0LVU
http://paperpile.com/b/yDYx5o/0LVU
http://paperpile.com/b/yDYx5o/Qjav
http://paperpile.com/b/yDYx5o/Qjav
http://paperpile.com/b/yDYx5o/h52GI
http://paperpile.com/b/yDYx5o/h52GI
http://paperpile.com/b/yDYx5o/sciZP
http://paperpile.com/b/yDYx5o/sciZP
http://paperpile.com/b/yDYx5o/sciZP
http://paperpile.com/b/yDYx5o/Bydzj
http://paperpile.com/b/yDYx5o/Bydzj
http://paperpile.com/b/yDYx5o/6vGPR
http://paperpile.com/b/yDYx5o/6vGPR
http://paperpile.com/b/yDYx5o/YMl3H
http://paperpile.com/b/yDYx5o/YMl3H
http://paperpile.com/b/yDYx5o/oUP9V
http://paperpile.com/b/yDYx5o/oUP9V
http://paperpile.com/b/yDYx5o/L2vHa
https://doi.org/10.1101/2022.02.09.479762
http://creativecommons.org/licenses/by-nc-nd/4.0/


1018 (2019).

47. van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater

insect abundances. Science 368, 417–420 (2020).

48. Forister, M. L., Pelton, E. M. & Black, S. H. Declines in insect abundance and diversity: We

know enough to act now. Conservat Sci and Prac 1, (2019).

49. Didham, R. K. et al. Interpreting insect declines: seven challenges and a way forward.

Insect Conserv. Divers. 13, 103–114 (2020).

50. Montgomery, G. A. et al. Is the insect apocalypse upon us? How to find out. Biol. Conserv.

241, 108327 (2020).

51. Crossley, M. S. et al. No net insect abundance and diversity declines across US Long Term

Ecological Research sites. Nat Ecol Evol 4, 1368–1376 (2020).

52. Fox, R. et al. Insect population trends and the IUCN Red List process. J. Insect Conserv.

23, 269–278 (2019).

53. Cardoso, P., Erwin, T. L., Borges, P. A. V. & New, Tim R. The seven impediments in

invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655

(2011).

54. Diniz-Filho, J. A. F., de Marco, P., Jr & Hawkins, B. A. Defying the curse of ignorance:

perspectives in insect macroecology and conservation biogeography. Insect Conserv.

Divers. (2010) doi:10.1111/j.1752-4598.2010.00091.x.

55. Grames, E. M. et al. Trends in global insect abundance and biodiversity: A

community-driven systematic map protocol. Open Science Framework (2019).

56. Li, X. & Wiens, J. J. Estimating Global Biodiversity: the Role of Cryptic Insect Species. Syst.

Biol. (2022) doi:10.1093/sysbio/syac069.

57. Wheeler, Q. D., Raven, P. H. & Wilson, E. O. Taxonomy: Impediment or expedient? Science

303, 285 (2004).

58. Stribling, J. B., Pavlik, K. L., Holdsworth, S. M. & Leppo, E. W. Data quality, performance,

39

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.02.09.479762doi: bioRxiv preprint 

http://paperpile.com/b/yDYx5o/L2vHa
http://paperpile.com/b/yDYx5o/qxH9O
http://paperpile.com/b/yDYx5o/qxH9O
http://paperpile.com/b/yDYx5o/c3HYZ
http://paperpile.com/b/yDYx5o/c3HYZ
http://paperpile.com/b/yDYx5o/8ApDi
http://paperpile.com/b/yDYx5o/8ApDi
http://paperpile.com/b/yDYx5o/u8U7j
http://paperpile.com/b/yDYx5o/u8U7j
http://paperpile.com/b/yDYx5o/ongeS
http://paperpile.com/b/yDYx5o/ongeS
http://paperpile.com/b/yDYx5o/wBpF3
http://paperpile.com/b/yDYx5o/wBpF3
http://paperpile.com/b/yDYx5o/ynZmk
http://paperpile.com/b/yDYx5o/ynZmk
http://paperpile.com/b/yDYx5o/ynZmk
http://paperpile.com/b/yDYx5o/2AwH9
http://paperpile.com/b/yDYx5o/2AwH9
http://paperpile.com/b/yDYx5o/2AwH9
http://dx.doi.org/10.1111/j.1752-4598.2010.00091.x
http://paperpile.com/b/yDYx5o/2AwH9
http://paperpile.com/b/yDYx5o/6UXcg
http://paperpile.com/b/yDYx5o/6UXcg
http://paperpile.com/b/yDYx5o/Q6ylx
http://paperpile.com/b/yDYx5o/Q6ylx
http://dx.doi.org/10.1093/sysbio/syac069
http://paperpile.com/b/yDYx5o/Q6ylx
http://paperpile.com/b/yDYx5o/oBZM5
http://paperpile.com/b/yDYx5o/oBZM5
http://paperpile.com/b/yDYx5o/fxGT1
https://doi.org/10.1101/2022.02.09.479762
http://creativecommons.org/licenses/by-nc-nd/4.0/


and uncertainty in taxonomic identification for biological assessments. J. North Am.

Benthol. Soc. 27, 906–919 (2008).

59. Hebert, P. D. N. et al. Counting animal species with DNA barcodes: Canadian insects.

Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, (2016).

60. Meier, R. et al. A re-analysis of the data in Sharkey et al.’s (2021) minimalist revision

reveals that BINs do not deserve names, but BOLD Systems needs a stronger commitment

to open science. bioRxiv 2021.04.28.441626 (2021) doi:10.1101/2021.04.28.441626.

61. Hickerson, M. J., Meyer, C. & Moritz, C. DNA-Barcoding will often fail to discover new

animal species over broad parameter space. Syst. Biol. 55, 729–739 (2006).

62. Allio, R., Donega, S., Galtier, N. & Nabholz, B. Large variation in the ratio of mitochondrial

to nuclear mutation rate across animals: implications for genetic diversity and the use of

mitochondrial DNA as a molecular marker. Mol. Biol. Evol. 34, 2762–2772 (2017).

63. Hudson, R. R. & Turelli, M. Stochasticity overrules the ‘three-times rule’: genetic drift,

genetic draft, and coalescence times for nuclear loci versus mitochondrial DNA. Evolution

57, 182–190 (2003).

64. Meiklejohn, C. D., Montooth, K. L. & Rand, D. M. Positive and negative selection on the

mitochondrial genome. Trends Genet. 23, 259–263 (2007).

65. Hurst, G. D. D. & Jiggins, F. M. Problems with mitochondrial DNA as a marker in population,

phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc. Biol.

Sci. 272, 1525–1534 (2005).

66. Paz-Vinas, I. et al. Macrogenetic studies must not ignore limitations of genetic markers and

scale. Authorea Preprints (2021) doi:10.22541/au.161401200.09787142/v1.

67. Galtier, N., Nabholz, B., Glémin, S. & Hurst, G. D. D. Mitochondrial DNA as a marker of

molecular diversity: a reappraisal. Mol. Ecol. 18, 4541–4550 (2009).

68. Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal

and plant communities. Mol. Ecol. 26, 5872–5895 (2017).

40

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.02.09.479762doi: bioRxiv preprint 

http://paperpile.com/b/yDYx5o/fxGT1
http://paperpile.com/b/yDYx5o/fxGT1
http://paperpile.com/b/yDYx5o/2bE7Z
http://paperpile.com/b/yDYx5o/2bE7Z
http://paperpile.com/b/yDYx5o/TZoW2
http://paperpile.com/b/yDYx5o/TZoW2
http://paperpile.com/b/yDYx5o/TZoW2
http://dx.doi.org/10.1101/2021.04.28.441626
http://paperpile.com/b/yDYx5o/TZoW2
http://paperpile.com/b/yDYx5o/7hMga
http://paperpile.com/b/yDYx5o/7hMga
http://paperpile.com/b/yDYx5o/WfnqE
http://paperpile.com/b/yDYx5o/WfnqE
http://paperpile.com/b/yDYx5o/WfnqE
http://paperpile.com/b/yDYx5o/IP0HY
http://paperpile.com/b/yDYx5o/IP0HY
http://paperpile.com/b/yDYx5o/IP0HY
http://paperpile.com/b/yDYx5o/V3rKZ
http://paperpile.com/b/yDYx5o/V3rKZ
http://paperpile.com/b/yDYx5o/M11xN
http://paperpile.com/b/yDYx5o/M11xN
http://paperpile.com/b/yDYx5o/M11xN
http://paperpile.com/b/yDYx5o/6nyFR
http://paperpile.com/b/yDYx5o/6nyFR
http://dx.doi.org/10.22541/au.161401200.09787142/v1
http://paperpile.com/b/yDYx5o/6nyFR
http://paperpile.com/b/yDYx5o/PuxX
http://paperpile.com/b/yDYx5o/PuxX
http://paperpile.com/b/yDYx5o/XMCiK
http://paperpile.com/b/yDYx5o/XMCiK
https://doi.org/10.1101/2022.02.09.479762
http://creativecommons.org/licenses/by-nc-nd/4.0/


69. Sigsgaard, E. E. et al. Population-level inferences from environmental DNA-Current status

and future perspectives. Evol. Appl. 13, 245–262 (2020).

70. Lewin, H. A. et al. Earth BioGenome Project: Sequencing life for the future of life. Proc.

Natl. Acad. Sci. U. S. A. 115, 4325–4333 (2018).

71. Riginos, C. et al. Building a global genomics observatory: Using GEOME (the Genomic

Observatories Metadatabase) to expedite and improve deposition and retrieval of genetic

data and metadata for biodiversity research. Mol. Ecol. Resour. 20, 1458–1469 (2020).

72. Overcast, I., Emerson, B. C. & Hickerson, M. J. An integrated model of population genetics

and community ecology. J. Biogeogr. 46, 816–829 (2019).

73. Overcast, I. et al. A unified model of species abundance, genetic diversity, and functional

diversity reveals the mechanisms structuring ecological communities. Mol. Ecol. Resour.

21, 2782–2800 (2021).

74. Wallace, A. R. & Harvard University. Tropical nature, and other essays. (London, Macmillan

and co., 1878).

75. Janzen, D. H. Why Mountain Passes are Higher in the Tropics. Am. Nat. 101, 233–249

(1967).

76. Moreau, C. S. & Bell, C. D. Testing the museum versus cradle tropical biological diversity

hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the

ants. Evolution 67, 2240–2257 (2013).

77. Buffalo, V. Quantifying the relationship between genetic diversity and population size

suggests natural selection cannot explain Lewontin’s Paradox. Elife 10, (2021).

78. Stebbins, G. L. Flowering Plants: Evolution above the Species Level. (Harvard University

Press, 1974). doi:10.4159/harvard.9780674864856.

79. Gaston, K. J. & Blackburn, T. M. The tropics as a museum of biological diversity: an

analysis of the New World avifauna. Proceedings of the Royal Society of London. Series B:

Biological Sciences 263, 63–68 (1996).

41

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.02.09.479762doi: bioRxiv preprint 

http://paperpile.com/b/yDYx5o/ysn36
http://paperpile.com/b/yDYx5o/ysn36
http://paperpile.com/b/yDYx5o/Cmkk0
http://paperpile.com/b/yDYx5o/Cmkk0
http://paperpile.com/b/yDYx5o/MSdRd
http://paperpile.com/b/yDYx5o/MSdRd
http://paperpile.com/b/yDYx5o/MSdRd
http://paperpile.com/b/yDYx5o/9MXtx
http://paperpile.com/b/yDYx5o/9MXtx
http://paperpile.com/b/yDYx5o/FUUV
http://paperpile.com/b/yDYx5o/FUUV
http://paperpile.com/b/yDYx5o/FUUV
http://paperpile.com/b/yDYx5o/iX8LY
http://paperpile.com/b/yDYx5o/iX8LY
http://paperpile.com/b/yDYx5o/AAmRD
http://paperpile.com/b/yDYx5o/AAmRD
http://paperpile.com/b/yDYx5o/Om12X
http://paperpile.com/b/yDYx5o/Om12X
http://paperpile.com/b/yDYx5o/Om12X
http://paperpile.com/b/yDYx5o/g9dSa
http://paperpile.com/b/yDYx5o/g9dSa
http://paperpile.com/b/yDYx5o/nbfHE
http://paperpile.com/b/yDYx5o/nbfHE
http://dx.doi.org/10.4159/harvard.9780674864856
http://paperpile.com/b/yDYx5o/nbfHE
http://paperpile.com/b/yDYx5o/N7EDb
http://paperpile.com/b/yDYx5o/N7EDb
http://paperpile.com/b/yDYx5o/N7EDb
https://doi.org/10.1101/2022.02.09.479762
http://creativecommons.org/licenses/by-nc-nd/4.0/


80. Chown, S. L. & Gaston, K. J. Areas, cradles and museums: the latitudinal gradient in

species richness. Trends Ecol. Evol. 15, 311–315 (2000).

81. Stevens, G. C. The Latitudinal Gradient in Geographical Range: How so Many Species

Coexist in the Tropics. Am. Nat. 133, 240–256 (1989).

82. Ruggiero, A. & Werenkraut, V. One-dimensional analyses of Rapoport’s rule reviewed

through meta-analysis. Glob. Ecol. Biogeogr. 16, 401–414 (2007).

83. Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).

84. Carnaval, A. C., Hickerson, M. J., Haddad, C. F. B., Rodrigues, M. T. & Moritz, C. Stability

predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323, 785–789

(2009).

85. Anderson, S. C. & Ward, E. J. Black swans in space: modeling spatiotemporal processes

with extremes. Ecology 100, e02403 (2019).

86. Srivathsan, A. et al. Global convergence of dominance and neglect in flying insect diversity.

bioRxiv 2022.08.02.502512 (2022) doi:10.1101/2022.08.02.502512.

87. Hagen, O., Skeels, A., Onstein, R. E., Jetz, W. & Pellissier, L. Earth history events shaped

the evolution of uneven biodiversity across tropical moist forests. Proc. Natl. Acad. Sci. U.

S. A. 118, (2021).

88. Kass, J. M. et al. The global distribution of known and undiscovered ant biodiversity. Sci

Adv 8, eabp9908 (2022).

89. Condamine, F. L., Sperling, F. A. H., Wahlberg, N., Rasplus, J.-Y. & Kergoat, G. J. What

causes latitudinal gradients in species diversity? Evolutionary processes and ecological

constraints on swallowtail biodiversity. Ecol. Lett. 15, 267–277 (2012).

90. Dunn, R. R. et al. Climatic drivers of hemispheric asymmetry in global patterns of ant

species richness. Ecol. Lett. 12, 324–333 (2009).

91. Economo, E. P., Narula, N., Friedman, N. R., Weiser, M. D. & Guénard, B. Macroecology

and macroevolution of the latitudinal diversity gradient in ants. Nat. Commun. 9, 1778

42

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.02.09.479762doi: bioRxiv preprint 

http://paperpile.com/b/yDYx5o/z5mqp
http://paperpile.com/b/yDYx5o/z5mqp
http://paperpile.com/b/yDYx5o/eb1mY
http://paperpile.com/b/yDYx5o/eb1mY
http://paperpile.com/b/yDYx5o/E5mey
http://paperpile.com/b/yDYx5o/E5mey
http://paperpile.com/b/yDYx5o/FTXBw
http://paperpile.com/b/yDYx5o/JaWxx
http://paperpile.com/b/yDYx5o/JaWxx
http://paperpile.com/b/yDYx5o/JaWxx
http://paperpile.com/b/yDYx5o/zHFrt
http://paperpile.com/b/yDYx5o/zHFrt
http://paperpile.com/b/yDYx5o/hxBq
http://paperpile.com/b/yDYx5o/hxBq
http://dx.doi.org/10.1101/2022.08.02.502512
http://paperpile.com/b/yDYx5o/hxBq
http://paperpile.com/b/yDYx5o/5WcQP
http://paperpile.com/b/yDYx5o/5WcQP
http://paperpile.com/b/yDYx5o/5WcQP
http://paperpile.com/b/yDYx5o/u8yZ
http://paperpile.com/b/yDYx5o/u8yZ
http://paperpile.com/b/yDYx5o/2gXf
http://paperpile.com/b/yDYx5o/2gXf
http://paperpile.com/b/yDYx5o/2gXf
http://paperpile.com/b/yDYx5o/qPWnR
http://paperpile.com/b/yDYx5o/qPWnR
http://paperpile.com/b/yDYx5o/rj2BU
http://paperpile.com/b/yDYx5o/rj2BU
https://doi.org/10.1101/2022.02.09.479762
http://creativecommons.org/licenses/by-nc-nd/4.0/


(2018).

92. Privet, K. & Petillon, J. Differences in tropical vs. temperate diversity in arthropod predators

provide insights into causes of latitudinal gradients of species diversity. bioRxiv 283499

(2018) doi:10.1101/283499.

93. Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl.

Acad. Sci. U. S. A. 104, 5925–5930 (2007).

94. Orr, M. C. et al. Global Patterns and Drivers of Bee Distribution. Curr. Biol. 31, 451–458.e4

(2021).

95. Vellend, M. Island biogeography of genes and species. Am. Nat. 162, 358–365 (2003).

96. Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography. (Princeton

University Press, 2001). doi:10.1515/9781400837526.

97. Laroche, F., Jarne, P., Lamy, T., David, P. & Massol, F. A neutral theory for interpreting

correlations between species and genetic diversity in communities. Am. Nat. 185, 59–69

(2015).

98. Lamy, T., Laroche, F., David, P., Massol, F. & Jarne, P. The contribution of species-genetic

diversity correlations to the understanding of community assembly rules. Oikos 126,

759–771 (2017).

99. Bazin, E., Glémin, S. & Galtier, N. Population size does not influence mitochondrial genetic

diversity in animals. Science 312, 570–572 (2006).

100.Manel, S. et al. Global determinants of freshwater and marine fish genetic diversity. Nat.

Commun. 11, 692 (2020).

101.Labandeira, C. C. & Sepkoski, J. J., Jr. Insect diversity in the fossil record. Science 261,

310–315 (1993).

102.Grimaldi, D., Engel, M. S., . Engel, M. S. & Senior Curator and Professor Michael S Engel.

Evolution of the Insects. (Cambridge University Press, 2005).

103.Mitton, J. B. Selection in Natural Populations. (Oxford University Press, 2000).

43

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.02.09.479762doi: bioRxiv preprint 

http://paperpile.com/b/yDYx5o/rj2BU
http://paperpile.com/b/yDYx5o/CdAd3
http://paperpile.com/b/yDYx5o/CdAd3
http://paperpile.com/b/yDYx5o/CdAd3
http://dx.doi.org/10.1101/283499
http://paperpile.com/b/yDYx5o/CdAd3
http://paperpile.com/b/yDYx5o/WWtX6
http://paperpile.com/b/yDYx5o/WWtX6
http://paperpile.com/b/yDYx5o/iIV7T
http://paperpile.com/b/yDYx5o/iIV7T
http://paperpile.com/b/yDYx5o/Ktc26
http://paperpile.com/b/yDYx5o/lKXmJ
http://paperpile.com/b/yDYx5o/lKXmJ
http://dx.doi.org/10.1515/9781400837526
http://paperpile.com/b/yDYx5o/lKXmJ
http://paperpile.com/b/yDYx5o/iKmEG
http://paperpile.com/b/yDYx5o/iKmEG
http://paperpile.com/b/yDYx5o/iKmEG
http://paperpile.com/b/yDYx5o/Cwnrs
http://paperpile.com/b/yDYx5o/Cwnrs
http://paperpile.com/b/yDYx5o/Cwnrs
http://paperpile.com/b/yDYx5o/PZ5IR
http://paperpile.com/b/yDYx5o/PZ5IR
http://paperpile.com/b/yDYx5o/VtdJ0
http://paperpile.com/b/yDYx5o/VtdJ0
http://paperpile.com/b/yDYx5o/vEw4A
http://paperpile.com/b/yDYx5o/vEw4A
http://paperpile.com/b/yDYx5o/vWDzj
http://paperpile.com/b/yDYx5o/vWDzj
http://paperpile.com/b/yDYx5o/QLhIQ
https://doi.org/10.1101/2022.02.09.479762
http://creativecommons.org/licenses/by-nc-nd/4.0/


104.Exposito-Alonso, M. et al. Genetic diversity loss in the Anthropocene. Science 377,

1431–1435 (2022).

105.Tajima, F. Evolutionary relationship of DNA sequences in finite populations. Genetics 105,

437–460 (1983).

106.Nordborg, M. & Krone, S. Separation of time scales and convergence to the coalescent in

structured populations. in Modern Developments in Theoretical Population Genetics (eds.

Slatkin, M. & Veuille, M.) 194–232 (Oxford University Press, 2001).

107.Charlesworth, B. & Charlesworth, D. Elements of Evolutionary Genetics. (W. H. Freeman,

2010).

108.Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and

latitude. Proc. Biol. Sci. 267, 739–745 (2000).

109.Tougeron, K. Diapause research in insects: historical review and recent work perspectives.

Entomol. Exp. Appl. 167, 27–36 (2019).

110.Danks, H. V. & Others. The wider integration of studies on insect cold-hardiness. Eur. J.

Entomol. 93, 383–404 (1996).

111. Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).

112.Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species’

geographical distributions driven by Milankovitch climate oscillations. Proc. Natl. Acad. Sci.

U. S. A. 97, 9115–9120 (2000).

113.Qu, Y. et al. Long-term isolation and stability explain high genetic diversity in the Eastern

Himalaya. Mol. Ecol. 23, 705–720 (2014).

114.Morgan, K. et al. Comparative phylogeography reveals a shared impact of pleistocene

environmental change in shaping genetic diversity within nine Anopheles mosquito species

across the Indo-Burma biodiversity hotspot. Mol. Ecol. 20, 4533–4549 (2011).

115.Earl, C. et al. Spatial phylogenetics of butterflies in relation to environmental drivers and

angiosperm diversity across North America. iScience 0, (2021).

44

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.02.09.479762doi: bioRxiv preprint 

http://paperpile.com/b/yDYx5o/yIF8H
http://paperpile.com/b/yDYx5o/yIF8H
http://paperpile.com/b/yDYx5o/cut7
http://paperpile.com/b/yDYx5o/cut7
http://paperpile.com/b/yDYx5o/yFjL
http://paperpile.com/b/yDYx5o/yFjL
http://paperpile.com/b/yDYx5o/yFjL
http://paperpile.com/b/yDYx5o/gthv
http://paperpile.com/b/yDYx5o/gthv
http://paperpile.com/b/yDYx5o/UmM7J
http://paperpile.com/b/yDYx5o/UmM7J
http://paperpile.com/b/yDYx5o/b7LDP
http://paperpile.com/b/yDYx5o/b7LDP
http://paperpile.com/b/yDYx5o/QAa1h
http://paperpile.com/b/yDYx5o/QAa1h
http://paperpile.com/b/yDYx5o/ezOs
http://paperpile.com/b/yDYx5o/bS8f
http://paperpile.com/b/yDYx5o/bS8f
http://paperpile.com/b/yDYx5o/bS8f
http://paperpile.com/b/yDYx5o/vnYI
http://paperpile.com/b/yDYx5o/vnYI
http://paperpile.com/b/yDYx5o/T0Gw3
http://paperpile.com/b/yDYx5o/T0Gw3
http://paperpile.com/b/yDYx5o/T0Gw3
http://paperpile.com/b/yDYx5o/M2LA2
http://paperpile.com/b/yDYx5o/M2LA2
https://doi.org/10.1101/2022.02.09.479762
http://creativecommons.org/licenses/by-nc-nd/4.0/


116.Rix, M. G. et al. Biogeography and speciation of terrestrial fauna in the south-western

Australian biodiversity hotspot. Biol. Rev. Camb. Philos. Soc. 90, 762–793 (2015).

117.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J.

Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

118.Vellend, M. The Theory of Ecological Communities (MPB-57). (Princeton University Press,

2016).

119.Hawkins, B. A. & DeVries, P. J. Tropical niche conservatism and the species richness

gradient of North American butterflies. J. Biogeogr. 36, 1698–1711 (2009).

120.Pilowsky, J. A., Colwell, R. K., Rahbek, C. & Fordham, D. A. Process-explicit models reveal

the structure and dynamics of biodiversity patterns. Sci Adv 8, eabj2271 (2022).

121.Hagen, O. et al. gen3sis: A general engine for eco-evolutionary simulations of the

processes that shape Earth’s biodiversity. PLoS Biol. 19, e3001340 (2021).

122.Hagen, O. Coupling eco‐evolutionary mechanisms with deep‐time environmental dynamics

to understand biodiversity patterns. Ecography (2022) doi:10.1111/ecog.06132.

123.Barbour, M. A. et al. Genetic specificity of a plant-insect food web: Implications for linking

genetic variation to network complexity. Proc. Natl. Acad. Sci. U. S. A. 113, 2128–2133

(2016).

124.Mopper, S. Adaptive genetic structure in phytophagous insect populations. Trends Ecol.

Evol. 11, 235–238 (1996).

125.Tarpy, D. R., Vanengelsdorp, D. & Pettis, J. S. Genetic diversity affects colony survivorship

in commercial honey bee colonies. Naturwissenschaften 100, 723–728 (2013).

126.Keith, A. R., Bailey, J. K., Lau, M. K. & Whitham, T. G. Genetics-based interactions of

foundation species affect community diversity, stability and network structure. Proc. Biol.

Sci. 284, (2017).

127.Shuster, S. M., Lonsdorf, E. V., Wimp, G. M., Bailey, J. K. & Whitham, T. G. Community

heritability measures the evolutionary consequences of indirect genetic effects on

45

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.02.09.479762doi: bioRxiv preprint 

http://paperpile.com/b/yDYx5o/SYmAz
http://paperpile.com/b/yDYx5o/SYmAz
http://paperpile.com/b/yDYx5o/dzo5Q
http://paperpile.com/b/yDYx5o/dzo5Q
http://paperpile.com/b/yDYx5o/FTQNZ
http://paperpile.com/b/yDYx5o/FTQNZ
http://paperpile.com/b/yDYx5o/nktyd
http://paperpile.com/b/yDYx5o/nktyd
http://paperpile.com/b/yDYx5o/ANxJ
http://paperpile.com/b/yDYx5o/ANxJ
http://paperpile.com/b/yDYx5o/iHFiL
http://paperpile.com/b/yDYx5o/iHFiL
http://paperpile.com/b/yDYx5o/En6y3
http://paperpile.com/b/yDYx5o/En6y3
http://dx.doi.org/10.1111/ecog.06132
http://paperpile.com/b/yDYx5o/En6y3
http://paperpile.com/b/yDYx5o/aolGw
http://paperpile.com/b/yDYx5o/aolGw
http://paperpile.com/b/yDYx5o/aolGw
http://paperpile.com/b/yDYx5o/fn1zn
http://paperpile.com/b/yDYx5o/fn1zn
http://paperpile.com/b/yDYx5o/2UmVi
http://paperpile.com/b/yDYx5o/2UmVi
http://paperpile.com/b/yDYx5o/oav26
http://paperpile.com/b/yDYx5o/oav26
http://paperpile.com/b/yDYx5o/oav26
http://paperpile.com/b/yDYx5o/vaId7
http://paperpile.com/b/yDYx5o/vaId7
https://doi.org/10.1101/2022.02.09.479762
http://creativecommons.org/licenses/by-nc-nd/4.0/


community structure. Evolution 60, 991–1003 (2006).

128.Barbour, M. A. & Fortuna, M. A. Genetic specificity of a plant–insect food web: Implications

for linking genetic variation to network complexity. Proceedings of the (2016).

129.Raffard, A., Santoul, F., Cucherousset, J. & Blanchet, S. The community and ecosystem

consequences of intraspecific diversity: a meta-analysis. Biol. Rev. Camb. Philos. Soc. 94,

648–661 (2019).

130.Riggio, J. et al. Global human influence maps reveal clear opportunities in conserving

Earth’s remaining intact terrestrial ecosystems. Glob. Chang. Biol. (2020)

doi:10.1111/gcb.15109.

131.Tsutsui, N. D., Suarez, A. V., Holway, D. A. & Case, T. J. Reduced genetic variation and the

success of an invasive species. Proc. Natl. Acad. Sci. U. S. A. 97, 5948–5953 (2000).

132.Frankham, R. Resolving the genetic paradox in invasive species. Heredity 94, 385 (2005).

133.Pelletier, T. A. et al. phylogatR : Phylogeographic data aggregation and repurposing.

Molecular Ecology Resources vol. 22 2830–2842 Preprint at

https://doi.org/10.1111/1755-0998.13673 (2022).

134.Jansen, J. et al. Stop ignoring map uncertainty in biodiversity science and conservation

policy. Nat Ecol Evol 6, 828–829 (2022).

135.Hortal, J. et al. Seven Shortfalls that Beset Large-Scale Knowledge of Biodiversity. Annu.

Rev. Ecol. Evol. Syst. 46, 523–549 (2015).

136.Coddington, J. A., Agnarsson, I., Miller, J. A., Kuntner, M. & Hormiga, G. Undersampling

bias: the null hypothesis for singleton species in tropical arthropod surveys. J. Anim. Ecol.

78, 573–584 (2009).

137.Leigh, D. M., Hendry, A. P., Vázquez-Domínguez, E. & Friesen, V. L. Estimated six per cent

loss of genetic variation in wild populations since the industrial revolution. Evol. Appl. 12,

1505–1512 (2019).

138.Wilson, E. O. The little things that run the world* (the importance and conservation of

46

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.02.09.479762doi: bioRxiv preprint 

http://paperpile.com/b/yDYx5o/vaId7
http://paperpile.com/b/yDYx5o/hx20H
http://paperpile.com/b/yDYx5o/hx20H
http://paperpile.com/b/yDYx5o/iULXb
http://paperpile.com/b/yDYx5o/iULXb
http://paperpile.com/b/yDYx5o/iULXb
http://paperpile.com/b/yDYx5o/IVouc
http://paperpile.com/b/yDYx5o/IVouc
http://paperpile.com/b/yDYx5o/IVouc
http://dx.doi.org/10.1111/gcb.15109
http://paperpile.com/b/yDYx5o/IVouc
http://paperpile.com/b/yDYx5o/DzQc
http://paperpile.com/b/yDYx5o/DzQc
http://paperpile.com/b/yDYx5o/Jwgw
http://paperpile.com/b/yDYx5o/SJ7EX
http://paperpile.com/b/yDYx5o/SJ7EX
http://paperpile.com/b/yDYx5o/SJ7EX
http://dx.doi.org/10.1111/1755-0998.13673
http://paperpile.com/b/yDYx5o/SJ7EX
http://paperpile.com/b/yDYx5o/Tg6n
http://paperpile.com/b/yDYx5o/Tg6n
http://paperpile.com/b/yDYx5o/iUCd5
http://paperpile.com/b/yDYx5o/iUCd5
http://paperpile.com/b/yDYx5o/1mVE3
http://paperpile.com/b/yDYx5o/1mVE3
http://paperpile.com/b/yDYx5o/1mVE3
http://paperpile.com/b/yDYx5o/345FR
http://paperpile.com/b/yDYx5o/345FR
http://paperpile.com/b/yDYx5o/345FR
http://paperpile.com/b/yDYx5o/z6dR
https://doi.org/10.1101/2022.02.09.479762
http://creativecommons.org/licenses/by-nc-nd/4.0/


invertebrates). Conserv. Biol. 1, 344–346 (1987).

139.Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: the

barcode index number (BIN) system. PLoS One 8, e66213 (2013).

140.Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence

alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

141.Pallewatta, N., Reaser, J. K. & Gutierrez, A. T. Invasive alien species in South-Southeast

Asia: national reports and directory of resources. Invasive alien species in South-Southeast

Asia: national reports and directory of resources. (2003).

142.Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 Global

Biodiversity Framework must be improved. Biol. Conserv. 248, 108654 (2020).

143.Paz-Vinas, I. et al. Systematic conservation planning for intraspecific genetic diversity. Proc.

Biol. Sci. 285, (2018).

144.Nei, M. & Li, W. Mathematical model for studying variation in terms of restriction

endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76, 5269–5273 (1979).

145.Gaggiotti, O. E. et al. Diversity from genes to ecosystems: A unifying framework to study

variation across biological metrics and scales. Evol. Appl. 11, 1176–1193 (2018).

146.Chao, A., Chiu, C.-H. & Jost, L. Unifying Species Diversity, Phylogenetic Diversity,

Functional Diversity, and Related Similarity and Differentiation Measures Through Hill

Numbers. Annu. Rev. Ecol. Evol. Syst. (2014)

doi:10.1146/annurev-ecolsys-120213-091540.

147.Alberdi, A. & Gilbert, M. T. P. A guide to the application of Hill numbers to DNA-based

diversity analyses. Mol. Ecol. Resour. 19, 804–817 (2019).

148.Shannon, C. E. A mathematical theory of communication. The Bell System Technical

Journal 27, 379–423 (1948).

149.Hill, M. O. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 54,

427–432 (1973).

47

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.02.09.479762doi: bioRxiv preprint 

http://paperpile.com/b/yDYx5o/z6dR
http://paperpile.com/b/yDYx5o/8zirO
http://paperpile.com/b/yDYx5o/8zirO
http://paperpile.com/b/yDYx5o/iJLUn
http://paperpile.com/b/yDYx5o/iJLUn
http://paperpile.com/b/yDYx5o/NTE3z
http://paperpile.com/b/yDYx5o/NTE3z
http://paperpile.com/b/yDYx5o/NTE3z
http://paperpile.com/b/yDYx5o/q2z1b
http://paperpile.com/b/yDYx5o/q2z1b
http://paperpile.com/b/yDYx5o/ccu8j
http://paperpile.com/b/yDYx5o/ccu8j
http://paperpile.com/b/yDYx5o/SeSus
http://paperpile.com/b/yDYx5o/SeSus
http://paperpile.com/b/yDYx5o/Mec4q
http://paperpile.com/b/yDYx5o/Mec4q
http://paperpile.com/b/yDYx5o/jUdKB
http://paperpile.com/b/yDYx5o/jUdKB
http://paperpile.com/b/yDYx5o/jUdKB
http://paperpile.com/b/yDYx5o/jUdKB
http://dx.doi.org/10.1146/annurev-ecolsys-120213-091540
http://paperpile.com/b/yDYx5o/jUdKB
http://paperpile.com/b/yDYx5o/7bord
http://paperpile.com/b/yDYx5o/7bord
http://paperpile.com/b/yDYx5o/vVaIn
http://paperpile.com/b/yDYx5o/vVaIn
http://paperpile.com/b/yDYx5o/NpHoO
http://paperpile.com/b/yDYx5o/NpHoO
https://doi.org/10.1101/2022.02.09.479762
http://creativecommons.org/licenses/by-nc-nd/4.0/


150.Maurer, B. A. & McGill, B. J. Measurement of species diversity. Biological diversity: frontiers

in measurement and assessment 55–65 (2011).

151.Welch, B. L. The Significance of the Difference Between Two Means when the Population

Variances are Unequal. Biometrika 29, 350–362 (1938).

152.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas.

Scientific Data 4, 170122 (2017).

153.Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high

spatial resolution paleoclimate surfaces for global land areas. Sci Data 5, 180254 (2018).

154.Tuanmu, M.-N. & Jetz, W. A global, remote sensing-based characterization of terrestrial

habitat heterogeneity for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 24,

1329–1339 (2015).

155.Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J.

Managing the middle: A shift in conservation priorities based on the global human

modification gradient. Glob. Chang. Biol. 25, 811–826 (2019).

156.White, A. E., Dey, K. K., Mohan, D., Stephens, M. & Price, T. D. Regional influences on

community structure across the tropical-temperate divide. Nat. Commun. 10, 2646 (2019).

157.Goodrich, B., Gabry, J., Ali, I. & Brilleman, S. rstanarm: Bayesian applied regression

modeling via Stan. R package version 2, 1758 (2018).

158.Piironen, J., Paasiniemi, M. & Vehtari, A. Projective inference in high-dimensional problems:

Prediction and feature selection. EJSS 14, 2155–2197 (2020).

159.Legendre, P. & Fortin, M. J. Spatial pattern and ecological analysis. Vegetatio 80, 107–138

(1989).

160.Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators

of spatial association. Test 27, 716–748 (2018).

161.Carpenter, B. et al. Stan: A Probabilistic Programming Language. Journal of Statistical

Software, Articles 76, 1–32 (2017).

48

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.02.09.479762doi: bioRxiv preprint 

http://paperpile.com/b/yDYx5o/hUqul
http://paperpile.com/b/yDYx5o/hUqul
http://paperpile.com/b/yDYx5o/kJTnr
http://paperpile.com/b/yDYx5o/kJTnr
http://paperpile.com/b/yDYx5o/btEHC
http://paperpile.com/b/yDYx5o/btEHC
http://paperpile.com/b/yDYx5o/S186C
http://paperpile.com/b/yDYx5o/S186C
http://paperpile.com/b/yDYx5o/SuoGx
http://paperpile.com/b/yDYx5o/SuoGx
http://paperpile.com/b/yDYx5o/SuoGx
http://paperpile.com/b/yDYx5o/KBAjs
http://paperpile.com/b/yDYx5o/KBAjs
http://paperpile.com/b/yDYx5o/KBAjs
http://paperpile.com/b/yDYx5o/GiXsC
http://paperpile.com/b/yDYx5o/GiXsC
http://paperpile.com/b/yDYx5o/9XV8H
http://paperpile.com/b/yDYx5o/9XV8H
http://paperpile.com/b/yDYx5o/ztMuW
http://paperpile.com/b/yDYx5o/ztMuW
http://paperpile.com/b/yDYx5o/nIo9o
http://paperpile.com/b/yDYx5o/nIo9o
http://paperpile.com/b/yDYx5o/EbySy
http://paperpile.com/b/yDYx5o/EbySy
http://paperpile.com/b/yDYx5o/dGbZI
http://paperpile.com/b/yDYx5o/dGbZI
https://doi.org/10.1101/2022.02.09.479762
http://creativecommons.org/licenses/by-nc-nd/4.0/


162.Stan Development Team. RStan: the R interface to Stan. Preprint at http://mc-stan.org/

(2020).

163.Gelman, A., Goodrich, B., Gabry, J. & Vehtari, A. R-squared for Bayesian Regression

Models. Am. Stat. 73, 307–309 (2019).

164.Gimenez, O., Morgan, B. J. T. & Brooks, S. P. Weak Identifiability in Models for

Mark-Recapture-Recovery Data. in Modeling Demographic Processes In Marked

Populations (eds. Thomson, D. L., Cooch, E. G. & Conroy, M. J.) 1055–1067 (Springer US,

2009). doi:10.1007/978-0-387-78151-8_48.

165.Dutilleul, P., Clifford, P., Richardson, S. & Hemon, D. Modifying the t Test for Assessing the

Correlation Between Two Spatial Processes. Biometrics 49, 305–314 (1993).

166.Vallejos, R., Osorio, F. & Bevilacqua, M. Spatial Relationships Between Two Georeferenced

Variables: With Applications in R. (Springer Nature, 2020).

167.Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods

Ecol. Evol. 1, 330–342 (2010).

Acknowledgements

We thank Jason L Brown for his valuable feedback on early drafts of the manuscript, and the

Anderson, Hickerson, and Carnaval labs at City College of New York for their feedback at every

step of the project. CMF, MJH, ACC, IO and AR acknowledge support from NSF DBI 2104147

and the NSF RCN Cross-Scale Processes Impacting Biodiversity (DEB 1745562). DJL was

funded by NSF DEB-1541557. JMK was supported by the Japan Society for the Promotion of

Science Postdoctoral Fellowships for Foreign Researchers Program.

49

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.02.09.479762doi: bioRxiv preprint 

http://paperpile.com/b/yDYx5o/5japX
http://mc-stan.org/
http://paperpile.com/b/yDYx5o/5japX
http://paperpile.com/b/yDYx5o/5japX
http://paperpile.com/b/yDYx5o/Q6LM
http://paperpile.com/b/yDYx5o/Q6LM
http://paperpile.com/b/yDYx5o/EJ5wW
http://paperpile.com/b/yDYx5o/EJ5wW
http://paperpile.com/b/yDYx5o/EJ5wW
http://paperpile.com/b/yDYx5o/EJ5wW
http://dx.doi.org/10.1007/978-0-387-78151-8_48
http://paperpile.com/b/yDYx5o/EJ5wW
http://paperpile.com/b/yDYx5o/3LP54
http://paperpile.com/b/yDYx5o/3LP54
http://paperpile.com/b/yDYx5o/BWXnx
http://paperpile.com/b/yDYx5o/BWXnx
http://paperpile.com/b/yDYx5o/y3L2r
http://paperpile.com/b/yDYx5o/y3L2r
https://doi.org/10.1101/2022.02.09.479762
http://creativecommons.org/licenses/by-nc-nd/4.0/


Author contributions

C.M.F., L.D.B., and M.J.H. conceived of the study. C.M.F., L.D.B., J.M.K., K.A.M., I.O., A.R.,

P.S., A.C.C., and M.J.H. framed the study. C.M.F., L.D.B., and M.J.H. carried out the analyses.

C.M.F., and M.J.H. led the writing. All authors contributed to interpretation of the results and to

the writing, and all have approved the submission. A.R. and P.S. contributed to Figure 1.

Competing interests

The authors declare no competing interests.

50

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.02.09.479762doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.09.479762
http://creativecommons.org/licenses/by-nc-nd/4.0/

