Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Ancestral reconstruction of duplicated signaling proteins reveals the evolution of signaling specificity

View ORCID ProfileIsabel Nocedal, View ORCID ProfileMichael T. Laub
doi: https://doi.org/10.1101/2022.02.11.480122
Isabel Nocedal
1Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Isabel Nocedal
Michael T. Laub
1Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Michael T. Laub
  • For correspondence: laub@mit.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Gene duplication is crucial to generating novel signaling pathways during evolution. However, it remains unclear how the redundant proteins produced by gene duplication ultimately acquire new interaction specificities to establish insulated paralogous signaling pathways. Here, we used ancestral sequence reconstruction to resurrect and characterize a bacterial two-component signaling system that duplicated in α-proteobacteria. We determined the interaction specificities of the signaling proteins that existed before and immediately after this duplication event and then identified key mutations responsible for establishing specificity in the two systems. Just three mutations, in only two of the four interacting proteins, were sufficient to establish specificity of the extant systems. Some of these mutations weakened interactions between paralogous systems to limit crosstalk. However, others strengthened interactions within a system, indicating that the ancestral interaction, although functional, had the potential to be strengthened. Our work suggests that protein-protein interactions with such latent potential may be highly amenable to duplication and divergence.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted February 11, 2022.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Ancestral reconstruction of duplicated signaling proteins reveals the evolution of signaling specificity
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Ancestral reconstruction of duplicated signaling proteins reveals the evolution of signaling specificity
Isabel Nocedal, Michael T. Laub
bioRxiv 2022.02.11.480122; doi: https://doi.org/10.1101/2022.02.11.480122
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Ancestral reconstruction of duplicated signaling proteins reveals the evolution of signaling specificity
Isabel Nocedal, Michael T. Laub
bioRxiv 2022.02.11.480122; doi: https://doi.org/10.1101/2022.02.11.480122

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4222)
  • Biochemistry (9096)
  • Bioengineering (6744)
  • Bioinformatics (23927)
  • Biophysics (12077)
  • Cancer Biology (9485)
  • Cell Biology (13722)
  • Clinical Trials (138)
  • Developmental Biology (7614)
  • Ecology (11652)
  • Epidemiology (2066)
  • Evolutionary Biology (15469)
  • Genetics (10613)
  • Genomics (14289)
  • Immunology (9453)
  • Microbiology (22767)
  • Molecular Biology (9057)
  • Neuroscience (48818)
  • Paleontology (354)
  • Pathology (1479)
  • Pharmacology and Toxicology (2560)
  • Physiology (3820)
  • Plant Biology (8307)
  • Scientific Communication and Education (1467)
  • Synthetic Biology (2285)
  • Systems Biology (6168)
  • Zoology (1297)