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5 Abstract

6 We present LC-MS2Struct, a machine learning framework for structural annotation of
7 small molecule data arising from liquid chromatography-tandem mass spectrometry (LC-
8 MS?) measurements. LC-MS?Struct predicts the annotations for a set of mass spectrometry
9 features in a sample, using the ions’ observed retention orders and the output of state-of-
10 the-art MS? scorers. LC-MS2Struct is based on a novel structured prediction model trained
11 to benefit from dependencies between retention times and the mass spectral features for an
12 improved annotation accuracy.

13 We demonstrate the benefit of LC-MS?Struct on a comprehensive dataset containing ref-
14 erence MS? spectra and retention times of 4327 molecules from MassBank, measured using a
15 variety of LC conditions. We show that LC-MS2Struct obtains significantly higher annota-
16 tion accuracy than methods based on retention time prediction. Furthermore, LC-MS2Struct
17 improves the annotation accuracy of state-of-the-art MS? scorers by up to 66.1 percent and
18 even up to 95.9 percent when predicting stereochemical variants of small molecules.

» Introduction

20 Structural annotation of small molecules in biological samples is a challenging task and a bottleneck
a1 in various research fields including biomedicine, biotechnology, drug discovery and environmental
» sciences. Samples in untargeted metabolomics studies typically contain thousands of different
2 molecules, most of which remain unidentified [1H3]. Liquid chromatography (LC) tandem mass
2 spectrometry (LC-MS?) is one of the most widely used analysis platforms [4], as it allows for high-
s throughput screening, has high sensitivity and is applicable to a wide range of molecules. Briefly, in
2 LC-MS?, molecules are first separated by their different physicochemical interactions between the
2 mobile and stationary phase of the LC, resulting in retention time (RT) differences. Subsequently,
» separation happens according to their mass-to-charge ratio (m/z) in a mass analyzer (MS!).
» Finally, the molecular ions are isolated and fragmented in the tandem mass spectrometer (MS?),
3 typically using a narrow mass window. For each ion, the recorded fragments and their intensities
s constitute what is called the MS? spectrum. In an untargeted LC-MS? workflow, large sets of
» MS features (MS!, MS?, RT), arise from a single sample. The goal in structural annotation is to
33 associate each feature with a candidate molecular structure, for further downstream interpretation.
3 In recent years, many powerful methods [5, |6] to predict molecular structure annotations for
5 MS? spectra have been developed [7-18]. In general, these methods find candidate molecular
3 structures potentially associated with the MS feature, for example, by querying molecules with a
w certain mass from a structure database (DB) such as HMDB [19] or PubChem [20] and, subse-
s quently, compute a matching score between each candidate and the MS? spectrum. The highest
s scoring candidate is typically considered as the structure annotation of a given MS2. However,
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w even the best-of-class methods only reach an annotation accuracy of around 40% [17] in evalua-
o tion when searching large candidate sets like PubChem, and therefore, in practice, a ranked list
« of molecular structures is provided to the user (e.g. top 20 structures).

23 Even though readily available in all LC-MS? pipelines and recognized as valuable informa-
w tion [21} 22|, RT remains underutilized in automated approaches for structure annotation based
s on MS?. For example, only one of the above mentioned tools provides functionality to use the RT
s information, namely MetFrag [11]. An explaining factor for this is that RT not only depends on the
« molecular structure, but also the LC conditions (e.g., mobile phase composition, column pressure,
s ete.) |23, 24]. Thus, a molecule generally has different RTs under different LC conditions and in
w different laboratories [24]. Typically, the RT information is used as post-processing for candidate
s lists, e.g., by comparing measured and reference standard RTs [324]. This approach, however, is
51 limited by the availability of experimentally determined RT's of reference standards. RT prediction
52 models |25 24], on the other hand, allow to predict RTs solely based on the candidates’ molecular
3 structure and have been successfully applied to aid structure annotation [26-29]. However, such
s« prediction models generally have to be calibrated to the target LC configuration [3]. Calibration
s requires at least some amount of target LC reference RT data to be available |21} [30, [29].

56 Recently, the idea of predicting retention orders (RO), i.e., the order in which two molecules
sz elute from the LC column, has been explored [31H34]. ROs are largely preserved within a family of
ss. LC systems (e.g. reversed phase or HILIC). Therefore, RO predictors can be trained using a diverse
5o set of RT reference datasets and applied to out-of-dataset LC setups with high accuracy [31].
o Integration of RO and MS? based scores using probabilistic graphical models was shown to improve
s the annotation performance in LC-MS? experiments [34].

62 In this study we set out to provide a new perspective on jointly using MS? and RO information
s for the structure annotation of LC-MS? data. For that, we present a novel machine learning
e framework called LC-MS2Struct, which learns to optimally combine the MS? and RO information
s for the accurate annotation of a sequence of MS features. LC-MS2Struct relies on the Structured
s Support Vector Machine (SSVM) [35] and Max-margin Markov Network [36] frameworks. In
e contrast to the previous work by Bach et al. [34], our framework does not require a separately
e learned RO prediction model. Instead, it optimizes the SSVM parameters such that the score
e margin between correct and any other sequence of annotations is maximized, subject to a graphical
7o model representing the pairwise ROs as edges and the candidate sets of molecular structures for
n each MS feature as candidate node labels. That means that LC-MS2Struct learns to optimally use
22 the RO information in an LC-MS? experiment. We trained LC-MS2Struct on all available reversed
7 phase LC data from MassBank (MB) [37], which we processed to extract ground-truth annotated
7 (MS2, RT)-tuples covering a diverse set of LC and MS configurations. In our experiments we
75 evaluate LC-MS2Struct across all subsets of homogeneous LC-MS? configurations and compare
7 it with three other previously proposed approaches: RT filtering, logP predictions [11], and RO
7 predictions [34]. Our framework can be combined with any MS? scorer and applied to new LC-MS?
7 data, including new LC conditions without re-training, and is demonstrated below with CFM-ID
w |9, (18], MetFrag |11] and SIRIUS [817].

» Overview of LC-MS2Struct

s In this section we discuss the main components of LC-MS?Struct, which are also illustrated in
s Figure |1l Further details can be found in the Methods section.

s Input and output. As input we consider a typical data setting present in an untargeted LC-
s MS? based experiments, after pre-processing such as chromatographic peak picking and alignment
s (Figure ) Such data comprises a sequence of MS features, here indexed by o. Each feature
s consists of MS! information (e.g. mass, adduct and isotope pattern), LC retention time (RT) ¢,
& and an MS? spectrum z,. We assume that a set of candidate molecules C, is associated with each
s MS feature 0. Such a set can be, for example, generated from a structure database (e.g. PubChem
o [20], ChemSpider [38] or PubChemLite [39]) based on the ion’s mass, a suspect list, or an in silico
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o molecule generator (e.g. SmiLib v2.0 [40, 41]). We furthermore require that for MS? spectrum
o Iy, a matching score 0(x,,m) with its candidates m € C, is pre-computed using an in silico tool,
o such as CFM-ID |9, 18|, MetFrag [11] or SIRIUS [8, [17]. LC-MS?Struct predicts a score for MS
s feature o and each associated candidate m € C, based sequence of spectra x = (z,)L_;, of length
o L, and the ROs derived from the observed RTs t = (t,)L_,. These scores are used to rank the

s molecular candidates associated with the MS features (Figure [Ip).

o Candidate ranking using max-marginals. We define a fully connected graph G = (V, E)
o capturing the MS features and modelling their dependencies (Figure ) Each node o € V' corre-
e sponds to a MS feature, and is associated with the pre-computed MS? matching scores 8(x,,m)
o between the MS? spectrum z, and all molecular candidates m € C,. The graph G contains an
wo edge (0,7) € E for each MS feature pair. A scoring function F' is defined predicting a compati-
w1 bility score between a sequence of molecular structure assignments y = (y,)%_; in the label-space
w2 2 =Cy X...xCr, and the observed data:

Fyletw.G) = o2 3 0enu) 0 3 (et Gru) W, ()

|V| oeV (o,7)EE

Node scores: MS? information Edge scores: RO information

103 where the function f outputs an edge score for each candidate assignment pair (y,,y,) given the
s observed RTs (¢,,t,;) and the derived RO (Figure ) The edge score expresses the agreement
105 between the observed and the predicted RO for a candidate pair, i.e. if a candidate pair receives
s a high score it is more likely to be correct. Function f is parameterized by the vector w, which is
w7 trained specifically for each MS? scorer (see next section). Using the compatibility score function
ws  F (Equation (1)) we compute the max-marginals [42] for each candidate and MS features. The
100 max-marginal score of a particular candidate m € C, and MS feature o is defined as the maximum
1o compatibility score that a candidate assignment y € ¥ with 4, = m can reach:

wWye =m|x,t,w,G) =  max F(y|x,t,w,G).
{yex:go=m}

w We use p to rank the molecular candidates [34]. For general graphs G the max-marginal inference
uz  problem (MMAP) is intractable in practice due to the exponential size of the label space .
us  Therefore, we approximate the MMAP problem by performing the inference on tree-like graphs T}
ue  randomly sampled from G (Figure [lkc), for which exact inference is feasible [42] [43]. Subsequently,
us  we average the max-marginal scores u(y, = m|x;,t;, wg, Tx) over a set of trees T, an approach
us that performed well for practical applications [44} 45| [34]. For each spanning tree T}, we apply a
wr  separately trained SSVM model wy, to increase the diversity of the predictions.

us Joint annotation using Structured Support Vector Machines (SSVM). We propose to
e tackle the joint assignment of candidate labels y € ¥ to the sequence of MS features of a LC-
2o MS? experiment through structured prediction, a family of machine learning methods generally
1 used to annotate sequences or networks [35, 46, 45]. In our model, the structure is given by
122 the observed RO of the MS feature pairs (ys,yr), which provides additional information on the
s correct candidate labels ¥, and y,. Given a set of annotated LC-MS? experiments extracted from
1 MassBank [37] (Figure[l), we train a Structured Support Vector Machine (SSVM) [35] model w
s predicting the edge scores. SSVMs models can be optimized using the max-margin principle [35].
1 In a nutshell, given a set of ground truth annotated MS feature sequences, the model parameters
127w are optimized such that the correct label sequence y; € ¥;, that is the structure annotations for
s all MS features in an LC-MS? experiment, scores higher than any other possible label sequence
1o assignment y € 3; (Figure [If).
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» Results

1 This section describes our experiments and the corresponding results with LC-MS2Struct. We
12 start with a description of the training and evaluation data extracted from MassBank. Then, we
13 continue with a comparison of LC-MS2Struct to other approaches for MS? and RT or RO score
1 integration. Subsequently, we go into more details by analysing the performance of LC-MS2Struct
135 for different molecular classes. We conclude with a study of our method applied for the ranking
136 of candidate sets including stereoisomers.

1w Extracting training data from MassBank. For this study we extracted ground truth an-
132 notated MS? spectra and RTs from MassBank [37], a public online database for MS? data. Each
1 individual MassBank record typically provides a rich set of meta information (see Extended Data),
1o such as the chromatographic and MS conditions as well as molecular structure annotations. To
w  train the SSVM model of LC-MS?Struct, we need sets of MS features, i.e. (MS2, RT)-tuples, with
12 ground truth structure annotations as available in MassBank. We process the MassBank data
13 such that the experimental conditions are consistent within each MS feature set. That means,
s for example, that the LC setup is identical, such that we can compare the RTs within the set to
s derive the ROs, or that the same MS configuration was used, as we would assume in a typical
us  LC-MS? experiment. We developed a Python package “massbank2db” [47] that can process Mass-
w  Bank records and groups them into consistent MS feature sets, which we denote as MB-subsets.
ue For the SSVM training and the evaluation of LC-MS?Struct, as well as comparison methods, we
ue sample sequences of MS features to simulate LC-MS? experiments in which we measure the sig-
10 nal of multiple unknown compounds under consistent experimental setups. Figure illustrates
151 the grouping and LC-MS? sampling process. Two collections of MassBank data were considered:
12 ALLDATA and the ONLYSTEREO subset. Further details can be found in the Methods section.

15z Comparison of LC-MS2Struct with other approaches. In the first set of experiments we
e compare LC-MS2Struct with previous approaches for candidate ranking either using only MS?
s or additionally RT or RO information: Only-MS? uses the MS? spectrum information to rank
155 the molecular candidates and serves as baseline; MS?+RO [34] uses a Ranking Support Vector
157 Machine (RankSVM) [48| 49| to predict the ROs of candidate pairs and a probabilistic inference
15 model to combine the ROs with MS? scores; MS?+RT uses predicted RTs to remove false positive
s molecule structures from the candidate set, ordered by their MS? score, by comparing the predicted
wo and observed RT; MS?+IlogP is an approach introduced by Ruttkies et al. [11], which uses the
11 observed RT to predict the XLogP3 value [50] of the unknown compound and compares it with
12 the candidates’ XLogP3 values extracted from PubChem to refine the initial ranking based on the
15 MS? scores. A detailed description of the comparison approaches can be found in the Methods
e section. The RO based methods (LC-MS2Struct and MS24+RO) were trained using the RTs from
165 all available MB-subsets, at the same time ensuring that no test molecular structure (based on
s InChIKey first block) was used for the model training (structure disjoint). On the other hand, for
17 the RT based approaches (MS2+RT and MS?+logP), the RT and XLogP3 predictors were trained
168 in a structure disjoint fashion, using only the RT data available for that respective MB-subset. For
o the experiment, all MB-subsets with more than 75 (MS?, RT)-tuples from the ALLDATA data
o setup were used, as the RT based approaches require target LC system-specific RT training data
i (see Extended Data). The ranking performance was computed for each LC-MS? experiment within
12 a particular MB-subset. The molecules in the candidate sets are identified by their InChIKey first
ws  block (i.e. the structural skeleton). That means, there are no stereoisomers in the candidate set
17a  and the rank of the ground truth molecular structure is determined using the InChIKey first block.
s Each candidate ranking approach was evaluated with three state-of-the-art MS? scorers: CFM-ID
ws 4.0 [18], MetFrag [11] and SIRIUS [17]. Further details can be found in the Methods section.

177 Figure shows the average ranking performance (top-k accuracy) across 350 LC-MS? ex-
s periments, with each encompassing about 50 (MS?, RT)-tuples (see Methods). For CFM-ID and
e MetFrag, LC-MS2Struct provides 3.1 and 4.5 percentage unit increases over the Only-MS? for
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180 the top-1 accuracy, corresponding to 53.5% and 66.1% performance gain. In our setting, that
w1 translates to 1.6 respectively 2.3 additional identifications at the top rank (out of approx. 50).
122 The performance improvement increases for larger k, reaching as far as 7.2 and 8.6 percentage
183 units at top-20, which means 3.6 respectively 4.3 additional correct structures in the top-20. For
1« SIRIUS, the improvements are only modest, on average around 0.5 percentage units for top-1 to
s top-20. The runner-up score integration method is MS2+RO, which also makes use of predicted
1w ROs. Combined with SIRIUS, MS?+RO actually achieves the best molecule ranking performance
17 of all considered methods. For CFM-ID and MetFrag it leads to about half of the performance
s gain as LC-MS2Struct. The approaches relying on RTs, either by candidate filtering (MS2+RT)
1o or through logP prediction (MS2+logP), only lead to a tiny improvement for MetFrag and CFM-
wo ID, but none for SIRIUS, for which we even observe MS2+RT leading to a decrease in ranking
11 performance by about 2 percentage units. An explanation for this is that the filtering approach
12 removes on average 4.7% of the correct candidates, which leads to false negative predictions.

103 The performance gain by using either RO or RT varies between the MB-subsets that differ by
s their LC-MS? setup (see Supplementary Table [4)) and compound class composition (see Extended
s Data). We illustrate these differences in Figure[2b. Applying LC-MS2Struct improves the ranking
106 performance in almost all MB-subsets, including the STRIUS data (some very slight decreases were
17 observed in some SIRIUS sets). This is in stark contrast to the RT based approaches (MS?+RT and
s MS2+logP), which often lead to less accurate rankings, especially for SIRIUS. Furthermore, as can
190 be seen already from the average results (Figure )7 the benefit of LC-MS?Struct depends on the
20 MS? base scorer. For example, the top-1 accuracy of the subsets “AC_003” and “NA_003” can be
20 greatly improved for MetFrag but show little or no improvement for CEFM-ID. Interestingly, both
22 datasets are natural product toxins, which are perhaps poorly explained by the bond-disconnection
203 approach of MetFrag (often observed for substances with many rearrangements). On the other
24 hand, for “RP_001” and “LQB_000” the largest improvements can be reached for CFM-ID. The
s RT filtering approach (MS2+RT) performs particularly well for “LQB_000” and “UT_000”. These
26 subsets are characterized by a relatively homogeneous set of molecules in terms of ClassyFire [51]
27 super-classes (see Extended Data), encompassing mostly lipids and lipid-like molecules. Since the
28 RT prediction models are trained using only data from the respective MB-subset, this can lead
200  to more accurate models for subsets with less heterogeneous sets of molecules. Hence, the RT
a0 filtering could work well in such cases [26].

a1 Performance analysis of LC-MS2Struct for different compound classifications. Our
22 next experiment investigates how LC-MS2Struct can improve the identification across different
a3 categories in two molecule classification systems. The first system is the ClassyFire [51] taxonomy,
a4 which we use to assign molecule classes to all ground truth structures in our evaluation set. As a
a5 second classification system, we use the one provided by PubChemLite [39]. Figure [3| shows the
26 average top-1 and top-20 accuracy improvement of LC-MS2Struct over the Only-MS? baseline for
a7 each ClassyFire super-class and PubChemLite annotation category (see Methods). For ClassyFire
ze  (Figure[3), we observe that the ranking performance improvement for the different super-classes
20 depends on the MS? scorer. For example, the top-1 accuracy of “Alkaloids and derivatives” can
20 be improved by 6.7 percentage units for MetFrag, but improves only very little for CFM-ID and
a1 SIRIUS (about 1 percentage unit). The picture looks different for “Organic oxygen compounds”,
222 for which the top-1 accuracy improves by about 4.7 percentage units when using CFM-ID, but little
23 to no improvement is observed for the other MS? scorers. This suggests that the CFM-ID results
24 may be improved with the inclusion of more “Organic oxygen compounds”. On the other hand, it
»s  seems that the “Alkaloids and derivatives”, “Organic acids and derivatives” and “Organic nitrogen
26 compounds” may be less well explained by MetFrag (perhaps with more rearrangements, or less
2 distinguishable spectra), such that the improvement from the RO approach is more apparent.

28 For the PubChemLite classification (Figure ) we also see that different MS? scorers benefit
»o differently by using LC-MS2?Struct. The improvement seems generally more consistent across the
20 annotation categories, with one or two differing exceptions for MetFrag and CFM-ID. The SIRIUS
2 performance seems unaffected, irrespective of the annotation category. Looking at the top-1
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2 cases: For CFM-ID, the biggest improvement is in the “Food Related” category. For MetFrag,
23 the category that improved the most with LC-MS?Struct was “Agrochemicals”, whereas both
2 “Agrochemicals” and “Identification” showed the least improvement for CFM-ID. The performance
25 was relatively consistent over the other categories. For the top-20 cases, the performance seems
26 relatively consistent except for the “Food related” (as for top-1) and “noClassification” cases.
27 The low performance gain achieved by LC-MS2Struct for molecules not covered in PubChemLite
2 (“noClassification”) could be due to the fact that one third of the “noClassification” molecules
20 belong to the ClassyFire class “Glycerophospholipids”. As shown in Extended Data Figure[6] this
20 class does not benefit from LC-MS2Struct, unlike other lipid classes also shown in that figure.

21 Annotation of stereoisomers. In general, MS? alone cannot reliably distinguish between
2o stereoisomers [5l 24]. Thus MS? scorers mostly output the same matching score between spectrum
23 and candidate molecule for different stereoisomers (c.f. |7, [17]). However, there is a difference be-
2s  tween stereoisomers that vary in their double-bond orientation (e.g. cis-trans or E-Z isomerism),
25 which may have different shapes and thus exhibit different fragmentation and/or interactions with
25 the LC system in some cases (see Figure ), compared with stereoisomers involving chiral centres
w7 (e.g. R, S isomers), which may not exhibit such dramatic differences in regular LC-MS? experi-
2 ments. Thus, in our last experiment we study whether LC-MS2Struct can annotate stereoisomers
20 more accurately than MS? alone. For that we consider candidate sets containing stereoisomers and
20 evaluate LC-MS2Struct only using MassBank records where the ground truth structure has stere-
»s1 - ochemistry information provided, i.e. where the InChIKey second block is not “UHFFFAOYSA”
2 (the ONLYSTEREO data setup, see Methods). The molecular candidates are represented us-
»3  ing two different molecular fingerprint features: One that includes stereochemistry information
¢ (3D); and one that omits it (2D) (see Methods). This allows us to assess the importance of the
x5 stereochemistry encoding of features for the candidate ranking.

256 Figure shows the ranking performance of LC-MS2Struct, using 2D respectively 3D finger-
27 prints, compared with the Only-MS? baseline. It can be seen that LC-MS2Struct improves the
s ranking for all three MS? scorers. The improvement, however, is notably larger when using can-
0 didate features that encode stereochemistry (3D). That demonstrates that LC-MS?Struct can use
%0 the RO information to improve the annotation of stereoisomers, but that the molecular features
s need to encode stereochemistry to achieve the best performance. When looking into the top-1
2 performance of LC-MS?Struct (3D) for the individual MS? scorers, we observe an improvement by
%3 2.6, 3.8 and 3.2 percentage units for CFM-ID, MetFrag and SIRIUS, respectively. This translates
x4 to performance gains of 87.3%, 95.9% and 44.3% with about 1.5 additional structures correctly
s ranked at top rank (1) for all three MS? scorers. In contrast to our previous experiments, we see
26 that LC-MS2Struct can also improve the ranking when SIRIUS is used as MS? scorer.

» DDiscussion

2s  We have presented LC-MS2Struct, a novel approach for the integration of tandem mass spectro-
20 metric and liquid chromatography data for the structural annotation of small molecules. The
o method learns from the pairwise dependencies in the retention order of MS features within similar
on LC configurations and can generalize across different, heterogeneous LC configurations. The anno-
o tation accuracies are far superior to more traditional retention time (RT) filtering and logP-based
a3 approaches, and also markedly better than previous methods that rely on retention orders. In
xe  particular, compared to Bach et al. [34], who used a graphical model as a post-hoc integration
s tool of MS? scores and retention order predictions, the benefits of learning the parameters of the
26 graphical model are clear. We note that it would in principle be possible to also train the MS?
o score part (the node scores) of the model, instead of relying on separate MS? scorers such as
as SIRIUS, MetFrag and CFM-ID. Such an approach could potentially further improve the results
2 by learning from dependencies between MS? and RO features. However, as the MS? scorers used
20 here are already relatively mature and well-known in the community, we have left this research
261 line open for future efforts.
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282 Most MS? scorers neglect stereochemistry, or collapse their results into one result for all
23 stereoisomers by InChlKey first block. In our experiments, we could demonstrate that LC-
2 MS2Struct can improve the identification of stereoisomers. The top-1 accuracy increased by 2.6
25 to 3.8 and the top-20 by even 4.6 to 9.2 percentage units. Furthermore, we demonstrated that
25 the encoding of stereochemical features in the molecule representation is essential to improved the
»7  identification of stereoisomers. These can be split into two general cases: those features encoding
28 double-bond stereochemistry (SMILES: “\” and “/”) as well as the chiral centre configuration
% (SMILES: “@” and “@@”). Inspecting individual examples revealed that LC-MS?Struct can sepa-
20 rate the former cases with varying double-bond stereochemistry - i.e. E/Z- and cis/trans-isomers
21 (see e.g. Figure [5)). However, we note that there were very few examples of double-bond and/or
202 chiral isomers measured on the same LC system in our dataset, which makes it difficult to verify
203 these initial results, or interrogate these further - until such data is publicly available. Certain
20¢  stereoisomers differing only in chiral centres (i.e. containing “@” and “@e@”) can generally only be
25 separated using chiral column chromatography. MassBank, and hence our datasets, currently does
26 not cover such columns. Since MassBank also contains many metabolomics (biological) datasets
27 with primarily naturally-observed chiral forms, some of the observed improvement could also be
s related to biases in our dataset. In other words, certain chiral configurations might be over-
20 represented in public databases (i.e. in this case MassBank), hence these are more likely to be
a0 predicted. Overall, these results suggest that LC-MS? annotation may be improved by the use of
sn  stereochemistry information, but that a selective fingerprint definition capturing only the stereo-
sz chemistry that is relevant for non-chiral LC systems should be used or developed to investigate
a3 this further.

304 We developed a processing pipeline to extract ground truth annotated MS? spectra with RT
s information from MassBank. The (MS2?, RT)-tuples are grouped into subsets with homogeneous
s MS- and LC-conditions. This enables researchers to use MassBank data in a format suitable for
sr  machine learning, and hence can facilitate the develop of novel approaches integrating MS? and RT
s information for structure annotation. We made the pipeline available to the research community
w0 in a separate Python package “massbank2db” [47].

w» Methods

su  Notation. We use the following notation to describe LC-MS?Struct:

Sequence of spectra x=(21,...,2L) with z, € X

Sequence of retention times t = (t1,...,t1) with ¢, € R>g
312 Sequence of candidate sets C=(Cy,...,Cp) with C, C Y

Sequence of labels vyv=Wi,...,y) €Y withy, €Y

Candidate assignment space X =C; X ... xCy,

a5 where X and ) denote the MS? spectra and the molecular structure space, respectively, and C
s denotes a candidate set that is a sub-set of all possible molecular structures, and A x B denotes
a5 cross product of two sets A and B. For the purpose of model training and evaluation, we assume
s a dataset with ground truth labeled MS feature sequences: D = {((x;,t;),Cs,y:)}Y,, where N
sz denotes the total number of sequences. We use ¢, € N> to index MS feature sequences and
s 0,7 € N>¢ as indices for individual MS features within a sequence, e.g. z;, denotes the MS?
a9 spectrum at index o in the sequence i. The length of a sequence of MS features is denoted with L.
20 We denote the ground truth labels (candidate assignment) of sequence ¢ with y; and any labelling
21 with y. Both, y; and y are in ¥;. We use y to denote the candidate label variable, whereas
22 m denotes a particular molecular structure. For example, y, = m means, that we assign the
323 molecular structure m as label to the MS feature o.

324 Graphical model for joint annotation of MS features. We consider the molecular annota-
25 tion problem for the output of an LC-MS?, that means assigning a molecular structure to each MS
26 feature, as a structured prediction problem [35, |46, 45|, relying on a graphical model representation
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27 of the sets of MS features arising from an LC-MS? experiment. For each MS feature o we want to
28 predict a label y, from a fixed and finite candidate (label) set C,. We model the observed reten-
2o tion orders (RO) between each MS feature pair (o, 7) within an LC-MS? experiment, as pairwise
a0 dependencies of the features. We define an undirected graph G = (V| F) with the vertex set V
s containing a node o for each MS feature and the edge set E' containing an edge for each MS feature
s pair E = {(0,7)]o,7 € V,o # 7} (c.f. Figure|lp and c). The resulting graph is complete with an
a3 edge between all pairs of nodes. This allows us to make use of arbitrary pairwise dependencies,
s instead of limiting to, say, adjacent retention times. This modeling choice was previously shown
35 to be beneficial by Bach et al. [34]. Here we extend that approach by learning from the pairwise
35 dependencies to optimize joint annotation accuracy, which leads to markedly improved annotation
s accuracy.

338 For learning, we define a scoring function F' that, given the input MS feature sequences (x, t)
30 and its corresponding sequence of candidate sets C, computes a compatibility score between the
au  measured data and any possible sequence of labels y € X:

1 1
F(y‘x7t7w7G) — m ZO(xU,yU)—i—E Z <W7F(tUT’y‘77)>7 (2)
o€V (o,7)EE

s where 6 : X x Y — (0, 1] is a function returning an MS? matching score between the spectrum z,,
s and a candidate y, € Cy, (-, ) denotes the inner product, and w is a model weight vector to predict
us  the RO matching score, based on the joint feature vector I' : R>g X R>g X YV x Y — F between
us  the observed RO derived from t°7 = (¢,,¢,) and a pair of molecular candidates y°™ = (Yo, yr).
s Equation (2)) consists of two parts: (1) A score computed over the nodes in G capturing the MS?
us  information; and (2) a score expressing the agreement of observed and predicted RO computed
sz over the edge set. We assume that the node scores are pre-computed by a MS? scorer such as
sus  CFM-ID [18], MetFrag [11] or SIRIUS [17]. The node scores are normalized to (0, 1] within each
u candidate set C,. The edge scores are predicted for each edge (o,7) using the model w and the
0 joint-feature vector I':

= (w,sign(t, —t-) ((yo) — ¢(yr))) (3)
= sign(te — t-)(W, d(yo) — ¢(y-)),

s with ¢ : Y — Fy being a function embedding a molecular structure into a feature space. The edge
s prediction function will produce a height edge score, if the observed RO (i.e. sign(t, —t;))
353 agrees with the predicted one.

354 Using the compatibility score function the predicted joint annotation for (x,t) corresponds
s to the the highest scoring label sequence y € ¥: y = argmaxgcy, F(¥|x,t,w,G). In practice,
36 however, instead of only predicting the best label sequence, it can be useful to rank the molecular
sz candidates m € C, for each MS feature o. That is because for state-of-the-art MS? scorers, the
s annotation accuracy in the top-20 candidate list is typically much higher than for the highest
30 ranked candidate (top-1). Our framework provides candidate rankings by solving the following
0 problem for each MS feature o and m € C,:

wy, =m|x,t,w,G) = max F(y|x,t,w,QG). (4)
{yez:go=m}
1 Problem returns a max-marginal u score for each candidate m. That is, the maximum compat-
s ibility score any label sequence ¥ € ¥ with g, = m can achieve. One can interpret Equation
3 as the log-space representation of a unnormalized Markov Random Field probability distribution
ss¢  over y associated with an undirected graphical model G [43].

s Feasible inference using random spanning trees (RST). For general graphs G the max-
6 imum a posterior (MAP) inference problem, that is finding the highest scoring label sequence y
s7 given an MS feature sequence, is an AP-hard problem [52, [53]. The max-marginals inference
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ss (MMAP), needed for the candidate ranking, is an even harder problem which is NPFF complete
w0 |53]. However, efficient inference approaches have been developed. In particular, if G is tree-like,
s we can efficiently compute the max-marginals using dynamic programming and the max-product
s algorithm [42] 43]. Such tree-based approximations have shown to be successful in various practical
s applications [44] |45] [34].

373 Here, we follow the work by Bach et al. [34] and sample a set of random spanning trees (RST)
s T ={T}, from G, whereby K denotes the size of the RST sample. Each tree T}, has the same
w5 node set V' as G, but and an edge set E(T) C E, with |E(T)| = L — 1, ensuring that T is a single
s connected component and cycle free. We follow the sampling procedure used by Bach et al. [34].
a7 Given the RST set T we compute the averaged max-marginals to rank the molecular candidates
s [34):

K
1 _
ﬂ(ya = m|X,t,W,T) = ?Z <p“(y<7 = m|x,t,w,Tk) _gleag F(Y|XataW7Tk)) ) (5)
k=1

9 where we subtract the maximum compatibility score from the marginal values corresponding to
s0  the individual trees to normalize the marginals before averaging [34]. This normalization value
s can be efficiently computed given the max-marginals p. In our experiments, we train K individual
sz models (wy) and associate them with the trees T} to increase the diversity.

3 The Structured Support Vector Machine (SSVM) model. To train the model parameters
s W (see equation )7 we implemented a variant of the Structured Support Vector Machine (SSVM)
85 [36, 135). Its primal optimization problem is given as [54]:

N
1, ., C
wp gl g6

(6)
st.  F(yi|xiti, w,G;) — F(y | xi,t, w,G3) > Uyiy) — &
Vie{l,...,N},Vy € &,

s where C' > 0 being the regularization parameter, £ > 0 is the slack variable for example 4 and
s 423 x3; — R being a function capturing the loss between two label sequences. The constraint
s set definition (st.) of problem @ leads to a parameter vector w that is trained according to the
;0 max-margin principle |36} [35 |46], that is the score F(y;) of the correct label should be greater
w0 than the score F(y) of any other label sequence by at least the specified margin £(y;,y). Note
. that in the SSVM problem (6]) a different graph G; = (V;, E;) can be associated to each training
. example ¢, allowing, for example, to process sequences of different length.

303 We solve @ in its dual formulation and use the Frank-Wolfe algorithm [55| following the recent
;¢ work by Lacoste-Julien et al. [54]. In the supplementary material we derive the dual problem and
s demonstrate how to solve it efficiently using the Frank-Wolfe algorithm and RST approximations
w6 for Gj. Optimizing the dual problem enables us to use non-linear kernel functions A : Y xY — Rx>q
7 measuring the similarity between the molecular structures associated with the label sequences.
308 The label loss function £ is defined as follows:

L
g(ylay) = |‘i| Z (1 - A(yiavya)) .
=1

w0 and satisfies £(y,y) = 0 (a required property [54]), if A is a normalized kernel, which holds true
wo in our experiments (we used the MinMax kernel [56]).

w1 Pre-processing pipeline for raw MassBank records. Extended Data Figure || illustrates
w2 our MassBank (MB) pre-processing pipeline implemented in the Python package “massbank2db”
w3 [47). First, the MassBank records’ text files were parsed and the MS? spectrum, ground truth
ws annotation, RT and meta-information extracted. Records with missing MS?, RT or annotation
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ws  were discarded. We use the MB 2020.11 release for our experiments. Subsequently, we grouped
ws the MassBank records into subsets (denoted as MB-subsets) where the (MS?, RT)-tuples have
w7 been measured under the same LC- and MS-conditions. Extended Data Table Bl summarizes the
ws  grouping criteria. In the next step, we used the InChIKey [57] identifier in MassBank to retrieve
w0 the SMILES [58] representation from PubChem [20] (1st of February 2021), rather than using the
a0 contributor-supplied SMILES. This ensures that we use a single SMILES source for the molecular
an  candidates and ground truth annotations. Before inserting the records into our final database, we
a2 performed three more filtering steps: (1) we removed records for which the ground truth exact
a3 mass deviated too much from the calculated exact mass based on the precursor mass-per-charge
ss  (m/z) and adduct type (larger than 20ppm); (2) we removed subsets that contain less then 50
a5 unique molecular structures; (3) we removed all records associated with the MassBank prefix LU
a6 that were potential isobars (see pull-request #152 in the MassBank GitHub repository, https:
a7 |//github.com/MassBank/MassBank-data/pull/152). Supplementary Table |4] summarizes the
as  meta-information for all generated MB-subsets.

ns  Generating the molecular candidate sets. We used SIRIUS [8|,17] to generate the molecular
a0 candidate sets. For each MassBank record the ground truth molecular formula was used by SIRTUS
2 to collect the candidate structures from PubChem [20]. The candidate sets generated by SIRIUS
«2 contain a single stereoisomer per candidate, identified by their InChIKey first block (structural
w3 skeleton). To study the ability of LC-MS?Struct to annotate the stereochemical variant of the
«2a  molecules, we enriched the SIRIUS candidates sets with stereoisomers. For that, the InChIKey
w5  first block of each candidate was used to search PubChem (1st of Feburary 2021) for stereoisomers.
w26 The additional molecules were then added to the candidate sets.

w27 Pre-computing the MS2 matching scores. For each MB-subset, MS? spectra with identical
w28 adduct type (e.g. [M+H]+) and ground truth molecular structure were aggregated. Depending on
2 the MS? scorer we either merged the MS? into a single spectrum (CFM-ID and MetFrag) follow-
a0 ing the strategy by Ruttkies et al. [11] or we provided the MS? spectra separately (SIRIUS). To
s compute the CFM-ID (v4.0.7) MS? matching score we first predicted the in silico MS? spectra
a2 for all molecular candidate structures based on their isomeric SMILES representation using the
a3 pre-trained CFM-ID models (Metlin 2019 MSML) by Wang et al. [18]. We merged the three in
s silico spectra predicted by CFM-ID for different collision energies and compared them with the
s merged MassBank spectrum using the modified cosine similarity [59] implemented in the matchms
s [60] (v0.9.2) Python library. For MetFrag (v2.4.5) the MS? matching scores were calculated using
s the FragmenterScore feature based on the isomeric SMILES representation of the candidates. For
as SIRIUS, the required fragmentation trees are computed using the ground truth molecular formula
a0 of each MassBank spectrum. SIRIUS uses canonical SMILES and hence does not encode stere-
s ochemical information (canonical SMILES). Therefore, we used the same SIRIUS MS? matching
w1 score for all stereoisomers sharing the same InChIKey first block. For all three MS? scorers we
w>  normalized the MS? matching scores to the range [0, 1] separately for each candidate set. For
w3 the machine learning based scorers (CFM-ID and SIRIUS) we predicted the matching scores such
ws  that the associated MassBank record’s ground truth structures was not used for the MS? scorer
ws  model training. If a MS? scorer failed on a MassBank record, we assigned a constant MS? score
us  to each candidate.

# Molecular feature representations. For LC-MS2Struct, we used extended connectivity fin-
ws  gerprints with function-classes (FCFP) [61] to represent molecular structures in our experiments.
w4 We employed RDKit (v2021.03.1) for the FCFP fingerprint generation. The fingerprints were
o computed based on the isomeric SMILES. RDKit parameter “useChirality” was used to gener-
ss1 ate fingerprints that either encode stereochemistry (3D) or not (2D). We used counting FCFP
2 fingerprints. To define the set of substructures in the fingerprint vector, we first generated all
»s3 possible substructures, using a FCFP radius of two, based on a set of 50000 randomly sampled
s molecular candidates associated with our training data, and all the ground truth training struc-
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5 tures, resulting in 6925 (3D) and 6236 (2D) substructures. We used 2D FCFP fingerprints in
w6 our experiments, except for the experiments focusing on the identification of stereoisomers, where
s we used 3D fingerprints. We used the MinMax-kernel [56] to compute the similarity between the
s molecules.

w0 Computing molecular categories. For the analysis of the ranking performance for different
w0 molecular categories, we used two classification systems, ClassyFire [51], which classifies molecules
w1 according to their structure and PubChemLite [39], which focuses on molecules’ relevance to
w2 exposomics. For ClassyFire, we used the “classyfireR” R package to retrieve the classification
w3 for each ground truth molecular structure in our dataset. For PubChemlLite classifications, we
wa  first check for each molecular structure whether it is contained in PubChemlLite by matching the
ws  InChlKey first block. We considered all 10 of the provided PubChemlLite classes. If a molecular
w6 structure was not found in PubChemlLite we assign it to the category “noClassification”.

w7 Training and evaluation data setups. We only considered MassBank data that has been
ws analyzed using a LC reversed phase (RP) column. We removed molecules from the data if their
w0 measured retention time (RT) was less than three times the estimated column dead-time [62], as
a0 we considered such molecules to be non-retaining.

an We considered two separate data setups. The first one, denoted by ALLDATA, used all avail-
w2 able MassBank data to train and evaluate LC-MS2Struct. This setup was used to compare the
a3 different candidate ranking approaches as well as to investigate the performance across various
s molecular classes. The second setup, denoted by ONLYSTEREOQO, used MassBank records where
a5 the ground truth molecular structure contains stereochemical information, i.e. where the InChlKey
as  second block is not “UHFFFAOYSA”. This setup was used in the experiments regarding the ability
ar of LC-MS2Struct to distinguish stereochemistry. In the training, we additionally used MassBank
as records that appear only without stereochemical information in our candidate sets, identified by
a9 the InChIKey second block equal to “UHFFFAOYSA” in PubChem. The number of available
w training and evaluation (MS?, RT)-tuples per MB-subset are summarized in Extended Data Ta-
w1 ble m

482 For each MB-subset we sampled a set of LC-MS? experiments, i.e. (MS?, RT)-tuple sequences,
w3 from the available evaluation data. The number of LC-MS? experiments (n below) depended on
s the number of available (MS?, RT)-tuples (see Extended Data Table [1)) as follows

0 if |D| < 30
1 if |D| < 75
15 if [D] <250

{%J else.

n =

ws where D is a set of (MS?, RT)-tuples with ground truth annotation and molecular candidate
s sets associated with a MB-subset. If there are less than 30 (MS?, RT)-tuples available, we do not
w7 generate an evaluation LC-MS? experiment from the corresponding MB-subset. Based on this sam-
s pling scheme, we obtained 354 and 94 LC-MS? experiments for ALLDATA and ONLYSTEREO,
w0 respectively, for our evaluation (see Extended Data Table .

490 We trained eight (K = 8) separate SSVM models wy, for each evaluation LC-MS? experiment.
w1 For each SSVM model we first generated a set containing the (MS?, RT)-tuples from all MB-
w2 subsets. Then, we removed all tuples whose ground truth molecular structure, determined by the
s InChIKey first block, was in the respective evaluation LC-MS? experiment. Lastly, we randomly
s0a  sampled LC-MS? experiments from the training tuples, within their respective MB-subset, with a
w5 length randomly chosen from {4,...,32} (see also Figure[le) and an RST T, assigned for each
ws  MS feature sequence i. In total 768 LC-MS? training experiments were generated for each SSVM
w7 model. To speed up the model training, we restricted the candidate set size |C;,| of each training
ws  MS feature o to maximum 75 candidate structures by random sub-sampling. Each SSVM model
w0 Wy, was applied to the evaluation LC-MS? experiment, associated with different RSTs T},, and the
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so averaged max-marginal scores where used for the final candidate ranking (see Equation and

501 Figure )

s SSVM hyper-parameter optimization. The SSVM regularization parameter C' was opti-
s3 mized for each training set separately using grid search and evaluation on a random validation
s set sampled from the training data’s (MS?, RT)-tuples (33%). A set of LC-MS? experiments was
ss  generated from the validation set and used to determine the Normalized Discounted Cumulative
s Gain (NDCG) [63] for each C value. The regularization parameter with the highest NDCG value
sov 'was chosen to train the final model. We used the scikit-learn [64] (v0.24.1) Python package to
ss compute the NDCG value, taking into account ranks up until 10 (NDCG@10) and defined the
so0  relevance for each candidate to be 1 if it is the correct one and 0 otherwise. To reduce the training
si0 time, we searched the optimal C* only for SSVM model k£ = 0 and used C* for the other models
su o with £ > 0.

sz Ranking performance evaluation. We computed the ranking performance (top-k accuracy)
sis for a given LC-MS? experiment using the tie-breaking strategy described in [8]: If a ranking
su. method assigns an identical score to a set of n molecular candidates, then all accuracies at the
si5 ordinal ranks k at which one of these candidates is found are increased by % We computed a
s candidate score (i.e. Only-MS?, LC-MS2Struct, etc.) for each molecular structure in the candidate
siz - set. In the experiments using the ALLDATA setup we collapsed the candidates by InChlKey first
sis block, assigning the maximum candidate score for each InChlIKey first block group. The top-k
si9 - accuracy was computed based on the collapsed candidate sets. In the ONLYSTEREO setup, we
s0 did not collapse the candidate sets before the top-k accuracy computation.

521 For the performance analysis of individual molecule categories, either ClassyFire [51] or Pub-
s2 ChemlLite [39] classes, we first computed the rank of the correct molecular structure for each
23 (MS?, RT)-tuple of each LC-MS? evaluation experiment based on Only-MS? and LC-MS2Struct
s scores. Subsequently, we computed the top-k accuracy for each molecule category, associated with
s at least 50 unique ground truth molecular structures (based on InChlIKey first block). As a ground
s truth structure can appear multiple times in our dataset, we generate 50 random samples, each
527 containing only one example per unique structure, and computed the averaged top-k accuracy.

s Comparison of LC-MS2Struct with other approaches. We compared LC-MS2Struct with
s three different approaches to integrate tandem mass spectrum (MS?) and retention time (RT)
s0 information, namely RT filtering, logP prediction and retention order prediction.

531 For RT filtering (MS?+RT), we followed Aicheler et al. [26] who used the relative error e =
532 %, between the predicted (f) and observed (t,) retention time. We set the filtering threshold
s to the 95%-quantile of the relative RT prediction errors estimated from the RT model’s training
s data, following 27, 29]. We used scikit-learn’s [64] (v0.24.1) implementation of the Support Vector
55 Regression (SVR) [65] with radial basis function (RBF) kernel for the RT prediction. For SVR,
535 we use the same 196 features, computed using RDKit (v2021.03.1), as Bouwmeester et al. [25].
537 For logP prediction (MS?+logP) we followed Ruttkies et al. [11] who assigned a weighted
s sum of an MS? and logP score s = 3 - syg2(m) + (1 — B)sigp(m) to each candidate m €

s Cp, and use it rank the set of molecular candidates. The logP score is given by siggp(m) =

540 6\/1§ exp <—W), where logP,,, is the predicted XLogP3 |50] extracted from PubChem

sa [20] for candidate m, and logP, = a - t, + b is the XLogP3 value of the unknown compound,
sz associated with MS feature o, predicted based on its measured RT t¢,. The parameters a and b
se3 of the linear regression model were determined using a set of RT and XLogP3 tuples associated
see - with the LC system. As Ruttkies et al. [11], we set the 6 = 1.5 and set 8 such that it optimizes
ss  the top-1 candidate ranking accuracy, calculated from a set of 25 randomly generated training
sss LC-MS? experiments.

547 For retention order prediction (MS2+RQO) we used the approach by Bach et al. [34] which relies
s on a Ranking Support Vector Machine (RankSVM) implementation in the Python library ROSVM
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sa0 [31L66] (v0.4.0). We used counting substructure fingerprints calculated using CDK (v2.5) [67]
s and the MinMax kernel [56]. The MS? matching scores and predicted ROs were used to compute
51 max-marginal ranking scores using the framework by Bach et al. [34]. We used the author’s
52 implementation in version 0.2.3 [68]. The hyper-parameters 3 and k of the model were optimized
sss for each evaluation LC-MS? experiment separately using the respective training data. To estimate
sse 3 we generated 25 LC-MS? experiments from the training data and selected the 8 that maximized
5 the Top20AUC [34] ranking performance. The sigmoid parameter k was estimated using Platt’s
sss  method [69] calibrated using RankSVM’s training data. We used 128 random spanning trees per
ss7  evaluation LC-MS? experiment to compute the averaged max-marginals.

558 For the experiments comparing the different methods we used all LC-MS? experiments gener-
0 ated, except the ones from the MB-subsets “CE_001”, “ET_002”, “KW_000" and “RP_000” (see
s0  Extended Data Table . For those subsets the evaluation LC-MS? experiment contain all avail-
se able (MS2, RT)-tuples, leaving no LC system specific data to train the RT (MS2+RT) or logP
52 (MS?+logP) prediction models. The RT and logP prediction models are trained in a structure
53 disjoint fashion using the RT data of the particular MB-subset associated with the evaluation
ss  LC-MS2. The RO prediction model used by MS?4+RO is trained structure disjoint as well, but
ss  using the RTs of all MB-subsets.

« Data availability

ssv All data used in our experiments is available online (https://zenodo.org/record/5854661)).
s The candidate rankings of all LC-MS? experiments are available online: ALLDATA (https://
s0 |zenodo.org/record/6036208)) and ONLYSTEREO (https://zenodo.org/record/6037629).

- Code availability

sn The source code developed for this study is available on GitHub: Structure Support Vector Ma-
sz chine (SSVM) implementation (https://github.com/aalto-ics-kepaco/msms_rt_ssvm); scripts
53 to run the experiments (https://github.com/aalto-ics-kepaco/lcms2struct_exp); and, the
st library implementing the MassBank pre-processing (https://github.com/bachib5/massbank2db).
ss The candidate fingerprints where computed by the ROSVM Python library [66] (v0.4.0, https:
se |//github.com/bachibb/rosvm) using the RDKit (2021.03.1) in the backend. The SSVM li-
s brary uses the max-marginal inference solver implemented by Bach et al. [34] (v0.2.3, https:
sis |//github.com/aalto-ics-kepaco/msms_rt_score_integration).
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Figure 1: Overview of the LC-MS2?Struct workflow. a: Input to LC-MS?Struct during
the application phase. The LC-MS? experiment results in a set of (MS?, RT)-tuples. The MS
information is used to generate a molecular candidate set for each MS feature. b: Output of LC-
MS?2Struct are the ranked molecular candidates for each MS feature. c: A fully connected graph
GG models the pairwise dependency between the MS features. Using a set of random spanning
trees T} and Structured Support Vector Machines (SSVM) we predict the max-marginal scores
for each candidate used for the ranking. d: The MS? and RO information is used to scores the
nodes and edges in the graph G. e: To train the SSVM models and evaluate LC-MS?Struct, we
extract MS? spectra and RTs from MassBank. We group the MassBank records such that their
experimental setups are matching and simulate LC-MS? experiment. f: Main objective optimized
during the training of the SSVM.
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Figure 2: Different approaches to combine MS? and retention time (RT) information: a:
Comparison of the performance, measured by top-k accuracy, for the different ranking approaches
combining MS? and RT information. The results shown are averaged accuracies over 350 sample
MS feature sequences (LC-MS? experiments). b: Average top-k accuracies per MassBank (MB)
subset rounded to full integers. The color encodes the performance improvement of each score
integration method compared to Only-MS?2.
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a Ranking peformance improvement per ClassyFire class b Ranking peformance improvement per PubChemlLite class
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Figure 3: Performance gain by LC-MS2Struct across molecular classes. The figure shows
the average and 95%-confidence interval of the ranking performance (top-k) improvement of LC-
MS?2Struct compared to Only-MS? (baseline). The top-k accuracies (%) under the bars show
the Only-MS? performance. For each molecular class, the number of unique molecular structures
in the class is denoted in the x-axis label (n). a: Molecular classification using the ClassyFire
framework. b: PubChemlLite annotation classification system. Molecules not present in
PubChemlLite are summarized under the “noClassification” category. Note that in PubChemlLite
a molecule can belong to multiple categories.
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Figure 4: Using LC-MS2Struct with different feature representations. a: Comparison
of the performance, measured by top-k accuracy, of LC-MS2?Struct using either 2D (no stereo-
chemistry) or 3D (with stereochemistry) molecular fingerprints. The results shown are averaged
accuracies over 94 sample MS feature sequences (LC-MS? experiments). b: Average top-k accu-
racies per MassBank (MB) subset rounded to full integers. The color encodes the performance
improvement of each score integration method compared to Only-MS?2.
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MS? spectrum and RT Ground truth structure Candidate set How often ranked at top-1?
MS feature * denotes the correct structure

10 rt = 7.64 min !
O . [M-H- Y\KO/ *(NCINNMWJQIKYLO-FRVSQPBBSA-N ] 1
©o ., o
I fj* ( NCNNMWJQIKYLO-WYFUIKBSSAN] [ 2 |
o = I m &
g ‘ m}/@r\?’ ( NcINNMwjQIKYLO-XCVCLGOSAN] [T |

0z
a oo :
B oo xﬂl “z‘uu En lm o a0 T e ) Number of LC-MS? experiments: 4

Mz NCJNNMWJQIKYLO-FRVSQPBBSA-N

1o rt = 8.63 min
O . [M-H]- . ([ NONNMW)QIKYLO-FRVSQPBBSA-N ] | :
= .. " :
g i bY [ * NCINNMWJQIKYLO-WYFUIKBSSAN | | 8 |
o H ~ o :
g o H |08 [ NCJNNMWJQIKYLO-XC\/CLJGOSA-N] |
& o2 )
g vl ~
-] . "

W0 o W a0 w0 w7 w0 8
Mz NCJNNMWJQIKYLO-WYFUIKBSSA-N

1o rt = 4.77 min )
O . [M+H]+ I (( NCINNMWJQIKYLO-FRVSQPBBSAN ] |
™ :
moge l)];( (( NCINNMWJQIKYLO-WYFUIKBSSAN ] | :
< £ " H
b * ‘ DQ/@ L [ * NCJNNMWJQIKYLO-XCVCLJGOSA-N] [ 2 ]

02 !
-4 o H
[ L ‘ Il L "

R T R T T e R P 2
Mz NCJNNMW)JQIKYLO-XCVCLJGOSA-N

Figure 5: Application of LC-MS2Struct to annotate stereoisomers. Post-hoc analysis of
the stereoisomer annotation using LC-MS?Struct for three (MS?, RT)-tuples from our MassBank
data associated with the same 2D skeleton (InChIKey first block). In our evaluation, all three MS
features were analysed multiple times in different contexts (BS02391126 in 4, BS64681001 in 8
and PR75447353 in 2 LC-MS? experiments). a: MS features with their ground truth annotations.
Two of the spectra (starting with BS) were measured under the same LC condition (MB-subset
“BS_000"), demonstrating the separation of E/Z-isomers on LC columns. b: The candidate sets
of the three features are identical (defined by the molecular formula C3sH32019) and only contain
three structures. For 12 out of the 14 LC-MS? experiments, LC-MS2Struct predicts the correct
E/Z-isomer.
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Figure 6: Performance gain by LC-MS2Struct across ClassyFire class-level annotations.
The figure shows the average and 95%-confidence interval of the ranking performance (top-k)
improvement of LC-MS2Struct compared to Only-MS? (baseline). The top-k accuracies (%) under
the bars show the Only-MS? performance. For each molecule class, the number of unique molecular
structures in the class is denoted in the x-axis label (n).
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Figure 7: Distribution of molecule classes in the MassBank (MB) subsets. ClassyFire
super-class distribution for each MB-subset studied in our experiments. Within each MB-
subset, the label “Other” is assigned to each super-class which makes up less then 2.5% of all
molecules. The center label represents the number of examples for the respective MB-subset.
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Figure 8: Processing pipeline of the MassBank data. Illustration of the processing pipeline
to extract the training data from MassBank. The depicted workflow is implemented in the “mass-
bank2db” Python package [47].
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Table 1: Training and evaluation dataset sizes in our experiments. We provide the number
(#) of (MS?, RT)-tuples used for the generation of training and evaluation LC-MS? experiments.
For the ALLDATA setup the training and evaluation tuple-set is equal. The number of evaluation
LC-MS? experiments depends on the number of available evaluation tuples.

ALLDATA ONLYSTEREO
MB-subset #Tuples #Exp. #Tuples (train.) #Tuples (eval.) #Exp.
AC_003 179 15 172 157 15
AU_000 168 15 146 23 -
AU_002 746 14 578 172 15
AU_003 90 15 7 21 -
BML_000 170 15 7 24 -
BML_001 250 15 125 33 1
BS_000 216 15 205 135 15
CE_001 39 1 30 19 -
EA_000 141 15 118 19 -
EA_001 147 15 126 19 -
EA_002 301 6 240 56 1
EA_003 307 6 246 57 1
EQ_001 86 15 68 28 -
EQ_003 92 15 64 6 -
EQ_004 181 15 127 51 1
EQ_006 211 15 138 15 -
ET_002 50 1 29 2 -
KW_000 55 1 43 4 -
LQB_000 301 6 271 270 5
LU_000 358 7 311 50 1
LU_001 567 11 472 101 15
NA_003 97 15 91 73 1
PR_000 709 14 131 21 -
PR_002 911 18 391 250 15
RP_000 69 1 55 35 1
RP_001 150 15 119 73 1
SM_000 161 15 136 12 -
SM_001 357 7 280 30 1
UF_002 149 15 124 18 -
UF_003 140 15 115 15 -
UT_000 318 6 294 293 5
Total 7716 354 5399 2082 94
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Table 2: Median candidate set size for the MassBank (MB) subsets. The table shows the
median number of molecular candidates per MB-subset used in our experiments. In the ALLDATA
setup the candidates are identified by their InChIKey first block, where as for the Only-MS? setup
the full InChIKey is used. The candidate number is computed based on the MB records which
are used in the simulated LC-MS? experiments. For ONLYSTEREO, some MB-subsets are not
used in the evaluation, and therefore their candidate set size is omitted (-).

MB-subset ALLDATA ONLYSTEREO

AC_003 305 384
AU_000 269 -
AU_002 1018.5 1434.5
AU_003 1297 -
BML_000 639 -
BML_001 1013.5 1688
BS_000 429 258
CE_001 819 -
EA_000 771 -
EA_001 570 -
EA_002 1373 1239
EA_003 1306 1097
EQ.-001 425 -
EQ_003 759.5 -
EQ_004 872 1027
EQ_006 1045 -
ET_002 4957 -
KW_000 2010 -
LQB_000 73 106
LU_000 533 362.5
LU_001 998 751
NA_003 1024 1608
PR_000 109 -
PR_002 228 636
RP_000 760 1015
RP_001 658 723
SM_000 312 -
SM_001 800 1095.5
UF_002 14983 -
UF_003 1392.5 -
UT_000 56 93
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Table 3: MassBank (MB) information used to group the records. Two MassBank records
are considered to belong to the same MB-subset in our experiments, if all properties listed in
the table are equal between them. See https://github.com/MassBank/MassBank-web/blob/
main/Documentation/MassBankRecordFormat.md for a more comprehensive description of the

MassBank records’ fields.

Property Description Example
contributor Contributor who uploaded a BGC_Munich
MassBank record
accession prefix 2-3 character long prefix further EA, EQ
specifying the records of a contrib-
utor
instrument_type General type of instrument used LC-ESI-QTOF
for the LC-MS analysis
ion_mode MS Ionization mode negative
instrument Commercial name and manufac- Bruker maXis Impact

fragmentation_mode

turer of the MS instrument
Fragmentation method used for
dissociation or fragmentation

CID

column_name
column_temperature
flow_gradient

flow_rate
solvent_A

solvent B

Commercial name and manufac-
turer of the LC instrument

Static column temperature in LC-
MS

Gradient of mobile phases in LC-
MS

Flow Rate of liquid phase in LC
Chemical composition of buffer so-
lution (A)

Chemical composition of buffer so-
lution (B)

Symmetry C18 Column, Waters
40 C

Omin:5%,
trile)

300 uL/min
H20(0.1%HCOOH)

24min:95%  (acetoni-

CH3CN(0.1%HCOOH)
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= Supplementary material

Table 4: Meta-information for the MassBank (MB) subsets. The the LC- and MS-
conditions for each MB-subset.

THIS TABLE IS PROVIDED IN A SEPARATE FILE: massbank_groups_meta_data.tsv
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