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Highlights:

- Investigation of network-wide brain dynamics requires specialized software.

- We provide a toolbox to ease the pre-processing and analysis steps of the investigation.

- FiNN requires less processing time and memory in comparison to other toolboxes.

- Extensive documentation facilitates usage by users from various technical backgrounds.
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Abstract

In recent years, neuroscience has seen a shift from localist approaches to network-wide investigations of

brain  function.  Neurophysiological  signals  across  different  spatial  and  temporal  scales  provide  an

informative insight into neural communication. However, additional methodological considerations arise

when investigating network-wide brain dynamics rather than local effects. Specifically, larger amounts of

data, investigated across a higher dimensional space, are necessary.

Here,  we  present  FiNN  (Find  Neurophysiological  Networks),  a  novel  toolbox  for  the  analysis  of

neurophysiological  data with a focus on functional  and effective connectivity. FiNN provides a wide

range of data processing methods, introduces new methodological developments to acquire efficient and

reliable connectivity estimates that build on already existing concepts, and statistical and visualization

tools to facilitate inspection of connectivity estimates and the resulting metrics of brain dynamics. The

toolbox  is  freely  available  in  Python  (https://github.com/neurophysiological-analysis/FiNN),  and

complemented by online documentation (https://neurophysiological-analysis.github.io/FiNN/).

To  highlight  the  properties  of  our  toolbox,  we  evaluated  FiNN  against  a  number  of  established

frameworks on both a conceptual and an implementation level. We found FiNN to require much less

processing time and memory than other toolboxes. In addition, FiNN adheres to a design philosophy of

easy  access  and  modifiability,  while  providing  efficient  data  processing  implementations.  Since  the

investigation of network-level neural dynamics is experiencing increasing interest, we place FiNN at the

disposal of the neuroscientific community as open-source software. 

Keywords: connectivity, cross-frequency coupling, neural oscillations, phase-amplitude coupling

Abbreviations: cfc, cross-frequency coupling; ECG, electrocardiography; EEG, electroencephalography;

EMG,  electromyography;  FIR,  finite  impulse  response;  LFP,  local  field  potential;  MEG,

magnetoencephalography; PAC, phase-amplitude coupling; sfc, same-frequency coupling.
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1. Introduction

Analyzing dependence between neurophysiological signals, and the definition of large-scale networks, 

has become an important field of research that greatly enhances our comprehension of communication 

between distinct neural structures (Bressler & Menon, 2010; Siegel et al., 2012). Neural connectivity in 

particular is commonly quantified by estimating the degree to which neural oscillations within the same 

frequency band or across different frequency bands relate to each other (Fries, 2005). These two types of 

communication modes are known as same-frequency coupling and cross-frequency coupling, respectively

(Friston, 2011; Hyafil et al., 2015).

Neural communication on a network level can be quantified on the basis of neurophysiological data from 

a wide variety of data sources including electroencephalography (EEG), magnetoencephalography 

(MEG), and local field potentials (LFPs) (Engel et al., 2013; Ganzetti & Mantini, 2013). An estimation of

connectivity across regions and/or frequencies is generally more computationally intensive than the local 

synchronization of neural activity within a smaller spatial region (He et al., 2019). While the number of 

power estimates are linearly related to the number of sensors the number of potential connectivity 

candidates increases in a quadratic order of magnitude. Furthermore, in many applications, the amount of 

neurophysiological data is rising rapidly, partly due to increasingly dense sensor setups and high sampling

rates (Brinkmann et al., 2009; Sahasrabuddhe et al., 2020; Song et al., 2015), as well as to more 

demanding analysis techniques, such as machine learning. A greater number of samples is therefore 

required (Glaser et al., 2019; Kus et al., 2004). 

In recent years, a number of toolboxes include functions for estimating neural connectivity. However, the

majority are either heavyweight frameworks that deeply encapsulate data, making  modifications or the

integration into an existing pipeline difficult and increasing the time required for memory processing; or

frameworks  with broad  usability,  but  limited  functionality  for  neuroscientific  data  analysis  and

interpretation (see Section 3).  Here, we introduce FiNN (Find  Neurophysiological  Networks),  a novel
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framework written in Python that provides tools to analyze neurophysiological data in a bid to quantify

network-wide neural communication within a lightweight and computationally efficient framework. FiNN

includes  several  functions  for  cleaning  and  processing  neurophysiological  data  in  the  context  of

connectivity. It also includes visualization routines and statistical methods, both of which are useful tools

for the analysis of connectivity in large, high-dimensional neurophysiological data sets.

The goal of FiNN is to provide an open-source software toolbox offering easy-to-use and computationally

efficient methods for both users and developers. From a user perspective, it is important that the toolbox

is accessible and manageable. We therefore designed the functions in FiNN such that they can be readily

used without a deep knowledge of the underlying functionality. In addition to an elaborate documentation

on the individual  functions,  we included detailed information on the internal  processing functions to

promote modifiability. Furthermore, to facilitate the analysis of large datasets across high dimensional

spaces, memory and CPU consumption were strictly monitored and reduced, thereby achieving a high

level of scalability. 

Section 2 describes the functionality of the toolbox, while Section 3 discusses FiNN in relation to the

established  toolboxes  generally  used  to  analyze  neurophysiological  data.  This  is  followed  by  an

illustration of its performance in comparison to a selection of established toolboxes in Sections 4 and 5. 

2. Software structure and design

2.1. Toolbox documentation and installation

FiNN  (v1.0)  is  freely  available  to  the  research  community  as  open-source  code  on  GitHub

(https://github.com/neurophysiological-analysis/FiNN). It can be downloaded as a zip file containing the

last release, or by cloning the git repository. Documentation is available at  https://neurophysiological-

analysis.github.io/FiNN/, and includes a detailed description of the functions implemented. Furthermore,

FiNN contains a demo folder with several trial scripts. The scripts are intended to provide an introductory

demonstration  of  the  functions  implemented,  but  can  also  be  used  to  gain  a  deeper  methodological
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understanding of the functions. An exemplary workflow utilizing FiNN for the analysis of EEG data is

provided in Table 1.

The FiNN toolbox was developed with Python version 3.8 (Van Rossum & Drake Jr, 1995) and requires 

the following Python packages: numpy (Harris et al., 2020), scipy (Virtanen et al., 2020), PyQt5 , 

functools, lmfit (Newville et al., 2016), matplotlib (Hunter, 2007), rpy2 . The MNE package is required if 

the user wishes to load BrainProducts data (BrainProducts GmbH, Gilching, Germany). The following R 

(R Core Team, 2021) libraries are required if the user wishes to perform statistical evaluation: Matrix 

(Bates & Maechler, 2021), lme4 (Bates et al., 2015, p. 4), carData (Fox et al., 2020), and car (Fox & 

Weisberg, 2019). 

Processing step Module Function

1. Preparation file_io load_brain_vision_data.py or data_manager.py 

     - Load Data

2. Pre-processing

     - Artifact rejection filters frequency.py

     - Bad channel rejection cleansing bad_channel_identification.py or channel_restoration

3. Feature extraction

     - Calculate connectivity sfc directional_absolute_coherency.py

     - Identify faulty samples cleansing outlier_removal.py

4. Feature evaluation

     - Statistical analysis statistics generalized_linear_model.py

5. Visualization

     - Visualize results visualization topoplot.py

Table 1. Illustrative example of a pipeline for processing raw neurophysiological data.

2.2. Organisation of the FiNN Toolbox

FiNN  (v1.0)  consists  of  nine  modules:  basic  processing,  artifact  rejection,  filters,  cross-frequency

coupling,  same-frequency  coupling,  statistics,  visualization,  file  IO,  and  miscellaneous.  A  brief

description of each module is provided below. Further details can be found in the online documentation
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(https://neurophysiological-analysis.github.io/FiNN/). Recommendations are also provided as to how to

apply these for analysis, where applicable. 

2.2.1. Basic processing package

For initial processing, the basic processing package offers the common average re-referencing (CAR) and 

downsampling functions. This function subtracts from the data the part that is shared by all channels, 

since it is presumably the result of activity at the reference electrode, and hence equal in all channels. 

This procedure is recommended only when a large number of EEG channels (≥ 64) is available and these 

are equally distributed across the head (Nunez, 2010). The downsampling function downsamples a signal 

from its original sampling frequency to a lower, configurable target sampling frequency. Prior to the 

application of the downsampling function, it is important for the signal to be lowpass filtered below half 

the target frequency, as aliasing artifacts may otherwise be introduced into the downsampled signal 

(Shannon, 1948, 1949). Furthermore, we recommend that the target sampling frequency be set as low as 

possible while maintaining a sufficient level of temporal accuracy to accelerate data evaluation further 

down the line.

2.2.2. Artifact rejection package

The artifact rejection package contains two functions to detect artifacts, and one function to clean the 

data. Bad channel identification identifies individual channels in which the power in a predefined 

frequency range deviates by more than three standard deviations (default value; configurable) from the 

mean power of all given channels as faulty channels, since spectral power is a useful feature for 

separating artifacts from EEG (Islam et al., 2016). In an optional second step, the function provides a 

custom-built dialogue window that shows the mean power of each channel (Figure 1A). Channels marked

as faulty are automatically highlighted, and the user can visually confirm the selection and make changes 

accordingly. The outputs of the bad channel identification function are a list of non-faulty channels, and a

list of faulty channels. Furthermore, it is highly recommended that frequency bands that are part of the 
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subsequent analysis for artifact detection be avoided. This advice should be followed to ensure that the 

results are not biased, as side effects may arise if the power in the frequency band of interest is used in the

artifact rejection. 

Once the faulty channels have been identified, an optional follow-up step is to restore them using the

channel restoration function. This restores faulty channels by averaging the signals from their respective

neighbors (Figure 1B, 1C). A default adjacency matrix is provided to the channel restoration function. In

the event of  one or more neighboring channels of a faulty channel being faulty themselves, the channels

are iteratively restored, commencing at the channel with the most non-faulty neighbors. Once a channel

has been restored during an iteration, it is considered a non-faulty channel during the next iteration of the

reconstruction process. 

The outlier removal function removes any sample within a data set with a z-score higher than two (default

value, configurable). This process is repeated iteratively until only those samples with a z-score of less

than two remain or until a minimum sample threshold is reached. This function should be applied only to

data  from a unique,  single  state  (e.g.,  within the  same subject  and same condition).  It  assumes that

provided data is from a single process with a Gaussian distribution. Any data segments which fail this

assertion are iteratively removed from the provided data. In the event that this assumption cannot be met,

the approach presented here may not apply. The assumption of Gaussianity may be evaluated by either

visual inspection or tests for normality. 
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Figure 1. Practical application of the bad channel detection and channel restoration functions. (A) Bad channel detection.

This figure shows the average power in a predefined frequency band for all included channels. A channel is flagged as bad if the

individual power-based z-score is more than 3 standard deviations from the mean. Channels can be manually classified as normal

or faulty either by clicking the corresponding dot in the plot, or by pressing the corresponding button. (B) Time-series traces at a

sub-selection of the EEG electrodes shown in (A) before channel restoration. (C) Time-series traces at the same sub-selection of

EEG electrodes shown in (B) after channel restoration.

2.2.3. Filters package

The main function in this module is the implemented  finite impulse response (FIR) filter. The filter is

implemented via an overlap add approach (Rabiner & Gold, 1975) to speed up the processing procedure,

especially  for  longer  signals.  Furthermore,  the  filter  implementation  provides  a  rapid  and  precise

operation mode which initially converts the input data into either 32 bits floats (fast) or 64 bits floats

(precise),  and subsequently performs all operations with the required precision. The FIR filter can be

configured as either a low-pass, high-pass, band-pass or band-stop filter. Furthermore, custom filters can
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be easily designed and accessed using the functions listed in the main FIR function.  Additionally,  a

wraparound scipy’s Butterworth filter is also available. 

2.2.4. Cross-frequency coupling (cfc) package

The cross-frequency coupling package currently implements the following phase amplitude coupling 

(PAC) metrics: direct modulation index (Scherer et al., 2022a), modulation index (Tort et al., 2008), 

phase-locking value (Mormann et al., 2005), and mean vector length (Canolty et al., 2006). A description 

of the metrics can be found in Table 2. The input signals should already be filtered into the frequency 

bands of interest, e.g., with the FIR filter implemented in the filters package (Section 2.2.3).

2.2.5. Same-frequency coupling (sfc) package

The same-frequency coupling package currently implements the following metrics: directionalised 

absolute coherency (Scherer et al., 2022b), magnitude squared coherence (Carter et al., 1973), imaginary 

coherence (Nolte et al., 2004), weighted phase lag index (Vinck et al., 2011), and phase slope index 

(Nolte et al., 2008). A description of the metrics can be found in Table 2. It also includes a function for 

calculating the complex coherency, which can be interpreted as a measure of consistency between two 

signals with a constant phase shift, at a specific frequency (Shaw, 1984). Complex coherency is 

implemented as an additional function since it is a common precursor of the magnitude squared 

coherence, imaginary coherence, and others. The metrics implemented in the sfc module accept input data

from the time domain, the frequency domain, and the complex coherency domain. Apart from the most 

commonly used time domain signals, the additional input data formats (frequency domain and complex 

coherence domain) were added to support modifiability of the implemented functionality, and to allow 

more efficient processing of multiple connectivity metrics in parallel when the data is already available in

the required format. 
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Name Description
Cross-frequency coupling

Direct modulation index  
(Scherer et al., 2022a)

The direct modulation index metric is a variant of the modulation index from (Tort et al.,
2008) and evaluates phase amplitude coupling (PAC) between two signals. Instead of 
quantifying PAC using entropy, a sinusoidal slope is fitted to the phase-amplitude 
histogram. This metric is statically bounded to the interval [0, 1] which allows for the 
interpretation of absolute PAC changes.

Modulation index
(Tort et al., 2008)

The modulation index quantifies PAC as the Shannon entropy (Shannon, 1948) of the 
phase-amplitude histogram between two signals. This metric is not bound to a static 
interval, and therefore allows only for interpretation of the resulting values in relative 
changes.

Phase-locking value
(Mormann et al., 2005)

The phase-locking value evaluates the average phase lag between the amplitude of a first
signal and the phase of a second signal. This metric is not bound to a static interval, and 
therefore allows only for interpretation of the resulting values in relative changes.

Mean vector length
(Canolty et al., 2006) 

The mean vector length metric evaluates whether the amplitude of one signal peaks at a 
specific phase in a second signal.

Same-frequency coupling

Directional absolute coherency
(Scherer et al., 2022b)

The directional absolute coherency utilizes the complex coherency function to calculate 
the magnitude squared coherence (Carter et al., 1973), phase slope index (Nolte et al., 
2008), and the imaginary coherence (Nolte et al., 2004). These three metrics are 
combined to create a single reliable measure of coherence drawing from their individual 
strengths without incorporating the individual weaknesses. This connectivity metric is 
directional, can detect volume conduction, and is statically bound to [-1, 1].

Magnitude squared coherence
(Carter et al., 1973)

Using the complex coherency function, magnitude squared coherence is calculated 
(Carter et al., 1973) between a source signal and a target signal. To derive a rational 
number from the complex output of the complex coherence, the absolute of the complex 
coherence is calculated. This connectivity metric is directionless, cannot detect volume 
conduction, and is statically bounded to [0, 1].

Imaginary coherence
(Nolte et al., 2004)

The imaginary coherence is calculated using the complex coherency function by taking 
the imaginary component of the complex coherence. This connectivity metric is 
directionless, may detect volume conduction, and its output is not statically bound. The 
latter renders this metric susceptible to bias if the sensors have been moved (e.g., on 
different measurement days).

Weighted phase-lag index
(Vinck et al., 2011)

The weighted phase lag index is an extension of the phase lag index (Stam et al., 2007). 
This function is directionless, can detect volume conduction (approaches zero in vicinity 
of 0°/180° phase shift), and is statically bound to [-1, 1].

Phase slope index
(Nolte et al., 2008)

The phase slope index is calculated using the complex coherency function, and is 
normalized by its standard deviation. Due to the additional need for normalization, more 
data is required than for the other connectivity estimation methods. This metric is 
directional, can detect volume conduction (approaches zero in vicinity), and is bound to 
[-1, 1].

Table 2. Overview of the cross-frequency and same-frequency coupling metrics implemented in the FiNN Toolbox.
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2.2.6. Statistics package

The statistics package contains the generalized linear mixed models function, which allows to employ 

generalized linear mixed models in the statistical evaluation of an investigation. The rpy2 package is used

to wrap around the lme4 package (Bates et al., 2015) in R (R Core Team, 2021). The implementation 

presented in FiNN provides a complete and easily interpretable output which comprises both the 

significance values, indicating how reliable an effect is, and the coefficients, allowing for an estimation of

how impactful an observed effect is. 

2.2.7. Visualization package 

FiNN offers the topoplot function, with the additional functionality of visualizing various levels of 

significance. Depending on their statistical significance, individual channels may be marked both before 

and/or after multiple comparison correction (Figure 2). The topoplot function is built on top of Matplotlib 

(Hunter, 2007), which is a data visualization library in Python. Since this function is solely responsible 

for visualization, any feature calculation and/or statistical evaluation has to be performed independently.

Figure 2. Topography plot of demo data. Oscillatory power was simulated to significantly increase above the left motor cortex 

and decrease above the right motor cortex. At the center, the effects were modeled to be significant after multiple comparison 

correction. This is marked at the electrodes position using full white dots.  The outlying areas of these effects were simulated to 

be also significant, but only prior to multiple comparison correction, this is indicated by half-filled dots at the electrodes location.

Finally, non-significant areas are indicated by black dots.
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2.2.8. File IO package 

When investigating network-wide brain dynamics,  larger amounts of data have to be accommodated.

FiNN offers the data manager module to handle large file sizes. In Python, pickle (.pkl) is a well-known

tool for saving arbitrary variables to disk. However, when loading or writing a file, it has the well-known

shortcoming of  consuming multiple  times more  memory than  the  size  of  the  file  itself.  This  causes

memory spikes which may in turn lead to unstable behavior and crashes if not handled carefully. The data

manager  function  circumvents  this  issue  by  processing  a  large  file  into  several  smaller  ones.  This

increases the stability of the overall  processing pipeline and reduces the likelihood of requiring user

intervention, particularly if the pipeline is partially or fully automated. 

2.2.9. Miscellaneous package 

Due  to  the  large  size  of  neuroscientific  data  sets,  it  is  beneficial  to  separate  the  processing  into

subprocesses and perform operations in parallel. When using the Python native subprocess pool, however,

all subprocesses may receive or send their data at the same time. This  behavior is similar to issues of

pickle-based file reading and writing (see previous section). The FiNN Toolbox therefore offers the timed

pool function,  a  custom-built  subprocess  pool  that  limits  the  sending  or  receiving  of  data  to  one

subprocess  at  a  time.  This  implementation  substantially  decreases  the  risk  of  memory  spikes  for  a

negligible increase in run time. Additionally, the timed pool function has two advantages over the Python

native subprocess pool. First, there is an option to delete the original input data immediately after its

function is executed, thus releasing additional memory. Second, there is an option to add a configurable

life-time duration to each subprocess. When a subprocess does not return a result within the allotted life-

time duration, it will be restarted. This behavior is particularly suitable in the event that one or more of

the subprocesses do not terminate within a reasonable time, e.g., when running a randomly initialized

optimization loop. 
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3. Comparison to other frameworks

A large number of open-source toolboxes have been developed to support the processing and analysis of 

(neurophysiological) signals. Here, we compare FiNN to a selection of existing toolboxes in terms of 

scope and computational performance (i.e., processing time and memory consumption). These other 

toolboxes were selected either on account of their reputation in scientific data analysis (e.g., scipy) or as a

result of key-word-based searches (e.g., “Python toolbox EEG”). We selected the search engine 

startpage.com, as it delivers Google results while anonymizing search requests, and is therefore not 

subject to a user-specific filter bubble (Salehi et al., 2018). In the following paragraphs, the selection of 

frameworks with which the FiNN framework is compared is described in more detail.

3.1. Python-based frameworks

Two Python-based frameworks that are widely used in general data processing and analysis are scipy 

(scientific python) (Virtanen et al., 2020) and scikit-learn (Pedregosa et al., 2011). Scipy tends to focus 

on data processing, whereas the key aspect of scikit-learn is data analysis. While the scope of scipy 

encompasses mostly functions for basic digital signal processing, it has also been expanded to cover other

areas including statistics and image processing. Scikit-learn, on the other hand, focuses on machine 

learning and related functions. It includes functions such as principal component analysis (Hotelling, 

1933; Pearson, 1901) and independent component analysis (Makeig et al., 1995), which are commonly 

used for the purpose of artifact identification and removal (Xue et al., 2006). 

One  major  advantage  of  frameworks  such  as  scipy  and  scikit-learn  is  that  they  are  usually  heavily

modified towards a small memory footprint and limited CPU consumption. Scikit-learn in particular has

been  optimized  for  speed,  which  becomes  increasingly  important  as  the  complexity  of  the  applied

machine learning algorithm increases. On the other hand, since scipy can be categorized as a low-level

framework, the usage of most functions requires a substantial amount of background information from the

user to guarantee correct configuration and application. Furthermore, while scipy excels in basic digital
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signal processing, it is of limited use for the analysis of neuroscientific data. The framework lacks the

data analysis functions that are specific to the field of neuroscience, such as connectivity metrics, and

proper visualization functions, such as topoplots. 

In comparison to scipy or scikit-learn, FiNN is intentionally more simply structured. It does not include

any function with packed parameters, where multiple parameters are packed into one single parameter, or

functions that take an arbitrary number of keyword arguments. Parameters within these types of functions

have the tendency to become hidden or lost configuration options. On the basis of these differences, we

aimed  to  facilitate  the  comprehension  of  the  functions  implemented  in  FiNN,  especially  when

investigating the code and interim results, in an attempt to learn more about a method (e.g., complex

coherency) or about why it fails to produce an anticipated output.

One well-known Python-based framework that was specifically developed for the analysis and 

visualization of neurophysiological data, is MNE (Maximum Norm Estimation) (Gramfort et al., 2013). 

MNE has its roots in the estimation of source-space signals from signal-space signals via EEG or MEG 

recordings. Unlike scipy and scikit-learn, MNE is a very high-level framework that offers a wide range of

neuroscience-specific functions. These methods are often configured in predefined ways, making any 

deviations from the intended application case rather difficult. MNE focuses strongly on mathematical 

precision. This, in turn, mandates a high memory consumption and slow data processing speed. MNE 

follows a fundamentally different design philosophy to FiNN. While FiNN aims to provide methods 

which can be easily integrated into any workflow, MNE is almost exclusively used if the proposed MNE-

specific pipelines are implemented for data processing. This results in a lower degree of customizability 

when using MNE rather than FiNN. Another difference is the focus of optimization. MNE focuses on 

optimal mathematical accuracy, whereas FiNN allows the user to define the trade-off between high 

mathematical accuracy, high processing speed and efficient resource usage, e.g., in applications where 

online analysis is necessary.

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2022. ; https://doi.org/10.1101/2022.02.11.479403doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.11.479403
http://creativecommons.org/licenses/by-nc-nd/4.0/


NeuroKit2 (Makowski, 2016) is another Python-based framework for the analysis of neuroscientific and 

neurophysiological data. The framework was designed to work with electrocardiography (ECG), 

electromyography (EMG), and EEG data. It provides an adequate range of functionality with a different 

focus to FiNN. While NeuroKit2 aims to be a generalist for any kind of neurophysiological signals, FiNN

focuses on EEG/EMG/MEG and LFP signals. This difference in focus can be readily observed in the 

functionality provided. For instance, NeuroKit2 offers methods to analyze heart rate variability via ECG, 

or the autocorrelation of EEG signals, while FiNN offers metrics for connectivity between EEG channels,

or functionality to visualize a topoplot. Neither connectivity nor topoplot functionality are offered in 

NeuroKit2.

Finally, there is a wide range of Python-based frameworks with limited functionality or rather rigid data 

processing pipelines. These frameworks include NeuroPycon (Meunier et al., 2020), Plotly (Plotly 

Technologies Inc., 2015), matplotlib (Hunter, 2007), HEAR (Kobler et al., 2019), Pygpc (Weise et al., 

2020), Human Neocortical Neurosolver (Neymotin et al., 2020), Neo (Marcus et al., 2019), nipype 

(Gorgolewski et al., 2011), ScoT (Billinger et al., 2014), PyEEG (Bao et al., 2011), Gumpy (Tayeb et al., 

2018). Due to either a specific focus on a single topic or limited flexibility, these frameworks were not 

compared with the framework presented in this study. 

3.2. MATLAB-based frameworks

As with Python, a large range of single application case frameworks are also written in MATLAB. The 

three most widely-known frameworks based in MATLAB are Fieldtrip (Oostenveld et al., 2011), 

Brainstorm (Tadel et al., 2011), and EEGLAB (Delorme & Makeig, 2004). Fieldtrip is probably the most 

widely used MATLAB-based framework for the analysis of neuroscience data. From a conceptual point 

of view, Fieldtrip is very similar to MNE as it offers high-level access to a large pool of functions. Almost

any kind of electrophysiological and medical imaging data can be processed using Fieldtrip. Brainstorm is

a framework that focuses on data acquired via EEG or MEG. Like Fieldtrip, it provides a broad range of 

functionality for data analysis, statistical evaluation and subsequent visualization of the results. Finally, 
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EEGLAB is presumably the most high-level of all the frameworks. Much of the core functionality is 

accessible via custom-built dialog windows, enabling the user to analyze the data with ease, while at the 

same time maintaining very tight control over the processing pipeline and the data flow. However, due to 

its high-level nature, EEGLAB a certain amount of functionality remains inaccessible to the user.

The differences between the MATLAB-based frameworks and the FiNN framework do not lie primarily 

in the functionality or the scope of the frameworks, but rather in the differences between MATLAB and 

Python as a programming language. The most significant difference between MATLAB and Python is 

accessibility. Python is freely accessible, both monetary-wise and in terms of its source code, while 

MATLAB is paid-only and proprietary. The latter concept hinders scientific cooperation since the 

correctness of MATLAB libraries cannot be independently verified, nor is MATLAB available to 

everybody. Furthermore, working with MATLAB hampers code organization by 1) allowing only a single

function of a file to be called from another file, and 2) the unintuitive way that classes are implemented in

MATLAB (Fangohr, 2004; Ozgur et al., 2017). These two factors make it much more difficult to organize

larger programmes in MATLAB, thereby greatly increasing development time (and, by extension, the 

likelihood of erroneous code development). Thirdly, although both MATLAB and Python are 

programming languages which work as interpreters, they differ in their design philosophy. This is visible 

in, e.g., the application of the copy-on-write pattern for memory management in MATLAB (Shure, 2006).

Python, on the other hand, does not copy objects when assigning, but creates a link between a target and 

an object. This difference enables Python to absorb significantly less memory, and a much shorter 

processing time is required when executing code. Finally, while MATLAB comes with a dedicated 

programming interface, Python users may select a programming interface at their own discretion.
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4. Testing, validation, and evaluation

System tests have been successfully applied to all the functions implemented in FiNN. Functional tests

were performed for mathematically more complex components such as the FIR filter and the complex

coherence calculation using scipy as a reference implementation. Automated unit tests were implemented

in the framework to verify that its behaviour is as designated.

We evaluated the performance of the FIR filter against the implementation from MNE in terms of speed, 

and the performance of the subprocess pool against both the implementation from joblib used in MNE 

and the default subprocess pool implemented in the multiprocessing package in Python, in terms of RAM 

consumption. These two functions were selected as they necessitate efficient implementations (both RAM

and CPU time-wise) if evaluation is to be rapid. Biological data recorded from the human subthalamic 

nucleus was used for the evaluation process (Milosevic et al., 2020). During the three subprocesses, 

signals of different lengths, varying between 30 seconds and 24 hours (artificially expanded), were 

filtered using both FIR implementations. The data was appended via repetition as required. All 

parameters were configured equally to achieve a maximum degree of comparability between the two 

implementations. The scripts of the above evaluations and comparisons are provided in the toolbox 

(https://github.com/neurophysiological-analysis/FiNN).

5. Results

The  FIR  filter  and  the  multiprocessing  pool  of  FiNN  were  compared  to  the  same  functions  when

implemented in MNE. The processing times of the FIR filter as implemented in FiNN and MNE are

shown in Figure 3. Both configurations in FiNN were substantially faster than their counterparts in MNE,

provided that  continuous data sets were of 1-hour length or less.  When the fast  implementation was

chosen in FiNN, this implementation of the FIR filter was always executed more quickly than its MNE

counterpart. While the difference was up to 670% more rapid for small data sets, the implementation of

FiNN remained approximately 10% faster for very long continuous data sets (24 hours) (Figure 3).
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Figure 3. Processing time of the FIR filter implemented in FiNN and MNE. The rows show the processing time (mean and

standard deviation) on signals with varying durations in the (A) fast mode and (B) precise mode. The left column shows the

runtime in microseconds.  The right column shows the percentage increase in speed of the FIR filter implemented in FiNN

relative to the implementation in MNE (mean and standard deviation).

As shown in Figure 4, the multiprocessing pool implemented in FiNN requires less RAM compared to the

default multiprocessing package included in the native Python multiprocessing package and MNE with

the multiprocessing package backend.
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Figure 4. Random access memory of the subprocess pool as implemented in FiNN, MNE, and the native multiprocessing

package in Python. For comparison, the relative memory consumption of each pool is shown as a percentage of the memory

consumption of the multiprocessing pool implemented in FiNN.

6. Conclusions

Neuronal information processing takes place on a local level and on a network level (Reimers, 2011; 

Thorpe, 1989; Zhang et al., 2016). Therefore, to understand how information is processed, it is also 

crucial to investigate the non-local components of information processing. To this end, we present FiNN, 

a Python based framework used to Find Neurophysiological Networks and subsequently analyze them. 

FiNN implements both established and novel metrics for the evaluation of the same frequency coupling 

(Fries, 2005) and cross frequency coupling (Canolty & Knight, 2010) analyses  used to investigate 

network level information flows. In particular, FiNN offers implementations for the newly proposed 

connectivity metrics directional absolute coherence (Scherer et al., 2022b) and direct modulation index 

(Scherer et al., 2022a).

The amount of data collection in neuroscience application is steadily rising with increasingly powerful 

frequency amplifiers and an ever-growing number of simultaneously recorded channels (Song et al., 

2015). Concurrently, the number of features extracted from this raw data also increases (Vaid et al., 
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2015). For these reasons, efficient data processing is essential. One major benefit of FiNN is its strong 

optimization towards processing speed and minimal memory consumption. This is reflected not only in 

the individual functions, which have been optimized to perform as little recalculation as possible, but also

in the modules provided. Exemplary modules for this design philosophy are the custom subprocess pool 

for parallel processing or the data manager for I/O operations, both of which are included in this 

framework. 

Despite  the  fact  that  FiNN  includes  many  elements  to  assist  potential  users  in  the  analysis  of

neurophysiological  data,  modifiability  was  still  a  major  concern  during  development.  Although  the

functionality available offers many parameters to calibrate it to a specific application case, edge cases are

difficult to identify. The high level of modifiability provided by FiNN should be most helpful in these

cases. Since all functionality is implemented in open-source languages, the programming code can be

easily amended to cover specific cases encountered in a user’s data analysis. Furthermore, not only the

uppermost,  but  any  layer  of  functionality  was  fully  documented  to  increase  support  for  potential

customization efforts. 

Although  the  main  focus  of  FiNN is  on  the  analysis  of  network  level  communication  (both  same-

frequency and cross-frequency) from neurophysiological data, it also provides a full evaluation pipeline

for the investigation of local and network level information processing from EEG, MEG, EMG, and/or

LFP based data. The pipeline offered by FiNN encompasses, e.g., modules for data pre-processing such

as semi/fully-automated outlier detection, postprocessing and visualization, and structural functionality to

ease parallel processing. Although FiNN was originally developed with EEG and EMG data in mind, the

implemented methods are well suited to  analyze any kind of neurophysiological signals (e.g., LFP and

MEG).
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6.1. Limitations

Since neuroscience is a field that brings together researchers from diverse backgrounds, there is a large

variety in terms of programming skills. This is a fact that has to be carefully considered when developing

a framework for such a broad community. While FiNN was designed with this criterion in mind, users are

currently still required to have a basic level of proficiency in Python when using the FiNN Toolbox. Once

this has been met, the presented framework allows a simple “plug & play” as much of the functionality

can be used with standard, predefined parameters to generate good results. We recommend, however, that

the functionality provided be tuned in accordance with the analyzed data so as to further enhance the

performance of the offered functionality, thereby increasing the quality of the results. These adjustments

can easily be made via an extensive range of parameters offered for calibration of the said functionality.

A demo folder with several example scripts was added not only to assist with any potential calibration,

but also to support potentially interested users in learning how to implement the functions provided.

6.2 Outlook

Initially,  FiNN  was  developed  for  in-house  evaluation  of  experimental  paradigms  generating

neurophysiological data. As the number of paradigms and their subsequent analyses increased, so too did

the functionality of FiNN. Meanwhile, FiNN has been developed to the extent where it not only supports

in-house evaluation of neuroscientific investigation, but also external ones. We are therefore pleased to

share FiNN as an open-source software with the neuroscientific community.
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