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Abstract  

Genome-wide association studies (GWAS) have revealed that the striking natural variation for 

DNA CHH-methylation (mCHH; H is A, T, or C) of transposons has oligogenic architecture 

involving major alleles at a handful of known methylation regulators. Here we use a conditional 

GWAS approach to show that CHG-methylation (mCHG) has a similar genetic architecture 

— once mCHH is statistically controlled for. We identify five key trans-regulators that appear 

to modulate mCHG levels, and show that they interact with a previously identified modifier of 

mCHH in regulating natural transposon mobilization. 

 

 

Introduction 
Organisms have developed defense systems to protect the genome from transposable 

elements, which can act as ‘selfish genes’ and cause considerable damage (Chuong et al., 

2017; Deniz et al., 2019). Cytosine DNA methylation is a major component of genome defense 

that is found in both mammals and plants, albeit with significant differences (Law and 

Jacobsen, 2010; Deniz et al., 2019). For instance, whereas mammals mostly have CG 

methylation (mCG), methylation in plants also occurs in the CHG and CHH contexts (H is A, 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.09.479810doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.09.479810
http://creativecommons.org/licenses/by/4.0/


 

 

T, or C). mCG in plants is known to be maintained through both mitosis and meiosis by DNA 

METHYLTRANSFERASE 1 (MET1; DNMT1 in humans) — in contrast to CHH methylation 

(mCHH), which is re-established after cell division by several pathways, including the RNA-

directed DNA methylation (RdDM) pathway and the CHROMOMETHYLASE 2 (CMT2) 

pathway (Kawashima and Berger, 2014; Matzke et al., 2015). Unlike mCG, which is stably 

inherited, mCHH behaves like a molecular phenotype and is strongly influenced by the 

environment, such as growth temperature (Dubin et al., 2015) and stress (Wibowo et al., 

2016). CHG methylation (mCHG) falls somewhere between mCG and mCHH in the sense 

that it can be maintained via positive feedback between CHROMOMETHYLASE3 (CMT3) and 

KRYPTONITE (KYP), which recognize dimethylation of histone 3 lysine 9 (H3K9me2) and 

mCHG, respectively (Lindroth et al., 2001; Jackson et al., 2002; Cao and Jacobsen, 2002; Du 

et al., 2015). Molecular mechanisms aside, the forces shaping variation in DNA methylation 

remain obscure, and the same is true for their biological significance (Riddle and Richards, 

2002; Reinders et al., 2009; Becker et al., 2011; Takuno and Gaut, 2012; Meng et al., 2016; 

Wibowo et al., 2016; Johannes and Schmitz, 2019; Muyle and Gaut, 2019; Baduel and Colot, 

2021). Previously, we demonstrated the existence of large-scale geographic clines for DNA 

methylation in A. thaliana, and used genome-wide association studies (GWAS) to show that 

mCHH on transposons is heavily influenced by major polymorphisms at trans-acting modifiers 

corresponding to known DNA methylation regulators in silencing pathways: CMT2, NUCLEAR 

RNA POLYMERASE D1B (NRPE1), ARGONAUTE 1 (AGO1), and AGO9 (Dubin et al. 2015, 

Kawakatsu et al 2016, Sasaki et al 2019). In particular, an allele of NRPE1 (named NRPE1’) 

strongly affects mCHH levels in RdDM-targeted transposons. NRPE1, which is the largest 

subunit of RNA polymerase V, localizes to promoter regions of relatively young transposons 

(Zhong et al., 2012), and Baduel et al. (2021) recently showed that the NRPE1’ allele has 

been associated with recent transposon mobilization, presumably through its effect on DNA 

methylation. All in all, these findings are suggestive of a highly variable genome defense 

system. 

While both mCHG and mCG showed high heritability, GWAS yielded little in terms of 

significant associations. This might be because these “traits” are highly polygenic, or  because 

they are at least partly transgenerationally inherited, and hence do not behave like standard 

phenotypes. In this paper we revisit mCHG variation and use a conditional GWAS approach 

to reveal that multiple major alleles at trans-acting regulators modify this type of methylation, 

and are also associated with transposon mobilization.  
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Results 

mCHG is strongly correlated with mCHH 
Our starting point is the observation that mCHG and mCHH levels on transposons are strongly 

correlated in the 1001 Epigenomes data set (Kawakatsu et al., 2016), especially for RdDM-

targeted transposons (Fig. 1A; see Methods). Much of this variation is due to differences in 

the environment (including tissue, which can be viewed as a cellular environment), with flower 

tissue samples showing clear hyper-mCHG compared with leaf samples as expected (Feng 

et al., 2020; Gutzat et al., 2020). At the same time, variation across individuals is huge even 

when controlling for known tissue and environmental effects, as observed in the largest leaf 

sample data set (“Leaf SALK ambient temperature”; n=846). 

Interestingly, the covariance between mCHH and mCHG showed the same pattern in data 

generated by knocking out known or potential DNA methylation regulators in the same genetic 

background (Fig. 1B) (Stroud et al., 2013). This demonstrates strong co-regulation of these 

types of methylation, in particular for RdDM-targeted transposons. Loss of RdDM regulation, 

such as in the double mutant of DOMAINS REARRANGED METHYLASE (DRM) drm1 drm2, 

causes loss of almost all mCHH and mCHG because mCHG in these regions is mainly 

established via siRNA (Chan et al., 2006). At the same time, the data demonstrate that some 

genetic perturbations can affect one type of methylation much more than the other. For 

example, knocking out CMT3 affects mCHG levels much more than mCHH levels.  

Based on these observations, it is clear that a substantial fraction of variation in non-CG 

methylation is due to factors that affect both mCHH and mCHG. Without replicate 

measurements, it is difficult to say what fraction of these factors is genetic and what is 

environmental, but, regardless of this, we hypothesized that the substantial covariance could 

reduce power of GWAS for either mCHH or mCHG (when using a standard univariate model), 

and that an analysis accounting for this covariance might perform better (Korte et al., 2012; 

Stegle et al., 2012; Stephens, 2013). In essence, we sought to simplify a complex trait by 

breaking it into constituent parts (Nilsson-Ehle, 1909; East, 1910; Lande and Arnold, 1983). 

This insight is the basis for this paper.  
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Fig 1. Covariance between mCHH and mCHG levels across individuals. (A) Correlation of genome-
wide average mCHH and mCHG levels in RdDM- and CMT2-targeted transposons across 1028 natural 
inbred lines measured in different conditions (including 79 lines measured in more than one condition; 
see Kawakatsu et al., 2016) Colors correspond to environments/tissues. Plots on axes show marginal 
densities. Circled lines carry known natural null alleles of CMT2. (B) The same correlation as in A, but 
for 85 epigenetics-related loss-of-function mutants (Stroud et al., 2013). Gray areas indicate 99% 
confidence intervals around the linear regression lines. Green points denote “wildtypes” (see Stroud et 
al., 2013); magenta, major DNA methyltransferases. Blue points denote lines with a highly significant 
effect on mCHG. 

 

Conditional GWAS reveals new associations 
Multi-trait GWAS can be carried out using transformations (e.g., the difference or ratio between 

traits), conditional approaches in which one or more traits are accounted for as covariates, or 

full multivariate models (Korte et al., 2012; Stegle et al., 2012; Stephens, 2013). We tried 

several different approaches, including a multivariate GWAS, but this paper will focus on 

results from a conditional GWAS of mCHG with mCHH as a covariate (denoted mCHG|mCHH) 
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because this gave the clearest results. Other approaches produced consistent results, and we 

will briefly discuss them later. 

Figure 2 contrasts the performance of univariate and conditional GWAS. As previously 

noted, univariate GWAS of mCHG does not yield any significant associations despite 

moderate SNP-heritability (37% and 38% for RdDM- and CMT2-targeted transposons, 

respectively). As expected given the very strong correlation between mCHH and mCHG on 

RdDM-targeted transposons, the strong associations at AGO1 and NRPE1 found in univariate 

GWAS of mCHH (Kawakatsu et al., 2016) give rise to associations for mCHG as well, but they 

are not genome-wide significant (AGO1 Chr1:17895231, -log10p-value=6.51 and NRPE1 

Chr2:16714815, -log10p-value=5.23). The previously identified CMT2-association with mCHH 

on CMT2-targeted transposons (Dubin et al., 2015; Kawakatsu et al., 2016; Sasaki et al., 

2019; Shen et al., 2014) is not apparent, consistent with the much weaker correlation between 

mCHH and mCHG on these transposons. 

The contrast between these univariate GWAS results and the conditional analysis is 

striking. GWAS for mCHG while controlling for mCHH (mCHG|mCHH) revealed five clear peaks 

for RdDM-targeted transposons, three of which were also found for CMT2-targeted 

transposons. The peaks are above or near genome-wide significance using a conservative 

threshold (Figs. 2, S1; Table S1). As will be discussed further below, these associations jointly 

explain 30.5% and 14.8% of mCHG|mCHH in RdDM- and CMT2-targeted transposons, 

respectively. The previously mentioned AGO1 and NRPE1 associations disappear 

completely, consistent with their being strongly correlated with mCHH, and hence controlled 

for. The improved performance of conditional GWAS is also evident from a massive 

enrichment of associations near a priori candidates (Atwell et al., 2010). With conditional 

GWAS, we observed an up to 45-fold excess of associations near annotated epigenetic 

modifiers (Kawakatsu et al., 2016; Sasaki et al., 2019), compared to an 4- to 10-fold excess 

for the univariate analyses (Fig. 2).  
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Fig 2. Comparison of univariate and conditional GWAS of mCHG. The analysis was done 
separately for (A) RdDM-targeted  and (B) CMT2-targeted transposons, using the 774 lines in the global 
panel from the 1001 Epigenomes Project (“SALK leaf in ambient temperature”; see Fig. 1). For each 
case, the upper Manhattan plot shows univariate GWAS of mCHG methylation and the lower GWAS of 
mCHG controlling for mCHH. Horizontal gray lines show genome-wide significance (p=0.05 after 
Bonferroni-correction). The line plots show enrichment of a priori genes and FDR (see text), with 
horizontal dashed lines indicating an FDR of 20%.  
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The enrichment for a priori candidates also allows us to estimate a False Discovery Rate 

(FDR) for this set of genes (Atwell et al., 2010). Four of the five major associations can be 

identified with a priori candidates at very low FDRs (e.g. FDR < 0.05 using a significance 

threshold of -log10p-value > 6; see Fig. 2), but it is notable that FDR is low even for associations 

that are nowhere near genome-wide significance. This is not true for the univariate analyses. 

For example, at an FDR of 20%, univariate GWAS of mCHG identifies only AGO1 and NRPE1 

for RdDM-targeted transposons, and nothing for CMT2-targeted transposons (Table S2), 

whereas conditional GWAS of mCHG|mCHH generates a long list of known regulators of mCHG 

(Table S2). For RdDM-targeted transposons, we find four a priori genes above or near 

genome-wide significance: the previously mentioned CMT2 and CMT3, plus MIR823a, which 

encodes a microRNA targeting CMT3 (Rajagopalan et al., 2006; Papareddy et al., 2021), and 

MULTICOPY SUPPRESSOR OF IRA1 (MSI1), likely a component of chromatin assembly 

factor (CAF-1) responsible for proper heterochromatin formation with FASCIATA1 (FAS1) and 

FASCIATA2 (FAS2) (Hennig et al., 2003, 2005). At lower significance levels, we find 

REPRESSOR OF SILENCING 3 (ROS3) and DNA METHYLTRANSFERASE 2 (DNMT2). 

ROS3 is a DNA demethylase that interacts with REPRESSOR OF SILENCING 1 (ROS1) 

(Zheng et al., 2008) and DNMT2 is associated with histone deacetylation (Song et al., 2010) 

and RNA methyltransferase activity (Goll et al. 2006) (and could therefore be a false positive 

since the effects on DNA methylation is under debate; see Goll et al. 2006; Song et al. 2010). 

For CMT2-targeted transposons, the list of associated a priori candidates includes four genes 

also associated with RdDM-targeted transposons, namely MIR823A, CMT2, ROS3, and MSI1, 

but there are also two specific genes, FAS1 and DECREASED DNA METHYLATION 1 

(DDM1), a chromatin-remodeler responsible for heterochromatin formation (Soppe et al., 

2002; Osakabe et al., 2021). As shown in Fig. 1B, ddm1 strongly reduces mCHG, and fas2, a 

functionally redundant FAS1 homolog, increases CMT2-targeted mCHG in a mCHH-

independent manner (Stroud et al., 2013).  

Genes underlying major associations 

On searching for causal genes 
Identifying causal genes and mechanisms from GWAS results is notoriously difficult 

(Gallagher and Chen-Plotkin, 2018). Peaks of association often cover multiple genes — this 

is certainly true in the gene-dense genome of A. thaliana (Atwell et al., 2010) — and functional 

annotation is of limited use for complex traits with unknown genetic basis. We are in a stronger 

position, however, because, just like in our previous work on mCHH (Sasaki et al., 2019), the 

significant GWAS peaks (Fig. 2) are narrow, and clearly pinpoint genes a priori known to be 

specifically involved in well-defined molecular phenotypes (Table 1, Fig. 3). Hence we will 

discuss these candidates, and the indirect evidence supporting their causal role. 
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Table 1. Significant conditional GWAS hits for mCHG|mCHH* 
 

SNPs 
-log10 

(p-value) MAC 
Distance from  

a priori gene (bp) Genes within 15K bp* 

mCHG|mCHH in RdDM-targeted transposons 

Chr1:4035022 10.1 77 NA AT1G11930, AT1G11940, AT1G11950 
(JMJ26), AT1G11960 

Chr1:26253630 7.38 290 50 AT1G69770 (CMT3) 
Chr3:4496626 10.48 207 196 AT3G13700, AT3G13710 (PRA1.F4), 

AT3G13720 (PRA1.F3), AT3G13724 
(MIR823A), AT3G13730 (SYP90D1) 

Chr4:10423278 6.85 301 2069 AT4G19020 (CMT2), AT4G19030 (NLM1), 
AT4G19035 (LCR7) 

Chr5:23553506 7.14 99 2506 AT5G58200 (ECT10), AT5G58200, 
AT5G58210, AT5G58220 (TTL), 
AT5G58230 (MSI1), AT5G58240 (FHIT) 

     

mCHG|mCHH in CMT2-targeted transposons 

Chr3:4496047 6.42 210 775 AT3G13700, AT3G13710 (PRA1.F4), 
AT3G13720 (PRA1.F3), AT3G13724 
(MIR823A), AT3G13730 (SYP90D1) 

Chr4:10423278 6.86 301 2069 AT4G19020 (CMT2), AT4G19030 (NLM1), 
AT4G19035 (LCR7) 

Chr5:23555910 9.17 64 102 AT5G58200, AT5G58210, AT5G58220 
(TTL), AT5G58230 (MSI1), AT5G58240 
(FHIT), AT5G58250, AT5G58260 (NdhN) 

* Bold denotes a priori epigenetic regulators 
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Fig 3. Candidate loci underlying mCHG|mCHH variation. Zoomed-in Manhattan plots 
aroundconditional GWAS peaks in Fig. 2 for (A) RdDM- and (B) CMT2-targeted transposons. Gene 
models below the plots show the candidate genes in orange (see Table 1). Colored dots represent 
SNPs in strong linkage disequilibrium with top SNPs.  
 

Multi-layered direct CMT3 regulation affects mCHG variation 
Based on mutant phenotypes, CMT3 is a strong a priori candidate for regulating mCHG (Fig. 

1). Consistent with this, one of the five major associations from GWAS of mCHG|mCHH pinpoints 

CMT3 and another MIR823a, a gene encoding a microRNA that directly down-regulates CMT3 

by cleaving its transcripts during early embryogenesis (Papareddy et al., 2021). The most 

significant peak for mCHG|mCHH on RdDM-targeted transposons was located 196 bp 

downstream of MIR823a, while the peak corresponding to CMT3 was located 50 bp upstream 

of the gene (Fig. 4A, Table 1). GWAS for CMT2-targeted transposons also pinpointed 

MIR823a, although the association is weaker, and the most significant SNP further away (Fig. 
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3B, Table 1). This association was also recently found by Hüther et al. (2022) using GWAS 

for unconditional mCHG levels of individual transposons. 

The MIR823A polymorphism appears to almost exclusively affect mCHG (Figs. S2, S3), 

primarily targeting the same transposons as a CMT3 knock-out, as expected if the former 

directly regulates the latter (Fig. 4C). Consistent with this interpretation, lines carrying the non-

reference MIR823A allele and a CMT3 reference allele showed lower CMT3 expression as 

well as lower mCHG (Fig. 4B). The specificity of the phenotypic effects and known regulatory 

mechanism provides strong evidence for a direct causal role for these genes. 

Knock-outs of MIR823A in several backgrounds affected CMT3 expression and mCHG in 

a manner consistent with this regulatory model (Papareddy et al., 2021), although the effects 

on methylation were very weak (Fig. 4D, E). The natural polymorphism almost certainly does 

not involve a loss of function, as there is no common polymorphism in the 21-nt mature miRNA 

region of MIR823A, nor in the target region of CMT3 (Fig. 4A). There are also no other non-

synonymous polymorphisms in CMT3 significantly associated with the different alleles. 
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Fig 4. Effects of MIR823A on mCHG levels. (A) Polymorphisms in the miRNA region of MIR823A and 
the target in CMT3 in 1135 natural lines. Differences from the CMT3 reference sequence are shown in 
light blue. Haplotype counts are shown in parentheses. (B) Estimated effects of MIR823A alleles on 
CMT3 expression in natural lines with individual values (Welch’s t-test, two-tailed, CMT3 expression 
was collected from transcriptome data published in Kawakatsu et al., 2016). (C) Scatter plot comparing 
the average allelic effect of the MIR823A polymorphism with the effect of cmt3 in the Col-0 background. 
Dots represent individual transposons, and the colors show the significance of the allelic effects as -
log10p-value in GWAS. (D) CMT3 expression in early embryos with standard errors in WT (Col-0) and 
mir823a. Significance of the difference in mean tested using Welch's t-test (n=3, one-tailed). (E) The 
distribution of mCHG levels in RdDM and CMT2-targeted transposons, comparing knock-outs of 
MIR823A to wildtype in different backgrounds.  
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Further evidence for allelic heterogeneity at CMT2 
In addition to de novo establishment of methylation in heterochromatic regions, CMT2 plays a 

role in mCHG maintenance through regulation of H3K9 methylation via a self-reinforcing loop 

(Du et al., 2015; Stroud et al., 2014). Previous work has identified two common natural alleles, 

CMT2a’ and CMT2b’, affecting mCHH (Dubin et al., 2015; Sasaki et al., 2019; Kawakatsu et 

al., 2016), but neither appears to affect mCHG (Figs S2, S3, S5). Here we identify a new 

association, 2 kb downstream of CMT2 (Fig. 3), that does appear to affect mCHG (on both 

RdDM- and CMT2-targeted transposons) (Fig S5). The top SNP is only weakly correlated with 

CMT2a’ and CMT2b’ (r2CMT2b’=0.37; r2CMT2a’=0.24), but caution is needed when interpreting 

associations in regions that apparently harbor multiple causal polymorphisms (Sasaki et al., 

2021). 

A complex association on chromosome 5 includes two a priori genes 
The major peak on chromosome 5 was associated with mCHG|mCHH on both RdDM- and 

CMT2-targeted transposons, although the shape of the peak differs slightly. The strongest 

association was found for CMT2-targeted transposons, and is located 102 bp upstream of a 

known epigenetic regulator, MSI1, but substantial linkage disequilibrium extends over a 30 kb 

region which also includes another a priori gene, ROS3 (Figs 3, S6A). 

The loss-of function mutant ros3 does not show altered mCHG in leaves (Fig 1B; Stroud 

et al., 2013). Loss of MSI1 causes embryonic lethality (Guitton et al., 2004), but the 

heterozygous mutant msi1-2 does not show a significant effect on mCHG levels in leaves 

either. However, MSI1 is required to control DNA methylation via repression of MET1, and a 

loss of FAS2 in CAF-1 induces mCHG hypermethylation (Fig 1B) (Stroud et al., 2013; Jullien 

et al., 2008), so MSI1 remains a strong candidate. Furthermore, the strongly associated SNP 

at Chr5:23555910 could explain almost all phenotypic variation associated with the 

chromosome 5 peak (Fig S6B), making MSI1 the top candidate, although further experiments 

are clearly needed. 

A jmjC gene is a novel modifier of mCHG in RdDM-targeted transposons 
The final peak (Chr1:4035022; -log10p-value=10.1) in our study did not pinpoint any a priori 

gene. However, it is highly significant and narrowly centered on the coding region of a jmjC 

gene, JUMONJI26 (JMJ26) (Qian et al., 2015). JMJ26 is a close homolog of JMJ25, also 

known as INCREASE IN BONSAI METHYLATION 1 (IBM1), a histone H3K9m demethylase 

targeting genic regions in a KYP/SUVH4- and CMT3-dependent manner (Saze et al., 2008; 

Inagaki et al., 2010). In contrast to IBM1, the function of JMJ26 has barely been studied. 

Among the most significant associations were two non-synonymous SNPs (Chr1:4035683, 

4035690) in the conserved JMJ domain, suggesting allelic effects on the enzymatic activity 

(Figs 5, S7).  
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To explore the function of JMJ26, we measured mCHG levels of a loss-of-function mutant, 

jmj26 (Fig. 5). Unlike IBM1 loss-of-function mutants, jmj26 did not show any morphological 

phenotype (Fig S8A), but mCHG levels increased significantly in RdDM-targeted transposons 

(Figs. 5B, C). Furthermore, jmj26 showed increased mCHG in pericentromeric transposons, 

whereas ibm1-like hypermethylation was not observed in genic regions (Fig 5D, E). Gene 

expression was barely affected except for a few DNA methylation sensitive genes, including 

transposon genes (AT5G35935, AT4G01525) (Table S3). These observations support the 

functionality of JMJ26 as a histone demethylase with different targets from IBM1, and also 

makes it a strong a posteriori candidate for causing the GWAS peak on the left end of 

chromosome 1.  
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Fig 5. Effects of JMJ26 on mCHG levels. (A) Read density and SNP across the gene model. (B) 
Volcano plots showing the effects on DNA methylation levels of jmj26 on RdDM- and CMT2-targeted 
transposons. (C) Violin plots showing distribution of mCHG levels of RdDM- and CMT2-targeted 
transposons in WT (Col-0), jmj26, and two lines with JMJ26ref or JMJ26alt transgenes in Col-0 jmj26 
background. The gray horizontal line shows the mean value of WT. (D) The genome-wide distribution 
of transposons affected by JMJ26. Black lines show differential mCHG levels of jmj26 from Col-0 in 30 
kbp sliding windows. Orange dots show transposons with significantly changed mCHG levels (n=2, 
p<0.01 by two-tailed Welch’s t-test & differential mCHG > 0.1 or < -0.1). (E) Heat map comparing JMJ26 
and IBM1 targets. Rows correspond to standardized mCHG levels in each gene or transposon for jmj26, 
ibm1, and WTs. 
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Major loci additively affect mCHG and influence transposon activity 
Finally, we asked how the five major loci jointly shape mCHG variation at the population level. 

Although some of these genetic variants are clearly interacting at the molecular level (e.g., 

MIR823A directly regulates CMT3), the phenotypic effects appear to be additive (Fig. 6A), and 

jointly explain a large fraction of the variation: 30.5% and 14.8% of mCHG|mCHH in RdDM- and 

CMT2-targeted transposons, respectively, while SNP-based heritabilities of these traits are 

65% and 69%. mCHG levels decrease linearly with the number of mCHG-decreasing alleles, 

and the single line (out of 774) harboring mCHG-decreasing alleles at all five loci exhibits 

strong hypo-mCHG|mCHH in RdDM-targeted transposons (Fig. 6A). 

These five loci also affect the geographic distribution of mCHG for both RdDM- and CMT2-

targeted transposons. In European lines (n=971), mCHG-decreasing alleles are almost 

exclusively found in the west, from 0 to 30ºE (Fig 6B, S9-10). Lines carrying more than three 

mCHG-decreasing alleles are rare (2.5 %), and the one line carrying all five such alleles is 

from the Iberian peninsula: IP-Mun-0 (9561), an admixed line of relict and western European 

descent (1001 Genomes Consortium, 2016).  

Interestingly, the longitudinal gradient in the number of mCHG-decreasing alleles is 

opposite to the longitudinal cline of NRPE1’ associated with lower mCHH (Sasaki et al., 2019) 

and higher transposon mobilization (Baduel et al., 2021) (Fig. 6B). No line was found carrying 

NRPE1’ with more than three mCHG-decreasing alleles, and a permutation test shows that 

this negative correlation is unlikely to be due to population structure (Fig. 6C, S10C). A 

plausible alternative is some form of stabilizing selection on methylation levels: multiple 

mCHG-decreasing alleles in lines with lower mCHH levels might affect fitness analogously to 

double knockout mutants of the RdDM and CMT3 pathways that show pleiotropic 

morphological phenotypes and high transposon transcriptional activity (Cao and Jacobsen, 

2002; Stroud et al., 2014; Chan et al., 2006).  

To explore this further, we examined the effect of mCHG-negative alleles on transposon 

mobilization by intersecting our data with those of Baduel et al. (2021), who found a significant 

correlation between recent transposon mobilization and the NRPE1’ non-reference allele. We 

found that this effect reflects an epistatic interaction with the five loci reported here: 

significantly increased transposon mobilization is only found in lines carrying the NRPE1’ non-

reference allele and two or more mCHG-decreasing alleles (p-value < 0.01; Figs 6D, S11). In 

particular, lines carrying three mCHG-decreasing alleles and the NRPE1’ non-reference allele 

have about thirty times more recent transposon insertions than lines carrying no mCHG-

decreasing alleles and the NRPE1’ non-reference allele. Such lines are not closely related 

and carry different transposon insertions, mostly Copia and MuDR. They are found in two 

distinct regions: north-western Africa, including the Canary Islands, and the south-eastern 

Balkans (Fig. 6B, Table S4). 
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Fig 6. Cumulative effects and geographic distribution of mCHG-decreasing alleles.  
(A) Cumulative effect on mCHG|mCHH. Chr1:4035022 (JMJ26) was excluded from the analysis of CMT2-
targeted transposons as it has no effect. Chr5:2355910 was used for MSI1. Inserted plots show mCHG 
levels around transposons, calculated using 20 sliding windows across the transposon body and 
flanking regions. (B) Longitudinal frequency distribution of mCHG-decreasing and NRPE1’ alleles (top); 
geographical distribution of the number of mCHG-decreasing alleles (middle), and mCHG|mCHH levels 
in RdDM-targeted transposons (bottom). Triangles correspond to lines in the inserted plot of panel D. 
(C) The frequency of distribution of the number of mCHG-decreasing alleles, separately for NRPE1’ 
genotypes. (D) The number of recent transposon insertions (Baduel et al., 2021) as a function of 
NRPE1’ genotype and the number of mCHG-decreasing alleles. Significance was tested using a 
permutation test (see methods; *** is p < 0.01, * is p < 0.1). The insert shows the six observed genotypes 
with three mCHG-decreasing and the NRPE1’ non-reference allele. Filled circles indicate mCHH- or 
mCHG-decreasing alleles.  
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Discussion 

The genetics of non-CG transposon methylation 
Non-CG methylation in plants is associated with gene silencing, especially for transposons. In 

previous studies, we identified an oligogenic architecture for mCHH on transposons involving 

major polymorphism at CMT2, NRPE1, AGO1, and AGO9 — all involved in DNA methylation 

pathways (Kawakatsu et al., 2016; Dubin et al., 2015; Sasaki et al., 2019). Here we 

complement this with a conditional GWAS approach and identify five major polymorphisms 

affecting mCHG, presumably acting via methylation maintenance pathways: CMT2 (different 

alleles), CMT3, MIR823A (directly regulating CMT3), MSI1 (probably), and JMJ26. All had 

previously been shown to affect DNA methylation except JMJ26.  

We observed major polymorphisms at several of the layers of regulation controlling  

mCHG, including methylation, de-methylation, and histone modification — even post-

transcriptional regulation, in the form of a microRNA targeting the CMT3 pathway directly. The 

DDM1 and FAS1 alleles detected using non-stringent threshold would further contribute to the 

fine-tuning of DNA methylation over transposons genome-wide.  
The genetic architecture revealed by these studies is very different from the “omnigenic” 

model (Boyle et al., 2017; Liu et al., 2019) which has come to represent a typical human 

GWAS result. It is also different from trans-regulation for reported human mCG variation 

(Hawe et al., 2022; Villicaña and Bell, 2021). Rather than a diffuse genetic architecture 

involving huge numbers of loci of small effect and unknown causal relationship to the 

phenotype, we find a small number of major loci with highly plausible mechanistic connection 

to the phenotype — and a diffuse background for which we lack power to dissect further. The 

results are reminiscent of those found for other clinal traits, like flowering time (Yeaman et al., 

2016; Atwell et al., 2010), flower color (Ortiz-Barrientos, 2013), or eye and coat color in 

mammals (Miller et al., 2007; Beleza et al., 2013; Lloyd-Jones et al., 2017), suggesting that 

transposon methylation is likewise under selection, most likely as part of a plastic and 

environmentally sensitive genome defense system — a notion further supported by the 

association with transposon mobility reported here and be Baduel et al. (2021).   

The power and complexity of conditional GWAS 
The performance of GWAS relies on using the right model for the relation between genotype 

and phenotype. As with other statistical methods, using the wrong model may lead to 

unpredictable results. However, lack of prior knowledge makes modeling difficult, and 

univariate linear models are therefore the default in GWAS. Here we focus on correlated traits. 

Correlations between traits may arise for a variety of reasons, mostly obviously a shared 

genetic basis (pleiotropy), and it is clear that such traits should, in principle, be analyzed jointly 

using some kind of multivariate analysis (Califano et al., 2012; Korte et al., 2012; Stegle et al., 
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2012; Stephens, 2013). Our results provide a dramatic illustration of the potential benefits of 

doing so. Despite high heritability, univariate GWAS of mCHG variation failed to detect any 

significant associations, leading us to conclude, erroneously, that the trait was simply too 

polygenic (Kawakatsu et al., 2016). In contrast, GWAS of the same data using a conditional 

model that controlled for mCHH revealed an oligogenic architecture with five major loci — 

qualitatively similar to what we had previously seen for mCHH using univariate GWAS, also 

in that it mainly identified loci corresponding to biologically meaningful a priori candidates 

(Kawakatsu et al., 2016; Dubin et al., 2015; Sasaki et al., 2019).  

However, while our conditional GWAS approach clearly improved power to reject the null 

hypothesis of no association, interpreting the result in terms of causality is more difficult. We 

believe that, by controlling for mCHH, we have effectively simplified the trait, revealing genetic 

factors affecting mCHG only, perhaps by affecting the maintenance of this type of DNA 

methylation. There is considerable background experimental evidence to support such a 

model. For example, the RdDM pathway would affect both mCHH and mCHG via de novo 

methylation, while mCHG (but not mCHH) would be also maintained by the CMT3 pathway, 

and by controlling the former, we would reveal the latter. 

Our GWAS results are consistent with this interpretation. Polymorphism at NRPE1, a key 

component of the RdDM pathway, was revealed in univariate GWAS, while variation in CMT3 

(and its regulator, MIR823a) was only found after controlling for mCHH. At the same time, it 

seems clear that reality is more complex, and that both mCHH and mCHG are regulated by 

multiple homeostatic mechanisms that also involve factors not included in our model, like 

histone modifications (Zhang et al., 2021). It is therefore not surprising that most of the 

polymorphisms we have identified seem to affect both traits, albeit not to the same extent 

(exceptions include the one at MIR823A, which only seems to affect mCHG, and the 

previously identified CMT2a’ and CMT2b’ polymorphisms, which only affect mCHH on CMT2-

targeted transposons; see Figs S2, S3). 

Two other GWAS models produced consistent results, but had less power (Fig S12, S13). 

A fully parameterized multi-trait mixed model for mCHH and mCHG (MTMM; see Korte et al., 

2012) confirmed that the new associations presented in this paper were “specific” to one of 

the two traits, while a conditional model for mCHH while controlling for mCHG (mCHH|mCHG) 

also identified most of these loci, plus the previously identified CMT2 associations (Dubin et 

al., 2015; Sasaki et al., 2019), which affect mCHH only. 

In conclusion, we agree with Stephens (2013) that multi-trait association methods can 

have much greater power than univariate methods, but require an appropriate statistical 

framework for interpretation. However, in a model organism like A. thaliana, further 

experiments should guide the construction of such a framework. 
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Functional importance of non-CG transposon methylation 
While genomics has revealed striking geographic variation in DNA methylation, and an equally 

striking genetic architecture underlying this, the functional importance of all this variation has 

been rather less clear. Based on decades of molecular biology studies, it is reasonable to 

speculate that it must play some role in regulating transposon activity (Stroud et al., 2013; Kim 

and Zilberman, 2014; Pikaard and Mittelsten Scheid, 2014; Matzke et al., 2015). Non-CG 

methylation is part of a redundant system with strong epistasis between mCHH and mCHG in 

keeping transposons transcriptionally silent (Cao and Jacobsen, 2002; Stroud et al., 2014; 

Chan et al., 2006). However, direct evidence based on transposon mobility in nature has been 

missing. Now, the evidence is gathering that the allelic variants responsible for transposon 

methylation variation do indeed affect transposon mobility. Baduel et al (2021) showed that 

the NRPE1’ polymorphism identified as affecting mCHH on RdDM-targeted transposons by 

Sasaki et al (2019) is associated with recent transposon mobility, and we show here that the 

multiple loci controlling mCHG appear to play a similar role. Our findings connect complex 

genome defense systems proposed in molecular biology studies with natural populations. 

Furthermore, the geographic distribution of the relevant multi-locus genotypes suggests that 

selection may be acting to maintain the appropriate level of transposon silencing — for 

unknown reasons. Further studies, such as crosses with new allele combinations and common 

garden experiments, will be required to address these questions. 

 

 

Materials and methods  

Analyzed data sets 

DNA methylation data 
The DNA methylation data sets are summarized in Table S5. Briefly, we analyzed a bisulfite-

sequencing data set published in the 1001 epigenome project (Kawakatsu et al., 2016), 85 

epigenetic-related mutants (Stroud et al., 2013), and our own sequence data described below. 

All reads were mapped on the appropriate pseudo-genome provided by the 1001 genome 

project (1001 Genomes Consortium., 2016) using a Methylpy pipeline v1.2 (Schultz et al., 

2015). DNA methylation levels were estimated as weighted methylation levels for each 

transposon defined in Araport11 annotation. CMT2- and RdDM-targeted transposons were 

defined as having differential levels of methylation (>0.1) between wild-type and cmt2 or 

drm1drm2 in Col-0 previously described in Kawakatsu et al. (2016). For each line, average 

DNA methylation was calculated using all transposons for which at least one read was 

mapped. 
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RNA-seq data 
The RNA-seq data are summarized in Table S5. Quality control and adapter trimming of all 

RNA-seq data were conducted using FASTP (Chen et al., 2018). Adapter trimmed reads were 

aligned on the reference genome (Araport11; Cheng et al., 2017) using STAR v2.7 (Dobin et 

al., 2013) with default settings. For all annotated genes, mapped read counts were calculated 

using featureCounts v2.0.1 in the Subread package (Liao et al., 2013), accepting reads that 

were mapped on multiple genes (option -M). Using the count data, differentially expressed 

genes were detected by edgeR v3.1 (Robinson et al., 2010) with glmQLFTest() function (FDR 

< 0.05). For transposon expression, reads were mapped as described above but allowing 

multiple hits (STAR --outFilterMultimapNmax 100 and --winAnchorMultimapNmax 100). 

Mapped reads were calculated by TEtoolkits (Jin et al., 2015) using the TEcount() function, 

and differentially expressed transposons were detected using edgeR. CMT3 expression in 

natural populations were downloaded from the 1001 epigenome project data (Kawakatsu et 

al., 2016).  

Statistics 

Genome-wide association studies 
Univariate and conditional GWAS were carried out using LIMIX (Lippert et al., 2014) version 

3.0.4 with a full genome SNP matrix for 774 lines (Kawakatsu et al., 2016) from the 1001 

genome project (10,709,949 SNPs) and the following linear mixed model (LMM), 

 (1) 

   (2) 

where  is the 𝑛	 × 	1 vector of a phenotype, fixed terms,  and , are the 𝑛	 × 	1 vectors 

corresponding to a covariate and a genotype to be tested (SNP) with the parameters  and , 

respectively.  and   are random terms, including the identity-by-

state kinship matrix  representing the genetic relatedness (Yu et al., 2006; Kang et al., 2008) 

and the residuals, respectively. , , and  were z-scored. Univariate models without cofactor 

take . SNPs that satisfied minor allele frequency > 5% were used for association studies. 

Bonferroni-correction was used for multiple-testing correction after excluding all SNPs less 

than MAF 5%. Multi-trait linear mixed models (Fig. S12) were performed to identify common 

genetic effects (common) and differing genetic effects (specific) between two traits using 

LIMIX (Lippert et al., 2014) following models described in Korte et al. (2012). 

Enrichment test 
To assess GWAS results, we calculated FDR and enrichment of a priori gene for each GWAS 

result (as described in Atwell et al. (2010)) using a list of 79 epigenetic regulators from 
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Kawakatsu et al. (2016). The most significant p-value within 15 kb of a gene (MAF > 5%) was 

assigned as the significance of the gene. 

Heritability 
SNP-heritability was estimated using REML implemented in mixmogam 

(https://github.com/bvilhjal/mixmogam/blob/master/phenotypeData.py). The proportion of 

phenotypic variation explained by identified genetic variants was calculated using r2 

(Nakagawa and Schielzeth, 2013) using R scripts published in Sasaki et al. (2018).  

Correlation of the allelic effects and molecular phenotypes 
For 9329 transposons common across 774 lines, differential mCHG levels induced by alleles 

were estimated for each transposon as the differential average methylation level between lines 

carrying the reference (Col-0) and the alternative allele. Differential mCHG levels induced by 

mutants were calculated analogously (Stroud et al., 2013). The details are described in Sasaki 

et al. (2019). 

Gene effect of loss-of-function mutants 
Gene functions of MIR823A and JMJ26 were tested using transgenic lines described below. 

We measured DNA methylation levels for two or three independently grown plants, and the 

significance of differential mean values across RdDM- and CMT2-targeted transposons was 

tested by Welch’s t-test (two-tailed). DNA methylation pattern of jmj26 was compared to ibm1 

and the control samples from published data sets (Stroud et al., 2013). 

Permutation tests 
We evaluated effects of mCHG-decreasing alleles using permutation tests with 3000 randomly 

chosen SNP-sets with the same allele frequencies as the identified alleles along the genome. 

For correlations between number of mCHG-decreasing alleles and longitude or linkage 

disequilibrium between the five alleles and NRPE1’ alleles, we compared the observed to the 

3000 randomly chosen samples directly. For evaluation of epistatic effects between NRPE1’ 

and mCHG-decreasing alleles on transposon activity, we randomly chose 3000 SNPs with the 

same allele frequency as NRPE1’ and tested the effect of zero to five mCHG-decreasing 

alleles. 

Plant materials 
Plants were grown at the 21°C with a 16-h light/8-h dark cycle and humidity 60%. Whole plant 

rosettes were harvested individually when they reached the 9-true-leaf stage of development. 

The t-DNA insertion line of jmj26 (SALKseq_069498.1) and a gamma-ray mutant msi1-2 

(Jullien et al., 2008) were purchased from Nottingham Arabidopsis Stock Center 

(http://arabidopsis.info/) for the functional analysis. Homozygous jmj26 was used for bisulfite 

sequencing after the second generation. msi1-2 was maintained as a segregating population, 
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and heterozygous lines were selected by genotyping and measuring MIS1 expression by qRT-

PCR.  

Transgenic lines 

CRISPR/CAS9 mutant lines 
Loss-of-function mutants mir823a for Col-0 and 9771 were generated using CRISPR/CAS9 

methods described in Xing et al (2014). Briefly, to generate a vector carrying two sgRNAs 

targeting MIR823A, the target sites were incorporated into forward and reverse PCR primers, 

and the fragment amplified from pCBC-DT1T2 (Table S6). Subsequently, an amplified and 

purified fragment was assembled using the Golden Gate reaction into pHSE401E modified to 

contain a mCherry marker. The resulting vector was transformed into Agrobacterium 

tumefaciens GV3101/pSOUP, then transformed into A. thaliana by the floral dip method 

(Zhang et al., 2006). T1 seeds were screened by mCherry marker under the fluorescence 

stereomicroscope (Discovery.V8, Zeiss), and the mutations were genotyped by Sanger 

sequencing. T2 seeds without mCherry signal were kept to amplify the stable T3 generations, 

which were used for further analyses.  

Rescue analyses 
The gene function of JMJ26 was confirmed by rescue experiments. The protein-coding 

genomic sequence including 3 kbp promoter sequence was PCR-amplified and cloned into 

the pGreen0029 binary vector (Hellens et al., 2000) using In-Fusion Cloning system (Takara 

Bio Europe, Saint-Germain-en-Laye, France) for Col-0 and DraIV 6-22 (5984) carrying the 

reference and the alternative allele, respectively. These constructs were used for floral dipping 

transformation to Col-0 background jmj26 (SALKseq_069498.1) to create transgenic lines 

(Zhang et al., 2006). 

mRNA abundance 
Total RNA was extracted using ZR Plant MiniPrep Kit (Zymo Research) including a DNase I 

treatment and was quantified by fluorometer Qubit 4 (Invitrogen). cDNA was synthesized using 

the SuperScript III First-Strand Synthesis System (Invitrogen) according to the manufacturer’s 

protocols. qRT-PCR was performed using the LightCycler 96 system (Roche) with FastStart 

Essential DNA Green Master (Roche). The transcript abundance was estimated by ddCT 

methods with an internal control SAND (AT2G28390) (Czechowski et al., 2005). Primer 

information is listed in Table S6. 
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MicroRNA abundance 

Material collection and RNA extraction 
Siliques were collected five days after pollination when the embryos reached an early torpedo 

stage according to the previous report (Papareddy et al., 2021). Using the tungsten needles, 

seeds were dissected from siliques and collected in 1.5 ml tubes, and washed 3-4 times with 

fresh 10% RNA later solution (Thermo Fisher Scientific). After the last wash, the buffer was 

replaced with 500 µl TRIzol™ Reagent (Ambion) and total RNA was isolated as described in 

Hofmann et al. (2019).  

qRT-PCR Analysis 
The quantification was conducted according to the protocol in Papareddy et al. (2021). Briefly. 

cDNA synthesis was performed using SuperScript III System (Invitrogen), and the 

corresponding stem-loop primers were added to the reverse transcription reaction. qRT-PCR 

analysis was performed on the LightCycler 96 Instrument (Roche) with the FastStart Essential 

DNA Green Master (Roche). The transcript abundance was estimated by ddCT methods with 

an internal control miRNA160.  

RNA sequencing 
RNA was extracted in the same protocol with qRT-PCR for mRNA.Total RNA was treated with 

the poly(A) RNA Selection Kit (Lexogen). Libraries were prepared according to the 

manufacturer’s protocol in NEBNext Ultra II Directional RNA Library Prep Kit (New England 

BioLabs) and individually indexed with NEBNext Multiplex Oligos for Illumina (New England 

BioLabs). The quantity and quality of each amplified library were analyzed by using Fragment 

Analyzer (Agilent) and HS NGS Fragment Kit (Agilent).  

Bisulfite sequencing 
Genomic DNA was extracted using GeneJET Plant Genomic DNA Purification Kit (Thermo 

Scientific) and sheared by E220 Focused-ultrasonicator (Covaris) to target average fragments 

around 350 bp. Sequencing libraries were prepared using NebNext Ultra II DNA Library Prep 

Kit (New England BioLabs) with Methylated Adaptor (New England BioLabs). Adapter-ligated 

DNA was carried through the bisulfite conversion using EZ-96 DNA Methylation-Gold™ 

MagPrep Kit (Zymo Research). Bisulfite-treated samples were amplified by EpiMark Hot Start 

Taq DNA Polymerase and indexed with NEBNext Multiplex Oligos for Illumina (New England 

BioLabs). All libraries were sequenced by Illumina NextSeq550 or Hiseq2500. 

 

Data availability 
All data are summarized in Table S5. Sequencing data have been deposited to GSE194406. 
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Supplemental figures 
 

 

 
 
Fig S1. Distribution of p-values for two GWAS models. QQ plots for univariate models for mCHG 
levels (A) and conditional models for mCHG|mCHH (B) in RdDM-targeted transposons (left) and CMT2-
targeted transposons (right). 
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Fig S2. Distribution of phenotypes and the allelic effects. The scatter plots illustrate the allelic 
effects on mCHH (A from Sasaki et al., 2019) and mCHG|mCHH in RdDM- (B) and CMT2-targeted 
transposons (C). Marginal phenotypic distributions for the reference and the alternative allele are plotted 
in blue and yellow, for univariate and conditional distributions. Red vectors show shifts of the mean 
value from the reference to the alternative allele in 2-dimensional phenotype space. 
 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.09.479810doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.09.479810
http://creativecommons.org/licenses/by/4.0/


 

 

 

 
 
Fig S3. Comparison of the allelic effects on mCHH and mCHG. Each arrow shows the mean value 
shift of mCHH and mCHG levels from reference to the alternative allele. Left and right plot correspond 
to RdDM- and CMT2-targeted transposons, respectively. Gray arrows correspond to the genetic effects 
of randomly sampled SNPs, keeping the allele frequency of each tested SNP (x 3000 for each allele). 
Diagonal lines correspond to linear regression lines of mCHH and mCHG. 
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Fig S4. Characterization of MIR823A. (A) Sanger sequences around MIR823A region for lines 
carrying reference allele (Col-0) and the alternative allele (763, 9771). (B) MIR823A expression in a 
CRISPR/CAS9 mir823a mutant (Col-0) by qRT-PCR. Error bar shows standard deviation (n=3). (C) 
Effects of MIR823A on mCHH and mCG levels in RdDM and CMT2-targeted transposons in mir823a 
Col-0 and 9771 background. 
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Fig S5. The effects of CMT2 alleles on non-CG methylation. (A) Genome structure of three CMT2 
alleles associated with non-CG methylation variation. The CMT2 region was illustrated by mapped 
short-read DNA-seq data (IGV browser) for reference line (Col-0), CMT2a’ (10018), CMT2b’ (6969), 
and CMT2c (10023). Vertical colored lines in the IGV plots indicate SNPs. (B) The allelic effects on 
genome-wide average mCHH and mCHG levels in CMT2-targeted transposons. Only lines carrying one 
allele were compared with the reference line. Horizontal gray lines show median values of the reference 
lines. 
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Fig S6. Genetic variation around MSI1 and ROS3. (A) Zoom-in Manhattan plots (Fig 3) and the 
genome structure around Chr5:23553506, 23555910 (top), and 23522001 (bottom) illustrated by 
mapped short-read DNA-seq data (IGV browser). Vertical colored lines in the IGV plots show SNPs. 
(B) Conditional GWAS for mCHG in RdDM- and CMT2-targeted transposons. mCHH and 
Chr5:23555910 were both used as co-factors. Gray vertical lines indicate the Chr5:2355910 position, 
and horizontal lines show the genome-wide significance (p=0.05 by Bonferroni correction). r2 was 
calculated from chr5:23553506 and chr5:23555910 for mCHGRdDM and mCHGCMT2, respectively.  
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Fig S7. Characterization of JMJ26 allele. Predicted amino acid sequences around jmjC domain of 
reference (6909) and the alternative allele (DraIV 6-22)(A) and the conserved region (B). Orange bars 
indicate nonsynonymous mutations associated with mCHG|mCHH in RdDM-targeted TEs. The sequences 
were predicted based on polymorphism data provided by the 1001 genome project. The domain 
information follows the TAIR10 annotation.  
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Fig S8. Molecular phenotypes of jmj26. (A) Characterization of loss-of-function mutants, jmj26. Both 
#1 and #2 were jmj26 homozygous lines isolated from SALKseq_069498.1 and propagated separately. 
WT is a segregated line carrying active JMJ26 in the same stock. Morphology of jmj26 and Col-0 (left) 
and JMJ26 expression in leaves of jmj26 and the wild type (right). Expression was measured by qRT-
PCR. (B) Volcano plots show the effects on transposon transcripts highlighted RdDM- and CMT2-
targeted transposons. (C) The scatter plot shows the effect of mCHG methylation on transposon 
transcripts. The gray line shows the linear regression line.  
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Fig S9. Geographical distribution of mCHG-decreasing alleles. The plots show the origin of lines 
carrying mCHG-increasing or decreasing alleles. 
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Fig. S10. Geographical distribution of cumulative mCHG-decreasing alleles. (A) Longitudinal 
frequencies of cumulative mCHG-decreasing alleles (corresponding to five alleles in Fig. 6A). (B) The 
histogram shows how the cumulative mCHG-decreasing allele number is correlated with longitude of 
the origins. The blue histogram shows permuted Pearson’s correlation coefficients (R) between 
numbers of mCHG-decreasing alleles and longitude of the origin, maintaining the allele frequencies. 
The permutation tests were repeated 3000 times for 971 lines ranging from longitude -20º to 100º. The 
orange vertical line indicates the observed value. (C) Histogram similarly shows permuted Pearson’s 
correlation coefficients between number of mCHG-decreasing alleles and NRPE1’ genotype. The 
orange line is the observation. mCHH-increasing and decreasing NRPE1’ alleles are 0 and 1, 
respectively. (D) The geographic distribution of mCHG|mCHH levels in CMT2-targeted transposons. 
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Fig 11. Function of mCHG-decreasing alleles on transposon activities. (A) Effects of the 
cumulative mCHG-decreasing alleles in whole populations (left) and combination with NRPE1’ 
allele (right). (+) and (-) are lines carrying NRPE1’ reference (mCHH-increasing) and the 
alternative (mCHH-decreasing) alleles, respectively. (B) Effects of the five major mCHG-
decreasing alleles with NRPE1’ reference (left) and the alternative (right) populations. (R) and 
(A) are reference and the alternative alleles, respectively. 
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Fig S12. The genetic basis of mCHG and mCHH analyzed by MTMM. (A) Manhattan plots for any, 
common, specific SNP effects on mCHG and mCHH in RdDM and CMT2-targeted transposons (see 
Methods). Vertical lines correspond to genome-wide significance (p=0.05 by Bonferroni correction). (B) 
Enrichment of a priori genes and FDR for each GWAS result. 
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Fig S13. Conditional GWAS for mCHH|mCHG. The genetic effects on mCHH in RdDM- and CMT2-
targeted transposons were analyzed by the conditional GWAS model with mCHG as cofactor. Vertical 
lines correspond to genome-wide significance (p=0.05 by Bonferroni correction). Orange arrows 
indicate peaks reported in previous studies as affecting mCHH (Kawakatsu et al., 2016). Each GWAS 
result was assessed by enrichment of a priori genes and FDR. 
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