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Abstract

The discovery of new antimalarial medicines with novel mechanisms of action is

important, given the ability of parasites to develop resistance to current treatments.

Through the Open Source Malaria project that aims to discover new medications for

malaria, several series of compounds have been obtained and tested. Analysis of the ef-

fective fragments in these compounds is important in order to derive means of optimal

drug design and improve the relevant pharmaceutical application. We have previously

reported a novel optimisation-based method for quantitative structure-activity rela-

tionship modelling, modSAR, that provides explainable modelling of ligand activity

through a mathematical programming formulation. Briefly, modSAR clusters small

molecules according to chemical similarity, determines the optimal split of each cluster

into appropriate regions, and derives piecewise linear regression equations to predict

the inhibitory effect of small molecules. Here, we report application of modSAR in
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the analysis of OSM anti-malarial compounds and illustrate how rules generated by

the model can provide interpretable results for the contribution of individual ECFP

fingerprints in predicting ligand activity, and contribute to the search for effective drug

treatments.

Keywords: Quantitative Structure-Activity Relationship (QSAR), mathematical

optimisation, piecewise linear regression, drug discovery, malaria

Introduction

Malaria is an important public health problem worldwide. According to World Health Or-

ganisation,1 an estimated 229 million malaria cases existed in 87 malaria-endemic countries

across the world, resulting in an estimated 409,000 deaths in 2019. This mosquito-borne

infectious disease, caused by the Plasmodium parasite, affects humans and animals. Despite

several approved antimalarial drugs, parasites become increasingly resistant to treatment,2,3

necessitating the search for new combinations of existing treatments4–6 or novel drugs that

counteract parasite resistance.7–10

The development of anti-malarial drugs, however, is a complex and expensive process

comprising multiple stages of compound screening and validation. Machine learning strate-

gies can reduce the cost and time requirements associated to drug discovery by excluding

unsuitable compounds and directing the search towards the most promising drug candi-

dates.11,12 A typical computational strategy comprises appropriate algorithmic development

and virtual screening leading to several promising candidates, which can then be analysed

and further optimised for drug development.

Quantitative Structure-Activity Relationship (QSAR)13 modelling is also a popular tech-

nique in antimalarial drug research.14 In general, QSAR methods are mathematical models

that aim to predict the biological activity of chemical compounds on the basis of their struc-

tural properties, and therefore can relate different functional groups of a compound to the

relevant activity.15 In antimalarial drug research, a wide range of QSAR applications exist,
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for example screening a natural product library and prioritising potent antimalarial drugs,16

and a QSAR model together with docking studies to find potential inhibitors for malarial

resistance.17

Among important contributions to the development of anti-malarial drugs, the Open

Source Malaria (OSM) project was established18 to evaluate the properties of compounds

from high-throughput screens by pharmaceutical companies. Recently, a competition was

launched to develop and evaluate strategies for accurate prediction of anti-PfATP4 activity

among Series 4 compounds from the OSM master chemical list database, thereby reducing

project costs associated with the unnecessary synthesis of inactive compounds.19

Figure 1: The pipeline of data processing and analysis via modSAR. (A) The
OSM dataset was pre-processed following the steps specified in https://github.com/

OpenSourceMalaria/Series4_PredictiveModel/issues/1, and in the end the ECFP of
each OSM compound was obtained. (B) The Tc similarity between compounds was com-
puted using ECFP, and a representative graph was obtained by linking compounds with
respect to their similarity. (C) A threshold of similarity was applied to the graph, and
different modules were identified. (D) For each module, a bit of ECFP was selected as
breakpoint. Each module was then subdivided into two regions according to different values
of the breakpoint feature. (E) A regression model was identified for each region.

In this study, we build upon previous work on development of an interpretable model for

QSAR modelling based on mathematical optimisation, modSAR,20 and model the inhibition
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activity (pIC50) of compounds from the OSM dataset against Plasmodium falciparum. We

have previously applied modSAR to an earlier version of the OSM data using pre-defined

molecular descriptors,19 and here we develop this work further in order to offer a better

understanding of these antimalarial candidates as well as paving the way for future SAR

explorations, lead optimisation and new de novo drug design efforts for malaria.

Methodology

A schematic overview our methodology is shown in Figure 1 and comprises data pre-processing,

QSAR modelling via modSAR and analysis of the rules generated by the model. ModSAR

involves first detecting clusters of chemical compounds, and then applying mathematical op-

timisation to determine the optimal split of each cluster into appropriate regions and yield

piecewise linear regression equations to link molecular descriptors to the biological activity

of samples in that region. Therefore, modSAR identifies the relationship between compound

features and the relevant bioactivity, in a manner that is mathematically descriptive, and

with similar accuracy as those of popular machine learning methods.20,21 Below, data and

methodology are described in more detail.

Data

Data used in this study derive from the Open Source Malaria (OSM) project, a collabora-

tive consortium aiming to facilitate design of new drugs for malaria guided by open source

principles,18 and describe the inhibitory activity (IC50) of compounds targeting Plasmodium

falciparum. The data was downloaded from https://docs.google.com/spreadsheets/d/

1Rvy6OiM291d1GN_cyT6eSw_C3lSuJ1jaR7AJa8hgGsc/edit#gid=510297618. Molecules have

been categorised in four series according to chemotype: an arylpyrrole series (Series 1), the

triazolourea singleton (Series 2), aminothienopyrimidine Series (Series 3), and triazolopy-

razine series (Series 4). The compounds that characterise each series are shown in Figure 2.
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(a) Series 1: OSM-S-5 (b) Series 2: OSM-S-6

(c) Series 3: OSM-S-106 (d) Series 4: OSM-S-369

Figure 2: Initial compounds of each OSM series

Although targets of Series 1-3 compounds remain unknown, a promising biological target

of Plasmodium falciparum has been identified in P-type ATPase PfATP4, a parasite cell

membrane enzyme which exports Na+ ions and imports H+ ions.22,23 Based on a previous

study, Series 4 compounds are considered to target PfATP4.24 The first few series were

derived from the Tres Cantos list of hits against P. falciparum released by Glaxo Smith-Kline

in 201025 but, although several potent drug candidates were found, structural difficulties have

hindered progress.

In Series 1, a labile ester created stability concerns and potency of compounds decreased

whenever changes were made to the central structure. Series 2, on the other hand, presented

low solubility,26 and in Series 3, the mechanisms of action of the initial compound are still

under active investigation, as it is believed to inhibit one or more kinases.27,28 However, the

analogues derived and evaluated in the series have not exhibited high potency.

The last set, Series 4, is the current series of interest of OSM consortium.29 These

triazolopyrazine analogues were initially identified in a high throughput screening performed

in 2013 by Pfizer and Medicines for Malaria Venture (MMV)30,31 and contain many potent

compounds, some of which have proven to be potent in vivo, and display many desirable

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 14, 2022. ; https://doi.org/10.1101/2022.02.12.479469doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.12.479469


physicochemical properties.28 A correlation has been found between molecular potency and

parasite ion-regulated assay.32

This study focused first on building a predictive model for Series 4 analogues,19 but as

our method can inherently distinguish structurally heterogeneous chemical sets, all series and

assays were then considered for a more comprehensive analysis. A raw dataset containing all

OSM compounds from Series 1 to 4 and their respective assay data was downloaded from the

Master List of chemicals provided by OSM.33 Pre-processing (Figure 1(A)) was performed

as outlined in:34 (1) compounds with no SMILES or Pfal values were removed; (2) molecular

structures were normalised using RDkit,35 with salts stripped, canonical tautomer calculated,

and charges normalised; and (3) data were deduplicated by recalculating each compound’s

InChiKey. The final dataset included 386 unique compounds, each with a respective SMILES

code and an associated binding activity (pIC50) to Plasmodium falciparum.

For each compound, circular molecular fingerprints were generated by RDKit using the

Morgan algorithm.36 In preliminary tests, we observed very similar performance of the mod-

SAR algorithm for fingerprints produced with radius=2 (ECFP4) and radius=4 (ECFP8)

parameters, so we selected the version with a larger radius. Therefore, our final configuration

consists of Morgan circular fingerprints of radius=4 collapsed to 1024 bits, closely resembling

the ECFP8 fingerprint algorithm commonly used in cheminformatics.37

modSAR algorithm

ModSAR (Figure 1(B)-(E)) combines modularity clustering38 and regularised piecewise lin-

ear regression21 to learn the quantitative structural-activity relationships (QSAR) relation-

ship of compound activity.20 The algorithm involves two main stages: first modules of

molecules that share similar structures are identified, and then each such module is modelled

to derive piecewise linear equations, as demonstrated in Figure 1. These steps are described

in more detail below.

Similarity among compounds is described by the pairwise Tanimoto coefficient Tc39 ap-
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plied to the circular fingerprints.37 Pairs of compounds are connected by an edge in the net-

work, if chemical similarity is above a threshold Tc ≥ tα, which is identified automatically

by modSAR and corresponds to the value that optimises the average clustering coefficient of

the network.20,40 Given the relavant similarity network, clustering partitions compounds in

distinct modules by maximising the modularity metric.41–44 We are then able to explore the

chemical space of each module separately, as compounds in the same module will typically

share a common structural core or scaffold.

Having described the chemical similarities in the dataset in the first stage, the second

stage derives the structure-activity mapping. Each of the modules found in the previous

steps are modelled by independent piecewise linear regression equations using the OPLRAreg

algorithm.21,45 For reference, details of OPLRAreg modelling is included in supporting in-

formation (Mathematical Details of OPLRAreg). One of the features is optimally selected

to act as a breakpoint, effectively separating the data into n disjoint sub-groups called “re-

gions”, each of which is then fitted by independent linear equations. OPLRAreg identifies

all of these properties (i.e. optimal feature, number of regions and regression coefficients)

simultaneously by maximising the mean absolute error (MAE) of pIC50 value through a

mathematical programming optimisation model.

The algorithm derives an optimal subset of features to be used in each equation, as

controlled by a regularisation parameter λ ≥ 0. For λ = 0, no regularisation is enforced and

the linear equation can have as many features as possible but incurs a risk of overfitting the

data. Larger λ values reduce the number of features included in the equation while reducing

the risk of overfitting. The most common scaffold in relevant groups of compounds was

identified by the rdScaffoldNetwork algorithm.46

Model Inference

Piecewise linear regression equations identified by modSAR can lead to structure-activity

interpretation. It is note that, as regression equations are fitted independently for each
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module, data can be further split into as many sub-clusters, i.e. regions, as required to

minimise regression error.20,21 In practice, as the algorithm selects a single feature to serve

as breakpoint for defining regions and as we are handling binary data, there can be at most

two disjoint regions for each module.

An advantage of our methodology and the associated use of circular fingerprints, is that

one can reverse each fingerprint bit to the relevant chemical fragment. As certain bits are

selected by the optimisation procedure implemented in modSAR and incorporated to the

regression equation, a latent association of the relevant substructure to the binding activity

can be put forward. We take advantage of the bit-fragment relationship to evaluate the

presence and prevalence of certain fragments in network modules and piecewise regions so

as to hypothesise on their contribution to the activity of compounds.

Additionally, SHapley Additive exPlanations (SHAP)47 value analysis is used to further

inspect the importance of these fragment contributions.48 SHAP values interpret the output

of a machine learning model by connecting optimal credit allocation with local explanations

using the classic Shapley values from game theory. In this work, we applied and extended

the work from the SHAP barplot49 for computing feature importance.

Model Tuning

To identify a suitable hyper parameter setting, five-fold cross validation was performed for

different λ values. For each λ, the dataset was split into five sets, each set was then used

separately as test set while the other four portions were used as training set in each round of

model training. The mean Root Mean Squared Error(RMSE) of the five-fold cross validation

for each λ was utilised as evaluation metric to provide an indication of model fitness.50
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Results

Cross Validation

The result of five-fold cross validation at 20 different λ is as shown in Figure S1a. The result

shows that the RMSE in test set is almost always slightly higher than train set, at around

0.9, indicating that modSAR fits the OSM dataset well with no indication of overfitting.

Overall, modSAR model performs best around λ = 0.06. Similar results were found using

the Mean Absolute Error (MAE) metric, shown in Figure S1b and average running time for

each parameter is shown in Figure S1c.

Network modules

The chemical similarity network of the drug dataset as partitioned into clusters, is shown in

Figure 3. Edges represent pairwise Tanimoto similarity that exceed the optimal threshold,

which was calculated by the algorithm to be tα ≥ 0.20. Nodes are coloured according to

their cluster membership.

To provide a first visual inspection of structure-activity relationships present, the node

(compound) with the highest within-module degree is selected as the representative com-

pound of each module, thus depicting the most general structural characteristic of the neigh-

bouring compounds. The most common scaffold in each representative compound for each

module is highlighted in red (Figure 3). Note that the highlighted scaffold is the most

dominant structure and not all compounds in the module may contain that substructure.

The clustering procedure represents the chemical properties of the dataset well and re-

flects the heterogeneity inherent in the various compound series. The five modules as par-

titioned by algorithm, closely match the analogue series present in OSM dataset, as shown

in Table S1 and in the comparative visualisation in Figure S2. OSM Series 1 and Series 3

compounds are members of Modules m01 and m04, respectively, while Series 4 compounds

have been allocated into three distinct modules: m02, m03 and m05. The Series 2 structure
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Figure 3: Modules identified by modularity optimisation implemented in modSAR with
edges indicating Tanimoto similarity, tα ≥ 0.20. Colours signify cluster membership. Rep-
resentative compounds and dominant scaffolds for each cluster are also shown.

(OSM-S-66) was assigned to m02, as it shares structural similarities to two compounds in

that module, namely OSM-S-359 and OSM-S-570. There were also two singletons, OSM-S-

89 and OSM-S-69 (not represented in the figure) as these two structures differ from the rest

of the dataset.

A closer inspection of modules related to OSM Series 4 (m02, m03 and m05) and their

associated highlighted scaffold in Figure 3 allows for further insight into this dataset. Each

module represents core substructures that are more specific than the Series 4 triazolopyrazine

core, and the assumption here is that each detected module would have their structure-

activity relationships modelled individually. Therefore, the subsequent sections describe how

the predicted equations of each of these modules compare, and point to molecular fragments

that relate to bioactivity within the core represented by each module.
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Analysis of Modules via Regression Equations

A summary of rules and equations is shown in Table 1, where the breakpoint features and

the equations identified for each cluster are shown. The distribution of pIC50 under different

subsets and the presence of certain bits can be seen in Figure S3. All bits selected by

modSAR are visualized in Figures S4. A detailed description and interpretation of these

results follow.

Module related to OSM Series 1: The structure-activity relationship of compounds in

OSM Series 1 as found by modSAR is represented by Module m01 and the full equations

for this module are shown in Table 1. Most chemical compounds in this module have

a common scaffold, as would be expected, with 43 of the 52 compounds containing the

fragment highlighted in Figure 3.

In the regression equations, activity of compounds in this module is predicted by one

of two linear equations according to the presence or absence of fragment Bit 0350. When

the fragment corresponding to Bit 0350 is not present in the compound (i.e. Bit 0350 = 0),

the activity of that compound is predicted by the presence of eleven fragments (Bit 0350

included). On the other hand, if a compound includes this fragment (Bit 0350 = 1), the

model predicts that its bioactivity will be pIC50 = 4.30, thus inactive against Plasmodium

Falciparum, if an activity threshold pIC50 ≥ 5.80 is assumed.19 By exploring m01 (Region

01) equation, we can also see which of the remaining fragments selected by the algorithm

make positive or negative contributions to the bioactivity of these compounds.

Beyond the observation of signal and magnitude of regression coefficients, we have ranked

the importance of fingerprint bits according to their relative SHAP values (Figure S5a). In

decreasing order of importance, the presence of fragments Bit 0290, Bit 0036, Bit 0703,

Bit 0332, Bit 0031, Bit 0175, and Bit 0961 are predicted to make a positive contribution,

while Bit 0745, Bit 0350, Bit 0080, Bit 1017, and Bit 0790 have a negative contribution
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Table 1: Equations and breakpoints identified for modules indicated in Figure 3.

Module Region
Decision Selected

Equation
Rule Fragment

Modules relating to OSM Series 1

m01

01 if Bit 0350 =
0

pIC50 = + 0.13 Bit 0350 + 0.30 Bit 0036− 0.19 Bit 0080

+ 0.12 Bit 0175 + 0.53 Bit 0290 + 0.14 Bit 0332

+ 0.14 Bit 0703− 0.81 Bit 0745− 0.15 Bit 0790

+ 0.06 Bit 0961 + 0.38 Bit 1017 + 5.30

02 if Bit 0350 =
1

pIC50 = +4.30

Modules relating to OSM Series 3

m04

01 if Bit 0484 =
0

pIC50 = +0.20 Bit 0179 + 4.40

02 if Bit 0484 =
1

pIC50 = +5.47

Modules relating to OSM Series 4

m02

01 if Bit 0875 =
0

pIC50 = +0.03 Bit 0711 + 0.03 Bit 0890 + 5.00

02 if Bit 0875 =
1

pIC50 = +6.15

m03

01 if Bit 0896 =
0

pIC50 = +0.16 Bit 0890 + 4.84

02 if Bit 0896 =
1

pIC50 = −0.04 Bit 0650 + 6.03

m05

01 if Bit 0248 =
0

pIC50 = + 0.06 Bit 0890− 0.06 Bit 0171 + 0.002 Bit 0333

+ 0.06 Bit 0399− 0.12 Bit 0512− 0.06 Bit 0715

− 0.06 Bit 0753− 0.06 Bit 0769− 0.16 Bit 0781

− 0.06 Bit 0785 + 0.06 Bit 0819− 0.06 Bit 0838

− 0.12 Bit 0841− 0.06 Bit 0939 + 5.00

02 if Bit 0248 =
1

pIC50 = +0.50 Bit 0904 + 5.82
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Figure 4: Comparison of pIC50 distributions in different subsets of the data split according
to fragment presence.

to activity. Indeed, we can observe the association of the most positive or negative bits,

Bit 0290 and Bit 0745 respectively, in the pIC50 activity of compounds (see Figure 4 and

Figure S3a). Activity of compounds in this module which only contain Bit 0290 is much

higher compared to those which only contain Bit 0745. The combination of positive and

negative contributing fragments can be seen in Figures S6a and S6b.

Modules related to OSM Series 3: Module m04 describes the binding activity of

compounds in OSM Series 3. The piecewise equations in Table 1 suggest that the Series 3

compounds are not likely to be active, as the maximum activity values calculated from the

two equations are either pIC50 = 5.47 (when Bit 0484 = 1) or pIC50 = 4.60 (when Bit 0484

= 0 and Bit 0179 = 1), which is lower than our defined threshold of pIC50 ≥ 5.80.19 This

is also supported by the distribution of the true pIC50 values of Series 3 compounds. As

shown in Figure S3c, the median and mode value of Series 3 are both less than 5, and only
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2 out of 49 compounds are considered to be active, namely OSM-S-106 and OSM-S-590.

Ranking importance of the two bits can be seen in Figure S5d and combination of positive

and negative contributing fragments can be seen in Figure S6g and S6h.

Modules related to OSM Series 4: Module m02, Module m03 and Module m05

describe the binding activity of Series 2 and Series 4, as the piecewise equations demonstrated

in Table 1. Since Series 2 correspond to a single compound, we focus our analysis on Series

4 properties.

One common feature of these modules is the prominence of Bit 0890 in the equations. The

presence of the fragment represented by this bit is predicted to make a positive contribution

towards the binding affinity of compounds. Interestingly, the structure of Bit 0890 (Figure

5b) is a close, albeit not exact, match to the triazolopyrazine core of the series (Figure 5a).

If we combine all fragment bits that are predicted to make positive contributions to the

binding activity of these compounds, we arrive at the fragment shown in Figure 5d. This

visualisation suggests that on top of the triazolopyrazine core for Series 4, which could be

approximately represented by Bit 0890 = 1 in the regression equations, the northwestern

fragment should be retained Bit 0896 = 1 (Figure 5c) in order to maximise the activity of

Series 4 compounds as suggested by the regression equations and the SHAP value analysis.

(a) The fragment that
represents triazolopy-
razine core.

(b) The fragment
that represents
Bit 0890.

(c) The fragment that
represents Bit 0896.

(d) Combination of
all positive bits in Se-
ries 4 modules.

Figure 5: Visualisation of relevant fragments present in OSM Series 4 modules.

A similar conclusion can be drawn by comparing the two distributions pIC50 of com-
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pounds with and without Bit 0896 using a one-sided t-test with the following hypothesis:

H0 : E(A) = E(B), H1 : E(A) < E(B) (1)

where A denotes the population of compounds which do not contain Bit 0896, B denotes

the population of compounds which contain Bit 0896. The obtained p− value = 2.83e− 16

suggested that the null hypothesis was rejected with a confidence level at 99.9%.

A similar analysis can be made for each module. For example, Figures S6i and S6jbelow

compare the positive and negative contributing fragments specific to Module m05. Additional

plots about OSM Series 4 modules can be seen in Figures S5b, S5c, S5e, and S6.

Model Evaluation

Having tuned the λ parameters in Model Tuning, we now assess the performance of the

methodology through Y-Randomisation and Applicability Domain.

Y-Randomisation

Y-randomisation is employed as validation tool to compare the performance of a QSAR model

with the pseudo-random models trained on permuted datasets.51 To verify that modSAR

does not make predictions by chance, we designed the pseudo-random models as follows.

Three different sets of pseudo-random data were generated via randomised fingerprints (rx),

randomised pIC50 (ry), and permuted pIC50 (py). The rx was generated by assigning 0 or

1 to the 1024 fingerprints bit for each molecule, the ry was generated using random number

within the range of real pIC50 value while py was generated by shuffling the real pIC50 value.

Five pseudo-random models were trained with synthetic datasets, i.e. (1) model 1:

trained with rx and y; (2) model 2: trained with x and py; (3) model 3: trained with x

and ry; (4) model 4: trained with rx and ry; and (5) model 5: trained with rx and py.
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We compared the performance of the five pseudo-random models with the original modSAR

model using different λ (from 0.05 to 0.1) on a 10-fold cross validation. The mean and

standard deviation of the model RMSE outperforms the pseudo-random datasets (Table 2).

Figure S7 provides an intuitive comparison between different pseudo-random model and the

original model.

Applicability Domain

The applicability domain (AD) defines the chemical space covered by the model, indicating

the reliability of the model in predicting new compound properties. In this study, the AD

of modSAR is determined by the leverage approach50 which calculates the leverage and

standard residual of a compound, and visualize all the compounds in a Williams plot. A

critical leverage value h* is calculated by the equation: h∗ = 3p′/n, where p′ is the number

of model variables plus one, and n is the number of the objects used to calculate the model.

To reduce the computation complexity caused by the high dimension of data, the dimension

was reduced to two using Principal Components Analysis (PCA) before calculating the AD.

As shown in Figure 6, all compounds were inside the applicability domain.

Table 2: Comparison of test set error in y-randomization. Results shown in terms of average
RMSE metric and standard deviation of the original model and permutations.

λ
model 1 model 2 model 3 model 4 model 5 original
y vs rx py vs x ry vs x ry vs rx py vs rx model

0.05
0.9569 0.9480 1.2334 1.330 0.9005 0.8367

(± 0.1007) (± 0.1636) (± 0.1146) (± 0.1593) (± 0.0717) (± 0.1504)

0.06
0.9515 0.9685 1.1473 1.2064 1.0363 0.8065

(± 0.0959) (± 0.1429) (± 0.1331) (± 0.1340) (± 0.1463) (± 0.1302)

0.07
0.9092 0.9093 1.1387 1.2959 0.9208 0.8660

(± 0.0732) (± 0.0811) (± 0.14284) (± 0.1399) (± 0.0639) (± 0.1741)

0.08
0.9044 0.9192 1.1820 1.2859 0.8950 0.8591

(± 0.1279) (± 0.1035) (± 0.0851) (± 0.0953) (± 0.1135) (± 0.1442)

0.09
0.8858 0.9036 1.1464 1.2668 0.9164 0.8790

(± 0.1011) (± 0.1208) (± 0.0552) (± 0.7561) (± 0.1289) (± 0.1193)

0.10
0.9056 0.9308 1.2048 1.2224 0.8908 0.8819

(± 0.1073) (± 0.0781) (± 0.1262) (± 0.0936) (± 0.0864) (± 0.1462)
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Figure 6: Williams Plot to evaluate the applicability domain of modSAR

Virtual Screening

To identify potential molecules with antimalarial properties, virtual screening was performed

on ChEMBL52 database entries. As shown in Figure S8, all compounds within the defined

applicability domain which contain any max common pattern of each module were selected,

and then their activity was predicted using the piecewise equations for each module. In total,

7569 compounds from ChEMBL database fall in the neighborhood of OSM dataset defined

by modSAR. We excluded 48 compounds that share the same canonical SMILES with the

compounds from the OSM dataset, and computed the activity of the remaining 7521 com-

pounds. Given the threshold of pIC50 greater than 5.8, 279 compounds are predicted to be

active against malaria, which includes 55 compounds which are already selected as candi-

date compounds for malaria by ChEMBL through open source malaria screening. Finally,

the remaining 224 compounds are novel predictions by modSAR, as listed in supporting file

’Prioritized Molecules.xlsx’.

Given the 224 novel predictions, we looked into fragments prioritization for Series 4 as it

is the most promising series suggested by OSM. We first re-allocated the novel compounds

to each module according to their modSAR prediction. Next, we selected the compounds

containing the triazolopyrazine core as well as the fragment Bit 0896 suggested by modSAR

inference. In the end, three most promising compounds from the prioritised candidates were
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selected, as shown in Figure 7.

(a) CHEMBL4279746
(b)
CHEMBL4290398 (c) CHEMBL4080861

Figure 7: Potential antimalarial drug candidates identified via virtual screening

Conclusion

Computational methodologies for target prediction10 and drug discovery have significant

potential in malaria research. Here, we report the use of optimisation-based regression mod-

elling coupled with network clustering in mining and analysing data related to antimalarial

molecules. We illustrated use of the modSAR piecewise linear regression model method ap-

plied in the OSM dataset with ECFP fingerprints as features to describe each compound.

Analysis of results showed that the method reflected the heterogeneity among different series

in OSM and that it was capable of modulating separate piecewise linear equations for each

molecule group. Finally performance was assessed by cross validation, randomisation and

applicability domain tests, with results indicating promising performance and interpretable

outputs.

An important aspect of this work lies in the mathematical nature of the modSAR model

that offers explainable output, as molecular fingerprint bits selected by each equation can

be reversed back to identical molecular fragments, and thus provide insights towards drug

discovery. In this work we have paid particular attention in demonstrating the ability of

modSAR to provide insights of datasets and prioritise useful chemical fragments. A barrier
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in accurate activity prediction may be that the method only selects a subset of binary

fingerprints, thus only predicting discrete values, so future work will focus on combining

continuous descriptors with fingerprints to improve the prediction performance.

Data and Software Availability

We provide all files for reviewers’ reference, and we will make our code publicly available

after acceptance.

Supporting Information Available

The Supporting Information is available free of charge in supporting information.pdf and

Prioritized Molecules.xlsx.

Mathematical details of OPLRAreg, equivalency between modSAR modules and OSM

series, average model performance of cross validation, pIC50 distribution of compounds

related to the important bits, the visualisation and SHAP value of each important bit,

model performance compared with pseudo random models, and virtual screening procedures

(supporting information.pdf).

ChEMBL ID and SMILES of prioritised compounds (Prioritized Molecules.xlsx).
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