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While biomolecular condensates are often liquid-like, many experiments found that condensates6

also exhibit solid-like behaviors, which may make them irreversible and indissoluble. Despite the7

critical biological significance of indissoluble condensates to cellular fitness and diseases, the physical8

mechanisms underlying the stabilities of solid-like condensates are still unclear. In this work, we9

study the effects of elasticity on the dissolution of biomolecular condensates. We demonstrate that10

the bulk stress inside condensates may prevent the condensates from dissolution and obtain the11

new equilibrium conditions of elastic condensate: the osmotic pressure minus the bulk stress is12

uniform inside and outside condensates. To verify our theories, we simulate the two-fluid model13

in which the slow component corresponding to the polymer network generates elastic stress. Our14

theoretical predictions are nicely confirmed and independent of microscopic details. Moreover, we15

obtain a phase diagram on the stability of elastic condensates and identify a minimum bulk modulus16

for the condensates to be indissoluble, both numerically and theoretically. Our results may have17

implications in developing drugs targeting irreversible condensates.18

Biomolecular condensates are widely observed in vari-19

ous organisms, usually composed of proteins and RNAs20

[1–9]. They often have crucial biological functions21

[10, 11], such as adaptive responses to stresses, acceler-22

ating biochemical reactions, and sequestering molecules23

from reactions. Therefore, the accurate regulation of24

biomolecular condensates’ formation and dissolution is25

critical. Meanwhile, experiments have also found that26

biomolecular condensates are viscoelastic rather than27

completely viscous [12]: they are solid-like on a short28

time scale and liquid-like on a long time scale. More29

interestingly, they exhibit aging behaviors, and the vis-30

coelastic relaxation time, which separates solid and liquid31

behaviors, increases over time [13]. Indeed, aged conden-32

sates may become indissoluble or infusible in conditions33

where newly formed condensates can easily dissolve or34

fuse [3, 4, 7, 9, 14–18]. Moreover, indissoluble conden-35

sates may affect cellular fitness, e.g., failure to dissolve36

condensates during mitosis leads to aberrant condensates37

that cause the cell-cycle arrest and ultimately cell death38

[19]. In general, indissoluble condensates are believed to39

lead to aging at the cellular or organismic level and are40

related to multiple diseases [15, 20–22].41

Theoretical studies on the formation and dissolution42

of biomolecular condensates have so far been limited to43

fluid models, in which the elastic nature of condensates44

are usually neglected [23]. Meanwhile, numerous exper-45

iments have demonstrated the importance of solid-like46

nature on the dissolution of condensates [13, 22], and47

our theoretical understanding of this problem is still in48

its infancy. In this work, we seek to fill this gap and in-49

vestigate the effects of elasticity on the dissolution and50

stability of biomolecular condensates, combining both51

analytical theories and computer simulations. In the52

following, we first introduce our theoretical frameworks53

focusing on elastic condensates that are subject to an54

abrupt parameter change. Without elasticity, they are55

supposed to dissolve. We then derive the equilibrium56

conditions for elastic condensates and find that the bulk57

stress plays an essential role in preventing the dissolu-58

tion. A finite bulk modulus may render the condensate59

irreversible and indissoluble. To test our theoretical pre-60

dictions, we simulate the two-fluid model [24, 25] beyond61

the traditional fluid model of phase separation dynamics62

(Model H) [23, 26], by including elastic stress generated63

by the polymer network. Our theories are nicely con-64

firmed and valid independent of the microscopic details,65

such as the free energy form. Furthermore, we provide a66

phase diagram of condensate stability and demonstrate67

a minimum bulk modulus for the condensate to be indis-68

soluble. Finally, we discuss the biological implications of69

our work and propose future directions to explore.70

Equilibrium conditions of elastic condensates71

Biomolecular condensates usually have well-defined72

viscoelastic relaxation times, below which the conden-73

sates behave as elastic materials [12, 13]. In this work, we74

simplify the problem by considering an aged condensate75

with its viscoelastic relaxation time much longer than76

the time scales of biological interests, e.g., the duration77

of cell-cycle phases. Therefore, its viscoelastic relaxation78

time can be taken as infinite, which is the main focus79

of this work (Figure 1). We introduce an abrupt change80

to the attractive interaction between the monomers of81

biomolecules, either due to environmental change, e.g.,82

an increase in temperature, or active cellular regulation,83

e.g., post-translational phosphorylation. In the absence84

of elasticity, the condensate will dissolve. However, as we85

show in the following, the elastic force may prevent the86

dissolution.87
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FIG. 1. Equilibrium conditions of elastic condensates. Liquid-
like condensates are initially formed from liquid-liquid phase
separation, which then become aged and solid-like. An
abrupt change in the effective attractive interaction between
biomolecular monomers is introduced, e.g., through an in-
crease in temperature or post-translational modification. The
bulk stress σB in the condensate is involved in the new equi-
librium condition to prevent dissolution.

In liquid-liquid phase separation, a stable condensate88

requires the Gibbs-Thomson relation of osmotic pressure:89

Πin = Πout + (d − 1)γ/R. Here, Πin (out) is the osmotic90

pressure inside (outside) the condensate, γ is the surface91

tension constant, d is the spatial dimension and R is the92

condensate radius. In this work, we propose the following93

equilibrium condition for elastic condensates (see detailed94

derivations in Methods),95

Πin − σB = Πout +
(d− 1)γ

R
, (1)

Here σB is the bulk stress inside the condensate (Figure96

1). As we show later, the inclusion of bulk stress com-97

pensates the imbalance of osmotic pressures. To find the98

expression of σB , we use the constitutive equation of the99

bulk stress and the continuity equation of density (φ)100

∂σB
∂t

= GB∇ · vp, (2)

∂φ

∂t
= −φ∇ · vp. (3)

Here vp is the velocity field of the polymer, e.g., proteins,101

which is responsible for the bulk stress. GB is the bulk102

modulus. In writing the above two equations, we assume103

that φ and σB are uniform inside the condensate, which104

we confirm numerically later. Combining Eqs. (2, 3), we105

obtain106

σB = GB ln
( φ1
φin

)
(4)

where φ1 and φin are respectively the densities of the107

condensate before and after the condition changes.108

We note that to uniquely determine the density inside109

and outside the condensate, φin and φout, we still need110

one more equation. For liquid condensates, it is a uniform111

chemical potential. However, in our case, the conden-112

sate is solid; therefore, the exchange of molecules is sup-113

pressed [3, 8, 22]. Instead, we propose that condensate114

size does not change upon the weakening of attractive in-115

teraction between biomolecules’ monomers, namely, R =116

R0, where R and R0 are respectively the radii of elastic117

condensate before and after the condition changes. We118

confirm this assumption numerically later. Given R and119

φin, φout can be calculated using the conservation of total120

molecular number: V φ0 =
∑
i Viφin,i + (V −

∑
i Vi)φout.121

Here V is the total volume, Vi is the volume of conden-122

sate i, and the summation is over all condensates. φ0 is123

the average density over the total volume. Finally, we124

remark that in our case, the bulk stress inside the con-125

densate stabilizes the condensate, in contrast to the bulk126

stress outside a condensate, e.g., due to the surrounding127

polymer network that suppresses the formation of con-128

densates [27–29].129

Numerical simulations130

In the following, we numerically simulate the two-fluid131

model in two dimensions [24, 25] to test our theories with132

two components: the slow component corresponding to133

the polymer and the fast component corresponding to the134

solvent. It is the polymer component that generates the135

elastic stress. The average velocity field v = φvp + (1−136

φ)vs where vp are vs are respectively the polymer and137

solvent velocity field. The dynamics of polymer density138

and velocity field follows (see details in Methods)139

∂φ

∂t
= −∇ · (φv) +∇

(φ(1− φ)2

ζ
(∇ ·Π−∇ · σ)

)
, (5)

−∇ ·Π +∇ · σ −∇p+ η∇2v = 0. (6)

Here, ζ is the friction constant between polymer and sol-140

vent, and η is the viscosity. The pressure p is determined141

by the incompressible condition: ∇ · v = 0. The stress142

tensor σ = σS + σBI where σB is the bulk stress and143

σS is the shear stress tensor. They follow the Maxwell144

fluid dynamics with the bulk and shear modulus GB and145
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FIG. 2. Simulations of multiple coexisting condensates. (a) The density field φ after decreasing χ from 3.0 to 1.5. (b) The
osmotic pressure Π from the same simulation of (a). (c) Π − σB from the same simulation of (a). In this figure, we take
φ0 = 0.45, GB = 20, GS = 20, and φc = 0.5.
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FIG. 3. Computations of the surface tension constant γ and
predictions of the density field. (a) The inferred surface ten-
sion constant γ = (Πin − σB − Πout)R approaches an asymp-
totic value in the large radius limit. (b) A comparison of the
theoretical predictions of φin and φout (black lines) and the
simulations in Figure 2(a). Each colored curve represents one
condensate and r is the distance from the condensate center.
In both (a) and (b), GB = 20, GS = 20, φc = 0.5, χi = 3.0,
χf = 1.5. In (b), φ0 = 0.45.

GS (Methods). In particular, to simulate elastic conden-146

sates, we take the relaxation time of bulk stress to be147

diverging at a critical density φc such that148

τ−1B (φ) = (φc − φ)Θ(φc − φ), (7)

where Θ(x) is the Heaviside function. We remark that if149

we take the stress tensor to be zero in Eqs. (5, 6), they150

are reduced to the classical Model H [26]. The osmotic151

stress tensor is determined by the polymer free energy152

f(φ), ∇·Π = φ∇f ′(φ) where f(φ) = f0(φ)+ C
2 (∇φ)2 and153

C is a constant. If not mentioned explicitly, we use the154

Flory-Huggins free energy: f0 = φ ln(φ) + (1− φ) ln(1−155

φ)+χφ(1−φ). The condition of stable liquid condensate156

is that the control parameter χ > 2. In this work, we use157

the osmotic pressure Π to represent the scalar osmotic158

stress computed from f0, Π = φf ′0 − f0.159

We simulate multiple coexisting elastic condensates by160

changing χ from χi = 3 to χf = 1.5. According to our161

theories, they can be simultaneously stable if each has its162

osmotic pressure difference balanced by the bulk stress.163

The density field is indeed uniform inside condensates as164

assumed (Figure 2a). We also confirm our assumptions165

of uniform bulk stress and constant radii (Figure S1).166

Example of simulations are shown in Movie S1. We find167

that the osmotic pressure is significantly different across168

the boundaries of condensates (Figure 2b). For liquid169

condensates, they will quickly dissolve due to the large170

pressure difference. In contrast, the bulk stress balances171

the osmotic pressure difference for elastic condensates.172

Indeed, we find that the Π − σB field is uniform across173

the boundaries (Figure 2c).174

We note that the uniform Π − σB is not valid near175

the condensate boundaries due to the surface tension.176

Using the variable sizes of condensates, we compute the177

radius dependence of surface tension constant γ. We find178

that γ converges to a constant value in the large radius179

limit (Figure 3a), suggesting that it is well defined in the180

thermodynamic limit. We find that the surface tension181

constant is relatively small in our simulations; therefore,182

our predictions of the density φin and φout assuming γ =183

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.09.479808doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.09.479808


4

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

�

 

�������������

 !�"!��#��$%���

FIG. 4. Simulations using different types of free energy. (a)
For the Flory-Huggins free energy, when the control parame-
ter χ decreases from 3.0 to 1.5, the initial density field (gray
dots) cannot be maintained and the final density field is estab-
lished (blue dots). The blue line is the theoretical prediction
based on the equilibrium conditions of elastic condensates.
(b) For the Landau-Ginzburg free energy, the control param-
eter α increases from −1 to 1, and the equilibrium density
field can also be predicted by our theories. In both (a) and
(b), a single condensate is simulated, and GS = 20, φc = 0.5,
R0 = 9. GB = 10 in (a) and GB = 20 in (b).

0 (Figure 3b) are very close to the predictions with a finite184

γ (Figure S2). To test the generality of our theories,185

we also use the Landau-Ginzburg free energy and find186

that our theories are equally applicable to both forms of187

free energy (Figure 4). Finally, we also test the effects188

of shear modulus and critical density, and find that our189

results are insensitive to the values of GS and φc (Figure190

S3-S6), further corroborating our theories.191

Minimum bulk modulus for stable condensates192

In the following, we systematically investigate the in-193

dissoluble conditions of elastic condensates. We simulate194

a condensate with two control parameters χf and GB195

and monitor its dissolution dynamics after χ is reduced196

from 3 to χf . We label the condensate as dissoluble or197

indissoluble depending on if the system becomes uniform198

or not after a long waiting time t = 104 (Figure 5b, c and199

Movie S2). As expected, when GB = 0, the condensate is200

stable only if χ > 2. For χ < 2, the condensate becomes201

indissoluble if the bulk modulus is larger than a critical202

value (GB,c). The results are summarized in the phase203

diagram (Figure 5a).204

We also succeed in finding the theoretically predicted205

phase boundary separating the dissoluble and indissolu-206

ble phase. We compute the theoretically predicted φin as207

a function of GB using Eq. (1) with the conservation of208

total molecular number, and find that φin decreases as209

GB decreases (Figure S7). Therefore, a minimum bulk210

modulus should exist to ensure φin > θφc so that the elas-211

ticity of the condensate can be maintained. Here, θ is a212

constant presumably close to 1. We plug φin = θφc into213

Eq. (1) (with φout determined by the conservation of to-214

tal molecular number) and note that both χ and GB ap-215

pear linearly in Eq. (1). Therefore, the phase boundary216

separating dissoluble and indissoluble phase must be lin-217

ear in the χf -GB parameter space. Intriguingly, we find218

that the theoretically computed phase boundary nicely219

matches the simulated phase diagram (Figure 5a) with220

θ = 1.1, slightly larger than 1. Our results are not sen-221

sitive to the values of φc as we get similar results using222

different φc (Figure S8).223

To understand why θ & 1, we remark that for the elas-224

tic condensate to be stable, φin must be larger than φc.225

This is the consequence of force balance across the con-226

densate boundary. The polymer network is subject to227

two types of force: the force from the gradient of the228

osmotic tensor (∇ ·Π) and the force from the gradient229

of the elastic stress (∇ · σ). We can further decompose230

the former force into two parts, one is the from the free231

energy f0(φ), which we call as the osmotic force in the232

following, and the other is from the C
2 (∇φ)2 term in the233

free energy, which we call as the surface tension force234

in the following. For a liquid condensate, the osmotic235

force always balances the surface tension force across the236

condensate boundary. The crossover regime can be sep-237

arated into three parts in which both the surface ten-238

sion force and the osmotic force change their signs (see239

the schematic in Figure 5d and numerical simulations240

in Figure S9a). For an elastic condensate, the osmotic241

force always points outwards from the condensates since242

the chemical potential is now a monotonically increasing243

function of φ. Therefore, in this case, an inward elastic244

force must exist to balance the sum of surface tension245
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FIG. 5. A critical bulk modulus GB,c above which condensates are indissoluble. (a) Phase diagram of condensate stability
with control parameters χf and GB . The theoretical predicted GB,c is the black line and the simulation results are the blue
dots and red crosses. (b) and (c) The density fields φ for dissolvable and indissoluble cases respectively. In (b), GB = 0.4 and
χf = 0.5 and the final density is uniform. In (c), GB = 1.2 and χf = 1.5 and the condensate is indissoluble due to elasticity.
(d) Schematics for the force balance in the crossover regime of condensates.

force and osmotic force in the crossover regime (Figure246

5d and Figure S9b). In conclusion, φin should be larger247

than φc to ensure a finite elastic force in the crossover248

regime; therefore, θ & 1.249

Discussion250

While the solid-like nature of biomolecular condensates251

are largely neglected in theoretical modeling, the elastic-252

ity of condensates are crucial to cellular fitness in both253

positive and negative ways. The conversion of conden-254

sates into a solid-like state could help to preserve bio-255

logical structures and suppress detrimental biochemical256

reactions [8, 18]. Furthermore, they help to sequester257

misfolded proteins [22, 30, 31]. On the other hand, the258

dissolution of solid-like condensates may need assistance259

by energy-consuming enzymes [16, 32–34], therefore, re-260

ducing cellular fitness. Moreover, in conditions where261

condensates are supposed to dissolve such as the disso-262

lution of stress granules after stress, failure to dissolve263

may lead to aberrant condensates [8, 18], which further264

trigger cellular aging and even diseases.265

Our work provides the first mechanistic understanding266

on the irreversible nature of aged biomolecular conden-267

sates. We derive the equilibrium conditions of elastic268

condensates and demonstrate that the bulk stress can269

balance the osmotic pressure difference inside and out-270

side the condensates, and therefore prevents the disso-271

lution. Our theoretical predictions are nicely confirmed272

by the numerical simulations using the two-fluid model.273

Moreover, we both numerically and theoretically obtain a274

phase diagram of the dissolution conditions of elastic con-275

densates, and obtain a minimum bulk modulus for con-276

densates to be stable upon the condition changes, such277

as an increase in temperature. There remain some open278

questions including the effects of shear modulus and finite279

relaxation times, and we expect future works to explore280

these questions. Finally, our results may have implica-281

tions to develop condensate-targeting drugs to specifi-282

cally change condensate properties inside cells, e.g., low-283

ering the bulk modulus to dissolve irreversible conden-284

sates.285

METHODS286

Derivations of equilibrium conditions287

To find the equilibrium condition of elastic condensate,288

we need to find the change in the elastic energy of a289

condensate due to a small change in displacement field290

up → up + δup, which can be generally written as291

δFel =
∫
−f · δupdV =

∫
−(∇ · σ) · δupdV

=
∫
σ∇δupdV −

∫
σδupdS. (8)

Here f is the force field and σ is the stress. The above292

equation shows that the elastic energy change can be293

generally expressed as the sum of one bulk term and one294

surface term.295

Upon active biological regulation, the attractive inter-296

action between biomolecules become weaker. In the pres-297

ence of elasticity, the osmotic pressure difference inside298
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and outside the condensate can be balanced by the elas-299

tic force, which is generated by the deformation field.300

We consider a condensate with spherical symmetry and301

the initial displacement field due to the osmotic pressure302

difference is radial with constant ∇ · up. This gener-303

ates a dilution of density in bulk of condensate such that304

∇ ·up = log(φ1/φin) where φ1 (φin) is the density before305

(after) the biological regulation. Note that the stress306

field inside the condensate is diagonal and also constant307

σ = σBI.308

Now we consider a small change in the volume309

of the condensate without change in the number of310

biomolecules. This leads to a change in the density:311

δφ/φ = −δV/V . The resulting change in the displace-312

ment field therefore satisfies ∇ · δup = −δφ/φ = δV/V .313

Using the spherical symmetry, we obtain δup(r) =314

rδV/(V · d)er where d is the spatial dimension and er315

is the unit radial vector. Therefore, near the surface,316

the change in the bulk displacement field δup(r → R) =317

RδV/(V · d)er. Interestingly, δup(r → R) is just the dis-318

placement change needed to increase the volume by δV .319

This means that the displacement change on the surface320

is zero, and only the bulk term contributes to the elas-321

tic energy change. Therefore, the change in the elastic322

energy becomes323

δFel = σBδV. (9)

Since the free energy changes due to the osmotic pressure324

and surface tension are the same as the usual liquid con-325

densate, the equilibrium condition due to volume change326

becomes327

Πin − σB = Πout +
(d− 1)γ

R
. (10)

Details of the two-fluid model328

Numerical simulations of viscoelastic phase separation329

are based on the two-fluid model [24, 25], which consid-330

ers the dynamics of polymer velocity vp, solvent velocity331

vs and the average velocity v = φvp + (1 − φ)vs. This332

model is derived by minimizing the Rayleighian R of the333

solution [24, 25, 35], the sum of the energy dissipation334

function Φ and the temporal changing rate of the free335

energy Ḟ . The energy dissipation function Φ consists336

of two parts, which are respectively the friction between337

polymer and solvent Φ1, and the overall viscous dissipa-338

tion of the solution Φ2339

Φ1 =

∫
dr

ζ

2
(vp − vs)

2 =

∫
dr

1

2
ζ

(vp − v)2

(1− φ)2
, (11)

Φ2 =

∫
dr

η

4

(
∇v + (∇v)T

)
:
(
∇v + (∇v)T

)
. (12)

The temporal changing rate of the mixing free energy340

Ḟmix is calculated through341

Ḟmix =

∫
dr φ̇f ′(φ) =

∫
dr [−∇ · (φvp)]f ′(φ)

=

∫
dr [φ∇f ′(φ))] · vp =

∫
dr (∇ ·Π) · vp, (13)

involving the continuous equation of the density: φ̇ =342

−∇ · (φvp). Here f(φ) = f0(φ) + C
2 (∇φ)2 and C is a343

constant. The elastic energy comes from the polymer, so344

its temporal changing rate is345

Ḟel =

∫
dr σij∂jvpi =

∫
dr (−∇ · σ) · vp. (14)

Combined with the constrain from the incompressible346

condition347

∇ · v = 0, (15)

and all components mentioned above, the Rayleighian of348

the solution is therefore:349

R =

∫
dr
[
− p(∇ · v) +

ζ

2

(vp − v)2

(1− φ)2

+
η

4

(
∇v + (∇v)T

)
:
(
∇v + (∇v)T

)
+ (∇ ·Π) · vp − (∇ · σ) · vp

]
. (16)

By setting the functional derivative of R with vp and v350

to be 0, we obtain the following equations:351

ζ

(1− φ)2
(vp − v) +∇ ·Π−∇ · σ = 0, (17)

∇p− ζ

(1− φ)2
(vp − v)− η∇2v = 0. (18)

Finally, we rewrite the above equations and obtain352

∂φ

∂t
= −∇ · (φvp), (19)

vp − v = − (1− φ)2

ζ
(∇ ·Π−∇ · σ), (20)

−∇ ·Π +∇ · σ −∇p+ η∇2v = 0, (21)

Clearly, Eq. (5) is obtained from Eq. (19) and Eq. (20).353

Combined with the incompressible condition ∇ · v = 0354

and Eq. (21), the average velocity v is calculated as355

v(r) =

∫
dr′ T(r− r′) · (−∇ ·Π(r′) +∇ · σ(r′)), (22)

while T(k) = 1
η|k|2 (I − kk

|k|2 ) is the Oseen tensor in the356

Fourier space. We can then obtain the polymer veloc-357

ity vp with equation (20). Therefore, the density φ in358

simulation can be updated by calculating vp when the359

osmotic pressure Π and the stress σ are known.360
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The two components in stress tensor σ, which are shear361

stress tensor σS and bulk stress scalar σB , respectively362

obey the following Maxwell-type equations [25]:363

∂σS
∂t

=− (vp · ∇)σS + σS · ∇vp + (∇vp)T · σS

− 1

τS(φ)
σS +GS(φ)(∇vp + (∇vp)T ), (23)

∂σB
∂t

=− (vp · ∇)σB −
1

τB(φ)
σB +GB(φ)∇ · vp. (24)

In our simulations, we first do not include elastic stress364

to form condensates by taking GS = GB = 0. We then365

introduce the elastic stress by taking366

GS(φ) = GSφ
2, (25)

τS(φ) =
1

φc − φ
Θ(φc − φ), (26)

GB(φ) = GBΘ(φ− φc), (27)

τB(φ) =
1

φc − φ
Θ(φc − φ). (28)

Here GB and GS are constants. We assume a critical367

density φc above which the polymer network is percolated368

and becomes fully elastic with a finite bulk modulus and369

a diverging relaxation time.370

Details of numerical simulations371

We perform numerical simulations in a 2D grid by solv-372

ing the two-fluid model using the explicit Euler method373

with the periodic boundary condition on MATLAB. Sim-374

ulations for a single condensate are in a 127 × 127375

grid, and simulations for multiple condensates are in a376

255 × 255 grid. The grid size is ∆L = 0.25 by set-377

ting the unit length equal to the lattice size when de-378

riving the mixing free energy. The time interval for the379

simulation is ∆t = 0.001. In our simulations, we take380

kBT = C = ξ = η = 1 for simplicity. The elastic381

stress is introduced at t = 103 for a single condensate382

and t = 4 × 103 for multiple condensates. The control383

parameter χ is changed 50 time units after adding the384

elasticity. Eq. (22) is solved with fast Fourier transfor-385

mation and other equations are calculated in real space.386

For the simulation of multiple condensates, we initially387

add a Gaussian noise with variance 0.001 to the uniform388

density field. In Figure 5a, simulations are initiated with389

a single condensate with R0 = 9. The condensate is con-390

sidered dissoluble if the variance of the φ field at t = 104391

is less than 0.01.392
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