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In Equation 5, b is the curl field gain. As is typical for this paradigm, the force perturbation led to 171 
large deviations (i.e., errors) from the baseline movements that were subsequently reduced over 172 
many reaches. Abrupt removal of the force field led to large deviations in the opposite direction. 173 
To measure the horizontal force exerted, subjects were exposed to a force channel trial every five 174 
trials throughout the experiment, where reaches appeared to travel in a straight-line path towards 175 
the target. While the trends in error onset and reduction were similar in both younger and older 176 
adults, there were distinct differences in how they chose to reach the target. 177 

 178 
Fig 2. Experimental setup and conditions. (A) Subjects controlled a cursor on a computer screen by 179 
making reaches while grasping a robotic manipulandum, reaching anteriorly from one circle to a single target 180 
circle. (B) Subjects experienced 900 trials of varying dynamics. '()*+,-*  and .()/0&1  phases have no 181 
perturbations, while +*("-,-2#imparted a curl field force specified in Equation 5 and represented by the gray 182 
arrows pushing them perpendicular to the direction of their reach. 3/(--*+#1",(+) were interspersed throughout 183 
the experiment, where subjects moved along a straight-line path to the target within a force channel. These trials 184 
are used to estimate the extent to which subjects were compensating for the dynamics by measuring the force 185 
that subjects pushed into the force channel wall, represented in gray. Details of how the channel trial is 186 
implemented are summarized in the Methods. 187 
 188 

For our analysis, we quantify performance using three common metrics of learning: 189 
maximum perpendicular error, maximum perpendicular force, and a trajectory-derived adaptation 190 
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index. Maximum perpendicular error is measured in non-channel trials and is calculated as 191 
horizontal deviation from a straight-line trajectory from the start position to the target. Maximum 192 
perpendicular force is measured in channel trials and is a coarse reflection of learning as it is a 193 
measure of the anticipatory force the subject is generating to counter the force field. The adaptation 194 
index normalizes the anticipatory force by the velocity of the movement, purportedly correlating 195 
to a subject’s estimate of the curl field gain. However, this metric is also a reflection of desired 196 
error cancellation and will be influenced by subjective strategies. We focus on performance at four 197 
phases of the experiment: the last five trials of the baseline period (late baseline), the first and last 198 
five trials in the learning period (early learning and late learning), and the first five trials after the 199 
perturbation was removed (early washout).  200 

Younger adults exhibited smaller perpendicular position errors than older adults in both 201 
late baseline (mean±s.e., -0.84±0.15 cm versus -0.94±0.10 cm) and late learning (-0.92±0.29 cm 202 
versus -1.17±0.26 cm). They also exhibited greater maximum perpendicular force at late learning 203 
(12.39±1.63 N versus 7.13±1.48 N), and a higher adaptation index at late learning (0.857±0.053 204 
versus 0.651±0.060). Notably, maximum perpendicular force and the adaptation index are 205 
significantly different between older and younger adults (P = 0.031 and P = 0.017, respectively, 206 
using unpaired t-tests), consistent with the conventional interpretation that older adults learn less 207 
than younger adults [26]. However, this conclusion does not consider the potential strategic 208 
differences between older and younger adults that may also cause these observed differences.  209 
Model fits to reach trajectories 210 

To describe these trajectories, we model the limb as a point mass that moves in a two-211 
dimensional plane. Similar to the simplified model described above, we assume an internal model 212 
of the curl force field is parameterized by the gain. The model’s foundation is adapted from Izawa 213 
et al. 2008, where this internal model of the state dynamics (what we call “proportion learned”) 214 
was used to calculate the control law [25]. However, our model assumes that the state is 215 
deterministic and perfectly observed and includes higher derivative terms analogous to muscle 216 
activation filters [24]. The model uses a linear dynamical system, which includes hand position, 217 
velocity, force, rate of force, and target position as state variables. The model cost function 218 
penalizes hand position error from target, hand force, rate of change of hand force, second 219 
derivative of hand force (control input), terminal position error, terminal velocity, terminal force, 220 
and terminal rate of change of force. We fit trajectories from the model to the experimentally 221 
observed trajectory data, where a single controller was used to describe all four phases of the 222 
experiment (late baseline, early learning, late learning, and early washout), and only the model’s 223 
value for proportion learned was allowed to vary between phases. Critically, we assume that within 224 
a population, the strategy remains the same throughout the course of the experiment where each 225 
phase uses the same cost parameters. 226 

Using this method, we found model fits that accurately described the experimental data for 227 
both younger and older adults. The results from the best fit model for each age group are 228 
summarized in Fig 3, which shows the model fits’ spatial trajectories (Fig 3A) and each of the 229 
learning metrics for each phase (Fig 3B). For both subject groups, the model-generated trajectories 230 
in both late learning and early washout had learning metrics fall within the 95% confidence 231 
intervals of the experimentally observed trajectories.  232 
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 233 
Fig 3. Model fits for younger and older adults. (A) Model-produced trajectories for late baseline, early 234 
learning, late learning, and early washout are compared to data from older and younger adults. Data from the 235 
experiment are shown in black with the 95% confidence interval shaded in gray. Model fits are shown in green 236 
for younger adults and blue for older adults. (B) Maximum perpendicular error, adaptation index, and maximum 237 
perpendicular force are compared for each phase. Experimental data represented in gray bars with error bars 238 
representing 95% confidence intervals, and model fits are represented in green and blue for younger and older, 239 
respectively. 240 
 241 
 Some learning metrics did not fall within the 95% confidence interval for the late baseline 242 
and early learning phases. The maximum perpendicular error and maximum perpendicular force 243 
for both older and younger adults fell outside this range. These phases, however, are exemplary in 244 
capturing the limitations of our model. Some of the natural curvature seen in the trajectories, a 245 
symptom of biomechanical constraints and the dynamics of the robotic manipulandum, is difficult 246 
to capture with a point mass. These differences are small, as shown by the resulting spatial plots 247 
of the trajectories and are acceptable because our focus is on later phases of the experiment (late 248 
learning and early washout), where the model captures subject behavior more reliably. Taken 249 
together, these results demonstrate that a model that assumes subjective costs do not change over 250 
the course of the experiment can reliably capture subject behavior.  251 
Model-derived range of learning  252 
The model-based proportion learned, as previously defined, provides a latent metric for the internal 253 
model of the dynamics. When fitting all four phases, we find solutions that qualitatively match the 254 
learning process. The late baseline phase found a proportion learned of close to zero for both 255 
younger and older adults. Younger adults had proportion learned values 12.1%, 85.9% and 87.0% 256 
for early learning, late learning, early washout respectively, while older adults learned -4.03%, 257 
68.1% and 78.0%. This matches expectations, where early learning should be close to zero, and 258 
late learning and early washout should be roughly equivalent.  259 
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Although a single best solution for modeling the data was found, we sought to determine 260 
the sensitivity of these model fits. Specifically, we asked whether different amounts of learning 261 
could predict similar learning metrics as previously analyzed (maximum perpendicular error, 262 
maximum perpendicular force, and adaptation index). To investigate this, rather than leaving the 263 
proportion learned as a free parameter, we held it constant and allowed the subjective cost weights 264 
to freely vary. We then fit trajectory data from late learning and early washout for both subject 265 
groups using that single, fixed amount of learning and varying subjective cost weights. We 266 
repeated this analysis for a range of proportion learned, from 0.4 to 1.1 in 0.05 increments. A 267 
model fit was deemed acceptable if the model-generated trajectories for both phases had learning 268 
metrics that fell within 95% confidence intervals of the real trajectory data.  269 

As visualized in Fig 4, we found solutions for younger adults with a model-based 270 
proportion learned ranging from 60% to 85% of the dynamics, and for older adults, 55% to 80% 271 
of the dynamics: an overlap in proportion learned from 60% to 80%. If there was no overlap 272 
between the proportion learned of older and younger adults, then we could confidently state that 273 
the two populations had learned different amounts. However, because the resulting ranges 274 
overlapped, the differences in behavior between younger and older adults could be due to a 275 
difference in subjective costs, rather than a difference in ability to learn.  276 
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 277 
Fig 4. Adaptation metrics for model fits across different amounts of learning. Learning metrics 278 
from the data are shown as dark gray bars with black 95% confidence intervals. The light gray region highlights 279 
the acceptable range for the model to be statistically similar to the data for that phase and metric. The yellow 280 
area highlights the region that has statistically similar model fits across all three learning metrics, for both phases 281 
within a subject group (younger: green, older: blue). Each model fit is represented as a point, where acceptable 282 
model fits are highlighted in bold and unacceptable model fits are a lighter shade. Fits for all three learning 283 
metrics (A) maximum perpendicular error, (B) adaptation index, and (C) maximum perpendicular error, and (D) 284 
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each fit’s resulting trajectories are shown with the actual trajectories shown in black with 95% confidence 285 
ellipses in gray. 286 
 287 
The differences in subjective costs 288 

Model fits suggest that older and younger adults may have learned the same amount, but 289 
differences in their subjective costs resulted in different reaching behaviors. We speculated 290 
whether the interaction of these subjective costs involved a consistent trade-off between effort and 291 
error, that could help define a general strategy for each population. To investigate this interaction, 292 
we used the same method to produce numerous additional model fits for both younger and older 293 
adults across their overlapping range of proportion learned (60% to 80%). We then analyzed the 294 
ratio of their kinematic costs (position and velocity terms) relative to their effort costs (force, 295 
derivative of force, and control input) to investigate how these and proportion learned interact. If 296 
the predictions matched those presented in Fig 1, we would expect that greater relative costs on 297 
kinematic error could mask a deficit in learning. Similarly, we would observe that older adults, 298 
who exhibit higher error, would have consistently higher costs on effort relative to kinematic errors 299 
than younger adults. 300 

First, we see that for equivalent trajectories within each subject group, as the proportion 301 
learned increases, the ratio of kinematic costs to effort costs decreases (Fig 5). Both younger and 302 
older adults have significantly negative slopes (younger: P = 2.1x10-7; older: P = 8.3x10-5). This 303 
matches the predictions laid out by the simple model described in Fig 1, validating that the more 304 
complex model exhibits this same predicted behavior. Additionally, the ratio of kinematic to effort 305 
costs, across this range of learning is significantly greater for younger adults than older adults 306 
(younger: [-1.49,-0.06], older: [-3.44,-2.50]). This further supports our explanation of the observed 307 
differences between younger and older adults: older adults could have learned to the same extent 308 
as younger adults; however, older adults placed a greater premium on reducing effort compared to 309 
reducing kinematic errors than younger adults.  310 
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 311 
Fig 5. Older adults have a lower cost on kinematics relative to effort than younger adults. 312 
The ratio of kinematic costs to effort costs are shown for younger (green) and older (blue) adults. Each dot 313 
represents a model fit that is statistically indistinguishable from the trajectory data for that subject group for the 314 
prescribed proportion learned. The cost ratio for the median solution per subject group for a given proportion of 315 
learning is visualized by the solid lines. A higher ratio of kinematic costs to effort costs (larger value in the y-316 
axis) can be interpreted as having an increased sensitivity to effort.  317 
Discussion 318 

Our analysis suggests that larger kinematic errors do not necessarily imply less learning, 319 
and that we must consider subjective strategies when assessing learning. Using our model, we find 320 
that older and younger adults reaching trajectories can be explained with similar amounts of 321 
learning, despite their large kinematic differences. These differences in motor behavior may be 322 
attributed to older adults caring more about effort relative to kinematic error than younger adults. 323 
Our model assumes that objective effort is similar in younger and older adults, which is consistent 324 
with measured metabolic power in Huang and Ahmed 2014 [26]; thus, our results suggest that it 325 
is the subjective weighting of effort that differs. An alternative explanation is that the objective 326 
effort costs are higher in older adults compared to younger adults. Locomotion studies have shown 327 
older adults incur greater metabolic cost, an objective measure of effort, compared to younger 328 
adults. [44,45] While metabolic cost has been measured in both younger and older adults 329 
performing motor learning tasks, we await a direct comparison of the metabolic cost between 330 
groups. Our findings, in their current form, cannot distinguish between a higher subjective effort 331 
cost versus a higher objective effort cost in older adults.  332 
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Additionally, our results question the validity of adaptation index used in Huang and 333 
Ahmed 2014 [26] as a measure of learning in curl field experiments. We show that the same 334 
trajectory can be produced across different proportions learned, and because the adaptation index 335 
is calculated using trajectory data, the adaptation index will not correlate to the model-based, latent 336 
state of proportion learned. This suggests that adaptation index may be a poor indicator of learning 337 
between groups, as it inherently assumes a single strategy where kinematic error-canceling is more 338 
highly weighted than effort.  339 

Of note, our finding may be unique to the force-field adaptation paradigm. Using 340 
visuomotor rotations may eliminate any effort-centric strategic differences. However, visuomotor 341 
rotation experiments probe different mechanisms in the motor learning domain. Force-field 342 
adaptation tasks use proprioceptive feedback to make online and trial-to-trial corrections, while 343 
visuomotor rotations use visual information as a feedback signal. Because force-field adaptation 344 
tasks probe both effort and error simultaneously, the paradigm may better emulate motor tasks 345 
encountered in the real world.  346 

Notably, our model was purposefully simple, so differences between subject groups are 347 
more easily interpretable. However, as with all modeling studies, there is a trade-off between 348 
biological realism and model complexity. It could be the case that a different, or more realistic 349 
model would result in different findings. A higher fidelity model, reducing the influence of 350 
underlying assumptions, could be accomplished through a few different means. 351 

The first improvement lies in the dynamical model. For instance, the use of a non-linear 352 
model of the arm could offer improvements over a point mass. As already discussed, this could 353 
improve the fits in the late baseline phase. This type of model could exhibit some natural deviation 354 
from the centerline and reduce costs penalizing non-straight reaches. As a second improvement, 355 
we could include off-diagonal terms in our cost functions to capture interaction terms between 356 
state variables. This would improve the quality of our fits, but in turn, make the model prone to 357 
over-fitting and make the subjective costs less interpretable. Finally, developing a model that 358 
incorporates motor noise, sensory uncertainty or delay may offer an alternative explanation to the 359 
differences in behavior. [46] This could be a driving force in their movement strategy that could 360 
be reflected in learning rate or trajectory differences, and potentially mask differences in learning 361 
or subjective costs. Overall, these improvements to the model could help tease out the specific 362 
differences between subject groups, and ultimately determine whether populations are learning 363 
less or compensating in a different manner. 364 

While it is important to extract certain behaviors from observed trajectories such as arm 365 
reaches, using metrics such as maximal values cannot account for the temporal, stochastic, and 366 
highly dynamic factors surrounding human motor control. Strong conclusions about how two 367 
populations learn differently should be extremely thorough and consider multiple metrics. The 368 
powerful framework of optimal control enables us to compare temporal data to temporal data, 369 
extract valuable information from these models, and estimate the hidden value of how much a 370 
person has learned. Deducing whether a difference in behavior is due to a difference in learning, a 371 
difference in subjective costs, or a combination of the two is still unanswered; however, we offer 372 
a framework which can probe these differences.  373 

Our results show that subjective movement strategies can mask the latent variable of how 374 
much a person has learned. Additionally, we have shown that both older and younger adults adapt 375 
their reaches to a curl field, but whether they definitively learn to different extents remains unclear. 376 
If younger and older adults learn to the same extent, our model offers a plausible explanation that 377 
behavior differences between older and younger adults are caused by older adults caring more 378 
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about effort relative to kinematic errors. We show that using learning metrics alone gives 379 
insufficient insight into the adaptation process. In future studies investigating how much a person 380 
or population has learned, it is imperative to consider their implicit strategies. 381 
 382 

Materials and Methods 383 
Experimental Setup 384 

This experiment used data from Huang and Ahmed 2014, which investigated differences 385 
in learning between older and younger adults [26]. We will briefly review the experiment here and 386 
refer the reader to the original publication for greater detail. Eleven older adults (mean±s.d., age 387 
73.8±5.6 years) and 15 younger adults (23.8±4.7 years) made targeted reaching movements while 388 
grasping the handle of a robotic arm. The experimental setup is visualized in Fig 2A. Subjects 389 
were seated with their right forearm cradled and the computer screen set at eye level. Reaches were 390 
made in the anterior and posterior directions and were restricted to movement times of 300 – 600 391 
ms. 392 

Fig 2B outlines the various dynamics subjects experienced throughout the course of the 393 
experiment. Each subject made 900 reaches with the robotic arm, 450 anteriorly, 450 posteriorly. 394 
For the middle 500 reaches, subjects were exposed to a velocity-dependent force (curl) field. The 395 
forces imparted by the robotic arm per Equation 5, where the forces, fx and fy, imparted on the hand 396 
were proportional and perpendicular to the velocity of the hand, vx and vy, scaled by the curl field 397 
gain, b. In this experiment, b is -20 N-s/m. The progression of trials was broken into three blocks: 398 
200 trials with no forces (baseline), 500 trials with the curl field on (learning), and a final 200 trials 399 
with no forces (washout).  400 
 Throughout the 900 trials, subjects were exposed to one force channel trial every five trials, 401 
pseudo-randomly dispersed. The channel trial forced subjects to reach in a straight line, while 402 
simultaneously measuring the forces exerted on the robotic arm. The robot arm enforced the 403 
channel trial using a horizontal force relative to the horizontal position and velocity, summarized 404 
in the equation below: 405 
𝑓& =	−2000𝑝& − 50𝑣&  (6) 

As subjects adapted their reaches to the curl field, they began to anticipate the perturbing 406 
forces. On channel trials, subjects’ anticipatory compensation resulted in exerting force against the 407 
channel, opposite the direction of the curl field perturbation. The measured force trace, often 408 
analyzed in conjunction with the velocity trace, provides insight into how well subjects have 409 
learned the novel dynamics. The exact process of estimating this value is detailed in the Learning 410 
Metrics section below. 411 
Data Preparation 412 
Trajectory Data 413 

To analyze the performance of our model, we considered only the outward reaches from 414 
the final five trials in the late baseline phase and late learning phase, and the outward reaches from 415 
the first five trials of the early learning and early washout phase. All position, velocity and force 416 
data were collected at 200 Hz. In order to be included in the analysis, the subject must have reached 417 
the target between 250 ms (50 samples) and 1500 ms (300 samples) after the target appeared. 418 
Movement onset was defined as when the anterior velocity was ³ 0.03 m/s towards the target, and 419 
movement termination was defined as when the cursor was within the target area and anterior 420 
velocity was £ 0.03 m/s. If the trial never reached the target area, and/or did not sufficiently slow 421 
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down, it was still included, but subjected to the reach time criteria mentioned above. The trials that 422 
met these criteria were averaged across each subject with each resampled to the mean trial length 423 
of that subject’s trajectories. To obtain group averages for the younger and older subject groups, 424 
the mean trial length across subjects was calculated, each subject’s mean trajectory was normalized 425 
to that trial length, then averaged across subjects. Channel trials were considered separately from 426 
the non-channel trials but used the same criteria and processing method. Due to the pseudo-427 
randomly dispersed trials in the original experiment and the criteria set for an acceptable reach, 428 
there was typically one or zero channel trials for a subject in the five trials considered for each 429 
phase. However, it was essential to only consider the first five reaches, especially within early 430 
washout, because adaptation and de-adaptation occur very quickly. We chose these stricter 431 
inclusion criteria to more accurately represent model assumptions, thus performance metric values 432 
presented here are slightly different than the numbers in the original manuscript; however, they do 433 
not alter the conclusions made in the previous manuscript. 434 
Learning Metrics 435 

From the time-normalized average trajectories, we calculated commonly used learning 436 
metrics: maximum perpendicular error, maximum perpendicular force, and adaptation index. 437 
Maximum perpendicular error is calculated as the largest absolute perpendicular deviation from a 438 
theoretical straight line that connects the start position to the target position. Often, the net 439 
perpendicular deviation is considered, where the average perpendicular deviation in the training 440 
phase, or baseline phase, is subtracted from the perpendicular error in the novel environment. 441 
Using the net deviation accounts for any natural curvature in reaches due to the biomechanical 442 
constraints of the arm and allows for a better within-subject analyses. In this experiment, however, 443 
we were more concerned about the comparison between subject groups, so total perpendicular 444 
error was a more appropriate metric.  445 

Because this experiment was a force-adaptation task, it was also useful to consider how the 446 
anticipatory force changed over the course of the experiment. Using data collected from channel 447 
trials, we calculated the maximum force that each subject pushed against the channel, 448 
perpendicular to the direction of movement. A positive value indicates a force in the right-hand 449 
direction against the perturbing force, while a negative value indicates a force in the left-hand 450 
direction with the perturbing force. Accordingly, this value can be compared to an expected 451 
maximum perpendicular force, calculated from the maximum velocity and curl field gain. 452 

A more comprehensive metric for adaptation, assuming the strategy is to reach as straight 453 
as possible, is to compare the entire force trace to the entire velocity trace in a channel trial. In a 454 
curl field trial, the horizontal force is applied to the hand proportional to the vertical velocity 455 
through the scalar value, b, as per Equation 4. If a trajectory accurately anticipates and compensates 456 
for these forces, the force trace measured in a channel will be approximately equal to b times the 457 
velocity profile. If the dynamics are underestimated, the force profile will be equal to the velocity 458 
profile scaled by some value less than b. Thus, using the measured horizontal force trace and 459 
dividing it by the vertical velocity trace, the scalar value that best approximates this linear 460 
relationship is an estimate for the amount of adaptation that has occurred, which we call the 461 
adaptation index.  462 
Arm Reach Model  463 

We employed a discrete-time, two-dimensional, finite-horizon, linear quadratic optimal 464 
control model using a symmetrical point mass to describe the arm reaching trajectories. The model 465 
included an internal estimate of the state dynamics to calculate the control law (referred to as the 466 
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proportion learned, above), where all states were deterministically observable and there was no 467 
system variability or uncertainty. The system dynamics are governed by the following equation 468 
𝒙()* = 𝑨𝒙( + 𝑩𝒖𝒕  (7) 

where A and B are the dynamics of the system, and x is the state vector defined as follows:  469 
𝒙 = 	 G𝑝&	𝑝'	𝑣&	𝑣'	𝑓&	𝑓'	𝑓&̇	𝑓'̇	𝑇&	𝑇'I

,
  (8) 

The variables px and py represent hand position, vx and vy, hand velocities, fx and fy are hand forces, 470 
ḟx and ḟy are the rate of change of hand forces, and Tx and Ty are target position. The motor 471 
commands, ux and uy are the second derivative of force. The matrices A and B encapsulate the 472 
dynamics of the curl field and channel trials, as outlined in Equations 5 and 6. Additionally, a 473 
separate, but similar matrix, Â, represents the internal model of the dynamics, which includes a 474 
subject’s estimate of the curl field gain instead of the true value. 475 

The cost function used to calculate the control law is defined as: 476 

𝐽 = 	J(𝒙(,𝑸𝒙𝒕 + 𝒖(,𝑹𝒖() + 𝒙,,𝚽𝒙,

,-*

(.*

 
 

(9) 

where the matrices Q, R, and Φ are symmetric matrices, which penalize state tracking, control 477 
input and terminal state, respectively. The subjective costs for a movement are contained within 478 
these matrices and are used to formulate a movement plan. The control sequence, determined by 479 
the control law, is calculated with these cost matrices and the estimated dynamics, Â and B. 480 
Trajectories were simulated by running the control sequence forward in time through the true 481 
dynamics (either the with or without a curl field or within a force channel).  482 
Trajectory Matching 483 

When fitting the model to the experimental results, we approached the trajectory matching 484 
problem using optimization techniques. We sought to minimize an objective function that loosely 485 
described the data through varying the cost weights in Q, R, and Φ used to calculate the optimal 486 
control model and trajectory. We used MATLAB’s constrained minimization function, fmincon, 487 
designed for nonlinear optimization problems. The minimizing solution was obtained by 488 
comparing results from multiple restarts with randomized initial parameter values. Of the multiple 489 
restarts, the solution that resulted in the smallest value of the objective function was chosen. 490 
Objective Function 491 

Our initial analysis considered four phases of the experiment: late baseline, early learning, 492 
late learning and early washout, and the fit sensitivity and cost ratio analyses considered only late 493 
learning and early washout. Within each phase, both channel trials and non-channel trials were 494 
considered in the objective function. Within the objective function, the weighted sum of the z-495 
scores of the data’s end point, maximum perpendicular position (error), adaptation index, and 496 
maximum perpendicular force are penalized.  497 

In order to find the trajectory that minimizes the objective function, the weights on each 498 
cost parameter were varied. Cost parameters that penalized the horizontal hand position, vertical 499 
hand position, hand force, rate of change of hand force, second derivative of hand force (control 500 
input), terminal position, terminal velocity, terminal force, and terminal rate of change of force 501 
were allowed to vary. Each of these parameters were along the diagonal of cost matrices Q, R, and 502 
Φ. Constraining these matrices to be diagonal limited the quality of fits thus our solutions represent 503 
a lower-bound on the quality of fits achievable. Additionally, the value of the internal model’s 504 
proportion learned for each phase was allowed to vary in finding the best fit. However, in the 505 
second analyses, we find how sensitive the best fit trajectory was, the internal model of the 506 
dynamics was fixed at ranges from 40 to 110% of the curl field gain in the late learning phase, 507 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 14, 2022. ; https://doi.org/10.1101/2022.02.11.479978doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.11.479978


 16 

while the other parameters were still allowed to vary. Ultimately, this produced a range of learning 508 
values and subjective costs that accurately describe the data. 509 
Model Validation and Analysis 510 

Simulated reaches whose learning metrics fell within the 95% confidence intervals of the 511 
experimentally obtained metrics were considered statistically indistinguishable from the data. 512 
Only solutions that had all adaptation metrics that fell within this range for both late learning and 513 
early washout were considered acceptable solutions. After these solutions were found, they were 514 
checked by comparing their spatial plots to that of the data.  515 
 First, we compared the resulting ranges of acceptable values of proportion learned. If there 516 
was no overlap, then we could conclude the two populations had learned a different amount. If 517 
there was overlap, then investigating how the specific cost parameters differ between subject 518 
groups could offer an explanation for the differences in reaching behavior.  519 
 To more easily interpret the motor strategy differences, individual costs were categorized 520 
and combined into two types: kinematic or effort costs. Kinematic costs included costs on position 521 
(perpendicular error, distance to target, end position). Effort costs included force and the 522 
derivatives of force states (fx, fy, ḟx, ḟy, u). Costs for each state were normalized by the sum of the 523 
squared states for to account for the difference in number of samples between subject groups. Each 524 
category of costs was summed together, then to account for a potential uniform scaling of cost 525 
weights, normalized kinematic cost is divided by the normalized effort cost to create a metric that 526 
encapsulated each group’s subjective value of kinematic versus effort costs, referred to as the cost 527 
ratio. For each subject group, the log transform of the set of all cost weight ratios for all proportions 528 
learned were sampled with replacement 10,000 times to provide the estimated 95% confidence 529 
intervals.  530 
 531 
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