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American chestnut (Castanea dentata) was once the most eco-
nomically and ecologically important hardwood species in the
United States. In the first half of the 20th century, an exotic fun-
gal pathogen – Cryphonectria parasitica – decimated the species,
killing approximately four billion trees. Two approaches to de-
veloping blight resistant American chestnut populations show
promise, but both will require introduction of adaptive ge-
nomic diversity from wild germplasm to produce diverse, locally
adapted reforestation populations. Here we characterize popu-
lation structure, demographic history, and genomic diversity in
a range-wide sample of 384 wild American chestnuts to inform
conservation and breeding with blight resistant varieties. Popu-
lation structure analyses with DAPC and ADMIXTURE suggest
that the chestnut range can be roughly divided into northeast,
central, and southwest populations. Within-population genomic
diversity estimates revealed a clinal pattern with the highest di-
versity in the southwest, which likely reflects bottleneck events
associated with Quaternary glaciation. Finally, we identified ge-
nomic regions under positive selection within each population,
which suggests that defense against fungal pathogens is a com-
mon target of selection across all populations. Taken together,
these results show that American chestnut underwent a post-
glacial expansion from the southern portion of its range lead-
ing to three extant populations. These populations will serve as
management units for breeding adaptive genetic variation into
the blight-resistant tree populations for targeted reintroduction
efforts.
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1 Introduction
The American chestnut (Castanea dentata (Marsh.) Borkh)
is a deciduous tree with a widespread historical range in the
eastern United States and southeastern Canada (1, 2). Histor-
ical records describe C. dentata as a canopy hardwood tree
that typically grew 60 – 90 feet high, but that could exceed
120 feet, with a diameter of 3-5 feet (3, 4). The rapid growth
of American chestnut, coupled with its decay resistant wood,
previously made it the single most valuable hardwood species

in the United States (5, 6). Moreover, the prodigious and re-
liable seed crop was an important source of food and feed
throughout its native range (7).
In the first half of the 20th century, an exotic fungal pathogen
– Cryphonectria parasitica – decimated the American chest-
nut, killing billions trees. While >400 million American
chestnuts survive in the forests of the eastern United States
(8), the vast majority of these are collar sprouts from trees
that germinated before arrival of the blight (9, 10). Although
some of these sprouts are able to flower before being killed
by blight, most are reinfected before they are able to produce
nuts. The American chestnut is thus considered functionally
extinct.
Successful restoration of the American chestnut will rely on
an accurate understanding of extant genomic diversity in the
wild (11), which can be leveraged to increase effective pop-
ulation size and adaptability of blight-resistant populations
(12). The ultimate goal of this project is to prioritize geo-
graphic areas for ex situ conservation through propagation of
wild trees. These trees will then be used to introgress natural
genetic variation into blight resistant populations. The first
step in this process is to define broad management units on
the basis of population structure and postglacial history for
the species (13).
Previous population genetic studies used microsatellite and
ddRAD-seq to characterize the population structure and ge-
netic diversity of American chestnut (14–17). These stud-
ies suggest the southern portions of the American chestnut
range are the most genetically diverse and that two popula-
tions exist: either a distinct northeastern population (15, 16)
or a distinct southern population (17). Furthermore, these
studies suggest that the American chestnut underwent a post-
glacial migration northward from a southern glacial refugium
(15, 17). While these studies provide our first glimpse of
the extant patterns of genetic diversity in chestnut, they are
limited by relatively low geographic sampling density and
genotyping methods that may lack power to comprehensively
characterize genome-wide diversity and signatures of selec-
tion (18, 19).
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In this study, we used ≈17X whole-genome resequencing
(WGS) data for each of 384 American chestnut genotypes,
sampled from across the entire historical species range, to
(i) estimate the population structure; (ii) describe the demo-
graphic history and contemporary barriers to gene flow; (iii)
evaluate genomic diversity within each population; (iv) and
identify signatures of selection within this iconic species. To
our knowledge, our use of WGS is the first for American
chestnut and allows the use of modern demographic inference
techniques that were inaccessible to previous studies. Whole-
genome resequencing captures many times more variant sites
and has improved statistical accuracy than other low-density
methods (20). Working in collaboration with The American
Chestnut Foundation (TACF), the results of this study will be
used to identify management units for germplasm conserva-
tion, and will aid in the overall efforts to restore the American
chestnut population to its pre-blight abundance in the eastern
US.

2 Materials and Methods
2.1. Leaf sample collection. TACF staff and volun-
teers sampled leaves from ≈1000 American chestnut trees
throughout the species range. The youngest leaves were sam-
pled from each tree in May through July over three grow-
ing seasons (2018 – 2020). During and immediately after
collection, leaves were kept cool with ice and refrigeration
or were desiccated and stored with silica gel. Leaves were
shipped to Virginia Tech within 3 weeks of collection and
stored at -80oC. Coordinates of the sampled trees were re-
trieved from TACF’s dentataBase (www.acf.herokuapp.com)
and TreeSnap (21)(https://treesnap.org/).

Fig. 1. Range map of North American Castanea species and locations of the se-
lected 384 American chestnut samples.

2.2. DNA isolation and sequencing. From a cohort of
≈1,000 available leaf samples, we selected 384 genotypes
for WGS (Fig. 1) on the basis of DNA quality and geography,
with the goal of including as much of the historical range as
possible. Leaves were ground to a fine powder using a Spex

2000 Geno/Grinder and ceramic beads with three 45 second
intervals of grinding interspersed by submersion in liquid ni-
trogen. DNA was extracted with Qiagen’s DNAeasy Plant
DNA extraction kit. For samples 1-96, a modified phenol-
chloroform cleanup step was performed to remove organic
contaminants from older leaves. For samples 97 through 384,
an additional 100% ethanol wash step was performed to re-
move organic contaminants that carried over from the previ-
ous steps and to dry the spin column membrane. DNA qual-
ity and concentration were measured by a Nanodrop Onec

and Qubit 3.0 Fluorometer, respectively. When DNA con-
centration was low, a secondary CTAB-based extraction was
used. DNA was stored in a 100-200 µl AE solution in a -
20oC freezer. PCR-free library preparation and genomic se-
quencing were conducted at the HudsonAlpha Institute for
Biotechnology. Libraries were sequenced in batches of 48 on
an Illumina NovaSeq 6000 instrument in 2x150bp paired-end
mode with a target depth of 20x.
We also performed WGS on a Castanea species reference
panel of 95 individuals to detect potential hybrid ancestry
in the putative C. dentata samples. The reference panel in-
cluded 19 C. sativa, 15 C. pumila var. pumila, 10 C. pumila
var. ozarkensis, six C. pumila var. alabamensis, four C. den-
tata, one C. seguinii, two C. henryi, 18 C. crenata, and 20 C.
mollissima. Leaf samples from Asian Castanea species (C.
mollissima, C. crenata, and C. henryi) were collected from
trees planted in the U.S. DNA from C. sativa was provided by
R. Costa from trees in Portugal. C. pumila samples were col-
lected from native locations (non-planted) in the U.S. DNA
was extracted as above. Sequencing was performed at the
Duke University Center for Genomic and Computational Bi-
ology, where libraries were prepared with an Illumina Nex-
tera kit and sequenced in an Illumina NovaSeq 6000 S4 flow-
cell (48 samples per lane) in 2x150bp paired-end mode.

2.3. Bioinformatics. Bioinformatic analyses were per-
formed on Virginia Tech’s Advanced Research Computing
(ARC) system. SNPs were called using a custom pipeline
adapted from the Broad Institute’s Genome Analysis Toolkit
(GATK v3.8) best practices (22). Individual fastq files were
aligned using the Burrows-Wheeler Aligner (BWA) mem al-
gorithm with the -M and -R flags and the C. dentata genome
as a reference (Castanea dentata v1.1; http://phytozome-
next.jgi.doe.gov/). The resulting SAM files were converted to
BAM format, sorted, and indexed using SAMtools (23, 24).
If samples were sequenced on multiple lanes, the individ-
ual lanes for each sample were then combined into a single
BAM file using samtools merge. For the Castanea species
reference, where PCR was performed in the library prepara-
tion, PCR duplicates were removed from the BAM files using
MarkDuplicates in picard.
The GATK HaplotypeCaller algorithm (25, 26) was used
to call SNPs and INDELs by chromosome. Chromosome
GVCF files for each individual were combined with Gath-
erVcfs and individual GVCFs were merged with Geno-
typeGVCFs. Polymorphisms were quality filtered using
the GATK VariantFiltration algorithm following GATK best
practices. The VCF file was further filtered in VCFtools
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2.4 Species identification and estimation of hybridization in wild American chestnut populations

v0.1.17 (27) to include only biallelic SNPs (–max alleles 2)
and SNPs with <10% missing data per site (–max-missing
0.9). Overall missing data per individual was checked
in VCFtools (—missing-indv), and individuals with >10%
missing data were removed. Unless otherwise noted, a mi-
nor allele frequency (MAF) filter was applied (MAF = 1/2n,
where n = number of samples).
VCFtools was used to calculate the sequencing coverage and
depth for the filtered VCF file. Genome-wide scans for SNP
density were determined using the –SNPdensity option with
50kb windows. The mean sequencing depth per variant was
calculated using the –site-mean-depth option and the mean
sequencing depth per sample was determined using the –
depth option. A smoothed line of the SNP density results for
each chromosome was visualized in ggplot2 using the default
’gam’ parameter in geom_smooth.

2.4. Species identification and estimation of hy-
bridization in wild American chestnut populations. We
used the Castanea species reference dataset to test for evi-
dence of introgression in our wild C. dentata samples. The C.
seguinii and C. henryi samples were excluded as there were
only one and two samples of these species, respectively. The
VCF files from the C. dentata and species reference datasets
were combined using bcftools merge and subsequently fil-
tered with bcftools to retain biallelic SNPs and remove sin-
gleton SNPs (MAF = 1/2n, where n = number of samples)
(28). Both SNPs and INDELs were retained for these analy-
ses. ADMIXTURE was run with the –cv flag enabled to per-
form a five-fold cross-validation for K = 1-9 (29). The value
of K was chosen as the most likely number of clusters when
each Castanea species first separated into at least one distinct
group (C. pumila varieties were considered as a single clus-
ter). Putative C. dentata samples were classified as hybrids
or misidentified if they had cluster membership >10% with a
different species.

2.5. Population structure. Population structure in C. den-
tata was estimated using ADMIXTURE and a Discriminant
Analysis of Principal Components (DAPC) (30). ADMIX-
TURE uses a model-based approach, like STRUCTURE, to
estimate ancestry, but uses maximum likelihood rather than
MCMC and is more computationally efficient (29). DAPC
combines PCA and a Discriminant Analysis (DA) to identify
demographically independent clusters by minimizing within
group variance and maximizing between group variances
(30). The VCF file was first converted to a BED file and
linkage-disequilibrium (LD) pruned to include SNPs with R2
values < 0.1 within 50 SNP sliding windows (step size 10
SNPs) in PLINK v1.9 (31). ADMIXTURE was performed
using the pruned BED file for K values 1-9. The –cv and
-j120 options were enabled to allow for a five-fold cross val-
idation and for the analysis to run in multithreaded mode
using 120 threads, respectively. The lowest CV error score
was used to determine the most likely value of K. The pop-
ulations identified by ADMIXTURE were used for all sub-
sequent analyses unless otherwise noted. Population mem-
bership for each sample was determined by highest ancestry

proportion from the ADMIXTURE results.
The DAPC analysis was performed in R using the adegenet
package (32). To create the input file for DAPC, the pruned
BED file was converted back to a VCF file in PLINK v1.9 us-
ing the –recode vcf option and the –ref-from-fa option. The
pruned VCF file was converted to genlight format using the
vcfR package (33). The optimal number clusters was de-
termined with the find.clusters function in adegenet, and the
Bayesian Information Criterion (BIC) statistic was calculated
for a maximum of five clusters and 355 principal components
(PCs) (PCs = n-1, where n is the number of samples). The
cluster number with the lowest BIC score was assumed to
be the most likely value. The optim.a.score was assessed for
each DAPC run to determine the optimal number of PCs to
retain.

2.6. Demographic history. The sequential Markovian co-
alescent approach in SMC++ was used to estimate the his-
torical effective population sizes (Ne) of C. dentata from
whole genome data (34). SMC++ required the input VCF
file to not have any filtering for LD or MAF, so the in-
put VCF file of 356 C. dentata was only filtered for
high missing sites (>10% missingness) and biallelic SNPs.
Sites missing in the C. dentata reference genome, which
could be erroneously interpreted as long runs of homozy-
gosity, were masked with a bed file generated with a
conversion script (https://www.danielecook.com/generate-a-
bedfile-of-masked-ranges-a-fasta-file/). The SMC files were
generated for each of the 12 chromosomes using the vcf2smc
function in SMC++. The estimate function was then used
with a mutation per generation rate set to 5.2 x 10-8 from es-
timates of pedunculate oak (Quercus robur) (35). A 30-year
generation time was assumed to convert coalescent events to
years. A CSV file of the results was generated with the plot
function and -c option for plotting in R (36).

2.7. Migration rates. Migration rates for C. dentata were
estimated using Estimated Effective Migration Surfaces
(EEMS) (37). EEMS estimates and visualizes effective mi-
gration and diversity across a given geographic range us-
ing genetic data from known locations (37). A stepping
stone model is assumed and that isolation-by-distance is a
component of the populations. The EEMS program re-
quires three input files: an average pairwise differences
matrix (DIFFS), list of sample geographic locations (CO-
ORD), and a list of habitat boundary coordinates (OUTER).
To reduce computational load, the LD pruned C. den-
tata dataset from the population structure analyses was
used. The pruned BED file was converted to the EEMS
DIFFS file using the EEMS program bed2diffs. The habi-
tat boundary coordinates were mapped with an online tool
(http://www.birdtheme.org/useful/v3tool.html).
An initial run was performed with 8 million iterations,
1 million burn-in, 600 nDemes, 9999 thinning, and
the hyperparameters in their default setting. EEMS
relies on properly adjusted proposal variances, which
influence the predicted migration and diversity rates.
During the analysis, each of the output proposal ac-
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ceptance frequencies should be between 20%-30%,
but it is sufficient for them to range from 10%-40%
(https://github.com/dipetkov/eems/blob/master/Documentation
/EEMS-doc.pdf). Following the initial EEMS run, there were
two proposal frequencies that were either less than 10% or
greater than 40%. To account for this, the mEffectProposalS2
parameter was increased to 0.2 and mrateMuProposalS2 was
decreased to 0.002. Four values of demes, 200, 350, 500, and
650 were used to evaluate the number of demes for best fit.
Three chains, each with 20 million iterations, four-million
burn-in, and 9999 thinning were performed for each deme
and their outputs were combined in R using the rEEMSplots2
program. The posterior trace plot was evaluated to determine
if the MCMC chain converged. Any EEMS run that did
not converge was restarted from the final parameter state
in the previous run. The results were mapped in R using
rEEMSplots2. A linear regression line was fitted to the
default ’Dissimilarities between pairs of sampled demes’
plot for each deme value, and the deme value with the highest
R2 value was determined to be the best fit. Appalachian
Mountain peak locations were obtained from Wikipedia
(https://en.wikipedia.org/wiki/List_of_mountains_of_the_
Appalachians) and a smoothed loess line of these locations
was added to the EEMS figure using ggplot2.

2.8. Tests for neutrality and nucleotide diversity. We
used ANGSD to perform the population statistical analyses
since its use of genotype likelihoods has been found to pro-
vide less biased estimates than previous methods that require
genotype calling (38, 39). The sorted bam files generated
from the SNP calling methods were used as the initial input
for ANGSD to generate the SAF file (site allele frequency
likelihood) for each population. Due to computational con-
siderations, a SAF file was generated for each chromosome
within a population using -doSaf 1 and then merged using
realSFS cat. The filtering parameters used for each SAF
file were adapted from ANGSD recommendations and other
hardwood tree studies (40, 41). These parameters were: ad-
just mapping quality for excessive mismatches (-C 50), min-
imum base quality score 20 (-minQ 20), minimum mapping
quality 30 (-minMapQ 30), discard reads that do not uniquely
map (-uniqueOnly 1), only retain sites where the pair could
be mapped (-only_proper_pairs 1), and remove ’bad’ reads
(-remove_bads 1). Additionally, to polarize the alleles in the
site-frequency-spectrum (SFS), an ancestral reference fasta
was generated in ANGSD using 11 C. mollissima BAM files
with the following parameters: -doFasta 2 and -doCounts 1.
Once the individual chromosomes were merged to generate
a SAF file for each population, the SFS was calculated using
realSFS.
Population statistics were computed for nucleotide diversity
and tests of neutrality in ANGSD. Thetas were first calcu-
lated from the SFS in ANGSD using realSFS saf2theta. The
statistics for each chromosome were then determined using
thetaStat do_stat. Nucleotide diversity was calculated from
the thetaStat do_stat output by dividing the pairwise theta
(tP) by the number of sites (-nSites) evaluated by ANGSD
for that genomic region. A sliding window analysis was also

performed on each chromosome using a 50 kb window and a
10 kb slide.
Pairwise FST was evaluated using ANGSD for each of the
populations to estimate the population differentiation of C.
dentata and identify candidate regions of the genome under-
going selection. Using the per chromosome SAF files as in-
put, each pair of populations per chromosome were used to
generate separate pairwise 2D-SFS files. The FST index was
then performed on each pairwise 2D-SFS file using realSFS
fst index. A sliding window analysis was then performed for
the FST calculation with a 50 kb window and a 10 kb slide.
The estimated pairwise FST for each chromosome was aver-
aged for all 12 chromosomes to get the mean pairwise FST
between populations.
VCFtools was used to calculate the observed heterozygos-
ity for each sample. The filtered SNP dataset was used as
input with the options -s – and -het. The output file pro-
vides the observed and expected homozygosity, F statistic,
and number of nucleotide sites analyzed for each sample. To
calculate the observed heterozygosity for each sample, we
first subtracted the observed homozygosity from the number
of sites, and then divided that total from the number of sites.
This provides the ratio of observed heterozygosity for each
sample. To calculate the average observed heterozygosity for
each population, the sample memberships from the ADMIX-
TURE analysis were used. The observed heterozygosity was
averaged over all samples within a population to calculate
the average observed heterozygosity for that population. To
determine the expected heterozygosity for each sample and
each population, the previous steps were performed using the
expected homozygosity values in place of observed homozy-
gosity. Observed heterozygosity between all populations was
tested for significance using a one-way ANOVA test in R with
function aov(). Further comparisons between each pair of
populations were completed using Tukey multiple pairwise-
comparisons with R function TukeyHSD(). For the one-way
ANOVA and Tukey tests, a P-value of 0.05 was used for sig-
nificance.

2.9. Detecting signatures of positive selection. We
used RAiSD to identify genomic regions undergoing posi-
tive selection in each population (42). RAiSD estimates a
composite statistic, µ, which evaluates each genomic region
based on multiple neutrality and diversity metrics. RAiSD
has been shown to excel at identifying regions that are un-
dergoing selective sweeps, while being more computation-
ally efficient than other leading methods (42). The filtered
C. dentata VCF file was subset for each of the three popula-
tions identified by ADMIXTURE and used as input. Regions
that were missing data in the C. dentata reference genome,
denoted with N, were masked with the -X flag and a BED
file of missing locations. The default parameters were used
for each run, except that we assigned a seed for the random
number generator. The RAiSD filtering parameters for each
population’s dataset retained 8,833,026 SNPs for the north-
east population, 7,545,294 SNPs for the central population,
and 11,737,005 SNPs for the southwest population for anal-
ysis. We used the quantile function in R (36) to identify the
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3.1 Genomic datasets

Fig. 2. The wild American chestnut population structure is best described by three or two populations. The pie charts represent the sample locations and the proportion of
color within each pie chart represents population membership. The minimum CV error score and minimum BIC score for each K value (right) were used to determine most
likely population number for the ADMIXTURE and DAPC analyses, respectively.

0.1% outlier regions in each of the RAiSD site reports for
each population. Results of this analysis were displayed us-
ing ggplot2 (43).

To identify the genes associated with the 0.1% outlier regions
for each population, we obtained gene names and location
information from the American chestnut genome feature file
(Cdentata_673_v1.1.gene.gff3.gz; Castanea dentata v1.1;
http://phytozome-next.jgi.doe.gov/). Genes were determined
to be associated with the RAiSD outlier regions if they
resided within 1 Kb of the region. Only unique genes
were retained. To determine gene function, we identified
the orthologs for each of the outlier genes in Arabidopsis
thaliana. The list of outlier C. dentata genes for each pop-
ulation were entered into BioMart on Phytozome (44, 45),
and the A. thaliana TAIR10 genome was used to output a
list of corresponding orthologs (46). The list of A. thaliana
orthologs were entered into the online TAIR gene ontology
tool to obtain the function category for each ortholog
(47)(https://www.arabidopsis.org/tools/bulk/go/index.jsp).
Finally, we performed GO enrichment analyses for bi-
ological function on four gene sets. These sets were
the unique genes belonging to the southwest, cen-
tral, and northeast populations, and the set of genes
that are shared between all three populations. The A.
thaliana orthologs were retrieved for each gene set
using the previously described methods, and were sub-
mitted to the TAIR GO Term Enrichment for Plants tool
(https://www.arabidopsis.org/tools/go_term_enrichment.jsp),
which sends the data to the PANTHER Classification System
(48). The summary for each gene set analysis using the
PANTHER Classification System was as follows. Anal-

ysis type: PANTHER Overrepresentation Test (Released
20210224), Annotation Version and Release Date: GO
Ontology database DOI: 10.5281/zenodo.5228828 Released
2021-08-18, Reference list: Arabidopsis thaliana (all genes
in database), Annotation Data Set: GO biological process
complete, Test Type: Fisher’s Exact, Correction: Bonferonni
correction for multiple testing for p<0.05.

3 Results
3.1. Genomic datasets. Of the 384 samples sequenced, 86
had greater than 20x coverage, 242 had 10-20x coverage, and
56 had less than 10x coverage. The 384 sample C. dentata
VCF file contained 23,720,251 SNPs and INDELs. Eigh-
teen samples with greater than 10% missing data were re-
moved, and 10 additional samples were removed that had >
10% cluster membership with one or more of the Castanea
species reference samples in ADMIXTURE analysis. The
final C. dentata dataset contained 356 individuals with an av-
erage coverage of ≈17x and 21,136,994 high quality SNPs
(Fig. S1). The pruned C. dentata dataset contained 3,539,550
SNPs. The Castanea species reference dataset contained 92
samples and 62,647,079 SNPs that passed the filtering cri-
teria. The combined and filtered C. dentata and Castanea
species reference dataset contained 76,378,648 SNPs and IN-
DELs.

3.2. Hybridization. ADMIXTURE analysis with the com-
bined C. dentata and Castanea species reference panel sug-
gested seven clusters best explained the data, with each Cas-
tanea species as an individual cluster in addition to three clus-
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Fig. 3. The Appalachian Mountain range was a barrier to gene flow for postglacial migrating American chestnut populations. A. EEMS migration rate estimates for American
chestnut populations. Regions of blue are above average migration estimates, while orange regions are below average migration estimates. A loess line of Appalachian
Mountain peaks was applied in ggplot2 using peak locations obtained from https://en.wikipedia.org/wiki/List_of_mountains_of_the_Appalachians. B. ADMIXTURE analysis
with K = 4. The pie charts represent sample location and the color represents population membership.

Fig. 4. American chestnut populations underwent bottleneck and expansion events that coincide with recent North American glaciations. Greyed regions represent glaciation
event times approximated from Bowen (49) (as cited in (50)). Each colored line represents the Ne for each of the three populations. Coalescent scaling was converted to
years with a 30 year generation time. A. SMC++ Ne estimates from the present to 2 million years ago. B. SMC++ Ne estimates from the present to 100,000 years ago.

ters within C. dentata (Fig. S2). Of the 384 putative Amer-
ican chestnut individuals, 340 had >99% ancestry assigned
to the C. dentata clusters. However, ten individuals showed
a significant level of ancestry from other Castanea species
(>10%) and were removed from further analyses. Three sam-
ples were identified as C. pumila, four samples were C. sativa
x C. dentata hybrids, and three were C. mollissima x C. den-
tata hybrids. Overall, the American chestnut samples se-
quenced did not reveal widespread patterns of significant in-
trogression with other Castanea species.

3.3. Population structure in Castanea dentata. Popula-
tion structure within C. dentata was best explained by a two
or three population model as identified by the DAPC BIC plot
and ADMIXTURE CV error plot, respectively (Fig. 2). The

three population ADMIXTURE model was characterized by
a southwest, central, and northeast cluster (Fig. 2). The
southwest and central population separated in northern Geor-
gia and eastern Tennessee, while the central and northeast
population have an area of admixture in Pennsylvania before
becoming more distinctly separated in southern New York.
The two population DAPC model included the same south-
ern population and boundary as ADMIXTURE, but the cen-
tral and northeastern populations were merged. Both analy-
ses were mostly in agreement with population memberships
at the same K values.

3.4. Migration rates. The R2 value for the dissimilarity
plots for the 650 deme model (R2 = 0.92) and 500 deme
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3.5 Demographic history

Fig. 5. Genome-wide sliding-window analysis of the three American chestnut populations for Tajima’s D, nucleotide diversity (π), RAiSD µ-statistic, and pairwise FST.
Smoothed lines were computed for all results in ggplot2 with the default gam parameter.

model (R2 = 0.93) were similar, and we present the 650
deme model due its increased resolution. EEMS analysis
suggests that the Appalachian Mountains form a barrier to
gene flow along their length, with migration running from
southeast to northeast on either side of the mountain range
(Fig. 3a). A single region of above average effective migra-
tion rate was shown in southern West Virginia that crosses the
Appalachian Mountain range (Fig. 3a). The ADMIXTURE
K=4 model agrees with the EEMS estimates and suggests a
further subdivision of the central population on either side
of the Appalachian Mountains (Fig. 3b). EEMS also esti-
mates a diversity parameter (q), which reflects genetic dis-
similarity between individuals within the same deme, and
can thus be thought of as the within-population component
of genetic variance. This diversity parameter was generally
high throughout the range, though more so in the central and
southern portion of the range, and somewhat lower in the
northeast and northwest (Fig. S3). Pockets of lower diversity,
and thus higher intra-deme genetic similarity, on the outer
edges of the species native range may reflect areas of more
recent expansion-associated bottlenecks (Fig. S3).

3.5. Demographic history. SMC++ estimates of Ne over
time suggest that each population underwent contractions
and expansions in Ne, beginning approximately two mil-
lion years ago. All populations followed a similar pattern
of demographic history, however, the southwest population
lagged the central and northeastern populations’ events. Ne
rapidly increased for all three populations approximately
6,700-11,700 years ago, after which the central population

underwent an additional contraction within the past 7,000
years (Fig. 4). The southwest population had the high-
est contemporary Ne (Ne(southwest)=20,306, Ne(central)= 8,347,
Ne(northeast)= 13,078).

3.6. Genomic diversity and tests of neutrality. The
southwest population had the greatest nucleotide diversity,
followed by the central and northeast populations (πsouthwest
= 0.0069; πcentral = 0.0064; πnortheast = 0.0058). All popu-
lations had negative average Tajima’s D, which were sim-
ilarly clinal(Dsouthwest= -1.083; Dcentral=-1.016; Dnortheast=-
0.335). Consistent with these negative values for Tajima’s
D, the SFS plot revealed that for each population, there was
a deficiency of rare variants and an excess of high frequency
variants (Fig. S4). Sliding window analyses revealed hetero-
geneous genome-wide Tajima’s D, nucleotide diversity, and
FST (Fig. 5). Throughout the genome, the southwest popu-
lation had the most negative Tajima’s D values, followed by
the central and northeast populations (Fig. 5). Conversely,
the southwest population had the highest nucleotide diversity
values throughout the genome, with decreasing values for the
central and northeast populations (Fig. 5). The highest FST
values were attributed to the southwest-northeast population
pair (Fig. 5).
Consistent with the pattern for nucleotide diversity, heterozy-
gosity was highest in the southwest (Table 1). Northeast
Ho was significantly lower than the central and the south-
west population (p<0.001, p<0.001) (Fig. S5a). FST es-
timates between population pairs were relatively low for
all comparisons, with the highest divergence between the
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southwest and northeast populations (FST(southwest-northeast)
=0.1076, FST(southwest-central) = 0.0705, FST(central-northeast) =
0.0268).
Table 1. Average Tajima’s D, nucleotide diversity, heterozygosity, and inbreeding
coefficient for each American chestnut population.

Population Tajima’s D π Ho He F
Southwest -1.0827 0.0069 0.1515 0.1660 0.0882
Central -1.0156 0.0064 0.1492 0.1660 0.1016
Northeast -0.3345 0.0058 0.1353 0.1660 0.1851

3.7. Genomic regions and associated genes undergo-
ing positive selection. Every chromosome for each popu-
lation contained outlier genomic regions identified by RAiSD
(Fig. 5). The southwest population had the greatest number
of significant regions with 11,733, followed by the northeast
population with 8,832, and the central population with 7,534.
Within the significant regions, the southwestern population
contained 617 outlier genes, which was the most out of the
three populations (Fig. 6). Among these outlier genes, 402,
387, and 323 were unique to the southwestern, central, and
northeastern populations, respectively, while 49 genes were
shared between all three populations (Fig. 6).

Fig. 6. Number of outlier genes identified by RAiSD within each American chestnut
population.

3.8. GO enrichment analysis. GO enrichment analysis re-
vealed that "response to stress" was within the top four most
annotated gene families for the GO biological process for
each population (Fig. S6). Among the unique genes within
each population, the southwest population had the most over-
represented GO terms, with 25 (Table S1), while the north-
east population had 10 (Table S2), and the central population
contained one (Table S3). The GO term "defense response to
fungus" was significantly overrepresented in the shared gene
set for all three populations (Fold enrichment = 16.5, p =
0.0373). The overrepresented genes for the shared gene set
were Caden.02G006600 and Caden.03G057600, which are
both in the apoptotic ATPase eukaryotic orthologous group
(KOG).

4 Discussion
The American chestnut was an economically and ecologi-
cally important tree species that was decimated by an inva-
sive fungal blight approximately 100 years ago. Blight re-
sistant American chestnut populations are being developed,
and these populations will need sufficient genomic diversity
to thrive across the diverse and rapidly changing climatic gra-
dient of the species historical range. Our goal is to prioritize
areas for ex situ conservation through propagation of wild
trees. These trees will then be used to introgress adaptive ge-
netic variation into chestnut blight-resistant populations. The
first step in this process is to define broad management units
on the basis of population structure and postglacial history
for the species (13).
To address this goal, we re-sequenced 384 wild chestnut
genotypes, which yielded over 23 million variants. These
data revealed that population structure in chestnut can be best
described by a two or three population model, with a south-
western population being present in both models. The south-
western population was the most genetically diverse, and that
diversity decreases as latitude increases. These contemporary
patterns of genomic diversity in American chestnut are most
likely the result of past population size reductions, and recent
expansions, associated with Quaternary glaciation of North
America.

4.1. Identification of hybridization in American chest-
nut. Our primary goal in developing a WGS dataset that in-
cluded most Castanea species was to exclude hybrids be-
tween our wild C. dentata samples and congeners - a sig-
nificant concern given the history of planting and naturaliza-
tion of non-native Castanea species in the eastern U.S. (51).
We did not detect widespread introgression with other chest-
nut species, which is consistent with previous assessments
of North American Castanea (17). However, our C. dentata
sampling focused on trees with morphological characteris-
tics representative of the species. Thus, our sample was bi-
ased against genotypes displaying intermediate phenotypes,
and hybrids with naturalized non-native Castanea species, as
well as the native C. pumila, may nevertheless be present in
the wild. A systematic exploration of the relationships among
worldwide Castanea species is beyond the scope of this pa-
per, and future studies will use these data to resolve the phy-
logenetic relationships between Castanea species and within
the Castanea pumila species complex.

4.2. Population structure. Our range-wide sample of 356
American chestnut genotypes suggests either two or three ge-
netically distinct populations, separated along a north-south
gradient. Both the DAPC and ADMIXTURE analyses agreed
with the presence of a southwestern population, but differed
on the number of populations in the remainder of the range.
Nevertheless, both DAPC and ADMIXTURE gave very sim-
ilar cluster memberships and patterns at each K value. Previ-
ous studies primarily used microsatellite data to describe the
population structure and genetic diversity of the American
chestnut. Kubisiak and Roberds (14) sampled several loca-
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4.3 Patterns of genomic diversity

tions from North Carolina through Massachusetts and found
that a single, genetically diverse metapopulation best fit the
data. Two additional studies used sampling sites from Ku-
bisiak and Roberds (14) but analyzed a different set of mi-
crosatellite markers. Gailing and Nelson (15) and Müller
et al. (16) found that the data best supported two populations
– a northeastern and southwestern population – with Penn-
sylvania and Maryland being a transition zone between these
two groups. These studies did not sample south of North
Carolina, which may explain their two population estimates.
More recently, Spriggs and Fertakos (17) used ddRAD-seq
data and identified the southern portion of the range as a sep-
arate population after a more extensive sampling of the south-
ern region. Their results agreed with our DAPC analysis,
whereas our ADMIXTURE analysis suggests a further divi-
sion between the central and northern portions of the range.
This may be due to the increased genomic coverage of our
study, our larger sample size and more uniform range-wide
sampling, or some combination of these factors.
While the scarcity of viable seed produced by wild American
chestnuts make common gardens difficult, one such study of
13 American chestnut provenances, collected from through-
out the native range C. dentata and planted in Vermont, found
that seedlings from warmer and moderate climates grew
faster but had greater winter injury than northern seed sources
(52–54). The same study showed that nuts collected from the
north have greater winter cold hardiness than those from the
south (53). Thus, like most temperate and boreal tree species,
American chestnut exhibits local adaptation to climate. The
three populations we identified appear to be differentiated at
latitudinal temperature and precipitation breaks along the Ap-
palachian Mountain range. Pennsylvania marks the region
of admixture between the central and northeastern popula-
tions, and is also where mean winter temperatures transition
from above freezing to below freezing (2015 PRISM climate
group, https://prism.oregonstate.edu/normals/). In addition,
the separation between the central and the southwestern pop-
ulations occurs in Tennessee, which is the northern bound-
ary for an area of the southern U.S. that receives 250mm
higher annual precipitation on average compared with east-
ern and northern portions of the historical chestnut range
(https://prism.oregonstate.edu/normals/). These three popu-
lations may thus comprise broad chestnut ecoregions, reflect-
ing both isolation-by-distance but also potentially isolation-
by-adaptation (55–57).

4.3. Patterns of genomic diversity. Genome-wide nu-
cleotide diversity in American chestnut was comparable to
other widely distributed forest tree species (58). The south-
ern portion of the range had the highest levels of nucleotide
diversity, which decreased as latitude increased, consistent
with previous studies (14–17). Mean heterozygosity esti-
mates across all populations were much lower, and the in-
breeding coefficient higher, than previous estimates from mi-
crosatellites (15). FST between populations was relatively
low, with the greatest divergence between the southwest and
northeast populations. Tajima’s D was negative in each pop-
ulation, which was driven by an excess of rare variants for

each population.
The combination of negative Tajima’s D, low levels of het-
erozygosity, and an excess of rare variants suggest that all
populations are undergoing expansion following recoloniza-
tion bottlenecks, the timing of which varied by population.
The more negative values of Tajima’s D for the southwest
population, followed by the central and northeastern popu-
lations, suggest that the southwest population underwent a
more ancient bottleneck. For nucleotide diversity, we ob-
served the inverse. The southwest population has the high-
est levels of nucleotide diversity, which decreased as lati-
tude increases, suggesting that the southwestern population
has a higher long term effective population size, and was
most likely a glacial refugium from which postglacial ex-
pansion occurred. This same pattern of inverse relationships
between neutrality and diversity tests can be found in Sitka
spruce (Picea sitchensis), which underwent recolonization of
its northern range from a southern glacial refugium (59). The
patterns in genome-wide diversity estimates among popula-
tions may also be due to different pressures of natural selec-
tion (60). Additionally, we found that the more geographi-
cally separated populations were more genetically divergent,
which is similar to other temperate species (40, 61). Though,
the overall genetic distinctness between populations was rel-
atively low, with most of the genomic diversity being ac-
counted for within populations - findings that are consistent
with a multi-species assessment of northeastern North Amer-
ican tree species (62).

4.4. Demographic history and migration patterns. Ne
for each of our populations declined in the distant past and
subsequently each experienced repeated size changes before
a rapid expansion within the past 11,000 years. In the distant
past, changes in Ne for the northeastern population generally
paralleled those of the central population, while the south-
west population lagged, likely due to more muted impacts of
climate change in this area. Curiously, following an initial
increase after the last glacial maximum, Ne for the central
population size again decreased in the recent past. This de-
cline may be due to a recent bottleneck event, or uncertainty
in the SMC++ analysis, however, it was not due to the chest-
nut blight. The decline of the American chestnut populations
from the blight occurred within the last century, and most of
the trees we sampled are stump sprouts derived from surviv-
ing root stock that predate the blight. Thus, the recent dra-
matic reduction of American chestnut census population size
would not influence our demographic history analyses.
The population declines and subsequent expansion follow
the Quaternary glaciation events, which began approximately
2.7 million years ago (63). Previous biogeographical assess-
ments for the eastern United States (64), as well as genetic
studies, suggest that tree species in eastern North America
migrated from southwestern refugia (15, 17). Fossil pollen
evidence indicates the Gulf coastal forests in Florida and
Southern Alabama were a glacial refuge for C. dentata during
the Wisconsonian glaciation approximately 25,000 – 31,000
year ago (51, 65, 66). As the glaciers retreated, pollen ev-
idence indicates that C. dentata migrated north into Ten-
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nessee approximately 15,000 years ago (67, 68), and con-
tinued northeastward along the Appalachian Mountains (68)
at a rate of approximately 100 meters per year, eventually
arriving in Connecticut approximately 2,000 years ago (64).
However, other glacial refugia may have existed more north-
eastward and the rate of migration northward may have been
slower than what fossil pollen suggests (69). As popula-
tions migrated northeastward and diverged, bottlenecks likely
occurred, leading to a northeastern population with less ge-
nomic diversity than those further south.
When we allowed for four clusters in the ADMIXTURE
analysis, the central population separates on either side of
the Appalachian Mountain range. The Appalachian Moun-
tain range may thus serve as a barrier to gene flow throughout
the American chestnut range, with migration paths northeast-
ward on either side. With four clusters, we observed a region
of mixing between eastern and western clusters in southwest
Virginia and southeast West Virginia, which the EEMS anal-
ysis showed was also an area of enhanced gene flow. A mi-
gration route may have existed in this area, which may ex-
plain the observation by Gailing and Nelson (15) that chest-
nuts in Ontario, Canada were more similar to the North Car-
olina population than their northeastern neighbors.

4.5. Signatures of selection in American chestnut
populations. The ANGSD sliding window analyses re-
vealed several broad genomic regions of negative Tajima’s
D and reduced nucleotide diversity. Some of these re-
gions likely reflect reduced recombination and associated
decreased nucleotide diversity near centromeres. However,
several intervals, such as on chromosome six and chromo-
some ten, also had elevated FST for the southwest-central and
southwest-northeast population pairs, suggesting that these
regions may have experienced recent selection related to en-
vironmental adaptation to more northern climates. RAiSD
identified several thousand outlier regions that may be tar-
gets of selection that were enriched for genes related to "re-
sponse to stress" and "response to chemical". Further, the GO
enrichment analysis identified "defense response to fungus"
as the only overrepresented biological pathway for the set of
shared genes between all populations. This suggests that se-
lection related to pathogen pressure is a key feature of global
adaptation in American chestnut.
A few of the American chestnuts sampled in this study
were large surviving trees that may have low levels of
blight resistance, however, most were blight killed resprouts.
Furthermore, American chestnuts from across the species
range are highly susceptible to Phytophthora cinnamomi (the
Oomycete responsible for Phytophthora root rot) - a con-
temporary agent of American chestnut decline (70, 71). To
date, the only known source of P. cinnamomi resistance for C.
dentata has been introgression from Asian Castanea species,
such as C. mollissima and C. crenata (71–73). Thus, the en-
richment for defense genes among selection targets we ob-
served is unlikely to be related to these two contemporary
pathogens that threaten the species. Rather, it likely reflects
historical interactions with, and adaptations to, as yet un-
known native fungal pathogens.

This is not to say, however, that the "defense response to fun-
gus" selection targets could have no role in responding to
chestnut blight or Phytophthora root rot. In response to blight
inoculation, both resistant C. mollissima and susceptible C.
dentata show transcriptional responses, though more genes
potentially related to blight resistance were upregulated in C.
mollissima (74). Additionally, blight resistance in American
chestnut backcross populations is polygenetic, with multiple
loci contributing to resistance (75). The lack of blight resis-
tance in American chestnut may be due to an inadequate or
inappropriate transcriptional response to infection. As such,
further evaluation of these genes is necessary to determine
the cause of their overrepresentation and their possible rela-
tionship to blight resistance in wild populations.

4.6. Conclusion. We developed two high quality WGS
datasets that will further population genomics studies of
American chestnut and other Castanea species, which re-
vealed that American chestnut underwent a postglacial mi-
gration northward that most likely influenced its current ge-
netic structure. Three populations were identified that were
separated along a latitudinal gradient, with the southern pop-
ulation having the highest levels of genetic diversity, which
suggests it is most likely the oldest population and the refugia
from which postglacial expansion occurred. Subtle popula-
tion structure also revealed a separation of the central popu-
lation on either side of the Appalachian Mountains that sug-
gests these mountains represent a barrier to gene flow. We
identified genomic targets of selection that were both unique
to each population, and shared among all populations, which
reflect adaptation to both the abiotic and biotic environments.
Future breeding and conservation plans will need to consider
these separate populations to preserve unique areas of Amer-
ican chestnut genetic diversity.
While this study describes the patterns of genetic structure
that exist within wild American chestnut, it stops short of
identifying the genomic signatures of local climate adapta-
tion within each population. Failure to account for traits re-
lated to climate within breeding populations could lead to the
reintroduction of maladapted blight-resistant trees that fail
to compete with other native species (76). Identifying the
genomic targets of climate-related selection is a key step in
understanding the underlying genomic basis of local adapta-
tion. Our future goal is to characterize the genomic architec-
ture of local adaptation across the species range, and com-
bine those results with this study’s findings to develop strate-
gies for germplasm conservation and breeding to explicitly
account for local adaptation in restoration populations.
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4.6 Conclusion
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