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Flow cytometry enables monitoring protein abundance and activity at the single-cell level in a high-throughput
manner, through the use of fluorescent labeling. Given the significant levels of autofluorescence emitted by
cells at the spectral ranges used by this technique, removing the corresponding background signal is necessary
for a correct assessment of cellular biochemistry. Existing methods of autofluorescence removal usually require
dedicated monitoring resources, such as additional fluorescence channels or laser sources, which are costly and
not universally accessible. Here, we have developed a computational method that enables autofluorescence
subtraction without requiring dedicated measurement resources. The method uses a non-parametric Bayesian
approach to deconvolve the target signal distribution from independent measurements of labeled and unlabeled
cells readily available in a typical experiment. The distributions are approximated by mixtures of gamma
functions, and the target distribution is obtained by sampling the posterior distribution using Markov chain
Monte Carlo and nested sampling approaches. We tested the method systematically using synthetic data,
and validated it using experimental data from mouse embryonic stem cells.

I. INTRODUCTION

The inherent stochasticity of biological processes leads
to substantial heterogeneity even among genetically iden-
tical cells in the same environment1–3. The degree to
which this heterogeneity affects, or even dictates, cellular
decision making in most situations is still an open ques-
tion. This issue is of paramount importance in processes
such as mammalian development, where hundreds (if not
thousands4) of distinct cell types (cell states) emerge
from a small number of identical undifferentiated cells5–7.
Identifying the molecular mechanisms underlying these
cell-fate decision programs and their interplay with cel-
lular heterogeneity8,9 requires a rigorous quantification
of cellular states across large numbers of cells.

Flow cytometry enables monitoring the distributions of
abundances and activities of selected proteins for thou-
sands of cells at a time, using fluorescently labeled mark-
ers. Cells, however, have a non-negligible amount of aut-
ofluorescence in the emission spectrum of most fluores-
cent probes (500 to 700 nm). This leads to a background
noise that must be subtracted from the total signal emit-
ted by fluorescently labeled cells10, in order to adequately
relate the signal distribution provided by the cytometer
to the mechanisms regulating the expression and/or ac-
tivity of the protein of interest. Several standard meth-
ods exist for addressing this issue on a cell-by-cell basis,
but they require the use of dedicated measurement re-
sources, such as an additional fluorescence channel out-
side the emission spectrum of the fluorophore being used,
to directly measure autofluorescence11,12, or a second
laser system, to provide an independent measurement of
both signal and autofluorescence13. The effectivity of
such solutions is limited, beyond cost or accessibility is-
sues, because there is no guarantee that autofluorescence
from another channel, or from another excitation source,
is a good proxy for autofluorescence in our channel of
interest.

Commonly, rather than dedicating measurement re-
sources to assess autofluorescence, control measurements
of unlabeled cells are used to set a baseline of the signal
coming from the naturally present autofluorescent com-
ponents in the cell. This background distribution pro-
vides information about the resolution achievable by the
technique. This procedure, however, does not lead to a
quantitative determination of the distribution of the sig-
nal coming exclusively from the fluorescent probe. Such
quantitative assessment would require deconvolving the
fluorescence distribution obtained in labeled cells from
the one produced by unlabeled cells. Here we propose a
non-parametric Bayesian approach to this deconvolution
problem, applicable to one-dimensional measurements.
The method is robust and efficient, requiring cell num-
bers not larger than those typically considered in stan-
dard flow cytometry runs, and gives natural confidence
intervals of the target distributions, which makes it at-
tractive for a variety of applications.

There is an extensive statistics literature addressing
the additive deconvolution problem14. A common set
of deconvolution methods are kernel-based approaches,
such as those relying on Fourier transforms15–21, which
use the fact that in Fourier space, a deconvolution is sim-
ply the product of two functions. Two problems arise
from such methods that limit their applicability in prac-
tical cases. First, Fourier transforms (and other methods
that use orthogonal local basis such as wavelets22) are
not positive defined. Consequently, kernel-based meth-
ods lead to deconvolved pseudo-distributions with artifi-
cial features, which are hardly interpretable for practical
applications. Second, these methods usually lead to point
estimates, and therefore do not provide native confidence
intervals (i.e. without applying additional statistical ap-
proximations) that allow us to assess the quality of the
inferred target distribution.

A second class of deconvolution approaches are
likelihood-based methods23, which estimate the un-
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known target distribution using maximum likelihood
approaches. As in the case of kernel-based methods,
these approaches provide us with point estimates, and
usually assume exact knowledge of the noise distribu-
tion. Finally, a third class of methods involve Bayesian
inference24–26, which does not require complete knowl-
edge of the noise distribution and naturally provides con-
fidence intervals of the estimates obtained. So far, how-
ever, these Bayesian methods have been applied to re-
peated measurements of the same individual entities that
are being monitored (in our case, cells), which is not a re-
alistic possibility in standard flow cytometry. Our semi-
parametric Bayesian approach does not require repeated
measurements and retains all the above-mentioned ad-
vantages of Bayesian methods. We have implemented
the procedure in a Python package available in GitHub
(https://github.com/dsb-lab/scBayesDeconv).

The work is structured as follows. First, we introduce
the Bayesian approach and discuss sampling methods for
exploring the posterior distribution generated from the
model. Second, we validate our method using synthetic
datasets with known target distributions, and compare
its results to other existing methods. Third, we further
test our method in real flow-cytometry data of mouse
embryonic stem cells undergoing differentiation. To that
end, we begin by artificially convolving this data with an
ad hoc noise distribution, to check the robustness of the
deconvolved distributions. We then treat our cells with a
low concentration of a fluorescent dye (which masks the
real flow-cytometry signal and acts as an external noise),
and validate our method by deconvolving the noise com-
ing from the dye and comparing it to the control case
were the dye was not added. We conclude by discussing
the limitations of the method and possible ways to im-
prove it in future work.

II. MATERIALS AND METHODS

A. Theoretical definition of the problem

Consider a population of cells containing a fluorescent
marker that labels the abundance or activity (e.g. phos-
phorylation state) of a protein of interest. Flow cytome-
try measurements provide us with the distribution pc(C)
of total fluorescence signal C emitted by each individual
cell in the population. This signal has two components:
the fluorescence T emitted exclusively by the target flu-
orophore that reports on the protein of interest, and the
autofluorescence ξ emitted by cellular components other
than our fluorescent label:

C = T + ξ (1)

If these two components are independent of one another,
the distribution pc(C) of the measured signal takes the
form of a convolution of the distributions of T and ξ:

(pT ∗ pξ)(C) :=
∫ ∞
0

pT (C − ξ) pξ(ξ) dξ (2)

Similarly to pc, the distribution pξ of the autofluores-
cence ξ can be measured in the flow cytometer by using
unlabeled cells that are otherwise identical to the labeled
ones. On the other hand, the probability distribution of
T , pT , cannot be measured directly. Our goal is to ex-
tract (deconvolve) the distribution pT from the measured
distributions pc and pξ, considering that we only have a
finite set of samples (cells) of C and ξ.

In what follows, we first introduce the way in which
we describe the distributions involved in the problem.
Next we define the posterior distribution given by the
model and the data, and finally we discuss the methods
used to explore the parameter space for the deconvolution
problem.

1. Mixture model

The vast majority of real datasets (including those gen-
erated in flow cytometry) result from complex combina-
tions of variables that cannot be explained in general with
simple distributions. In order to adapt flexibly to such
conditions, we use mixtures of probability distributions
as our basis set. Any function can be arbitrarily well ap-
proximated using an adequate choice of basis functions,
provided enough components are included in the mixture.
We can describe both the target and the noise distribu-
tions by independent mixtures of K components:

p(x|φ) =
K∑
η=1

ωηB(x|ψη) (3)

where ωη denotes the weight of each base B(x|ψη) in
the mixture and ψη represents its parameters (e.g. the
means and standard deviations in the case of normal
distributions)27. The sets of ωη and ψη are in turn rep-
resented by the vector φ. Under this description, the
distribution of the observed signal C can be described
as a superposition of all the convolutions between basis
functions:

pc(c|φT ,φξ) =
KT∑
η=1

Kξ∑
λ=1

ωTη ω
ξ
λ(B ∗ B)(c|ψ

T
η , ψ

ξ
λ) (4)

where (B∗B)(c|ψTη , ψ
ξ
λ) represents the convolution of two

basis distributions with parameters ψTη and ψξλ, respec-
tively, and KT and Kξ denote the number of bases used
in each of the two mixtures.

The choice of basis functions to describe our data is
crucial. We propose two types of basis functions: normal
and gamma distributions. Usually, normal distributions
with unknown mean and variance have been shown to
be flexible enough to represent datasets with high qual-
ity, requiring less components than more rigid methods28.
On the other hand, gamma distributions can be more re-
alistic when representing protein abundances29. Gamma
distributions are thus a more natural choice to describe
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flow cytometry data, and might be able to capture the
data with less components than normal distributions.

2. Posterior distribution and likelihood

Our goal is to extract, starting from samples of the
distributions of total signal C and noise ξ, the parameters
of the distribution of the target signal T . Defining the
problem in terms of probability distributions leads very
naturally to work with Bayesian methods. According to
Bayes’ rule, the posterior distribution that represents the
probability of the parameters given the data is

p(φT ,φξ|c, ξ) ∝
[
p(c|φT ,φξ)p(ξ|φξ)

][
p(φT )p(φξ)

]
,

(5)
where c = {ci : i = 1 . . . Nc} and ξ = {ξi : i = 1 . . . Nξ}
are the sets of observed samples of the total signal and
the noise, respectively, with Nc and Nξ representing the
number of samples in each case.

The first bracket on the right-hand side of Eq. (5) is the
likelihood function, which corresponds to the probability
of the data given the parameters. Under the assumption
of independent and identically distributed (iid) observa-
tions, this function is given by

L(φT ,φξ) =
Nc∏
i=1

pc(ci|φT ,φξ)
Nξ∏
j=1

pξ(ξj |φξ) (6)

As can be seen, the information about the noise parame-
ters is contained in both datasets, while the information
about the target parameters only appears in the con-
volved data.

As shown in Eq. (5) above, the posterior distribution
can be estimated by multiplying the likelihood by the
prior distribution of parameter values. Since the datasets
required for a good deconvolution are large, the impact of
the prior distribution should be negligible. Therefore the
posterior landscape is effectively described by (6), and
the prior distribution is only present in our approach for
formal and computational reasons. In any case, since
no prior information exists on the parameters that de-
scribe the noise and target mixture components, we im-
pose vague priors over the plausible set of parameters
based on sampling efficiency (see Supplementary Sec. S3).

3. Sampling methods

The posterior distribution is a complex multimodal
(multi-peaked) object containing all the configurations of
the target and noise distributions that are consistent with
the observed data. A correct exploration of this distribu-
tion is essential to set bounds on the candidate models
that explain the data. Our method relies on two sampling
techniques that we introduce in what follows: Markov
Chain Monte Carlo (MCMC)28 and nested sampling30.

MCMC sampling is a computational approach com-
monly used in Bayesian inference28. MCMC methods are
fast for simple unimodal cases, but they have severe diffi-
culties exploring complex multimodal distributions that
contain multiple, possibly degenerate, peaks with deep
valleys between them. This may be the case when the
noise heavily dominates over the signal. Therefore, in
the context of deconvolution, MCMC methods can only
be optimal when deconvolving small amounts of noise.

Flow cytometry distributions usually require intensive
exploration of parameter space. Nested sampling (NS)
was developed as a method method for evidence sam-
pling that gives posterior samples as a by-product30–32.
Recent improvements in the NS approach have en-
abled an efficient and intensive exploration of high-
dimensional and complex objects with degeneracies and
multimodalities33, as the ones that may be found in a
deconvolution problem. The downside of this method is
that it is generally more computationally expensive than
MCMC methods even for simple cases, scaling with the
size of the prior-distribution parameter space.

4. Analysis pipeline

Given the concepts and tools described above, the anal-
ysis of the data is performed as follows (Fig. 1). First,
the distributions of the target and autofluorescence sig-
nals are assumed to be described by mixtures (top left
panel in Fig. 1), as defined by Eqs. (3) and (4). The data
measured experimentally correspond to the autofluores-
cence signal (noise) and the total signal of the labeled
cells (which includes the autofluorescence), as shown in
the top right panel of Fig. 1. The mixture assumption
and the observed data samples allow us to construct
the posterior distribution (Eq. (5) and middle panel in
Fig. 1) from the likelihood function defined by Eq. (6)
and the prior distributions discussed in the Supplemen-
tary Sec. S3. The posterior distribution is a function of
the model parameters (weights of the mixtures and pa-
rameters of the basis functions). We next explore (sam-
ple) the posterior distribution in parameter space using
Markov Chain Monte Carlo or Nested Sampling methods
(bottom left panels in Fig. 1). These algorithms provide
us with a representative sampling of the parameters of
the target distribution, which allows us to compute an
average of this distribution and its confidence interval
(bottom right panel in the figure).

B. Materials

1. Synthetic data

For the target distribution we generated samples from
three distributions: symmetric bimodal, asymmetric bi-
modal and skew symmetric distributions (Supplementary
Fig. S1). This choice of distributions intends to capture
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FIG. 1. Scheme of the deconvolution process. The signal and noise mixture distributions, together with the observed data (top
row), define the posterior distribution over the parameter space of the mixture, Eq. (6) (middle row). This distribution can
present multiple peaks, sometimes degenerate with respect to basis label exchange, each corresponding to a different mixture
description of the observed and target distributions (two examples are shown in the right-hand-side of the middle row) The red
arrow in the MCMC sampling plot (bottom left) represents a very unlikely jump between two peaks separated by a relatively
wide probability valley.

the features present in real datasets, such as the presence
of multiple peaks, different cluster sizes, and the gener-
ally non-Gaussian character of the data25. As for the
noise, we generated a set of nine different noise datasets
containing multiple peaks, skewness, and fat tails (Sup-
plementary Fig. S1), in order to test the flexibility of
the method against very dissimilar autofluorescence pro-
files. In order to check the impact of the noise strength,
the convolutions between target and noise were gener-
ated at two signal-to-noise ratios (SNR). In our context,
we define the SNR as the ratio between target and sig-
nal variances for the whole dataset. We chose a case
with negligible noise (SNR = 10), and a difficult case
were the noise is of the same magnitude as the signal
(SNR = 1). We generated sample datasets of different
sizes, with 100, 1000 and 10000 samples. The high range
of these values is representative of typical single-cell flow

cytometry experiments. The combination of the different
target distribution types, noise distribution types, SNRs,
and sample sizes generates a collection of 162 datasets
with known ground truth.

2. Flow cytometry

E14 mouse embryonic stem cells containing a knock-in
fluorescence reporter for the mesodermal transcription
factor Brachyury, T/Bra::GFP were used34. Cells con-
taining the T/Bra::GFP reporter were cultured in ES-
Lif (ESL) medium (KnockOut Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with 10% fetal bovine
serum (FBS), 1x Non-essential aminoacids (NEEA), 50
U/mL Pen/Strep, 1x GlutaMax, 1x Sodium Pyruvate,
50 µM 2-Mercaptoethanol and leukemia inhibitory fac-
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tor (LIF)). Cells adhered to 0.1% gelatin-coated (Mil-
lipore, ES-006-B) tissue culture-treated 25 cm2 (T25
Corning 353108) plates, and were passaged every sec-
ond day, as previously described35. Cells were kept at
37◦C with 5% CO2, and were routinely tested and con-
firmed to be free from mycoplasma. Flow cytometry ex-
periments were performed as follows: On day 1, cells
were trypsinized and seeded into gelatin-coated 6-well
plates (Corning, 353224) to a final density of ∼ 105

cells/well in 3 mL ESL media. On day 2, the media
was replaced by first washing twice with 3 mL DPBS+/+
(Phosphate buffered saline containing Mg++ and Ca++,
Sigma, D8662) and then adding NDiff227 media (N2B27)
(Takara Bio, #Y40002)35 with the appropriate combi-
nation of Brachyury activators (3 µM CHIR99, Sigma,
SML1046 and/or 25 ng/mL Activin A, Bio-Techne, 338-
AC-010). The same procedure was followed on day 3.
For the control conditions, the corresponding volume of
dimethyl sulfoxide (DMSO) was added to the medium.
Flow cytometry data was acquired on day 2 or day 3,
depending on the type of experiment. For the extrin-
sic noise experiment, cells were incubated with 1 mL of
20 nM CellTracker Green (CMFDA, Thermofisher) for
3 min prior to trypsinization and flow cytometry. The
data was acquired using an LSRIIb flow cytometer, with
2×104 cells being analyzed per condition. DAPI labelling
was used to discard death cells and debris. Further-
more, cell doublets were discarded from the analysis. The
readout of protein expression was obtained through the
FITC-A channel while the PerCP-Cy5-5-A was used as a
known noise source in the analysis. Measurements were
extracted using the FACSDiva software and exported in
a Python format for subsequent analysis.

C. Software

The software pipeline presented here, including
MCMC and NS samplers for normal and gamma mix-
tures, has been implemented as a Python package
(scBayesDeconv). The source code, with manual compi-
lation and instalation instructions, as well as full docu-
mentation and a notebook with examples of use, can be
obtained publicly from Github (https://github.com/dsb-
lab/scBayesDeconv). The software is also available at
PYPI and can be installed through the pip command.
For the NS sampling method, the models are wrapped
around the package Dynesty33.

III. RESULTS

A. Synthetic data

First, we benchmark the ability of our method to re-
cover the target distribution by using collections of syn-
thetic datasets. In those datasets the target and noise
distributions are known, so we can compare the result

of the deconvolution against a ground truth. To do
this, we applied our method to the synthetic data de-
scribed in Sec. II B 1. For this test we employed nor-
mal distributions as basis functions, to avoid favoring
our method over FFT approaches. Specifically, normal
distributions are defined in the entire real axis and are
not heavily skewed, which would be problematic for FFT-
based methods17. To prove the robustness of the imple-
mentation, we ran the test using five components both
for the noise and target distributions in the case of the
MCMC algorithm, and three components in the case of
the Nested Sampling algorithm (which is more compu-
tationally demanding). We also avoided checking the
full convergence of the algorithm manually. We ran the
algorithm in this sub-optimal conditions to avoid hav-
ing to fine tune the specific parameters, which could
lead to positive bias favoring our method in comparison
with FFT-based approaches. We contrasted the results
of our method with those of a specific FFT approach
that does not require knowledge of the autofluorescence
distribution19. Figure 2 shows a typical instance of the
deconvolution performance of the two methods. Panel (a)
shows in green the total (convolved) signal mimicking the
output of a flow cytometry experiment. In this synthetic
case, the signal is obtained by forward convolving a target
distribution with the characteristics given above, shown
in light blue in panels (b) and (c), with a noise (auto-
fluorescence) distribution, shown in magenta in the inset
of panel (a). The goal in this case is to recover (decon-
volve) the ground-truth target distribution (panels b and
c in Fig. 2) from the total and noise distributions (panel
a). Figures 2(b,c) show that our Bayesian deconvolution
method recovers reasonably well the target distribution
as compared with the FFT-based method in this case. In
particular, working in Fourier space leads to oscillatory
components in the deconvolution, and correspondingly
to artifactual negative values in the probability distribu-
tion. Additionally, the Bayesian deconvolution methods
provides naturally a confidence interval, shown by the
orange-shaded region in panel (b) of Fig. 2.

For benchmarking purposes, we compared the de-
convolved distribution with the real target distribution,
which is known in this case, using the mean integrated
overlap (MIO), as defined in Supplementary Sec. S6. We
preferred this measure to the mean integrated squared er-
ror (MISE), which is commonly used in the deconvolution
literature for theoretical reasons16,19,20,22, since the MIO
measure is easier to interpret, as it corresponds directly to
the absolute overlap of two probability distributions. We
also avoid more common measures of distribution dissim-
ilarity such as the Kolmogorov-Smirnov test, since such
methods would underestimate the ability of FFT-based
methods to converge to the ground-truth deconvolution,
given that they lead to artifacts in the resulting distribu-
tions, as shown above.

Figure 3 compares the deconvolution efficiency of the
FFT-based method and our single-cell Bayesian Decon-
volution approach with MCMC sampling, in terms of the
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FIG. 2. Deconvolution instance for a target bimodal distribution (light blue in panels b and c) corrupted by a normally
distributed noise with a SNS = 2 (magenta distribution in the inset of panel a), applying the Bayesian Deconvolution method
(panel b) and the FFT method (panel c). The total distribution from which the noise is deconvolved is shown in green in panel
(a). The orange-shadowed region in panel (b) depicts the confidence interval provided by the Bayesian deconvolution method.
In this case, the noise distribution is a single normal function with mean µξ = 0 and standard deviation σξ = 0.5, and the
target is a mixture of two normal functions with means µT1 = −0.43 and µT2 = 1.67, standard deviations σξ1 = σξ2 = 0.6, and
weights ωT1 = 0.8 and ωT2 = 0.2.

MIO measure that quantifies the similarity between the
convolved distribution and the real one. A similar re-
sult is found for Nested Sampling (see Supplementary
Fig. S2). According to its definition (see Supplemen-
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FIG. 3. Similarity between the deconvolved and ground-
truth target distributions as expressed by the Mean Integrated
Overlap (MIO) for the two deconvolution methods (x and y
axis), at different sampling sizes for the synthetic datasets de-
scribed in described in Sec. II B 1, with SNR = 1 (circles) and
SNR = 10 (crosses). The large symbols represent the mean
MIO over the different samples for each sample size and SNR.

tary Sec. S6), a MIO value of 1 corresponds to a perfect
overlap, while the measure is 0 when two distributions
do not overlap at all. As can be seen in Fig. 3, the
single-cell Bayesian Deconvolution method outperforms
the Fourier-based method in almost all the cases consid-
ered, the difference being more substantial for high levels
of noise (small SNR, circles). In particular, the overlap
is never below 0.7 for the Bayesian methods, while it can
reach values near 0 in the FFT case depending on the

type of distributions involved, particularly for low sam-
pling numbers.

Additionally, it is worth noting that while the single-
cell Bayesian deconvolution method is able to reproduce
almost perfectly the target distribution (MIO close to 1)
for large enough dataset sizes, the Fourier-based method
always saturates to a suboptimal level even as the num-
ber of samples increases, even for low noise levels (large
SNR, crosses in Fig. 3). Qualitatively, this is due to the
oscillatory features in the distribution produced by the
noise during the deconvolution with the FFT method,
as a consequence of the oscillatory nature of the Fourier
basis functions. In general, it has been proved that in
FFT methods the convergence to the actual distribution
grows sublinearly with the sample size, with scaling de-
pendencies that make the method unfeasible for practi-
cal purposes16,19,25. Since Bayesian deconvolution makes
use of local basis functions, more parsimonious solutions
can be obtained, preventing the degradation of the target
distribution due to the noise.

B. An experimental dataset with an ad hoc noise distribution

Next we applied our method to real flow cytometry
data using a noise distribution known a priori. Our goal
was to mimick the conditions of a real dataset, while
retaining an observable ground truth distribution. To
that end, we studied the expression of the mesodermal
gene Brachyury through a GFP reporter (T/Bra::GFP)
in mouse embryonic stem cells (see Methods). Cells were
treated for 24h with 3 µM CHIR99 and 25 ng/mL Ac-
tivin A to upregulate Brachyury prior to flow cytometry
on day 2 (see Methods). The signal of the GFP reporter
was our target signal and it was acquired through the
FITC-A channel. Note that this signal contains the flu-
orescence emitted by GFP together with the autofluo-
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FIG. 4. Deconvolution of artificially convolved experimental data. a) Distribution of the total signal resulting from adding the
GFP and red dye (PerCP-Cy5-5-A) signals for a population of 3000 cells (green bars). The “noise” signal corresponding to
the dye channel is shown in magenta in the inset. b) Deconvolution of the green and magenta distributions shown in panel a,
for both normal and gamma basis functions and MCMC and nested sampling methods, compared with the real target signal
(light blue) measured in the GFP channel. c) Mean integrated overlap (MIO) between the deconvolved and ground-truth
distributions for each of the four situations depicted in panel b. Each situation is divided in three different replicates with 3000
cells each. In each case the procedure was run 50 times, to produce a distribution of MIO values; outliers are represented as
black diamonds.

rescence emitted by the cells at the GFP frequency. In
that way, the signal collected in the GFP channel acts
as our ground truth. Next we used the PerCP-Cy5-5-
A channel as an artificial ad hoc noise (magenta bars in
Fig. 4a, inset) and added it to the GFP signal in or-
der to generate a ‘convolved’ distribution (green bars in
Fig. 4a). Notice that the PerCP-Cy5-5-A and FITC-A
channels correspond to different wavelengths. To avoid
using twice the data from the PerCP-Cy5-5-A channel,
which is contained in both the convolved dataset and the
noise dataset, we used the PerCP-Cy5-5-A output from a
different replica of the experiment. In addition, we were
interested in checking the consistency of the deconvolu-
tions between different experimental samples. For that
purpose, we divided the data (consisting of 9000 cells in
each replicate) in three subsets with 3000 samples each.

Figure 4(b) shows a typical deconvolution result for
the case in which the target and noise distributions are
described by mixtures composed of two and one com-
ponents, respectively. The deconvolved distribution is
compared to the original target distribution for both nor-
mal and gamma distributions, and for both MCMC and
Nested Sampling. In the specific case shown in this plot,
assuming gamma distributions for the deconvolution pro-
cess leads to better results, irrespective of the sampling
algorithm used. A systematic assessment of the efficiency

of the method is shown in terms of the MIO in Fig. 4(c)
As can be seen in the plot, the deconvolution procedure
leads to a recovered target distribution that reproduces
the original ground-truth distribution reasonably well in
all cases, compared with simply ignoring the noise (indi-
cated by the blue dashed horizontal line in the plot). In
general, gamma distributions with nested sampling de-
scribe the data better than normal distributions. This is
due to the highly skewed character of the flow cytometry
data, which requires a higher number of normal mixture
components to capture the distributions.

Additionally, the nested sampling solutions exhibit less
fluctuations between subsamples than those generated by
MCMC sampling. This is a consequence of the more ac-
curate exploration of the posterior distribution enabled
by the nested sampling in comparison with the MCMC
method: MCMC trajectories have the tendency to be-
come trapped in regions of parameter space with high
posterior probability, when starting from random initial
conditions, which can lead the algorithm getting stuck in
suboptimal solutions from which it is hard to escape.

We recall that the deconvolution approach proposed
here is based on the assumption that the target signal is
independent of the auto-fluorescence. In the ad hoc ex-
periment reported here, there is little (but non-negligible)
correlation between the dye and GFP signals (Supple-
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mentary Fig. S3). The fact that our algorithm recovers
the target signal successfully in this case indicates that
the approach is robust to a certain degree of cross-talk
between the two signals.

C. An experimental dataset with an external noise

Finally, we applied our method to an experimental
dataset in which the noise distribution is unknown. To
that end, we use again cells with the Brachyury reporter
T/Bra::GFP in two media conditions (N2B27 supple-
mented with 3 µM CHIR99 and DMSO as control). At
day 3, for each condition, one of the replicas was treated
with 20 nM Green CMFDA dye and incubated for 3 min
prior to flow cytometry, and the second one was incu-
bated for 3 min with N2B27 (see Methods). Given that
the dye incorporates in the cell cytoplasm and its emis-
sion spectrum is similar to the one of GFP, the dye acts
as a noise source to the GFP signal coming from the
Brachyury reporter. Consequently, we have the following
four conditions, with their potential outcomes in terms
of the signal measured in the FITC-A channel:

(c1) DMSO: Brachyury expression is minimal and the
signal comes mainly from the intrinsic autofluores-
cence of the cells.

(c2) DMSO+CMFDA: Brachyury expression is mini-
mal and the signal comes mainly from the CMFDA
dye, plus intrinsic autofluorescence of the cells.

(c3) N2B27+CHIR99: Brachyury expression is up-
regulated, and thus the signal contains both the
T/Bra::GFP reporter and the intrinsic autofluores-
cence of the cells.

(c4) N2B27+CHIR99+CMFDA: Brachyury expres-
sion is upregulated, and thus the signal contains
both the T/Bra::GFP reporter, the signal from the
CMFDA dye and the intrinsic autofluorescence of
the cells.

The four signal distributions corresponding to these four
conditions are shown in Supplementary Fig. S4. We note
that the distribution of the signal coming only from the
dye cannot be measured independently given the intrinsic
autofluorescence of the cells. Moreover, the dye might be
absorbed differently depending on the state of the cells
(CHIR99 treatment), and the low concentration of the
dye (∼ nM) might lead to significant cell-to-cell variabilty
on the absorbance of the dye. These features make it a
suitable dataset to test the robustness of our method.
We first used our method to deconvolve the signal of the
dye from the total signal observed in the experimental
conditions (c2), using condition (c1) to define the ‘noise’
distribution. To that end, we used nested sampling with
gamma basis distributions, and considered two mixture
components for the noise distribution and three for the
target distribution. Again, we split the dataset in three

subsamples, to quantify the consistency of the deconvo-
lution. The results, shown in Fig. 5A, were consistent
across replicates. Once the dye distribution was obtained
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FIG. 5. Inferred distribution (red line) obtained by deconvolv-
ing the dye distribution shown in the inset from one of the
distributions measured in condition (c4, green bars). The ex-
perimentally measured distribution in condition (c3) is shown
with light blue bars. The inset shows the dye distribution de-
convolved from experimental conditions (c1) and (c2), for the
three subsets described in the text.

from the deconvolution of conditions (c1) and (c2), we
tested the consistency of our approach by considering
the dye signal as the noise in condition (c4). Deconvolv-
ing the dye distribution from the one measured in (c4)
should lead to the distribution obtained in condition (c3),
which we can measure experimentally and thus serves as
the ground truth in this case. The result can be seen in
Fig. 5B. Even in this case, where we use a deconvolved
dataset for a second deconvolution, we observe that the
inferred distribution resulting from our method is in ex-
cellent agreement with the experimentally measured dis-
tribution in condition (c3) (MIO = 0.81).

IV. DISCUSSION

In this paper, we propose a Bayesian approach to ob-
tain flow-cytometry distributions of protein abundance
or activity convolved with a known source of noise.
The method, which relies on non-parametric Bayesian
techniques, is freely available as a Python package
(https://github.com/dsb-lab/scBayesDeconv) and can
be used in a straightforward manner in a purely compu-
tational way, without the need of dedicated measurement
channels or additional laser sources. It only requires mea-
suring the fluorescently labeled and unlabeled cells and,
unlike previously proposed deconvolution methods, it
provides well-defined probability distributions, described
by mixtures of basis functions.

We measure the quality of the results obtained with
our method by comparing the deconvolved distributions
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with known (ground-truth) target distributions using
synthetic data and ad hoc experiments with mouse em-
bryonic stem cells. We argue that the use of local ba-
sis functions to describe all the distributions involved in
the problem (both measured and unknown), and the cor-
responding use of a relatively small number of degrees
of freedom, leads to an efficient inference. Finally, the
Bayesian nature of the method gives rise to a set of can-
didate target probability distributions. This reflects the
natural indeterminacy present in any process corrupted
by noise. The ability to express indeterminacy in the
solutions is crucial for any real application of a decon-
volution algorithm. We further show that the method is
robust even under strong noise in real datasets.

The method we propose is applicable so far only to
one-dimensional distributions. In the case of multidi-
mensional datasets, the algorithm could be immediately
applied to one-dimensional projections of the data along
the different dimensions, provided the channels are inde-
pendent of each other. Furthermore, it is straightforward
to apply the theory underlying Bayesian deconvolution
to higher dimensional models, although in this case ad-
ditional computational challenges might have to be faced.

Our results reveal nested sampling as a very robust
method that enables exploring the posterior distribution
extensively, as required by the deconvolution problem.
The main drawback of this approach is the computa-
tional cost associated with the exploration, which in-
creases exponentially with the dimensionality of the pa-
rameter space to be explored. Two sources of improve-
ment over the current implementation could be explored
in future work. The first is to reduce the evaluation time
of the likelihood function. Usual flow cytometry datasets
have on the order of thousands to tens of thousands of
cells. For Kn mixture components of the noise and Kt

components of the target, a single evaluation of the like-
lihood function scales as O(Kn × Kt × N), where N is
the number of measures in the Bayesian model. Handling
large datasets is a well established problem in Bayesian
statistics, and some lines of work have explored solutions
to reduce this computational cost, which might be worth
exploring in the context of the single-cell Bayesian de-
convolution method proposed here36–38.

As for the second target for improvement, we note that
mixture models have degeneracy under label exchange.
The nested sampler is not able to detect such degeneracy,
and spends much effort in probability peaks that virtu-
ally represent the same target distribution. This leads
to a costly exponential slowdown during the search, as
more particles are required to explore all the peaks of
the distribution, instead of focusing on exploring only the
different distributions consistent with the data. In order
to solve this problem, two promising directions come to
the mind of the authors. First, an asymmetric choice
of priors that break the symmetry between components
may solve the degeneracy of probability peaks and hence
reduce the number of peaks that need to be explored by
the algorithm. Second, mode search methods like the

ones used for ground state search in protein folding, al-
though being point based, can lead fast explorations of
parameter space and give rise to lists of candidate peaks
in high dimensional models, giving the possibility to scale
the present models to very high number of components39.
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