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Abstract 

Transcriptome-wide association studies (TWAS) are a powerful approach to identify genes 

whose expression associates with complex disease risk. However, non-causal genes can 

exhibit association signals due to confounding by linkage disequilibrium patterns (LD) and eQTL 

pleiotropy at genomic risk regions which necessitates fine-mapping of TWAS signals. Here, we 

present MA-FOCUS, a multi-ancestry framework for the improved identification of genes 

underlying traits of interest. We demonstrate that by leveraging differences in ancestry-specific 

patterns of LD and eQTL signals, MA-FOCUS consistently outperforms single-ancestry fine-

mapping approaches with equivalent total sample size across multiple metrics. We perform 15 

blood trait TWAS using genome-wide summary statistics (average NEA=511k, NAA=13k) and 

lymphoblastoid cell line eQTL data from cohorts of primarily European and African continental 

ancestries. We recapitulate evidence demonstrating shared genetic architectures for eQTL and 

blood traits between the two ancestry groups and observe that gene-level effects correlate 20% 

more strongly across ancestries compared with SNP-level effects. We perform fine-mapping 

using MA-FOCUS and find evidence that genes at TWAS risk regions are more likely to be 

shared across ancestries rather than ancestry-specific. Using multiple lines of evidence to 

validate our findings, we find gene sets produced by MA-FOCUS are more enriched in 

hematopoietic categories compared to alternative approaches (� � 1.73 � 10��� ). Our work 

demonstrates that including, and appropriately accounting for, genetic diversity can drive deeper 

insights into the genetic architecture of complex traits. 

 

Introduction 

Genome-wide association studies (GWAS) have identified genomic risk regions for numerous 

complex traits and diseases but leave unclear the underlying causal mechanisms responsible 

for risk. Multiple lines of evidence have suggested that genomic risk is imparted through 

perturbed regulation of nearby target genes, which predicts that the steady-state abundance of 

expression levels at target genes is associated with disease risk1–6. Transcriptome-wide 

association studies (TWAS)1,2, which explicitly test this hypothesis, have been successful in 

identifying novel genomic risk regions and specific genes that influence complex diseases7–9. 

Much of TWAS’ recent success is due to the use of genetically predicted, rather than directly 

assayed, gene expression, which enables its application to existing large-scale GWAS, thus 

greatly increasing statistical power. Recently, we and others have demonstrated that TWAS 

also suffer from confounding due to eQTL pleiotropy and LD, which can induce correlation in 
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test statistics between causal and non-causal genes in an analogous manner to causal and 

tagging variants in GWAS10–16. 

Despite these recent breakthroughs, our understanding of the genetic architecture of 

complex traits has been limited by a lack of diversity in human genetics studies: individuals with 

primarily European genetic ancestry comprise 79% of all GWAS participants, despite 

representing only 16% of the global population17. Although risk loci frequently replicate across 

ancestries18–22, the linkage disequilibrium (LD) patterns, minor allele frequencies (MAF), and the 

number of causal variants and their effect sizes can vary across genetic ancestries21. This 

heterogeneity in genetic architecture hinders clinical applications of GWAS such as polygenic 

risk scores (PRS), an issue that has been highlighted by the poor portability of PRS models 

across ancestries23,24. On the other hand, recent trans-ancestry design of GWAS have 

highlighted the benefits of taking an integrative, multi-ancestry approach to studying complex 

disease biology, both by leveraging genetic heterogeneity across human groups to aid in fine-

mapping, and by enabling the discovery of ancestry-specific disease etiologies20,21,25–27. As with 

GWAS, we expect the integration of genetically diverse datasets into TWAS methodologies will 

improve our understanding of trait architectures that are both shared and unique to particular 

genetic ancestries28,30,32. 

In this work, we present MA-FOCUS (Multi-Ancestry Fine-mapping Of CaUsal gene 

Sets), an approach that integrates GWAS, expression quantitative trait loci (eQTL), and LD data 

from multiple ancestries to assign a posterior inclusion probability (PIP) that a given gene 

explains the TWAS signals at a risk region29,31,33. It uses inferred PIPs to compute credible sets 

of causal genes at a predefined confidence level 	 (Figure 1). A key feature of MA-FOCUS is 

that it does not assume that the eQTL architecture underlying gene expression is shared across 

ancestries34,35. Instead, MA-FOCUS assumes only that the causal genes for a focal trait or 

disease are shared across ancestries. It is expected that gene-level effects are likely more 

transferable across ancestry groups than SNP-level effects as genes are inherently a more 

meaningful biological unit36. As a result, MA-FOCUS leverages cross-ancestry heterogeneity in 

LD patterns and eQTL associations to identify causal genes with improved precision and 

accuracy when compared with alternative approaches. 

By performing extensive simulations, we demonstrate that MA-FOCUS consistently 

outperforms the analogous single-ancestry method with equivalent total sample size, as well as 

a ‘baseline’ approach based on meta-analyzed GWAS statistics from different ancestries37,38. In 

addition, we show that MA-FOCUS is robust in simulations where the trait-relevant tissue is 

missing, and a proxy tissue is used instead. To illustrate its applicability on real multi-ancestry 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2022. ; https://doi.org/10.1101/2022.02.10.479993doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.10.479993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 

data, we conduct multiple TWAS and fine-mapping analyses with MA-FOCUS for 15 blood traits 

in European and African ancestry cohorts using large-scale GWAS summary statistics18 

(average NEA=511k, NAA=13k) and eQTL weights calculated from the Genetic Epidemiology 

Network of Arteriopathy (GENOA) study39 (NEA=373, NAA=441). We recapitulate results 

demonstrating the shared genetic architecture for gene expression and blood traits between the 

two ancestries. We also find evidence that gene-level effects inferred from TWAS correlate 20% 

more strongly across ancestries when compared with SNP-level effects. Fine-mapping the 22 

genomic regions that contain TWAS signals for both ancestry groups, we find MA-FOCUS 

identifies genes relevant to hematopoietic and cardiovascular disease etiology that are missed 

by the baseline approach. Using multiple validation strategies40, we show genes in MA-FOCUS 

credible sets are more strongly enriched for hematological measurement categories (meta-

analysis P-value of 1.73 � 10��� compared to 2.91 � 10���) compared to the baseline approach. 

Overall, our analyses using MA-FOCUS emphasize the importance of incorporating genetic 

information from diverse genetic ancestries to drive new insights into the genetic architecture of 

complex traits. 

 

Materials and methods 

Multi-ancestry FOCUS Model 

For the ��� of k total ancestries, we model a centered and standardized complex trait � � ��� 

from �� individuals as a linear combination of gene expression levels �� � ����	 at � genes as 

� � ��� � �� 

where � � �	 are the causal effects of gene expression on the complex trait, which are shared 

across all ancestry groups, and �� � ���  is random environmental noise with ����� � 0  and 

Var����  �  ����
,�
� . Additionally, we model ancestry-specific gene expression as a linear 

combination of genotypes  � as  

�� �  �!�  � �,� 

where  � � ������  is the centered and standardized genotype matrix at "�  single-nucleotide 

polymorphisms (SNPs), !� � ���� 	  is the ancestry-specific eQTL effect-size matrix, and 

�,� � ����	 is random environmental noise.  

Performing a TWAS using predicted gene expression requires the latent ancestry-

matched eQTL weights !� , which are unknown. In practice, we use expression weights #� 

estimated from an independent, ancestry-matched eQTL reference panel using penalized linear 

models (or Bayesian counterparts)1,2. We model the ith ancestry’s marginal TWAS summary 
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statistics for the gene $ with complex trait � as %����,�,� � �
��,�√��

�&�,�
� � where �&�,� �  �#�,� is the 

predicted expression imputed by the eQTL panel. By algebraic expansion for � genes, we have  

'����,� � #�
�(�!�)� � 1

�
,�*��
#�

� �
��� 

where we re-parameterize the causal effects of gene expression as )� � ���
��,�

� and the ancestry-

matched LD at "� SNPs as (� � ��
�� �

� � . Assuming expression weights #� and causal effects 

� are fixed, we can compute the sampling distribution of '����,� as 

'����,�  | #�,, (�  -  .�#�
�(�!�)� , #�

�(�#�� , 
and as sample size increases,  #�

�(�#� asymptotically approaches #�
�(�!�. 

Next, we model a prior for the causal effects as )�  | /, ����,�
� - .�0, 0�,�� where 0�,� �

1�23�����,�
�

|�|
4 /�, 5 is  an � � 1 causal configuration binary vector where 5� � 1 if the $�� gene at 

the region is causal (0 otherwise), |/| denotes the length of /, and ����,�
� denotes the sample-

size scaled causal effect prior variance10. We marginalize )� out to obtain the TWAS sampling 

distribution conditioned on a causal gene set as 

'����,�| #�,, (� , /, ����,�
�  - .�6, 7�0�,�7� � 7��, 

where 7� � #�
�(�#� is the estimated expression correlation matrix. We assume that the causal 

genes underlying a complex trait are shared across ancestries, which we model by sharing the / 

vector across ancestries. Since we do not know the causal genes indicated by / beforehand, we 

adopt a Bayesian approach and compute the posterior for a given causal configuration 5 as 

 Pr�/ | 9'����,� , #�,, (� , ����,�
� :���

� , ;�  � ����| ! ∏ #�$,%�&�,�%�'%�!
�
��	

∑ ����)| ! ∏ #�$,%�&�
,�%�'%�!
�
��	�
��  

  
where Pr�/|;� � ;|�|�1 < ;��	 � |�|!  for some prior causal probability ;  and =  is the space of 

causal gene configurations. In practice we set ; to be 
�

	)
 where �> ? � denotes the number of 

known, and not necessarily tested, genes at the region. Intuitively, this reflects the naive 

expectation that a given risk locus contains a single causal gene. For computational tractability, 

we constrain the space defined by = to exclude complex configurations with |/| @ 3.  In addition, 

our likelihood, and thus posterior, depends on ����,�
�  which governs the variance of scaled 

causal gene effects )�. Previously, we recommended using a genome-wide mean '����
�  as a 

heuristic, which works well under polygenic architectures10, but may perform poorly in sparser 

situations. Motivated by ref41, here we describe a local heuristic that estimates ����,�
�  as  

����,�
� � '����,�

� 7�
�� '����,� < |/|  
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which is an unbiased estimator of causal effect variance ��7�� (see Appendix). In the case of 

negative estimates, we instead use '����,�
� 7�

�� '����,�. 

 

Computing Posterior Inclusion Probabilities and 	-Credible Sets 

Our model describes the posterior probability for a given causal configuration /  across 

ancestries; however, we are more interested in the probability that a specific gene is causal 

across ancestries. We define the posterior inclusion probability (PIP) for the $��  gene by 

marginalizing over all causal configurations 5 where 5� � 1 as: 

PIP�5� � 1 | 9'����,� , #�,, (� , ����,�
� :���

� , ;�  �  ∑ Pr�/> | 9'����,� , #�,, (� , ����,�
� :���

� , ;��)*+:�)�� . 

To capture the probability that none of the genes included in our analysis explain the observed 

TWAS Z-scores at a risk region, we include the null model as a possible outcome in the credible 

set, Pr�/) � 0 | C'����,� , #�, , (� , ����,�
� D

���

� �. To compute a 	-credible set29,31,33, where 	 reflects the 

desired confidence that a gene set contains a causal gene, we take a greedy approach that 

traverses genes ordered decreasingly by their locus-normalized PIPs until the cumulative sum 

reaches at least 	.  

 

Overview of the simulation pipeline 

Here we provide a high-level summary of our multi-ancestry TWAS simulation pipeline, which is 

described by five main steps (Figure S1), with details for each step described in the following 

sections. First, we computed approximately independent LD blocks and sampled genotypes for 

GWAS and eQTL reference panels in two ancestry groups. Second, we simulated ancestry-

matched eQTL data using simulated eQTL reference genotypes from the first step, sampled 

eQTL effects under a sparse architecture, and simulated gene expression at causal and non-

causal genes. Third, we simulated a complex trait in the ancestry-matched GWAS data as a 

linear function of eQTL effects of the causal gene from the second step and simulated GWAS 

genotypes from the first step. Fourth, we performed ancestry-matched TWAS using penalized 

models fitted in the respective eQTL reference panels. Fifth, we performed fine-mapping using 

single-ancestry FOCUS and MA-FOCUS. We provide details for each step below. 

 

Computing independent LD blocks and simulating reference eQTL panels 

We performed simulations using genotype data from phase 3 of the 1000 Genomes Project for 

individuals of European (EUR; N=490) and African (AFR; N=639) ancestries (see Table S1)42. 

We restricted genotypes to high-quality HapMap SNPs and filtered for missingness (> 1%), 
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minor allele frequency (MAF < 1%), and violations of Hardy-Weinberg equilibrium (HWE mid-

adjusted P-value < 1e-5). To identify approximately independent regions that are consistent with 

both EUR and AFR ancestries, we used a recently described extension of LDetect that 

considers LD information from multiple ancestries21,43. Briefly,  we constructed chromosome-

wide ancestry-matched LD matrices (�, and computed a chromosome-wide trans-ancestry LD 

matrix (�-��� such that it  incorporates shared recombination loci across ancestries (see ref21). 

Applying LDetect21,43 to (�-���  resulted in 1278 approximately independent LD blocks. We 

sampled 100 blocks that carried between 5 and 8 annotated genes (based on hg19 RefSeq 

release 63) as risk regions. Additionally, we extended each LD block 500kb upstream of the first 

gene’s transcription start site (TSS) and 500kb downstream of the last gene’s transcription end 

site (TES) and updated (� accordingly. 

At each risk region, we simulated 10 genes whose expression is under partial genetic 

control by first sampling the number of eQTLs for the $��  gene, E� � max�1, Poisson�2��. Next, 

we assigned E� SNPs uniformly at random to be eQTLs (out of " total for a given locus) and 

simulated " � 1 effect-sizes vector !�� - .�0, ���

�
L�� at the E� causal eQTLs and 0 at the " < E� 

non-causal SNPs where M
� � 90.01, 0.05, 0.1: is the proportion of variance in gene expression 

attributable to cis-eQTLs (i.e. SNP heritability of gene expression)5,44. In addition, we simulated 

eQTLs as either independent or shared across ancestries; in the former case, SNPs and their 

effect sizes were chosen for each ancestry individually (under shared M
� and E parameters) as 

described above, while in the latter, these were chosen once and then fixed for all 

ancestries34,35. Then, we simulated a ��,
.�/ � "  centered and standardized continuous 

genotype matrix  �,
.�/  using a multivariate normal distribution .�0, (��  where ��,
.�/  is the 

ancestry-matched eQTL panel sample size. For gene $, we calculated expression ��� according 

to ��� �  �,
.�/!��  � �,��, where �,��  - .�0, O,��
� � �

��
� < 1���� is random environmental noise for 

expression ���, and O,��
� � !��

� (�!��. To estimate ancestry-matched expression weights P��, we 

regressed ���  on  �,
.�/  using least absolute shrinkage and selection operator (LASSO) 

regularization. To simulate eQTL effects when only a genetically correlated proxy tissue is 

available, we sampled proxy eQTL effects !�,�
0  under a bivariate normal distribution as 

 �!��  , !�,�
0  �  - . Q6, RM,�

� /E� T

T M,0,�
� /E�

U V L�W 

where !��   are the causal tissue eQTLs and T � 90, 0.3, 0.6, 0.9, 1: is the genetic covariance 

between two tissues. 
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Simulating complex traits and statistical fine-mapping of TWAS 

To reflect the practical reality that participants in GWAS and eQTL panels are usually different, 

we re-simulated genotypes  ���,�  -  .�0, (�� at the risk region to compute GWAS summary 

statistics while keeping eQTLs !�� of the 10 simulated genes from the previous step. Then, we 

randomly sampled one gene as causal and used its eQTLs to simulate complex trait � as 

� � ��,�Y�  � ��  �  ���,�!�,�Y�  � ��  

where Y�  - .�0, 1� is the causal gene expression effect,  ��  - .�0, O�
�� �

���
� < 1���� is random 

environmental noise for complex trait �  where O�
� � !�,�

� (�!�,�Y�
� , and M12

�  � 90, 1.71 �
10�3, 1.14 � 10�4, 7.57 � 10�4, 5.03 � 10�5: is the proportion of complex trait variation explained 

by the genetic component of gene expression. Next, to compute ancestry-matched GWAS 

summary statistics, we performed linear regression on the complex trait � marginally for each 

SNP in  ���,� and calculated GWAS Z-scores '���,� using the resulting Wald test statistic. We 

then performed an ancestry-matched summary-based TWAS using predicted expression  '����,� 

for each gene with '����,� � #�
�'���,�.  

Lastly, we performed TWAS fine-mapping using single-ancestry FOCUS10 and multi-

ancestry MA-FOCUS on '����,� to generate 90% credible sets for each ancestry and under the 

joint model, respectively. To determine whether the improvement of MA-FOCUS is solely due to 

increased sample sizes, we also evaluated a ‘baseline’ approach37. Specifically,  the baseline 

approach consists of computing meta-analyzed GWAS statistics as 

%̃��� � 6���7����,���' 6��� 7����,���
�6��� ' 6���!	/�

 , where \�  �  1/O]���,�
�  is the inverse variance weight. 

Rather than constructing meta-analysis expression weights, %̃����  is then computed by using 

the EUR expression weights #289. Finally, fine-mapping is conducted on %̃����  using single-

ancestry FOCUS and 90% credible sets are computed. In all, we ran four methods (EUR 

FOCUS, AFR FOCUS, baseline, and MA-FOCUS) on 100 LD blocks to output one credible set 

per LD block per method. To test whether including information from additional ancestries of 

diverse genetic ancestries increases the performance of MA-FOCUS, we evaluated scenarios 

that also include individuals simulated using 1000G East Asian (EAS; N=481) ancestry data42 

(Table S1), and performed MA-FOCUS on three ancestries by fixing per-ancestry eQTL sample 

size, M
�, and M12

�  and allowing the total GWAS sample size to vary. 

 

Simulating ancestry-specific genetic architectures and data-missing cases 
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A central assumption of MA-FOCUS is that different ancestries share the same causal genes 

and their effect sizes. To characterize the performance of MA-FOCUS in cases where this 

assumption is partially violated, we simulated cases where the mediating gene-trait effects M12
�  

are ancestry-specific as a heuristic to represent heterogeneity in genetic architectures. 

Additionally, in practice, eQTL panels for a particular tissue of interest may be either unavailable 

or underpowered due to small sample size. To evaluate the performance of MA-FOCUS in 

cases where relevant eQTL data are unavailable45, we tested two scenarios that used different 

types of “proxy” data1,8,10,34,35,46. First, we simulated cases where the trait-relevant tissue was 

unavailable in AFR, and a proxy tissue from the same ancestry with correlated gene expression 

was substituted. Second, we simulated cases where eQTL weights for AFR were entirely 

unavailable, and weights from EUR were used instead. The latter differs from the baseline 

approach in that the TWAS and FOCUS were conducted with ancestry-matched, not meta-

analyzed, GWAS results.  

 

Description of simulation parameters and fine-mapping performance metrics 

We compared MA-FOCUS results to single-ancestry FOCUS results for EUR and AFR, and the 

baseline approach across multiple simulations, which varied according to whether eQTLs were 

shared or not. We also varied four additional parameters: GWAS sample sizes, eQTL panel 

sample sizes, cis-SNP heritability of gene expression (cis-M
� ), and the proportion of trait 

variance explained by genetically-regulated gene expression (M12
� ). Unless stated otherwise, the 

simulation parameters were set to defaults of 100,000 for the per-ancestry GWAS sample size, 

200 for the per-ancestry eQTL panel size, expression cis-M
� � 0.05 and trait M12

� � 7.57 � 10�4. 

We evaluated fine-mapping performance based on three metrics: mean PIP of the causal 

genes, mean 90% credible set size, and frequency in which the causal genes are included in 

100 90% credible sets per simulation (sensitivity). We fit linear regression adjusted for 

corresponding parameters to report one-sided Wald test P-value. 

 

Fitting SNP-based prediction models of LCL expression in the GENOA study 

To calculate ancestry-specific gene expression weights in real data, we used genotype and 

lymphoblastoid cell line (LCL) derived gene expression data from European ancestry (EA) and 

admixed African American (AA) individuals from the GENOA study39. Genotype data were 

generated using Affymetrix and Illumina genotyping arrays; in total, 1,384 EA and 1,263 AA 

individuals were assayed on the Affymetrix 6.0 array, 20 EA and 269 AA on the Illumina 1M 

array, and 103 EA on the Illumina 660k array. All genotype data analyses were conducted using 
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PLINK 1.9, vcftools, and bcftools47–50. We imputed genotype data using the TOPMed server, 

implementing minimac4 v1.0.2 and eagle v2.4 phasing51. Each ancestry dataset was imputed 

separately, except for EA individuals assayed on Illumina arrays, which we merged prior to 

imputation. We retained bi-allelic SNPs with good imputation quality (T� > 0.6) for both EA and 

AA cohorts, filtered for MAF < 1% and for HWE P-value < 1 � 10�� resulting in 1,160,917 and 

1,330,340 quality-controlled (QC) SNPs for EA and AA, respectively. We used GCTA52 to 

compute genotype principal components (PCs) and genetic relatedness matrices within the EA 

and AA cohorts after further filtering for SNPs with imputation T� > 0.9 and low pairwise LD 

(using --indep-pairwise 200 1 0.3 in PLINK48). For computing genotype PCs, we filtered out 

individuals such that no pair exhibited a relatedness coefficient greater than 0.05, resulting in 

373 EA and 441 AA individuals. For downstream eQTL model fitting, we used only HapMap 

SNPs52.  

Expression data for the EA and AA cohorts were assayed at 16,944 and 32,881 genes 

(overlap of 14,797) on the Affymetrix Human Exon 1.0 and Affymetrix Human Transcriptome 2.0 

arrays, respectively, and processed by Shang et al39. In this context, genes refer to any regions 

that express RNA, and not necessarily the ones that have protein-coding function. After lifting 

over the expression data to GRCh38, for each gene in its respective ancestry, we ran 

FUSION1,7,9 to estimate genetic variance cis-�
� and  cis-M

�, and to calculate ancestry-specific 

eQTL weights, limiting the analysis to SNPs falling within a window including 500kb up and 

downstream of each gene’s transcription start-site and transcription end-site, as defined in hg19 

RefSeq release 63. We included 30 gene expression PCs, 5 genotype PCs, age, sex, and 

genotyping platform as covariates in building these SNP models1,7,9. We identified 3,680 and 

4,291 genes in EA and AA, respectively, with an estimated cis-M
� of at least 0.01 (nominal p-

value < 0.01) of which 2,496 genes overlapped both ancestries. We limited our downstream 

analyses to 4,646 unique genes that had evidence for significant cis-M
�, as defined above, in 

either ancestry and non-zero weights in both ancestries1,7,9.  

 

Validation of LCL prediction models in GEUVADIS 

To validate our estimated ancestry-specific gene expression weights derived from the GENOA 

study39, we obtained paired genotypes and LCL-derived mRNA expression data at 22,721 

genes for 373 EUR participants and 89 Yoruba in Ibadan (YRI) participants from the GEUVADIS 

study53. We performed the same relatedness- and variant-based filtering as described above, 

which resulted in 358 EUR and 89 YRI participants and 8,403,216 and 14,855,241 SNPs, 
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respectively. Restricting to the 4,581 genes that overlapped with GENOA, we estimated cis-�
� 

and  cis- M
�  of LCL gene expression in GEUVADIS using the Genome-based restricted 

maximum likelihood (GREML) approach, with genotypes limited to 500kb up and downstream 

window around each gene as described above, and adjusted for participants’ sex and 3 

genotype PCs52. Next, we predicted LCL expression for GEUVADIS participants using GENOA-

based expression weights and calculated the coefficients of determination ( T� ) between 

predicted and measured expression levels.  

 

TWAS and fine-mapping of 15 blood traits from GWAS summary data 

We obtained published GWAS summary statistics for 15 blood traits (Table S2) from Chen et 

al18. After lifting SNPs over to GRCh38 and updating their identifiers to dbSNP v153, we used 

LDSC munge54 to perform quality control filtering of summary statistics, based on imputation 

INFO scores > 0.9, MAF > 0.01, and  chi-squared statistics < 80 to limit the influence of outlier 

SNPs. We flipped alleles as necessary for consistent orientation across European ancestry and 

African ancestry GWAS statistics. The average GWAS sample size was 511,471 for European 

and 13,298 for African ancestries across all SNPs and all 15 blood traits, reflecting ~40-fold 

difference in sample sizes. 

As in our simulations, we calculated TWAS % scores1 of EA, AA, and baseline approach 

for each trait by leveraging corresponding GWAS summary statistics18, FUSION-fitted LCL 

eQTL reference weights1,39, and estimated LD from 1000 Genomes42. To shed light on ancestry 

similarity in genetic architecture, we computed cross-ancestry correlation of GWAS and TWAS 

effect-size estimates for genome-wide SNPs and genes using a blocked jack-knife approach; to 

adjust for sample size differences, we normalized GWAS and TWAS effect sizes by dividing by 

square root of GWAS sample sizes. To compute an average across all 15 blood traits, we meta-

analyzed individual correlations across 15 blood traits and tested the difference with pooled 

standard error. Next, we fine-mapped the original resulting TWAS Z-scores using MA-FOCUS, 

single-ancestry FOCUS, and the baseline approach, focusing on independent genomic regions 

which exhibited transcriptome-wide significant signals (� ^ 0.05/4579, the number of genes 

with TWAS statistics) in both EA-specific and AA-specific TWAS, and annotated them based on 

their inclusion in the 90% credible set, as described above. To provide evidence of the causal 

genes being shared, rather than ancestry-specific, we performed Bayesian model comparison 

and calculated log-Bayes factors for each gene in a MA-FOCUS credible set as 

log BF � log � :;:��������

:;:�����:;:��!':;:�����:;:��!
�. 
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Validation of blood trait fine-mapping results 

To determine if the genes prioritized by MA-FOCUS are more biologically meaningful than those 

prioritized by other methods, we validated credible sets using four different approaches. First, 

we performed a gene set enrichment analysis for genes identified in credible sets (i.e. 

aggregating genes identified across all loci) for a given fine-mapping method and blood trait 

using the R package enrichR55,56. We manually selected 20 trait categories related to 

hematological measurement in DisGeNET, a database of curated gene-trait associations40, 

based on the most relevant body system using MeSH (see Web resources) and EFO57 

ontology hierarchies (Table S3). We counted the number of significantly enriched categories 

with Bonferroni correction (� ^ 0.05/� where � is the number of enrichment testing) for each 

method and performed meta-analysis on these categories using Fisher’s Method. Second, we 

performed enrichment analyses comparing each blood-trait and fine-mapping specific gene set 

with the DisGeNET-curated gene set for the equivalent blood trait. Third, we evaluated gene 

sets using a previously published “silver standard” (see Web resources), to determine whether 

they better predict causal genes of 159 blood-related mendelian and rare diseases (Table S4). 

Since these diseases are monogenic or oligogenic, their causal genes are affirmative in high 

confidence and are likely to have moderate effects on blood-related complex traits. Leveraging 

database from Online Mendelian Inheritance in Man (OMIM) and Orphanet, we performed 

logistic regression to calculate areas under the ROC curve within each method, and each blood-

related trait in Chen et al.  

 

Results 

Multi-Ancestry FOCUS improves power to identify causal genes in simulations 

We first evaluated the performance of MA-FOCUS in simulations and compared it with the 

baseline approach, which consists of GWAS meta-analysis across ancestries followed by 

TWAS and fine-mapping with a single ancestry’s weights (see Methods). Briefly, we simulated 

a complex trait as a function of genetically-regulated gene expression for both ancestries when 

the causal tissue was known (see Methods) while varying GWAS and eQTL sample sizes and 

features of the underlying genetic architecture. Across all simulation scenarios where causal 

eQTLs were independent across ancestries, we found MA-FOCUS reported higher PIPs for 

causal genes than the baseline approach (0.62 compared with 0.45; � � 9.05 � 10�4<), smaller 

credible sets (4.89 compared to 6.62; � � 2.13 � 10��5� ), and higher sensitivity (88.30% 
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compared to 81.30%; � � 9.35 � 10�=). Specifically, consistent with previous TWAS and TWAS 

fine-mapping simulation studies1,10, we observed performance improved as GWAS and eQTL 

sample sizes increased, likely reflecting increased statistical power (Figures 2, S2). We found 

that increasing eQTL panel size affected MA-FOCUS sensitivity more dramatically than 

increasing GWAS sample size. For instance, increasing the eQTL panel size two-fold, from 200 

to 400, improved sensitivity by 6% from 91% to 97% while a same proportionate increase in the 

GWAS sample size, from 100,000 to 200,000, only increased sensitivity by 2% to 93% (Figure 

2, S2). We re-performed these simulations assuming that the causal eQTLs are shared across 

ancestries and observed that MA-FOCUS consistently outperformed the baseline (Figure S3). 

However, this performance advantage was slightly attenuated compared to the independent 

eQTL setting, highlighting the ability of MA-FOCUS to improve performance while being 

agnostic to eQTL architecture. Hereafter, we focus on presenting results where eQTLs were 

simulated independently in each ancestry to highlight MA-FOCUS’ potential advantage in real-

world applications where eQTLs exhibit heterogeneity across ancestries39.  

Next, we sought to quantify the increases in fine-mapping power that could be gained by 

including individuals from diverse genetic ancestries, rather than increasing the sample size of a 

single-ancestry GWAS. Specifically, we assumed an existing eQTL panel of 200 individuals for 

AFR and EUR ancestries and compared the performance of MA-FOCUS with single-ancestry 

fine-mapping, given a fixed number of total GWAS participants. We found that MA-FOCUS 

placed more posterior density on causal genes with a mean of 0.67 compared to 0.57 (� � 0.01) 

and produced smaller credible sets with a mean of 4.86 compared to 5.33 (� � 0.03) with better 

sensitivity of 0.91 compared to 0.83 ( � � 0.01 ) when compared with FOCUS applied to 

equivalently powered EUR-only TWAS data (Figure S4). This relative performance advantage 

held when we compared two- to three-ancestry scenarios (Figure S5). Consistent with previous 

multi-ancestry SNP-based fine-mapping approaches20,25, our results suggest that incorporating 

additional ancestry genetic diversity in GWAS drives larger payoffs in fine-mapping performance 

than simply increasing the sample sizes of GWAS on previously studied ancestries. 

To evaluate the performance of MA-FOCUS as a function of the underlying genetic 

architecture, we next performed simulations varying the cis-SNP heritability of gene expression 

(cis-M
� ) and the proportion of trait heritability attributable to a causal gene (M12

� ). Across 

architectures, MA-FOCUS significantly outperformed the baseline (� � 2.52 � 10��4  for PIP 

metric, � � 7.45 � 10�4= for credible set metric, and � � 3.61 � 10�4 for sensitivity; Figure S6-

S7). Moreover, when there is no causal gene effect (i.e. M12
� � 0), we found that MA-FOCUS 

returned larger PIPs for the null model (� � 2.88 � 10�3) and smaller credible sets (� � 1.64 �
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10��3) on average compared with the baseline (Figure S7). Our results show that MA-FOCUS 

is better-powered than the baseline to identify the true causal model, including the null model, 

across a range of heritabilities for gene expression and the overall trait. 

 

Multi-Ancestry FOCUS is robust to genetic-architectural and data-dependent 

assumptions 

Next, we sought to characterize the performance of MA-FOCUS when assumptions of the 

underlying model are partially violated. First, we simulated a complex trait where the mediating 

gene-trait effects differed across ancestries by setting ancestry-specific M12
�  values (i.e. fixed for 

EUR and varying for AFR across a range; see Methods). Again, we found that MA-FOCUS 

consistently reported higher PIPs for causal genes (� � 3.42 � 10���) and smaller 90% credible 

sets (� � 6.80 � 10�55) compared with the baseline (Figure 3, S8). Furthermore, the sensitivity 

of gene sets reported by MA-FOCUS were robust to up to 7-fold differences in ancestry-specific 

M12
�  (i.e. 7.57 � 10�4 for EUR compared to 1.14 � 10�4 for AFR). Only when the AFR M12

�  was 

~2% of the EUR M12
�  (7.57 � 10�4 for EUR compared to 1.71 � 10�3 for AFR) did we find MA-

FOCUS performance to degrade, which is consistent with reduced statistical power under a 

fixed sample size. Together these results show that MA-FOCUS is generally robust to ancestry-

specific architectures. 

To investigate the impact of imbalanced GWAS sample sizes, we performed simulations 

matching the sample sizes of a recent multi-ancestry blood trait GWAS18 (.2> � 511,471 and 

.>> � 13,298; see Methods). In this setting MA-FOCUS computed credible sets that were 

smaller compared to the baseline (� � 3.54 � 10��; Figure S9B) with similar mean PIPs at the 

causal genes (� � 0.13 Figure S9A) and sensitivity (� � 0.17; Figure S9C). This demonstrates 

that, even when GWAS sample sizes vary by an order of magnitude across ancestries, MA-

FOCUS provides improved fine-mapping performance. 

Next, we performed simulations where the trait-relevant tissue for AFR was unavailable 

and was substituted with eQTL data quantified in a proxy tissue with correlated genetic effects 

(see Methods). Performance of MA-FOCUS was highly dependent on the underlying correlation 

between proxy and causal tissue, and increased with increasing inter-tissue genetic covariance, 

as expected (Figure S10). We again observed that MA-FOCUS outperformed the baseline 

approach as well as single-pop FOCUS on AFR across all metrics (� ^ 1 � 10�? for all PIP and 

credible set metrics, and � � 0.02 with MA-FOCUS Baseline comparison and � � 0.09  with 

MA-FOCUS AFR-FOCUS comparison for sensitivity; Figure S10). 
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Finally, we performed simulations where eQTL reference panels for AFR are not 

available and EUR weights are used instead for both TWAS and fine-mapping. We found that 

MA-FOCUS' relative performance was mixed across different metrics, estimating similar causal 

PIPs and sensitivity (� � 0.69  and � � 0.90; Figure S11A, C) and smaller credible sets size 

(� � 3.73 � 10�=; Figure S11B). In all, this highlights the importance of multi-ancestry study 

design collecting gene expression data from different ancestries when possible.  

 

Multi-ancestry TWAS identifies shared architecture in blood traits 

After confirming that MA-FOCUS outperforms other methods of TWAS fine-mapping, we next 

sought to apply it to real data from cohorts of European- (EA) and African-ancestries (AA) 

ancestries. We performed ancestry-matched TWAS for 15 blood traits using GWAS summary 

statistics18 (Table S2, S5; NEA=511,471, NAA=13,298) together with an eQTL reference panel of 

LCLs from the GENOA study39  (eQTL: NEA=373,  NAA=441; see Methods). First, we estimated 

cis-genetic variance (cis-�
� ) and SNP-heritability (cis-M

� ) for expression at 14,797 genes 

assayed in both EA and AA GENOA cohorts (see Methods). We observed that, across all 

genes, cis-�
� was significantly non-zero with an average of 0.018 for EA compared to 0.024 for 

AA (� ^ 1 � 10��<< for both tests). Furthermore, focusing on the 4,646 genes whose expression 

was significantly heritable in at least one of the cohorts, cis- �
�  estimates were positively 

correlated across ancestries with T � 0.54 (� ^ 1 � 10��<< for both tests against 0 and 1; Figure 

4A), which is consistent with previous results suggesting that the genetic architecture of gene 

expression is significantly shared across ancestries39. Next, we trained prediction models using 

the FUSION pipeline and performed 5-fold cross-validation (CV; see Methods). We found CV 

T� was significantly non-zero (AA CV T� �0.11; EA CV T�=0.10; ^ 1 � 10��<< for both), which 

were strongly correlated with cis-�
� estimates (T=0.72 for EA with � ^ 1 � 10��<<; T=0.76 for AA 

with � ^ 1 � 10��<<; Figure S12AB), suggesting that in-sample prediction models perform well 

and are consistent with theory where heritability provides a predictive upper bound39,58,59.  

Next, we further validated the predictive performance of LCL expression models by 

evaluating their out-of-sample performance in the European- and Yoruba-ancestry cohorts 

(EUR and YRI, compared with GENOA EA and GENOA AA, respectively) of the independent 

GEUVADIS study (see Methods)53. While YRI are not an ideal ancestry proxy for admixed 

African Americans, we expect a significant degree of genetic similarity between the two given 

the high mean West-African component of African Americans (~80%), which YRI is commonly 

used to represent39. Consistent with our GENOA-based findings, we found that the estimates of 
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cis-�
� in GEUVADIS were significantly non-zero with an average of 0.062 for EUR compared to 

0.077 for YRI (� ^ 1 � 10��<< for both tests). We then calculated the T� between measured LCL 

gene expression from GEUVADIS individuals and expression predicted using our GENOA-

based weights. We found an average out-of-sample T� estimate of 0.04 for EUR and 0.05 for 

YRI (� ^ 1 � 10��<< for both tests; Figure S13), which while decreased compared to within-

GENOA estimates, suggests our predictive models accurately capture the genetic component of 

gene expression for ancestry groups. Estimates were significantly correlated with estimates of 

GEUVADIS cis-�
�, with T � 0.79, 0.54 for EUR and YRI (� ^ 1 � 10��<< for both tests against 0; 

Figure 4BC). The comparatively poorer cis-�
� -adjusted performance of our AA expression 

weights in the GEUVADIS YRI is not unexpected, given the ancestry differences between the 

Yoruba and African-Americans, discussed above, which likely impact the genetic regulation of 

gene expression. Indeed, we found that cis-�
� for AA and YRI are less correlated than EA and 

EUR (T=0.30 and 0.55 with � ^ 1 � 10��<< for both tests against 0; � ^ 1 � 10�4<  for testing 

correlation difference)60. Next, we evaluated across-ancestry prediction performance by 

predicting LCL gene expression levels for GEUVADIS EUR individuals using GENOA AA 

weights (similarly for GEUVADIS YRI and GENOA EA) and estimated an average T� 0.039 for 

EUR and 0.033 for YRI (� ^ 1 � 10��<< for both tests; Figure S13). Consistent with previous 

works59, we found a decrease in accuracy for GEUVADIS YRI individuals compared to within-

ancestry results (� � 1.75 � 10�5�) and similar levels of accuracy for GEUVADIS EUR (� �
0.09). Together, these results demonstrate that our prediction models capture accurately the 

heritable component of gene expression within ancestry groups and recapitulate previous 

findings on the limited transportability of cross-ancestry prediction models for gene 

expression39,59. 

Having validated our SNP-based LCL expression prediction models, we next conducted 

multi-ancestry TWAS for each of the 15 blood traits on 4,579 heritable genes in 995 unique 

independent regions (see Methods). Across all traits, we identified a total of 6,236 (2,009 

unique), 116 (57 unique) genome-wide TWAS significant genes in EA and AA, respectively, of 

which 28 were shared (17 unique) in 3029 (623 unique) regions (� ^ 0.05/4579; 3.29 unique 

genes per region; Figure 5A; Table S6; see Data Availability for the full results). Of the 8,416 

(1064 unique) LD blocks that contain GWAS signal (� ^ 5 � 10�@) in either ancestry or the 

meta-analysis, 2,933 (623 unique) also exhibited TWAS signals. Conversely, 96 (78 unique) LD 

blocks that contain TWAS signal do not exhibit GWAS signals, suggesting that TWAS identified 

novel risk regions for 15 blood traits. Of the 3,029 (623 unique) regions containing TWAS hits, 
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1,335 (319 unique) contain multiple TWAS significant associations, motivating the use of gene 

fine-mapping. We found that both normalized GWAS and TWAS effect size correlations 

between EA and AA are significantly non-zero for all traits, suggesting shared architecture at the 

individual SNP- and gene-effect level (Table S7; Figure S14; see Methods). Interestingly, we 

found that across-ancestry correlations are 20% higher on average for TWAS compared to 

GWAS ( T  = 0.061 and 0.052, respectively, � � 0.027 ; Figure 5B; Table S7), which is 

consistent with previous findings demonstrating that predicted transcriptomic risk scores 

better correlate across ancestry groups63 and suggests that gene-level effects on average 

better reflect shared biology compared with SNP-level effects.  

 

Trans-ancestry fine-mapping prioritizes likely causal genes in blood traits  

Next, we applied MA-FOCUS to TWAS results for 10 blood traits focusing on 163 genes 

overlapping the 11 unique regions that contained TWAS signals for both EA and AA ancestry for 

a given trait (see Methods). Across these 11 regions, each contained on average 7.45 TWAS 

significant associations and 3.05 genes in the credible set, none of which contained the null-

model.  We estimated an average 2.85 causal genes per region by summing over local PIPs in 

credible sets, with 20 out of 22 credible sets containing three or fewer genes (Table S8; see 

Data Availability). The average maximum PIP across credible sets was 0.99 (SD=0.03) and 

retained similar PIPs for second, and third rank (Figure S15). While estimated PIPs across 

methods were correlated, when comparing the credible sets output by MA-FOCUS and other 

multi-ancestry approaches, we observed higher means and smaller standard deviations of PIPs 

for MA-FOCUS than other approaches (Figure 6, S16). For 67 trait-gene pairs in MA-FOCUS 

credible gene sets, 59 are not detected by EA-FOCUS; out of 22 top genes in credible sets, 7 

are not detected by EA-FOCUS, respectively, which suggests that incorporating non-European 

data in well-powered loci can prioritize additional putative causal genes (Figure S17). Next, to 

determine the extent to which prioritized genes are likely to be shared or ancestry-specific, we 

performed model comparison using Bayes factors from MA-FOCUS and FOCUS (see 

Methods). We observed an average log-scale BF of 1.48, suggesting that credible-set genes 

underlying these blood traits are much more likely to be shared across ancestries than ancestry-

specific (Figure S18).  

 Next, we investigated genes to which MA-FOCUS assigned a high PIP (> 0.75) and 

included in a credible set, but that were not identified by the baseline approach. We refer to 

these genes hereafter as the ‘MA-FOCUS-specific genes’. We also looked at the converse 

situation: that is, genes that the baseline approach found strong support for, but that were not 
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prioritized by MA-FOCUS, and refer to these at the ‘baseline-specific genes’. Importantly, we 

found that all 21 baseline-specific genes had low PIPs (< 0.1) from ancestry-specific fine-

mapping in at least one ancestry, while 10 of these genes had a low PIP in both ancestries.  On 

the other hand, only two out of 31 total MA-FOCUS-specific genes had PIPs below 0.1 in both 

AA and EA. Five out of 31 total MA-FOCUS-specific genes achieved a moderate PIP of at least 

0.4 in both EA and AA ancestry-specific fine-mapping (Figure S19). These five genes are 

ARNT, BAK1, NPRL3, PHTF1, and TARS2. A literature search uncovered additional evidence 

for roles in cardiovascular system disease and development (specifically, blood cell and 

vasculature formation, diabetes, leukemia, and cardiomyopathy) among these MA-FOCUS-

specific genes (Figure S20)61,62,64–69,71,72. Overall, this result suggests that by appropriately 

modelling across-ancestry heterogeneity, MA-FOCUS can prioritize disease-relevant genes that 

would otherwise be missed from naïve meta-analyses. 

To validate genes prioritized by MA-FOCUS and the baseline approach, we next 

performed a series of validation tests comparing the credible sets (see Methods). First, we 

performed gene set enrichment analysis on the credible set genes using the DisGeNET dataset 

across all 15 blood traits. We found that MA-FOCUS’ credible sets are enriched more in 

hematological measurement categories compared to the baseline approach (25 and 13 

categories, meta-analysis P-value of 1.73 � 10��� compared to 2.91 � 10���; Figure 7; Table 

S9). Second, by restricting our focus to trait-matched DisGeNET enrichment categories, we 

observed that MA-FOCUS output more significantly enriched credible gene sets compared to 

the baseline approach (meta-analysis P-value of 7.56 � 10�3 compared to 1.3 � 10�5; Figure 7; 

Table S10). Third, using curated “silver standard” databases consisting of Online Mendelian 

Inheritance in Man (OMIM) and Orphanet for 159 blood-related diseases (see Web Resources; 

see Methods), we observed MA-FOCUS outputs a higher average AUROC curve with 0.57 

compared to 0.43, suggesting improved performance in predicting causal genes of monogenic 

and oligogenic blood-related Mendelian and rare diseases (Table S11). Altogether, we find that 

credible set genes computed using MA-FOCUS better reflect relevant disease biology 

compared to single-ancestry and alternative approaches. 

  

Discussion 

In this work, we present MA-FOCUS, a Bayesian fine-mapping method that incorporates GWAS 

and eQTL data together with LD reference panels from multiple ancestries of diverse genetic 

ancestries to estimate credible sets of causal genes for complex traits. Our method is unique in 

that it explicitly accounts for, and takes advantage of, heterogeneity in LD and the genetic 
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architecture of gene expression to improve TWAS fine-mapping performance. Importantly, our 

method assumes only that causal genes for complex traits are shared across ancestries while 

making no assumptions on underlying eQTL architectures across ancestries. This is an 

important feature of our method considering recent findings that SNP-level replication across 

genetic ancestries is weaker than gene-level replication36, and that only ~30% of SNP-gene 

expression associations are shared between European- and African- American ancestry39. 

Through extensive simulations, we demonstrate that MA-FOCUS’ ability to identify causal genes 

is superior to baseline approaches and is robust to data-dependent limitations (see Methods).  

We perform ancestry-specific TWAS and apply MA-FOCUS to 15 blood traits using 

GWAS statistics in Chen et al. and lymphoblastoid cell line eQTL data in GENOA from cohorts 

of primarily European and African continental ancestry. We report 3.29 TWAS significant genes 

per region in 623 regions across all blood traits. The cross-ancestry heritability analysis on LCL 

gene expression data, together with correlation analysis on blood traits of GWAS and TWAS 

statistics, recapitulate evidence for shared genetic architecture of blood traits between the two 

ancestries, and provide evidence for gene-level effects correlating better across ancestries 

compared with SNP-level effects. Next, in 22 regions that contain TWAS signals for both 

ancestries, MA-FOCUS reports 3.05 genes in the credible sets and estimated 2.85 putative 

causal genes per region across all blood traits. We validate MA-FOCUS’ credible sets by 

performing enrichment analyses and referencing the results of functional studies. We show that 

MA-FOCUS’ credible sets are more strongly enriched for relevant genes associated with 

hematological traits in the DisGeNET platform, a database of genotype-phenotype associations 

compiled from various sources (Figures 7). Importantly, MA-FOCUS identifies genes that are 

known to have functional relevance for cardiovascular system disease and development but are 

not identified by the baseline approach.  

Despite MA-FOCUS’ advantages in performance, as demonstrated through extensive 

simulations, we note several limitations to our analysis of blood traits. First, we find that MA-

FOCUS’ performance advantage is attenuated when the EA sample size is approximately 40 

times greater than the AA sample size (Figure S6). Across the 10 blood traits evaluated for fine-

mapping, all methods outputted similarly sized 90% credible sets (Figure 6). Additionally, the 

MA-FOCUS’ PIPs are overall strongly correlated with all three of these approaches (Figure 

S16). Despite this, as discussed previously, we find evidence that MA-FOCUS is more 

successful than other approaches at identifying genes that are functionally associated with 

blood traits. Secondly, the gene expression data for our eQTL reference panel was derived from 

immortalized cell lines39 which differ from complex living organisms in fundamental ways. 
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Therefore, this tissue type may not be the most appropriate tissue for identifying causal 

relationships with blood traits. When we explored this scenario using simulations, we found that 

both causal gene PIPs and calibration were substantially reduced when poorly correlated tissue 

was used for one of the ancestries (Figure S10). We expect this effect would be exacerbated if 

a poorly correlated tissue was used to estimate weights for both ancestries. Thirdly, our eQTL 

reference panel and GWAS cohort for the AA ancestry represent genetically admixed 

individuals whose genomes are a combination of (West) African and European ancestry. 

Therefore, when estimating weights for this ancestry, the local ancestry at any given locus 

would include some proportion of European-derived genotypes. This likely introduces noise and 

further reduces the power of our weight estimates. In total, our analysis limitations motivate us 

to perform large-scale GWAS and eQTL study on non-European ancestry and admixed 

populations with comprehensive types of tissues and cell-types. 

Here, we describe general caveats of our multi-ancestry TWAS fine-mapping approach. 

First, MA-FOCUS assumes that genes causal for complex traits are shared across ancestries, 

which neglects the possibility of ancestry-specific causal genes. However, because several 

large-scale multi-ancestry GWAS studies have shown that the majority of risk signals replicate 

in ancestries, we believe this to be a relatively minor issue18–22.  Second, MA-FOCUS models 

complex traits as a linear combination of steady-state gene expression, which neglects potential 

gene-environment interaction (GxE) or gene-gene interaction (GxG). While several works have 

supported linear assumptions for complex traits through large-scale GWAS results58,70, recent 

work analyzing large-scale GWAS from multiple ancestries has provided evidence that allelic 

heterogeneity across ancestries may be due to GxE19, and we acknowledge this as a potential 

interesting direction. 

Overall, MA-FOCUS provides Bayesian inference on gene causality for complex traits in 

specific genomic regions leveraging GWAS data, eQTL data, and LD data of multiple 

ancestries. It improves the precision in gene fine-mapping by accounting eQTL and LD 

heterogeneity across different ancestral groups and sheds light on the genetic architecture of 

complex traits. 

 

Appendix 

Estimating TWAS causal effect prior variance 
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Here we describe an estimator for the prior causal effect-size variance (i.e. ��,�
� ) similar to the 

HESS model for local heritability41. Our model assumes that marginal TWAS % statistics for � 

genes have a sampling distribution given by 

'����,�  | (� , #� , � -  .�*��

�
,�
7��, 7��  

where 7� � #�
�(�#�. We would like to define an unbiased estimator for the variance explained 

by (fixed) causal effects �. Specifically, d2T�e�Y� � Y�d2T�e� �Y � Y�f�
�d�fY � Y�g�Y. As a 

result, an intuitive (but biased) estimator for ��,�
�  would be 
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In practice �
,�
�  is extremely close to 1, hence an unbiased estimator for the sample-size scaled 

causal effect prior variance ����,�
� is given by 
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In practice when the estimator is negative (e.g., when little TWAS signal exists), we use the 

biased estimator to ensure positivity. 
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Web resources 

PLINK: https://www.cog-genomics.org/plink/ 
MESH: https://www.nlm.nih.gov/mesh/meshhome.html 
Bedtools: https://bedtools.readthedocs.io/en/latest/ 
FUSION: http://gusevlab.org/projects/fusion/ 
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GCTA: https://cnsgenomics.com/software/gcta/ 
Silver standard TWAS analysis: https://github.com/hakyimlab/silver-standard-performance 
UpsetR: https://github.com/hms-dbmi/UpSetR 
EnrichR: https://cran.r-project.org/web/packages/enrichR/index.html 
 

Data and code availability 

MA-FOCUS software: https://github.com/mancusolab/focus 
LCL prediction models and complete TWAS fine-mapping results: 
https://www.mancusolab.com/ma-focus 
Analysis codes: https://github.com/mancusolab/MA-FOCUS-data-code 
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Figures 

Figure 1. Example of correlated TWAS associations at a shared risk region. 

Toy example of TWAS Manhattan plots for EUR and AFR ancestries illustrating association
signals at a locus for the causal gene (in red) and tagging genes (in black). The correlation
among association signals is a combined result of eQTL signals and linkage disequilibrium (LD;
see Methods). By accounting for heterogeneity in eQTL effect sizes and LD across different
ancestries, MA-FOCUS produces smaller gene credible set with more posterior probability
assigned to the causal gene. 
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Figure 2. MA-FOCUS outperforms baseline approach in all three metrics as GWAS

sample sizes vary when eQTLs are independent across ancestries. 

PIPs for 100 simulated causal genes (A), the distribution of 90% credible set sizes for 100
simulated gene regions (B), and the sensitivity (C) from MA-FOCUS, and baseline approach,
varying GWAS sample sizes across multi-ancestry ancestries. See Methods section for default
parameters. The black dashed lines indicate 90%. Error bars are constructed using a 95%
confidence interval.  
 
  

29 

 
S 

00 
h, 
ult 
% 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2022. ; https://doi.org/10.1101/2022.02.10.479993doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.10.479993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

30

Figure 3. MA-FOCUS remains robust in having higher causal gene PIPs when trait

heritability mediated by gene expression differs across ancestries. 

Distribution of inferred PIPs at the causal gene when the trait architecture varies across
ancestries. We fixed trait variation explained by causal gene expression to  for
simulated EUR individuals while varying its amount in AFR individuals. The orange and purple
dotted line indicate the mean and the median of PIPs using EUR FOCUS. The black dashed
lines indicate 90%.  
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Figure 4. Heritability and correlation analysis reveal evidence for shared genetic

architecture for expression in LCLs. 

(A). The scatter plot for the genetic variance (cis- ) of LCL gene expression for AA and EA

ancestry in GENOA study. (B) (C). The scatter plots where the y-axis is a squared correlation
between measured LCL gene expression in GEUVADIS and predicted by eQTL panels from
GENOA, and x-axis is cis- . Each point represents a gene. The blue line is estimated using

ordinary linear regression. 
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Figure 5. The TWAS Manhattan Plot indicates highly correlated genes at certain regions.  

(A). The upper plot is the Manhattan plot for EA TWAS, and the lower is for AA TWAS across all
15 traits. Colors differentiate adjacent chromosomes. (B). Cross-ancestry correlation of TWAS
and GWAS effect sizes (see Methods). The correlations are higher on average for TWAS
compared to GWAS (r = 0.061 and 0.052, respectively, ). Each point represents a trait
and the red line is the identity line. 
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Figure 6. Credible sets output by MA-FOCUS have higher mean PIPs and lower standard

deviation while exhibiting similar credible set size of EUR FOCUS and the baseline

approach. 

The distribution of (A) the mean of gene PIPs in credible sets, (B) the standard deviation (SD) of
gene PIPs in credible sets, (C) credible set size. Calculations do not include null models. Mean
and median are represented by blank and black boxes for the metric distribution. 
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Figure 7. Genes prioritized by MA-FOCUS are enriched in hematological categories more

often than other methods.  

(A) The bar plot shows the number of enriched categories in DisGeNET identified by each
method within the hematological-measurement-related category. The enriched category is
defined as Bonferroni-corrected P-value less than 0.05. (B) The dot plot shows enrichment

 by categories in DisGeNET corresponding to 7 blood traits. 
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