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4

Abstract5

We present LC-MS2Struct, a machine learning framework for structural annotation of6

small molecule data arising from liquid chromatography-tandem mass spectrometry (LC-7

MS2) measurements. LC-MS2Struct predicts the annotations for a set of mass spectrometry8

features in a sample, using the ions’ observed retention orders and the output of state-of-9

the-art MS2 scorers. LC-MS2Struct is based on a novel structured prediction model trained10

to benefit from dependencies between retention times and the mass spectral features for an11

improved annotation accuracy.12

We demonstrate the benefit of LC-MS2Struct on a comprehensive dataset containing ref-13

erence MS2 spectra and retention times of 4327 molecules from MassBank, measured using a14

variety of LC conditions. We show that LC-MS2Struct obtains significantly higher annota-15

tion accuracy than methods based on retention time prediction. Furthermore, LC-MS2Struct16

improves the annotation accuracy of state-of-the-art MS2 scorers by up to 66.1 percent and17

even up to 95.9 percent when predicting stereochemical variants of small molecules.18

Introduction19

Structural annotation of small molecules in biological samples is a challenging task and a bottleneck20

in various research fields including biomedicine, biotechnology, drug discovery and environmental21

sciences. Samples in untargeted metabolomics studies typically contain thousands of different22

molecules, most of which remain unidentified [1–3]. Liquid chromatography (LC) tandem mass23

spectrometry (LC-MS2) is one of the most widely used analysis platforms [4], as it allows for high-24

throughput screening, has high sensitivity and is applicable to a wide range of molecules. Briefly, in25

LC-MS2, molecules are first separated by their different physicochemical interactions between the26

mobile and stationary phase of the LC, resulting in retention time (RT) differences. Subsequently,27

separation happens according to their mass-to-charge ratio (m/z ) in a mass analyzer (MS1).28

Finally, the molecular ions are isolated and fragmented in the tandem mass spectrometer (MS2),29

typically using a narrow mass window. For each ion, the recorded fragments and their intensities30

constitute what is called the MS2 spectrum. In an untargeted LC-MS2 workflow, large sets of31

MS features (MS1, MS2, RT), arise from a single sample. The goal in structural annotation is to32

associate each feature with a candidate molecular structure, for further downstream interpretation.33

In recent years, many powerful methods [5, 6] to predict molecular structure annotations for34

MS2 spectra have been developed [7–18]. In general, these methods find candidate molecular35

structures potentially associated with the MS feature, for example, by querying molecules with a36

certain mass from a structure database (DB) such as HMDB [19] or PubChem [20] and, subse-37

quently, compute a matching score between each candidate and the MS2 spectrum. The highest38

scoring candidate is typically considered as the structure annotation of a given MS2. However,39
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even the best-of-class methods only reach an annotation accuracy of around 40% [17] in evalua-40

tion when searching large candidate sets like PubChem, and therefore, in practice, a ranked list41

of molecular structures is provided to the user (e.g. top 20 structures).42

Even though readily available in all LC-MS2 pipelines and recognized as valuable informa-43

tion [21, 22], RT remains underutilized in automated approaches for structure annotation based44

on MS2. For example, only one of the above mentioned tools provides functionality to use the RT45

information, namely MetFrag [11]. An explaining factor for this is that RT not only depends on the46

molecular structure, but also the LC conditions (e.g., mobile phase composition, column pressure,47

etc.) [23, 24]. Thus, a molecule generally has different RTs under different LC conditions and in48

different laboratories [24]. Typically, the RT information is used as post-processing for candidate49

lists, e.g., by comparing measured and reference standard RTs [3, 24]. This approach, however, is50

limited by the availability of experimentally determined RTs of reference standards. RT prediction51

models [25, 24], on the other hand, allow to predict RTs solely based on the candidates’ molecular52

structure and have been successfully applied to aid structure annotation [26–29]. However, such53

prediction models generally have to be calibrated to the target LC configuration [3]. Calibration54

requires at least some amount of target LC reference RT data to be available [21, 30, 29].55

Recently, the idea of predicting retention orders (RO), i.e., the order in which two molecules56

elute from the LC column, has been explored [31–34]. ROs are largely preserved within a family of57

LC systems (e.g. reversed phase or HILIC). Therefore, RO predictors can be trained using a diverse58

set of RT reference datasets and applied to out-of-dataset LC setups with high accuracy [31].59

Integration of RO and MS2 based scores using probabilistic graphical models was shown to improve60

the annotation performance in LC-MS2 experiments [34].61

In this study we set out to provide a new perspective on jointly using MS2 and RO information62

for the structure annotation of LC-MS2 data. For that, we present a novel machine learning63

framework called LC-MS2Struct, which learns to optimally combine the MS2 and RO information64

for the accurate annotation of a sequence of MS features. LC-MS2Struct relies on the Structured65

Support Vector Machine (SSVM) [35] and Max-margin Markov Network [36] frameworks. In66

contrast to the previous work by Bach et al. [34], our framework does not require a separately67

learned RO prediction model. Instead, it optimizes the SSVM parameters such that the score68

margin between correct and any other sequence of annotations is maximized, subject to a graphical69

model representing the pairwise ROs as edges and the candidate sets of molecular structures for70

each MS feature as candidate node labels. That means that LC-MS2Struct learns to optimally use71

the RO information in an LC-MS2 experiment. We trained LC-MS2Struct on all available reversed72

phase LC data from MassBank (MB) [37], which we processed to extract ground-truth annotated73

(MS2, RT)-tuples covering a diverse set of LC and MS configurations. In our experiments we74

evaluate LC-MS2Struct across all subsets of homogeneous LC-MS2 configurations and compare75

it with three other previously proposed approaches: RT filtering, logP predictions [11], and RO76

predictions [34]. Our framework can be combined with any MS2 scorer and applied to new LC-MS2
77

data, including new LC conditions without re-training, and is demonstrated below with CFM-ID78

[9, 18], MetFrag [11] and SIRIUS [8, 17].79

Overview of LC-MS2Struct80

In this section we discuss the main components of LC-MS2Struct, which are also illustrated in81

Figure 1. Further details can be found in the Methods section.82

Input and output. As input we consider a typical data setting present in an untargeted LC-83

MS2 based experiments, after pre-processing such as chromatographic peak picking and alignment84

(Figure 1a). Such data comprises a sequence of MS features, here indexed by σ. Each feature85

consists of MS1 information (e.g. mass, adduct and isotope pattern), LC retention time (RT) tσ86

and an MS2 spectrum xσ. We assume that a set of candidate molecules Cσ is associated with each87

MS feature σ. Such a set can be, for example, generated from a structure database (e.g. PubChem88

[20], ChemSpider [38] or PubChemLite [39]) based on the ion’s mass, a suspect list, or an in silico89
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molecule generator (e.g. SmiLib v2.0 [40, 41]). We furthermore require that for MS2 spectrum90

xσ, a matching score θ(xσ,m) with its candidates m ∈ Cσ is pre-computed using an in silico tool,91

such as CFM-ID [9, 18], MetFrag [11] or SIRIUS [8, 17]. LC-MS2Struct predicts a score for MS92

feature σ and each associated candidate m ∈ Cσ based sequence of spectra x = (xσ)Lσ=1, of length93

L, and the ROs derived from the observed RTs t = (tσ)Lσ=1. These scores are used to rank the94

molecular candidates associated with the MS features (Figure 1b).95

Candidate ranking using max-marginals. We define a fully connected graph G = (V,E)96

capturing the MS features and modelling their dependencies (Figure 1c). Each node σ ∈ V corre-97

sponds to a MS feature, and is associated with the pre-computed MS2 matching scores θ(xσ,m)98

between the MS2 spectrum xσ and all molecular candidates m ∈ Cσ. The graph G contains an99

edge (σ, τ) ∈ E for each MS feature pair. A scoring function F is defined predicting a compati-100

bility score between a sequence of molecular structure assignments y = (yσ)Lσ=1 in the label-space101

Σ = C1 × . . .× CL and the observed data:102

F (y |x, t,w, G) =
1

|V |
∑
σ∈V

θ(xσ, yσ)︸ ︷︷ ︸
Node scores: MS2 information

+
1

|E|
∑

(σ,τ)∈E

f ((tσ, tτ ), (yσ, yτ ) |w)

︸ ︷︷ ︸
Edge scores: RO information

, (1)

where the function f outputs an edge score for each candidate assignment pair (yσ, yτ ) given the103

observed RTs (tσ, tτ ) and the derived RO (Figure 1d). The edge score expresses the agreement104

between the observed and the predicted RO for a candidate pair, i.e. if a candidate pair receives105

a high score it is more likely to be correct. Function f is parameterized by the vector w, which is106

trained specifically for each MS2 scorer (see next section). Using the compatibility score function107

F (Equation (1)) we compute the max-marginals [42] for each candidate and MS features. The108

max-marginal score of a particular candidate m ∈ Cσ and MS feature σ is defined as the maximum109

compatibility score that a candidate assignment ȳ ∈ Σ with ȳσ = m can reach:110

µ(yσ = m |x, t,w, G) = max
{ȳ∈Σ : ȳσ=m}

F (ȳ |x, t,w, G).

We use µ to rank the molecular candidates [34]. For general graphs G the max-marginal inference111

problem (MMAP) is intractable in practice due to the exponential size of the label space Σ.112

Therefore, we approximate the MMAP problem by performing the inference on tree-like graphs Tk113

randomly sampled from G (Figure 1c), for which exact inference is feasible [42, 43]. Subsequently,114

we average the max-marginal scores µ(yσ = m |xi, ti,wk, Tk) over a set of trees T, an approach115

that performed well for practical applications [44, 45, 34]. For each spanning tree Tk, we apply a116

separately trained SSVM model wk to increase the diversity of the predictions.117

Joint annotation using Structured Support Vector Machines (SSVM). We propose to118

tackle the joint assignment of candidate labels y ∈ Σ to the sequence of MS features of a LC-119

MS2 experiment through structured prediction, a family of machine learning methods generally120

used to annotate sequences or networks [35, 46, 45]. In our model, the structure is given by121

the observed RO of the MS feature pairs (yσ, yτ ), which provides additional information on the122

correct candidate labels yσ and yτ . Given a set of annotated LC-MS2 experiments extracted from123

MassBank [37] (Figure 1e), we train a Structured Support Vector Machine (SSVM) [35] model w124

predicting the edge scores. SSVMs models can be optimized using the max-margin principle [35].125

In a nutshell, given a set of ground truth annotated MS feature sequences, the model parameters126

w are optimized such that the correct label sequence yi ∈ Σi, that is the structure annotations for127

all MS features in an LC-MS2 experiment, scores higher than any other possible label sequence128

assignment y ∈ Σi (Figure 1f).129
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Results130

This section describes our experiments and the corresponding results with LC-MS2Struct. We131

start with a description of the training and evaluation data extracted from MassBank. Then, we132

continue with a comparison of LC-MS2Struct to other approaches for MS2 and RT or RO score133

integration. Subsequently, we go into more details by analysing the performance of LC-MS2Struct134

for different molecular classes. We conclude with a study of our method applied for the ranking135

of candidate sets including stereoisomers.136

Extracting training data from MassBank. For this study we extracted ground truth an-137

notated MS2 spectra and RTs from MassBank [37], a public online database for MS2 data. Each138

individual MassBank record typically provides a rich set of meta information (see Extended Data),139

such as the chromatographic and MS conditions as well as molecular structure annotations. To140

train the SSVM model of LC-MS2Struct, we need sets of MS features, i.e. (MS2, RT)-tuples, with141

ground truth structure annotations as available in MassBank. We process the MassBank data142

such that the experimental conditions are consistent within each MS feature set. That means,143

for example, that the LC setup is identical, such that we can compare the RTs within the set to144

derive the ROs, or that the same MS configuration was used, as we would assume in a typical145

LC-MS2 experiment. We developed a Python package “massbank2db” [47] that can process Mass-146

Bank records and groups them into consistent MS feature sets, which we denote as MB-subsets.147

For the SSVM training and the evaluation of LC-MS2Struct, as well as comparison methods, we148

sample sequences of MS features to simulate LC-MS2 experiments in which we measure the sig-149

nal of multiple unknown compounds under consistent experimental setups. Figure 1e illustrates150

the grouping and LC-MS2 sampling process. Two collections of MassBank data were considered:151

ALLDATA and the ONLYSTEREO subset. Further details can be found in the Methods section.152

Comparison of LC-MS2Struct with other approaches. In the first set of experiments we153

compare LC-MS2Struct with previous approaches for candidate ranking either using only MS2
154

or additionally RT or RO information: Only-MS2 uses the MS2 spectrum information to rank155

the molecular candidates and serves as baseline; MS2+RO [34] uses a Ranking Support Vector156

Machine (RankSVM) [48, 49] to predict the ROs of candidate pairs and a probabilistic inference157

model to combine the ROs with MS2 scores; MS2+RT uses predicted RTs to remove false positive158

molecule structures from the candidate set, ordered by their MS2 score, by comparing the predicted159

and observed RT; MS2+logP is an approach introduced by Ruttkies et al. [11], which uses the160

observed RT to predict the XLogP3 value [50] of the unknown compound and compares it with161

the candidates’ XLogP3 values extracted from PubChem to refine the initial ranking based on the162

MS2 scores. A detailed description of the comparison approaches can be found in the Methods163

section. The RO based methods (LC-MS2Struct and MS2+RO) were trained using the RTs from164

all available MB-subsets, at the same time ensuring that no test molecular structure (based on165

InChIKey first block) was used for the model training (structure disjoint). On the other hand, for166

the RT based approaches (MS2+RT and MS2+logP), the RT and XLogP3 predictors were trained167

in a structure disjoint fashion, using only the RT data available for that respective MB-subset. For168

the experiment, all MB-subsets with more than 75 (MS2, RT)-tuples from the ALLDATA data169

setup were used, as the RT based approaches require target LC system-specific RT training data170

(see Extended Data). The ranking performance was computed for each LC-MS2 experiment within171

a particular MB-subset. The molecules in the candidate sets are identified by their InChIKey first172

block (i.e. the structural skeleton). That means, there are no stereoisomers in the candidate set173

and the rank of the ground truth molecular structure is determined using the InChIKey first block.174

Each candidate ranking approach was evaluated with three state-of-the-art MS2 scorers: CFM-ID175

4.0 [18], MetFrag [11] and SIRIUS [17]. Further details can be found in the Methods section.176

Figure 2a shows the average ranking performance (top-k accuracy) across 350 LC-MS2 ex-177

periments, with each encompassing about 50 (MS2, RT)-tuples (see Methods). For CFM-ID and178

MetFrag, LC-MS2Struct provides 3.1 and 4.5 percentage unit increases over the Only-MS2 for179
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the top-1 accuracy, corresponding to 53.5% and 66.1% performance gain. In our setting, that180

translates to 1.6 respectively 2.3 additional identifications at the top rank (out of approx. 50).181

The performance improvement increases for larger k, reaching as far as 7.2 and 8.6 percentage182

units at top-20, which means 3.6 respectively 4.3 additional correct structures in the top-20. For183

SIRIUS, the improvements are only modest, on average around 0.5 percentage units for top-1 to184

top-20. The runner-up score integration method is MS2+RO, which also makes use of predicted185

ROs. Combined with SIRIUS, MS2+RO actually achieves the best molecule ranking performance186

of all considered methods. For CFM-ID and MetFrag it leads to about half of the performance187

gain as LC-MS2Struct. The approaches relying on RTs, either by candidate filtering (MS2+RT)188

or through logP prediction (MS2+logP), only lead to a tiny improvement for MetFrag and CFM-189

ID, but none for SIRIUS, for which we even observe MS2+RT leading to a decrease in ranking190

performance by about 2 percentage units. An explanation for this is that the filtering approach191

removes on average 4.7% of the correct candidates, which leads to false negative predictions.192

The performance gain by using either RO or RT varies between the MB-subsets that differ by193

their LC-MS2 setup (see Supplementary Table 4) and compound class composition (see Extended194

Data). We illustrate these differences in Figure 2b. Applying LC-MS2Struct improves the ranking195

performance in almost all MB-subsets, including the SIRIUS data (some very slight decreases were196

observed in some SIRIUS sets). This is in stark contrast to the RT based approaches (MS2+RT and197

MS2+logP), which often lead to less accurate rankings, especially for SIRIUS. Furthermore, as can198

be seen already from the average results (Figure 2a), the benefit of LC-MS2Struct depends on the199

MS2 base scorer. For example, the top-1 accuracy of the subsets “AC 003” and “NA 003” can be200

greatly improved for MetFrag but show little or no improvement for CFM-ID. Interestingly, both201

datasets are natural product toxins, which are perhaps poorly explained by the bond-disconnection202

approach of MetFrag (often observed for substances with many rearrangements). On the other203

hand, for “RP 001” and “LQB 000” the largest improvements can be reached for CFM-ID. The204

RT filtering approach (MS2+RT) performs particularly well for “LQB 000” and “UT 000”. These205

subsets are characterized by a relatively homogeneous set of molecules in terms of ClassyFire [51]206

super-classes (see Extended Data), encompassing mostly lipids and lipid-like molecules. Since the207

RT prediction models are trained using only data from the respective MB-subset, this can lead208

to more accurate models for subsets with less heterogeneous sets of molecules. Hence, the RT209

filtering could work well in such cases [26].210

Performance analysis of LC-MS2Struct for different compound classifications. Our211

next experiment investigates how LC-MS2Struct can improve the identification across different212

categories in two molecule classification systems. The first system is the ClassyFire [51] taxonomy,213

which we use to assign molecule classes to all ground truth structures in our evaluation set. As a214

second classification system, we use the one provided by PubChemLite [39]. Figure 3 shows the215

average top-1 and top-20 accuracy improvement of LC-MS2Struct over the Only-MS2 baseline for216

each ClassyFire super-class and PubChemLite annotation category (see Methods). For ClassyFire217

(Figure 3a), we observe that the ranking performance improvement for the different super-classes218

depends on the MS2 scorer. For example, the top-1 accuracy of “Alkaloids and derivatives” can219

be improved by 6.7 percentage units for MetFrag, but improves only very little for CFM-ID and220

SIRIUS (about 1 percentage unit). The picture looks different for “Organic oxygen compounds”,221

for which the top-1 accuracy improves by about 4.7 percentage units when using CFM-ID, but little222

to no improvement is observed for the other MS2 scorers. This suggests that the CFM-ID results223

may be improved with the inclusion of more “Organic oxygen compounds”. On the other hand, it224

seems that the “Alkaloids and derivatives”, “Organic acids and derivatives” and “Organic nitrogen225

compounds” may be less well explained by MetFrag (perhaps with more rearrangements, or less226

distinguishable spectra), such that the improvement from the RO approach is more apparent.227

For the PubChemLite classification (Figure 3b) we also see that different MS2 scorers benefit228

differently by using LC-MS2Struct. The improvement seems generally more consistent across the229

annotation categories, with one or two differing exceptions for MetFrag and CFM-ID. The SIRIUS230

performance seems unaffected, irrespective of the annotation category. Looking at the top-1231
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cases: For CFM-ID, the biggest improvement is in the “Food Related” category. For MetFrag,232

the category that improved the most with LC-MS2Struct was “Agrochemicals”, whereas both233

“Agrochemicals” and “Identification” showed the least improvement for CFM-ID. The performance234

was relatively consistent over the other categories. For the top-20 cases, the performance seems235

relatively consistent except for the “Food related” (as for top-1) and “noClassification” cases.236

The low performance gain achieved by LC-MS2Struct for molecules not covered in PubChemLite237

(“noClassification”) could be due to the fact that one third of the “noClassification” molecules238

belong to the ClassyFire class “Glycerophospholipids”. As shown in Extended Data Figure 6, this239

class does not benefit from LC-MS2Struct, unlike other lipid classes also shown in that figure.240

Annotation of stereoisomers. In general, MS2 alone cannot reliably distinguish between241

stereoisomers [5, 24]. Thus MS2 scorers mostly output the same matching score between spectrum242

and candidate molecule for different stereoisomers (c.f. [7, 17]). However, there is a difference be-243

tween stereoisomers that vary in their double-bond orientation (e.g. cis-trans or E-Z isomerism),244

which may have different shapes and thus exhibit different fragmentation and/or interactions with245

the LC system in some cases (see Figure 5a), compared with stereoisomers involving chiral centres246

(e.g. R, S isomers), which may not exhibit such dramatic differences in regular LC-MS2 experi-247

ments. Thus, in our last experiment we study whether LC-MS2Struct can annotate stereoisomers248

more accurately than MS2 alone. For that we consider candidate sets containing stereoisomers and249

evaluate LC-MS2Struct only using MassBank records where the ground truth structure has stere-250

ochemistry information provided, i.e. where the InChIKey second block is not “UHFFFAOYSA”251

(the ONLYSTEREO data setup, see Methods). The molecular candidates are represented us-252

ing two different molecular fingerprint features: One that includes stereochemistry information253

(3D); and one that omits it (2D) (see Methods). This allows us to assess the importance of the254

stereochemistry encoding of features for the candidate ranking.255

Figure 4a shows the ranking performance of LC-MS2Struct, using 2D respectively 3D finger-256

prints, compared with the Only-MS2 baseline. It can be seen that LC-MS2Struct improves the257

ranking for all three MS2 scorers. The improvement, however, is notably larger when using can-258

didate features that encode stereochemistry (3D). That demonstrates that LC-MS2Struct can use259

the RO information to improve the annotation of stereoisomers, but that the molecular features260

need to encode stereochemistry to achieve the best performance. When looking into the top-1261

performance of LC-MS2Struct (3D) for the individual MS2 scorers, we observe an improvement by262

2.6, 3.8 and 3.2 percentage units for CFM-ID, MetFrag and SIRIUS, respectively. This translates263

to performance gains of 87.3%, 95.9% and 44.3% with about 1.5 additional structures correctly264

ranked at top rank (1) for all three MS2 scorers. In contrast to our previous experiments, we see265

that LC-MS2Struct can also improve the ranking when SIRIUS is used as MS2 scorer.266

Discussion267

We have presented LC-MS2Struct, a novel approach for the integration of tandem mass spectro-268

metric and liquid chromatography data for the structural annotation of small molecules. The269

method learns from the pairwise dependencies in the retention order of MS features within similar270

LC configurations and can generalize across different, heterogeneous LC configurations. The anno-271

tation accuracies are far superior to more traditional retention time (RT) filtering and logP-based272

approaches, and also markedly better than previous methods that rely on retention orders. In273

particular, compared to Bach et al. [34], who used a graphical model as a post-hoc integration274

tool of MS2 scores and retention order predictions, the benefits of learning the parameters of the275

graphical model are clear. We note that it would in principle be possible to also train the MS2
276

score part (the node scores) of the model, instead of relying on separate MS2 scorers such as277

SIRIUS, MetFrag and CFM-ID. Such an approach could potentially further improve the results278

by learning from dependencies between MS2 and RO features. However, as the MS2 scorers used279

here are already relatively mature and well-known in the community, we have left this research280

line open for future efforts.281
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Most MS2 scorers neglect stereochemistry, or collapse their results into one result for all282

stereoisomers by InChIKey first block. In our experiments, we could demonstrate that LC-283

MS2Struct can improve the identification of stereoisomers. The top-1 accuracy increased by 2.6284

to 3.8 and the top-20 by even 4.6 to 9.2 percentage units. Furthermore, we demonstrated that285

the encoding of stereochemical features in the molecule representation is essential to improved the286

identification of stereoisomers. These can be split into two general cases: those features encoding287

double-bond stereochemistry (SMILES: “\” and “/”) as well as the chiral centre configuration288

(SMILES: “@” and “@@”). Inspecting individual examples revealed that LC-MS2Struct can sepa-289

rate the former cases with varying double-bond stereochemistry - i.e. E/Z- and cis/trans-isomers290

(see e.g. Figure 5). However, we note that there were very few examples of double-bond and/or291

chiral isomers measured on the same LC system in our dataset, which makes it difficult to verify292

these initial results, or interrogate these further - until such data is publicly available. Certain293

stereoisomers differing only in chiral centres (i.e. containing “@” and “@@”) can generally only be294

separated using chiral column chromatography. MassBank, and hence our datasets, currently does295

not cover such columns. Since MassBank also contains many metabolomics (biological) datasets296

with primarily naturally-observed chiral forms, some of the observed improvement could also be297

related to biases in our dataset. In other words, certain chiral configurations might be over-298

represented in public databases (i.e. in this case MassBank), hence these are more likely to be299

predicted. Overall, these results suggest that LC-MS2 annotation may be improved by the use of300

stereochemistry information, but that a selective fingerprint definition capturing only the stereo-301

chemistry that is relevant for non-chiral LC systems should be used or developed to investigate302

this further.303

We developed a processing pipeline to extract ground truth annotated MS2 spectra with RT304

information from MassBank. The (MS2, RT)-tuples are grouped into subsets with homogeneous305

MS- and LC-conditions. This enables researchers to use MassBank data in a format suitable for306

machine learning, and hence can facilitate the develop of novel approaches integrating MS2 and RT307

information for structure annotation. We made the pipeline available to the research community308

in a separate Python package “massbank2db” [47].309

Methods310

Notation. We use the following notation to describe LC-MS2Struct:311

Sequence of spectra x = (x1, . . . , xL) with xσ ∈ X
Sequence of retention times t = (t1, . . . , tL) with tσ ∈ R≥0

Sequence of candidate sets C = (C1, . . . , CL) with Cσ ⊆ Y
Sequence of labels y = (y1, . . . , yL) ∈ Σ with yσ ∈ Y
Candidate assignment space Σ = C1 × . . .× CL,

312

where X and Y denote the MS2 spectra and the molecular structure space, respectively, and C313

denotes a candidate set that is a sub-set of all possible molecular structures, and A × B denotes314

cross product of two sets A and B. For the purpose of model training and evaluation, we assume315

a dataset with ground truth labeled MS feature sequences: D = {((xi, ti),Ci,yi)}Ni=1, where N316

denotes the total number of sequences. We use i, j ∈ N≥0 to index MS feature sequences and317

σ, τ ∈ N≥0 as indices for individual MS features within a sequence, e.g. xiσ denotes the MS2
318

spectrum at index σ in the sequence i. The length of a sequence of MS features is denoted with L.319

We denote the ground truth labels (candidate assignment) of sequence i with yi and any labelling320

with y. Both, yi and y are in Σi. We use y to denote the candidate label variable, whereas321

m denotes a particular molecular structure. For example, yσ = m means, that we assign the322

molecular structure m as label to the MS feature σ.323

Graphical model for joint annotation of MS features. We consider the molecular annota-324

tion problem for the output of an LC-MS2, that means assigning a molecular structure to each MS325

feature, as a structured prediction problem [35, 46, 45], relying on a graphical model representation326
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of the sets of MS features arising from an LC-MS2 experiment. For each MS feature σ we want to327

predict a label yσ from a fixed and finite candidate (label) set Cσ. We model the observed reten-328

tion orders (RO) between each MS feature pair (σ, τ) within an LC-MS2 experiment, as pairwise329

dependencies of the features. We define an undirected graph G = (V,E) with the vertex set V330

containing a node σ for each MS feature and the edge set E containing an edge for each MS feature331

pair E = {(σ, τ) |σ, τ ∈ V, σ 6= τ} (c.f. Figure 1a and c). The resulting graph is complete with an332

edge between all pairs of nodes. This allows us to make use of arbitrary pairwise dependencies,333

instead of limiting to, say, adjacent retention times. This modeling choice was previously shown334

to be beneficial by Bach et al. [34]. Here we extend that approach by learning from the pairwise335

dependencies to optimize joint annotation accuracy, which leads to markedly improved annotation336

accuracy.337

For learning, we define a scoring function F that, given the input MS feature sequences (x, t)338

and its corresponding sequence of candidate sets C, computes a compatibility score between the339

measured data and any possible sequence of labels y ∈ Σ:340

F (y |x, t,w, G) =
1

|V |
∑
σ∈V

θ(xσ, yσ) +
1

|E|
∑

(σ,τ)∈E

〈w,Γ(tστ ,yστ )〉, (2)

where θ : X ×Y → (0, 1] is a function returning an MS2 matching score between the spectrum xσ341

and a candidate yσ ∈ Cσ, 〈·, ·〉 denotes the inner product, and w is a model weight vector to predict342

the RO matching score, based on the joint feature vector Γ : R≥0 × R≥0 × Y × Y → F between343

the observed RO derived from tστ = (tσ, tτ ) and a pair of molecular candidates yστ = (yσ, yτ ).344

Equation (2) consists of two parts: (1) A score computed over the nodes in G capturing the MS2
345

information; and (2) a score expressing the agreement of observed and predicted RO computed346

over the edge set. We assume that the node scores are pre-computed by a MS2 scorer such as347

CFM-ID [18], MetFrag [11] or SIRIUS [17]. The node scores are normalized to (0, 1] within each348

candidate set Cσ. The edge scores are predicted for each edge (σ, τ) using the model w and the349

joint-feature vector Γ:350

f(tστ ,yστ |w) = 〈w,Γ(tστ ,yστ )〉
= 〈w, sign(tσ − tτ ) (φ(yσ)− φ(yτ ))〉
= sign(tσ − tτ )〈w, φ(yσ)− φ(yτ )〉,

(3)

with φ : Y → FY being a function embedding a molecular structure into a feature space. The edge351

prediction function (3) will produce a height edge score, if the observed RO (i.e. sign(tσ − tτ ))352

agrees with the predicted one.353

Using the compatibility score function (2) the predicted joint annotation for (x, t) corresponds354

to the the highest scoring label sequence ŷ ∈ Σ: ŷ = arg maxȳ∈Σ F (ȳ |x, t,w, G). In practice,355

however, instead of only predicting the best label sequence, it can be useful to rank the molecular356

candidates m ∈ Cσ for each MS feature σ. That is because for state-of-the-art MS2 scorers, the357

annotation accuracy in the top-20 candidate list is typically much higher than for the highest358

ranked candidate (top-1). Our framework provides candidate rankings by solving the following359

problem for each MS feature σ and m ∈ Cσ:360

µ(yσ = m |x, t,w, G) = max
{ȳ∈Σ : ȳσ=m}

F (ȳ |x, t,w, G). (4)

Problem (4) returns a max-marginal µ score for each candidate m. That is, the maximum compat-361

ibility score any label sequence ȳ ∈ Σ with ȳσ = m can achieve. One can interpret Equation (2)362

as the log-space representation of a unnormalized Markov Random Field probability distribution363

over y associated with an undirected graphical model G [43].364

Feasible inference using random spanning trees (RST). For general graphs G the max-365

imum a posterior (MAP) inference problem, that is finding the highest scoring label sequence y366

given an MS feature sequence, is an NP-hard problem [52, 53]. The max-marginals inference367
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(MMAP), needed for the candidate ranking, is an even harder problem which is NPPP complete368

[53]. However, efficient inference approaches have been developed. In particular, if G is tree-like,369

we can efficiently compute the max-marginals using dynamic programming and the max-product370

algorithm [42, 43]. Such tree-based approximations have shown to be successful in various practical371

applications [44, 45, 34].372

Here, we follow the work by Bach et al. [34] and sample a set of random spanning trees (RST)373

T = {Tk}Kk=1 from G, whereby K denotes the size of the RST sample. Each tree Tk has the same374

node set V as G, but and an edge set E(T ) ⊆ E, with |E(T )| = L− 1, ensuring that T is a single375

connected component and cycle free. We follow the sampling procedure used by Bach et al. [34].376

Given the RST set T we compute the averaged max-marginals to rank the molecular candidates377

[34]:378

µ̄(yσ = m |x, t,w,T) =
1

K

K∑
k=1

(
µ(yσ = m |x, t,w, Tk)−max

ȳ∈Σ
F (ȳ |x, t,w, Tk)

)
, (5)

where we subtract the maximum compatibility score from the marginal values corresponding to379

the individual trees to normalize the marginals before averaging [34]. This normalization value380

can be efficiently computed given the max-marginals µ. In our experiments, we train K individual381

models (wk) and associate them with the trees Tk to increase the diversity.382

The Structured Support Vector Machine (SSVM) model. To train the model parameters383

w (see equation (2)), we implemented a variant of the Structured Support Vector Machine (SSVM)384

[36, 35]. Its primal optimization problem is given as [54]:385

min
w,ξ

1

2
‖w‖2 +

C

N

N∑
i=1

ξi

st. F (yi |xi, ti,w, Gi)− F (y |xi, ti,w, Gi) ≥ `(yi,y)− ξi
∀i ∈ {1, . . . , N}, ∀y ∈ Σi,

(6)

where C > 0 being the regularization parameter, ξi ≥ 0 is the slack variable for example i and386

` : Σi×Σi → R≥0 being a function capturing the loss between two label sequences. The constraint387

set definition (st.) of problem (6) leads to a parameter vector w that is trained according to the388

max-margin principle [36, 35, 46], that is the score F (yi) of the correct label should be greater389

than the score F (y) of any other label sequence by at least the specified margin `(yi,y). Note390

that in the SSVM problem (6) a different graph Gi = (Vi, Ei) can be associated to each training391

example i, allowing, for example, to process sequences of different length.392

We solve (6) in its dual formulation and use the Frank-Wolfe algorithm [55] following the recent393

work by Lacoste-Julien et al. [54]. In the supplementary material we derive the dual problem and394

demonstrate how to solve it efficiently using the Frank-Wolfe algorithm and RST approximations395

for Gi. Optimizing the dual problem enables us to use non-linear kernel functions λ : Y×Y → R≥0396

measuring the similarity between the molecular structures associated with the label sequences.397

The label loss function ` is defined as follows:398

`(yi,y) =
1

|Vi|

L∑
σ=1

(1− λ(yiσ, yσ)) .

and satisfies `(y,y) = 0 (a required property [54]), if λ is a normalized kernel, which holds true399

in our experiments (we used the MinMax kernel [56]).400

Pre-processing pipeline for raw MassBank records. Extended Data Figure 8 illustrates401

our MassBank (MB) pre-processing pipeline implemented in the Python package “massbank2db”402

[47]. First, the MassBank records’ text files were parsed and the MS2 spectrum, ground truth403

annotation, RT and meta-information extracted. Records with missing MS2, RT or annotation404
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were discarded. We use the MB 2020.11 release for our experiments. Subsequently, we grouped405

the MassBank records into subsets (denoted as MB-subsets) where the (MS2, RT)-tuples have406

been measured under the same LC- and MS-conditions. Extended Data Table 3 summarizes the407

grouping criteria. In the next step, we used the InChIKey [57] identifier in MassBank to retrieve408

the SMILES [58] representation from PubChem [20] (1st of February 2021), rather than using the409

contributor-supplied SMILES. This ensures that we use a single SMILES source for the molecular410

candidates and ground truth annotations. Before inserting the records into our final database, we411

performed three more filtering steps: (1) we removed records for which the ground truth exact412

mass deviated too much from the calculated exact mass based on the precursor mass-per-charge413

(m/z) and adduct type (larger than 20ppm); (2) we removed subsets that contain less then 50414

unique molecular structures; (3) we removed all records associated with the MassBank prefix LU415

that were potential isobars (see pull-request #152 in the MassBank GitHub repository, https:416

//github.com/MassBank/MassBank-data/pull/152). Supplementary Table 4 summarizes the417

meta-information for all generated MB-subsets.418

Generating the molecular candidate sets. We used SIRIUS [8, 17] to generate the molecular419

candidate sets. For each MassBank record the ground truth molecular formula was used by SIRIUS420

to collect the candidate structures from PubChem [20]. The candidate sets generated by SIRIUS421

contain a single stereoisomer per candidate, identified by their InChIKey first block (structural422

skeleton). To study the ability of LC-MS2Struct to annotate the stereochemical variant of the423

molecules, we enriched the SIRIUS candidates sets with stereoisomers. For that, the InChIKey424

first block of each candidate was used to search PubChem (1st of Feburary 2021) for stereoisomers.425

The additional molecules were then added to the candidate sets.426

Pre-computing the MS2 matching scores. For each MB-subset, MS2 spectra with identical427

adduct type (e.g. [M+H]+) and ground truth molecular structure were aggregated. Depending on428

the MS2 scorer we either merged the MS2 into a single spectrum (CFM-ID and MetFrag) follow-429

ing the strategy by Ruttkies et al. [11] or we provided the MS2 spectra separately (SIRIUS). To430

compute the CFM-ID (v4.0.7) MS2 matching score we first predicted the in silico MS2 spectra431

for all molecular candidate structures based on their isomeric SMILES representation using the432

pre-trained CFM-ID models (Metlin 2019 MSML) by Wang et al. [18]. We merged the three in433

silico spectra predicted by CFM-ID for different collision energies and compared them with the434

merged MassBank spectrum using the modified cosine similarity [59] implemented in the matchms435

[60] (v0.9.2) Python library. For MetFrag (v2.4.5) the MS2 matching scores were calculated using436

the FragmenterScore feature based on the isomeric SMILES representation of the candidates. For437

SIRIUS, the required fragmentation trees are computed using the ground truth molecular formula438

of each MassBank spectrum. SIRIUS uses canonical SMILES and hence does not encode stere-439

ochemical information (canonical SMILES). Therefore, we used the same SIRIUS MS2 matching440

score for all stereoisomers sharing the same InChIKey first block. For all three MS2 scorers we441

normalized the MS2 matching scores to the range [0, 1] separately for each candidate set. For442

the machine learning based scorers (CFM-ID and SIRIUS) we predicted the matching scores such443

that the associated MassBank record’s ground truth structures was not used for the MS2 scorer444

model training. If a MS2 scorer failed on a MassBank record, we assigned a constant MS2 score445

to each candidate.446

Molecular feature representations. For LC-MS2Struct, we used extended connectivity fin-447

gerprints with function-classes (FCFP) [61] to represent molecular structures in our experiments.448

We employed RDKit (v2021.03.1) for the FCFP fingerprint generation. The fingerprints were449

computed based on the isomeric SMILES. RDKit parameter “useChirality” was used to gener-450

ate fingerprints that either encode stereochemistry (3D) or not (2D). We used counting FCFP451

fingerprints. To define the set of substructures in the fingerprint vector, we first generated all452

possible substructures, using a FCFP radius of two, based on a set of 50000 randomly sampled453

molecular candidates associated with our training data, and all the ground truth training struc-454
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tures, resulting in 6925 (3D) and 6236 (2D) substructures. We used 2D FCFP fingerprints in455

our experiments, except for the experiments focusing on the identification of stereoisomers, where456

we used 3D fingerprints. We used the MinMax-kernel [56] to compute the similarity between the457

molecules.458

Computing molecular categories. For the analysis of the ranking performance for different459

molecular categories, we used two classification systems, ClassyFire [51], which classifies molecules460

according to their structure and PubChemLite [39], which focuses on molecules’ relevance to461

exposomics. For ClassyFire, we used the “classyfireR” R package to retrieve the classification462

for each ground truth molecular structure in our dataset. For PubChemLite classifications, we463

first check for each molecular structure whether it is contained in PubChemLite by matching the464

InChIKey first block. We considered all 10 of the provided PubChemLite classes. If a molecular465

structure was not found in PubChemLite we assign it to the category “noClassification”.466

Training and evaluation data setups. We only considered MassBank data that has been467

analyzed using a LC reversed phase (RP) column. We removed molecules from the data if their468

measured retention time (RT) was less than three times the estimated column dead-time [62], as469

we considered such molecules to be non-retaining.470

We considered two separate data setups. The first one, denoted by ALLDATA, used all avail-471

able MassBank data to train and evaluate LC-MS2Struct. This setup was used to compare the472

different candidate ranking approaches as well as to investigate the performance across various473

molecular classes. The second setup, denoted by ONLYSTEREO, used MassBank records where474

the ground truth molecular structure contains stereochemical information, i.e. where the InChIKey475

second block is not “UHFFFAOYSA”. This setup was used in the experiments regarding the ability476

of LC-MS2Struct to distinguish stereochemistry. In the training, we additionally used MassBank477

records that appear only without stereochemical information in our candidate sets, identified by478

the InChIKey second block equal to “UHFFFAOYSA” in PubChem. The number of available479

training and evaluation (MS2, RT)-tuples per MB-subset are summarized in Extended Data Ta-480

ble 1.481

For each MB-subset we sampled a set of LC-MS2 experiments, i.e. (MS2, RT)-tuple sequences,482

from the available evaluation data. The number of LC-MS2 experiments (n below) depended on483

the number of available (MS2, RT)-tuples (see Extended Data Table 1) as follows484

n =


0 if |D| < 30

1 if |D| ≤ 75

15 if |D| ≤ 250⌊
|D|
50

⌋
else.

where D is a set of (MS2, RT)-tuples with ground truth annotation and molecular candidate485

sets associated with a MB-subset. If there are less than 30 (MS2, RT)-tuples available, we do not486

generate an evaluation LC-MS2 experiment from the corresponding MB-subset. Based on this sam-487

pling scheme, we obtained 354 and 94 LC-MS2 experiments for ALLDATA and ONLYSTEREO,488

respectively, for our evaluation (see Extended Data Table 1).489

We trained eight (K = 8) separate SSVM models wk for each evaluation LC-MS2 experiment.490

For each SSVM model we first generated a set containing the (MS2, RT)-tuples from all MB-491

subsets. Then, we removed all tuples whose ground truth molecular structure, determined by the492

InChIKey first block, was in the respective evaluation LC-MS2 experiment. Lastly, we randomly493

sampled LC-MS2 experiments from the training tuples, within their respective MB-subset, with a494

length randomly chosen from {4, . . . , 32} (see also Figure 1e) and an RST Tik assigned for each495

MS feature sequence i. In total 768 LC-MS2 training experiments were generated for each SSVM496

model. To speed up the model training, we restricted the candidate set size |Ciσ| of each training497

MS feature σ to maximum 75 candidate structures by random sub-sampling. Each SSVM model498

wk was applied to the evaluation LC-MS2 experiment, associated with different RSTs Tk, and the499

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2022. ; https://doi.org/10.1101/2022.02.11.480137doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.11.480137
http://creativecommons.org/licenses/by-nc-nd/4.0/


averaged max-marginal scores where used for the final candidate ranking (see Equation (5) and500

Figure 1c).501

SSVM hyper-parameter optimization. The SSVM regularization parameter C was opti-502

mized for each training set separately using grid search and evaluation on a random validation503

set sampled from the training data’s (MS2, RT)-tuples (33%). A set of LC-MS2 experiments was504

generated from the validation set and used to determine the Normalized Discounted Cumulative505

Gain (NDCG) [63] for each C value. The regularization parameter with the highest NDCG value506

was chosen to train the final model. We used the scikit-learn [64] (v0.24.1) Python package to507

compute the NDCG value, taking into account ranks up until 10 (NDCG@10) and defined the508

relevance for each candidate to be 1 if it is the correct one and 0 otherwise. To reduce the training509

time, we searched the optimal C∗ only for SSVM model k = 0 and used C∗ for the other models510

with k > 0.511

Ranking performance evaluation. We computed the ranking performance (top-k accuracy)512

for a given LC-MS2 experiment using the tie-breaking strategy described in [8]: If a ranking513

method assigns an identical score to a set of n molecular candidates, then all accuracies at the514

ordinal ranks k at which one of these candidates is found are increased by 1
n . We computed a515

candidate score (i.e. Only-MS2, LC-MS2Struct, etc.) for each molecular structure in the candidate516

set. In the experiments using the ALLDATA setup we collapsed the candidates by InChIKey first517

block, assigning the maximum candidate score for each InChIKey first block group. The top-k518

accuracy was computed based on the collapsed candidate sets. In the ONLYSTEREO setup, we519

did not collapse the candidate sets before the top-k accuracy computation.520

For the performance analysis of individual molecule categories, either ClassyFire [51] or Pub-521

ChemLite [39] classes, we first computed the rank of the correct molecular structure for each522

(MS2, RT)-tuple of each LC-MS2 evaluation experiment based on Only-MS2 and LC-MS2Struct523

scores. Subsequently, we computed the top-k accuracy for each molecule category, associated with524

at least 50 unique ground truth molecular structures (based on InChIKey first block). As a ground525

truth structure can appear multiple times in our dataset, we generate 50 random samples, each526

containing only one example per unique structure, and computed the averaged top-k accuracy.527

Comparison of LC-MS2Struct with other approaches. We compared LC-MS2Struct with528

three different approaches to integrate tandem mass spectrum (MS2) and retention time (RT)529

information, namely RT filtering, logP prediction and retention order prediction.530

For RT filtering (MS2+RT), we followed Aicheler et al. [26] who used the relative error ε =531

|t̂−tσ|
tσ

, between the predicted (t̂) and observed (tσ) retention time. We set the filtering threshold532

to the 95%-quantile of the relative RT prediction errors estimated from the RT model’s training533

data, following [27, 29]. We used scikit-learn’s [64] (v0.24.1) implementation of the Support Vector534

Regression (SVR) [65] with radial basis function (RBF) kernel for the RT prediction. For SVR,535

we use the same 196 features, computed using RDKit (v2021.03.1), as Bouwmeester et al. [25].536

For logP prediction (MS2+logP) we followed Ruttkies et al. [11] who assigned a weighted537

sum of an MS2 and logP score s = β · sMS2(m) + (1 − β)slogP(m) to each candidate m ∈538

Cσ, and use it rank the set of molecular candidates. The logP score is given by slogP(m) =539

1
δ
√

2π
exp

(
− (logPm−logPσ)2

2δ2

)
, where logPm is the predicted XLogP3 [50] extracted from PubChem540

[20] for candidate m, and logPσ = a · tσ + b is the XLogP3 value of the unknown compound,541

associated with MS feature σ, predicted based on its measured RT tσ. The parameters a and b542

of the linear regression model were determined using a set of RT and XLogP3 tuples associated543

with the LC system. As Ruttkies et al. [11], we set the δ = 1.5 and set β such that it optimizes544

the top-1 candidate ranking accuracy, calculated from a set of 25 randomly generated training545

LC-MS2 experiments.546

For retention order prediction (MS2+RO) we used the approach by Bach et al. [34] which relies547

on a Ranking Support Vector Machine (RankSVM) implementation in the Python library ROSVM548
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[31, 66] (v0.4.0). We used counting substructure fingerprints calculated using CDK (v2.5) [67]549

and the MinMax kernel [56]. The MS2 matching scores and predicted ROs were used to compute550

max-marginal ranking scores using the framework by Bach et al. [34]. We used the author’s551

implementation in version 0.2.3 [68]. The hyper-parameters β and k of the model were optimized552

for each evaluation LC-MS2 experiment separately using the respective training data. To estimate553

β we generated 25 LC-MS2 experiments from the training data and selected the β that maximized554

the Top20AUC [34] ranking performance. The sigmoid parameter k was estimated using Platt’s555

method [69] calibrated using RankSVM’s training data. We used 128 random spanning trees per556

evaluation LC-MS2 experiment to compute the averaged max-marginals.557

For the experiments comparing the different methods we used all LC-MS2 experiments gener-558

ated, except the ones from the MB-subsets “CE 001”, “ET 002”, “KW 000” and “RP 000” (see559

Extended Data Table 1). For those subsets the evaluation LC-MS2 experiment contain all avail-560

able (MS2, RT)-tuples, leaving no LC system specific data to train the RT (MS2+RT) or logP561

(MS2+logP) prediction models. The RT and logP prediction models are trained in a structure562

disjoint fashion using the RT data of the particular MB-subset associated with the evaluation563

LC-MS2. The RO prediction model used by MS2+RO is trained structure disjoint as well, but564

using the RTs of all MB-subsets.565

Data availability566

All data used in our experiments is available online (https://zenodo.org/record/5854661).567

The candidate rankings of all LC-MS2 experiments are available online: ALLDATA (https://568

zenodo.org/record/6036208)) and ONLYSTEREO (https://zenodo.org/record/6037629).569

Code availability570

The source code developed for this study is available on GitHub: Structure Support Vector Ma-571

chine (SSVM) implementation (https://github.com/aalto-ics-kepaco/msms_rt_ssvm); scripts572

to run the experiments (https://github.com/aalto-ics-kepaco/lcms2struct_exp); and, the573

library implementing the MassBank pre-processing (https://github.com/bachi55/massbank2db).574

The candidate fingerprints where computed by the ROSVM Python library [66] (v0.4.0, https:575

//github.com/bachi55/rosvm) using the RDKit (2021.03.1) in the backend. The SSVM li-576

brary uses the max-marginal inference solver implemented by Bach et al. [34] (v0.2.3, https:577

//github.com/aalto-ics-kepaco/msms_rt_score_integration).578
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Figure 1: Overview of the LC-MS2Struct workflow. a: Input to LC-MS2Struct during
the application phase. The LC-MS2 experiment results in a set of (MS2, RT)-tuples. The MS
information is used to generate a molecular candidate set for each MS feature. b: Output of LC-
MS2Struct are the ranked molecular candidates for each MS feature. c: A fully connected graph
G models the pairwise dependency between the MS features. Using a set of random spanning
trees Tk and Structured Support Vector Machines (SSVM) we predict the max-marginal scores
for each candidate used for the ranking. d: The MS2 and RO information is used to scores the
nodes and edges in the graph G. e: To train the SSVM models and evaluate LC-MS2Struct, we
extract MS2 spectra and RTs from MassBank. We group the MassBank records such that their
experimental setups are matching and simulate LC-MS2 experiment. f: Main objective optimized
during the training of the SSVM.
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a Average candidate ranking performance of different the methods

b Performance for each MassBank (MB) subset

MB-subset MB-subset

Figure 2: Different approaches to combine MS2 and retention time (RT) information: a:
Comparison of the performance, measured by top-k accuracy, for the different ranking approaches
combining MS2 and RT information. The results shown are averaged accuracies over 350 sample
MS feature sequences (LC-MS2 experiments). b: Average top-k accuracies per MassBank (MB)
subset rounded to full integers. The color encodes the performance improvement of each score
integration method compared to Only-MS2.
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a Ranking peformance improvement per ClassyFire class b Ranking peformance improvement per PubChemLite class

Figure 3: Performance gain by LC-MS2Struct across molecular classes. The figure shows
the average and 95%-confidence interval of the ranking performance (top-k) improvement of LC-
MS2Struct compared to Only-MS2 (baseline). The top-k accuracies (%) under the bars show
the Only-MS2 performance. For each molecular class, the number of unique molecular structures
in the class is denoted in the x-axis label (n). a: Molecular classification using the ClassyFire
[51] framework. b: PubChemLite [39] annotation classification system. Molecules not present in
PubChemLite are summarized under the “noClassification” category. Note that in PubChemLite
a molecule can belong to multiple categories.
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a Average candidate ranking performance of different the methods

b Performance for each MassBank (MB) subset

MB-subset MB-subset

Figure 4: Using LC-MS2Struct with different feature representations. a: Comparison
of the performance, measured by top-k accuracy, of LC-MS2Struct using either 2D (no stereo-
chemistry) or 3D (with stereochemistry) molecular fingerprints. The results shown are averaged
accuracies over 94 sample MS feature sequences (LC-MS2 experiments). b: Average top-k accu-
racies per MassBank (MB) subset rounded to full integers. The color encodes the performance
improvement of each score integration method compared to Only-MS2.
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Figure 5: Application of LC-MS2Struct to annotate stereoisomers. Post-hoc analysis of
the stereoisomer annotation using LC-MS2Struct for three (MS2, RT)-tuples from our MassBank
data associated with the same 2D skeleton (InChIKey first block). In our evaluation, all three MS
features were analysed multiple times in different contexts (BS02391126 in 4, BS64681001 in 8
and PR75447353 in 2 LC-MS2 experiments). a: MS features with their ground truth annotations.
Two of the spectra (starting with BS) were measured under the same LC condition (MB-subset
“BS 000”), demonstrating the separation of E/Z-isomers on LC columns. b: The candidate sets
of the three features are identical (defined by the molecular formula C36H32O19) and only contain
three structures. For 12 out of the 14 LC-MS2 experiments, LC-MS2Struct predicts the correct
E/Z-isomer.
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Figure 6: Performance gain by LC-MS2Struct across ClassyFire class-level annotations.
The figure shows the average and 95%-confidence interval of the ranking performance (top-k)
improvement of LC-MS2Struct compared to Only-MS2 (baseline). The top-k accuracies (%) under
the bars show the Only-MS2 performance. For each molecule class, the number of unique molecular
structures in the class is denoted in the x-axis label (n).
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Figure 7: Distribution of molecule classes in the MassBank (MB) subsets. ClassyFire
super-class distribution [51] for each MB-subset studied in our experiments. Within each MB-
subset, the label “Other” is assigned to each super-class which makes up less then 2.5% of all
molecules. The center label represents the number of examples for the respective MB-subset.
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Figure 8: Processing pipeline of the MassBank data. Illustration of the processing pipeline
to extract the training data from MassBank. The depicted workflow is implemented in the “mass-
bank2db” Python package [47].
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Table 1: Training and evaluation dataset sizes in our experiments. We provide the number
(#) of (MS2, RT)-tuples used for the generation of training and evaluation LC-MS2 experiments.
For the ALLDATA setup the training and evaluation tuple-set is equal. The number of evaluation
LC-MS2 experiments depends on the number of available evaluation tuples.

ALLDATA ONLYSTEREO

MB-subset #Tuples #Exp. #Tuples (train.) #Tuples (eval.) #Exp.

AC 003 179 15 172 157 15
AU 000 168 15 146 23 -
AU 002 746 14 578 172 15
AU 003 90 15 77 21 -
BML 000 170 15 77 24 -
BML 001 250 15 125 33 1
BS 000 216 15 205 135 15
CE 001 39 1 30 19 -
EA 000 141 15 118 19 -
EA 001 147 15 126 19 -
EA 002 301 6 240 56 1
EA 003 307 6 246 57 1
EQ 001 86 15 68 28 -
EQ 003 92 15 64 6 -
EQ 004 181 15 127 51 1
EQ 006 211 15 138 15 -
ET 002 50 1 29 2 -
KW 000 55 1 43 4 -
LQB 000 301 6 271 270 5
LU 000 358 7 311 50 1
LU 001 567 11 472 101 15
NA 003 97 15 91 73 1
PR 000 709 14 131 21 -
PR 002 911 18 391 250 15
RP 000 69 1 55 35 1
RP 001 150 15 119 73 1
SM 000 161 15 136 12 -
SM 001 357 7 280 30 1
UF 002 149 15 124 18 -
UF 003 140 15 115 15 -
UT 000 318 6 294 293 5

Total 7716 354 5399 2082 94
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Table 2: Median candidate set size for the MassBank (MB) subsets. The table shows the
median number of molecular candidates per MB-subset used in our experiments. In the ALLDATA
setup the candidates are identified by their InChIKey first block, where as for the Only-MS2 setup
the full InChIKey is used. The candidate number is computed based on the MB records which
are used in the simulated LC-MS2 experiments. For ONLYSTEREO, some MB-subsets are not
used in the evaluation, and therefore their candidate set size is omitted (-).

MB-subset ALLDATA ONLYSTEREO

AC 003 305 384
AU 000 269 -
AU 002 1018.5 1434.5
AU 003 1297 -
BML 000 689 -
BML 001 1013.5 1688
BS 000 429 258
CE 001 819 -
EA 000 771 -
EA 001 570 -
EA 002 1373 1239
EA 003 1306 1097
EQ 001 425 -
EQ 003 759.5 -
EQ 004 872 1027
EQ 006 1045 -
ET 002 4957 -
KW 000 2010 -
LQB 000 73 106
LU 000 533 362.5
LU 001 998 751
NA 003 1024 1608
PR 000 109 -
PR 002 228 636
RP 000 760 1015
RP 001 658 723
SM 000 312 -
SM 001 800 1095.5
UF 002 1498 -
UF 003 1392.5 -
UT 000 56 93

29

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2022. ; https://doi.org/10.1101/2022.02.11.480137doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.11.480137
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3: MassBank (MB) information used to group the records. Two MassBank records
are considered to belong to the same MB-subset in our experiments, if all properties listed in
the table are equal between them. See https://github.com/MassBank/MassBank-web/blob/

main/Documentation/MassBankRecordFormat.md for a more comprehensive description of the
MassBank records’ fields.

Property Description Example

contributor Contributor who uploaded a
MassBank record

BGC Munich

accession prefix 2-3 character long prefix further
specifying the records of a contrib-
utor

EA, EQ

instrument type General type of instrument used
for the LC-MS analysis

LC-ESI-QTOF

ion mode MS Ionization mode negative
instrument Commercial name and manufac-

turer of the MS instrument
Bruker maXis Impact

fragmentation mode Fragmentation method used for
dissociation or fragmentation

CID

column name Commercial name and manufac-
turer of the LC instrument

Symmetry C18 Column, Waters

column temperature Static column temperature in LC-
MS

40 C

flow gradient Gradient of mobile phases in LC-
MS

0min:5%, 24min:95% (acetoni-
trile)

flow rate Flow Rate of liquid phase in LC 300 uL/min
solvent A Chemical composition of buffer so-

lution (A)
H2O(0.1%HCOOH)

solvent B Chemical composition of buffer so-
lution (B)

CH3CN(0.1%HCOOH)
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Supplementary material823

Table 4: Meta-information for the MassBank (MB) subsets. The the LC- and MS-
conditions for each MB-subset.

THIS TABLE IS PROVIDED IN A SEPARATE FILE: massbank groups meta data.tsv
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