1

2 Manuscript title:

The V-type H⁺-ATPase is targeted in anti-diuretic hormone control of the Malpighian 'renal' tubules

Farwa Sajadi¹, María Fernanda Vergara-Martínez^{1,2} and Jean-Paul V. Paluzzi¹*

- 1. Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada.
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
- 10 *Corresponding author: Jean-Paul V. Paluzzi

11	Email: paluzzi@yorku.ca
12	
13	
14	
15	
16	
17	
18	Author Contributions: JP.P. and F.S. designed research; F.S. and M.F.V. performed research; F.S. and
19	J.P.P. analyzed data; and JP.P. and F.S. wrote the manuscript.
20	Competing Interest Statement: The authors declare no competing interest.
21	Classification: Biological Sciences; Physiology
22	Keywords: excretory system, Aedes aegypti, mosquito, anti-diuresis, proton pump, disease vector
23	
24 24	This PDF file includes:
25	Main Text
26	Figures 1 to 6; S1 to S7
27 27	
28	

29 Abstract

30	Like other insects, secretion by mosquito Malpighian tubules (MTs) is driven by the V-
31	type H ⁺ -ATPase (VA) localized in the apical membrane of principal cells. The anti-
32	diuretic neurohormone CAPA inhibits secretion by MTs stimulated by select diuretic
33	hormones; however, the cellular effectors of this inhibitory signaling cascade remain
34	unclear. Herein, we demonstrate that the VA inhibitor bafilomycin selectively inhibits
35	serotonin (5HT)- and calcitonin-related diuretic hormone (DH ₃₁)-stimulated secretion.
36	VA activity increases in DH_{31} -treated MTs, whereas CAPA abolishes this increase
37	through a NOS/cGMP/PKG signaling pathway. A critical feature of VA activation
38	involves the reversible association of the cytosolic (V_1) and membrane (V_o) complexes.
39	Indeed, higher V_1 protein abundance was found in membrane fractions of DH_{31} -treated
40	MTs whereas CAPA significantly decreased V_1 abundance in membrane fractions while
41	increasing it in cytosolic fractions. Immunolocalization of V_1 was observed strictly in the
42	apical membrane of MTs treated with DH_{31} alone whereas immunoreactivity was
43	dispersed following CAPA treatment. VA complexes colocalized apically in female MTs
44	shortly after a blood-meal consistent with the peak and post-peak phases of diuresis.
45	Comparatively, V_1 immunoreactivity in MTs was more dispersed and did not colocalize
46	with the V_o complex in the apical membrane at 3 hours post blood-meal, representing a
47	timepoint after the late phase of diuresis has concluded. Therefore, CAPA inhibition of
48	MTs involves reducing VA activity and promotes complex dissociation hindering
49	secretion. Collectively, these findings reveal a key target in hormone-mediated inhibition
50	of MTs countering diuresis that provides a deeper understanding of this critical
51	physiological process necessary for hydromineral balance.
50	

52

53 Significance Statement

54	The V-type H^+ ATPase (VA), also known as the proton pump, provides the driving force
55	for transepithelial ion and fluid secretion in insect Malpighian tubules (MTs). While
56	studies have shown that diuretic stimulation activates various signaling pathways
57	promoting increased VA activity, our understanding of anti-diuretic signaling and its
58	potential regulation of the VA remains rudimentary. Here we show that a CAPA
59	neuropeptide acts through the NOS/cGMP/PKG pathway to inhibit VA activity,
60	supporting the notion that the anti-diuretic regulation is achieved by promoting
61	dissociation of the VA complexes. These results demonstrate a critical role of VA
62	inhibition and trafficking necessary for anti-diuretic signaling and advances our
63	understanding of the complex neuroendocrine control of the MTs in this important human
64	disease-vector mosquito.

65

66 Main Text

67 Introduction

Insect post-prandial diuresis is under rigorous control by neuroendocrine factors (1) acting on the Malpighian 'renal' tubules (MTs) to regulate primary urine production. In the yellow fever mosquito, *Aedes aegypti*, several diuretics have been identified that regulate urine production including serotonin (5HT), calcitonin-related diuretic hormone (DH₃₁), corticotropin-releasing factor-related diuretic hormone (DH₄₄) and leucokininrelated (LK) diuretic hormone (2–5). An anti-diuretic peptidergic neurohormone, CAPA, selectively inhibits DH₃₁- and 5HT-stimulated secretion of MTs (4, 6, 7). Insect CAPA

75	neuropeptides are produced in the central nervous system and are evolutionarily related to
76	the vertebrate neuromedin U peptides (8). In Drosophila melanogaster, CAPA peptides
77	have been shown to act through a conserved nitridergic signaling pathway to stimulate
78	diuresis by MTs (9, 10); however, a few other studies have alluded to an anti-diuretic role
79	(11, 12). In contrast, in both larval and adult A. aegypti, CAPA peptides inhibit fluid
80	secretion through a signaling cascade involving the NOS/cGMP/PKG pathway (6, 7).
81	Despite this, the anti-diuretic signaling mechanism and downstream cellular targets, such
82	as the ion channels and transporters, remain elusive.
83	In insect MTs, including A. aegypti, the bafilomycin-sensitive V-type H ⁺ ATPase
84	(VA), also known as the proton pump, functions as an electrogenic pump allowing the
85	transport of protons from the cytoplasm to the tubule lumen, thus generating a cell-
86	negative membrane voltage (13, 14). This membrane voltage can then drive secondary
87	transport processes such as the cation/ H^+ exchanger or anion/ H^+ cotransporter (15, 16).
88	Originally found in vacuolar membranes of animals and plants, the VA has since been
89	found to be essential in cell function in both invertebrates and vertebrates (17). In insects,
90	the VA is densely located in the apical brush border membrane of tubule principal cells
91	(13, 18), which is rich in mitochondria and endoplasmic reticula, fueling the ATP-
92	consuming proton pump (1, 19). Previous studies have shown VA localization within the
93	apical membrane of principal cells along the entire length of the MTs (19), but absent in
94	stellate cells that express relatively higher levels of the P-type Na^+/K^+ ATPase (NKA)
95	(19). Due to stronger VA immunoreactivity observed in MTs (19), and greater ATPase
96	activity by electrophysiological assays (13, 14), the VA is categorized as serving mainly,
97	but not exclusively (20), stimulated transport mechanisms, whereas the NKA serves basic

cell housekeeping functions when MTs are undergoing low unstimulated rates ofsecretion (13, 20, 21).

100	Stimulation of distinct diuretic hormone receptors can activate various signaling
101	pathways, including elevation of cyclic AMP (cAMP) levels which is known to increase
102	VA activity and assembly in insects (22). In A. aegypti, DH ₃₁ , identified as the mosquito
103	natriuretic peptide (23), selectively activates transepithelial secretion of Na^+ in the MTs,
104	using cAMP as a second messenger (1), and upregulating the VA function to stimulate
105	fluid secretion (24). Similarly, 5HT-stimulated diuresis is also thought to be mediated (at
106	least in part) through the cAMP second messenger pathway (25), activating protein
107	kinase A (PKA) to increase the transepithelial voltage of the basolateral membrane in
108	tubule principal cells (1, 26). In contrast, DH_{44} has been shown to initiate diuresis via the
109	paracellular and transcellular pathways, with higher nanomolar concentrations increasing
110	cAMP and Ca ²⁺ , influencing both paracellular and transcellular transport, and lower
111	nanomolar concentrations acting through the paracellular pathway only, via intracellular
112	Ca^{2+} (27). Thus, due to its predominant role in fluid secretion, the VA could be a likely
113	target for both diuretic and anti-diuretic factors.

Eukaryotic V-ATPases are a multi-subunit protein composed of up to 14 different polypeptides, which form two major structural complexes. The peripheral V_1 complex (400-600 kDa), is invariably present in the cytoplasm and interacts with ATP, ADP, and inorganic phosphate (28). The cytosolic V_1 complex consists of eight different subunits (A-H): a globular headpiece with three alternating subunits A and B forming a hexamer with nucleotide binding sites located at their interface, a central rotor stalk with single copies of subunits D and F, and lastly, a peripheral stalk made up of subunits C, E, G, and

121	H (28). The B subunit, shown to have high sequence similarity amongst several species
122	from fungi to mammals (29, 30), is a 56 kDa polypeptide, and is one of the two sites
123	(along with subunit A) (31) in the V_1 complex that binds ATP. In contrast, the
124	membrane-integrated V_o complex (150-350 kDa) mediates the transport of H^+ across the
125	membrane (28) and is composed of at least six different subunits, which collectively
126	function in the proton translocation pathway (13, 28). Although the proton channel of the
127	VA can be blocked pharmacologically by the macrolide antibiotic, bafilomycin (32),
128	there are two known intrinsic mechanisms for VA regulation: firstly, through oxidation of
129	the cystine residue on the A subunit of the V_1 complex, thus preventing ATP hydrolysis;
130	secondly, through reversible disassembly of the V_1 complex from the holoenzyme (13,
131	33). While the role and regulation of the VA by diuretic hormones in insect MTs has
132	been studied (34–36), research examining anti-diuretic signaling mechanisms involving
133	the VA remain in their infancy.
134	This study aimed to identify the cellular targets necessary for CAPA-mediated
135	inhibition of fluid secretion by MTs stimulated by select diuretic factors in adult female
136	A. aegypti. Our results provide evidence that CAPA neuropeptides inhibit fluid secretion
137	by VA complex dissociation, thus hindering VA function and activity that is essential for
138	driving rapid post-prandial diuresis.
139	

140 **Results**

Bafilomycin inhibits DH₃₁- and 5HT-stimulated fluid secretion rate. To determine the
appropriate concentration of bafilomycin to test on adult *A. aegypti* MTs, several doses

143 were applied against DH₃₁-stimulated tubules (Fig. S1). Higher doses of bafilomycin (10⁻

144	4 M and 10^{-5} M) resulted in significant inhibition of fluid secretion rate, with maximal
145	inhibition leading to a five-fold decrease, observed with treatment of 10^{-5} M bafilomycin.
146	Next, to determine whether inhibiting the VA would decrease fluid secretion rate
147	stimulated by other diuretic hormones, including 5HT and DH ₄₄ , the effect of 10^{-5} M
148	bafilomycin on adult tubules stimulated with these diuretics was tested (Fig. 1). Fluid
149	secretion rates were measured over 30 min under control (stimulated) conditions, and
150	then at 10-min intervals in the presence of bafilomycin. Treatment of MTs with 10^{-5} M
151	bafilomycin against DH ₃₁ led to a decrease of fluid secretion over the treatment interval.
152	Specifically, 30 min after treatment with bafilomycin, fluid secretion rate was
153	significantly reduced by over two-fold to 0.438 ± 0.041 nL min ⁻¹ , compared to DH ₃₁ alone,
154	0.941±0.077 nL min ⁻¹ (Fig. 1A). Similar results were seen with 5HT-stimulated MTs;
155	however, a decrease in fluid secretion was observed 30 min post-bafilomycin, with a
156	significant inhibition 40 min after treatment (0.522±0.072 nL min ⁻¹ , 5HT alone vs.
157	0.182 ± 0.045 nL min ⁻¹ , 5HT + bafilomycin) (Fig. 1B). Distinct from DH ₃₁ and 5HT-
158	stimulated tubules, DH44-stimulated secretion was insensitive to bafilomycin treatment
159	(Fig. 1C). To confirm whether AedaeCAPA-1 anti-diuresis is mediated by VA inhibition,
160	adult female MTs were treated with either DH_{31} alone or in combination with
161	AedaeCAPA-1, bafilomycin, or both (Fig. 1D). MTs treated with either AedaeCAPA-1 or
162	bafilomycin resulted in a significant inhibition of DH ₃₁ -stimulated secretion, and similar
163	inhibition was observed when both AedaeCAPA-1 and bafilomycin were applied together
164	with no evidence of any additive inhibitory effects (Fig. 1D).
165	

166 Aedae CAPA-1 and bafilomycin alkalinizes secreted fluid in DH₃₁- and 5HT-

167	stimulated MTs. The VA pumps protons from the cell into the tubule lumen thus
168	generating an electromotive potential (20, 31) and providing energy to drive the secretion
169	of cations via Na^+/H^+ and/or K^+/H^+ antiporters (13). An indirect way to measure whether
170	AedaeCAPA-1 and bafilomycin inhibits VA activity involves measuring the pH of the
171	secreted fluid from diuretic-stimulated MTs treated with AedaeCAPA-1 or bafilomycin
172	(Fig. 1E-G). In DH ₃₁ -stimulated MTs treated with AedaeCAPA-1, there was an
173	immediate significantly higher pH in the secreted fluid (7.479±0.030) at 40 min relative
174	to control, increasing up to 7.73 ± 0.038 at 60 min (Fig. 1E). Similarly, pH levels in DH ₃₁ -
175	stimulated MTs treated with bafilomycin were significantly higher (7.66±0.064) relative
176	to control at 40 min, increasing up to 7.855 ± 0.074 at 60 min. Comparable to DH ₃₁ ,
177	addition of AedaeCAPA-1 or bafilomycin, significantly increased the pH of secreted fluid
178	from 5HT-stimulated MTs to 7.75±0.061 and 7.82±0.083 respectively, at the 60 min
179	mark (Fig. 1F). In contrast, unlike the effects observed with DH_{31} - and 5HT-stimulated
180	MTs, AedaeCAPA-1 or bafilomycin did not alter the pH of the secreted fluid in DH ₄₄ -
181	stimulated MTs (Fig. 1G). The pH increased from 7.4 to 7.9 during the 30-min DH_{44}
182	incubation; however, pH did not change following the addition of AedaeCAPA-1 or
183	bafilomycin. Separately, we conducted measurements in unstimulated tubules to verify
184	pH in these small droplets did not drift over a time frame consistent with our above
185	experiments. Unstimulated MTs were allowed to secrete, and the droplets were isolated
186	and their pH was measured over the course of 60 min. Over this incubation period, no
187	change was observed in the pH of secreted droplets from unstimulated MTs (Fig. 1H),
188	upholding the notion that the alkalinization of secreted fluid observed following

AedaeCAPA-1 (or bafilomycin) treatment of DH₃₁- and 5HT-stimulated MTs is a result
of VA inhibition. Additionally, unstimulated MTs treated with either AedaeCAPA-1 or
bafilomycin resulted in no significant changes in either secretion rate (Fig. S2A) or pH
(Fig. S2B).

193

194	Aedae CAPA-1 increases cGMP and decreases cAMP levels in DH ₃₁ -treated MTs. To
195	further clarify the CAPA signaling pathway involving the second messengers, cGMP and
196	cAMP, we sought to determine changes in levels of these cyclic nucleotides in MTs
197	incubated in DH ₃₁ alone or combined with AedaeCAPA-1. Treatment of MTs with DH ₃₁
198	alone had basal levels of cGMP, 10.91±0.109 pmol ⁻¹ /tubule, comparable to saline treated
199	MTs. Treatment of MTs with AedaeCAPA-1 resulted in a significant increase in cGMP
200	levels compared to DH_{31} - incubated tubules, increasing to $11.39\pm0.101 \text{ pmol}^{-1}$ /tubule
201	(Fig. 1I). Similar results were observed with MTs treated with both $DH_{31} + AedaeCAPA$ -
202	1, with significantly increased cGMP levels of 11.39 ± 0.123 pmol ⁻¹ /tubule (Fig. 1I)
203	compared to MTs treated with DH_{31} alone. In contrast, treatment of MTs with DH_{31} alone
204	led to significantly higher levels of cAMP, 9.153 ± 0.039 pmol ⁻¹ /tubule, while baseline
205	levels of this second messenger were observed in saline, $DH_{31} + AedaeCAPA-1$, and
206	AedaeCAPA-1 treated tubules (Fig. 1J). To further confirm the stimulatory role of cAMP
207	and inhibitory role of cGMP, tubules were treated with either cyclic nucleotide alone and
208	secretion rates were measured (Fig. 1K). Unstimulated fluid secretion rates were
209	measured over the first 30 min, and then at 10-min intervals with either cAMP or cGMP.
210	Treatment of MTs with 10 ⁻⁴ M cAMP led to a significant increase over the treatment
211	interval, with fluid secretion rates increasing to 0.615±0.096 nL min ⁻¹ at 60 min,

212	compared to 10^{-8} M cGMP (0.052±0.091 nL min ⁻¹) and unstimulated (0.065±0.091 nL
213	min ⁻¹) (Fig. 1K). Finally, to establish whether these cyclic nucleotide second messengers
214	elicit antagonistic control of the MTs in adult A. aegypti, tubules were treated initially
215	with cAMP over the first 30 min and then cGMP was added in the presence of cAMP for
216	a subsequent 30 min (Fig. 1L). Similarly, we also tested the opposite treatment regime
217	where MTs were treated initially with cGMP and subsequently with cAMP added along
218	with cGMP. Treatment of cAMP-stimulated MTs with 10 ⁻⁸ M cGMP led to a significant
219	decrease (~4-fold) over the treatment interval, with secretion rates decreasing to
220	0.231 ± 0.113 nL min ⁻¹ at 60 min, compared to 10^{-4} M cAMP alone (0.931±0.134 nL min ⁻¹
221	¹). In contrast, cGMP-incubated tubules treated with 10^{-4} M cAMP led to a significant
222	increase (~10-fold) in secretion rate (0.537 \pm 0.072 nL min ⁻¹) compared to MTs treated
223	with 10^{-8} M cGMP alone (0.045±0.018 nL min ⁻¹).
224	Parallel studies examining cAMP levels were measured in DH ₄₄ -incubated MTs.
225	Treatment of MTs with DH ₄₄ alone had high levels of cAMP, $9.115\pm0.0.061$ pmol ⁻
226	¹ /tubule, compared to saline treated MTs, 8.709±0.081 pmol ⁻¹ /tubule (Fig. S3A). Levels
227	of cAMP remained unchanged in tubules treated with both $DH_{44} + AedaeCAPA-1$,
228	8.954 ± 0.108 pmol ⁻¹ /tubule. To further resolve the cAMP signaling pathway downstream
229	of DH_{31} and DH_{44} stimulated diversis, a PKA inhibitor (KT5720) was tested against
230	diuretic-stimulated MTs. KT5720 abolished the stimulatory effect of DH_{31} , whereas
231	secretion by DH ₄₄ -treated MTs remained unchanged (Fig. S3B).
232	
233	AedaeCAPA-1 decreases VA activity in DH ₃₁ -stimulated MTs through the

234 NOS/cGMP/PKG pathway. In Aedes MTs, 50-60% of the total ATPase activity can be

235	attributed to a bafilomycin- and nitrate-sensitive component that reflects the activity of
236	the VA pump (13). The remaining ATPase activity may be due to nucleotide cyclases,
237	protein kinases, myosin, DNA helicases, and other ATP-consuming processes such as the
238	NKA (13). As such, to determine whether CAPA inhibits VA and/or NKA function,
239	female diuretic-stimulated MTs were challenged with AedaeCAPA-1 to measure the
240	resultant NKA and VA activity. As expected, given its role as the natriuretic diuretic
241	hormone, adult female MTs treated with DH ₃₁ resulted in a significant (> two-fold)
242	increase of VA activity, 0.0329 ± 0.0007 µmoles ADP/µg protein/hour, compared to saline
243	controls, 0.0151±0.0021 µmoles ADP/µg protein/hour (Fig. 2A). Importantly, MTs
244	incubated with both DH ₃₁ and AedaeCAPA-1 had significantly lower VA activity,
245	resulting in activity levels indistinguishable from saline controls. In contrast, neither 5HT
246	nor DH ₄₄ influenced VA activity (p>0.05) when compared with saline controls, while co-
247	treatment with AedaeCAPA-1 also resulted in indistinguishable VA activity. Similar VA
248	activity levels were observed between 5HT and DH_{44} (0.0255 \pm 0.0078 and 0.0208 \pm 0.0042
249	μ moles ADP/ μ g protein/hour) and with co-application of <i>Aedae</i> CAPA-1 (0.0150\pm0.0036)
250	and $0.0154\pm0.0070 \ \mu$ moles ADP/ μ g protein/hour). Unlike changes observed in VA
251	activity following treatment with DH ₃₁ , diuretic-stimulation or AedaeCAPA-1 treatment
252	did not perturb NKA activity, with levels similar to that of unstimulated MTs (Fig. 2B).
253	To confirm the actions of CAPA are mediated through the NOS/cGMP/PKG
254	pathway, pharmacological blockers, including inhibitors of NOS ($_L$ -NAME) and PKG
255	(KT5823), were tested against DH ₃₁ -stimulated MTs treated with either AedaeCAPA-1 or
256	cGMP (Fig. 2C). Application of L-NAME or KT5823 abolished the inhibitory effect of
257	AedaeCAPA-1, resulting in high levels of VA activity, 0.02671±0.0025 and

258	0.03653 ± 0.0051 µmoles ADP/µg protein/hour respectively, compared to MTs treated
259	with DH ₃₁ +AedaeCAPA-1. As expected, treatment of DH ₃₁ -stimulated MTs with cGMP
260	resulted in a significant decrease in VA activity, 0.006 ± 0.0026 µmoles ADP/µg
261	protein/hour, similar to AedaeCAPA-1-treated MTs, while co-treatment with KT5823,
262	abolished the inhibitory effect of cGMP, resulting in an increase in VA activity.
263	
264	AedaeCAPA-1 leads to VA holoenzyme dissociation in DH ₃₁ -treated MTs. The
265	reversible dissociation of the $V_{\rm l}$ complex from the $V_{\rm o}$ membrane-integrated complex is a
266	well-known mechanism for regulating VA transport activity (22, 31, 34, 35, 37). To
267	determine whether AedaeCAPA-1 influences VA complex dissociation, membrane and
268	cytosolic protein fractions were isolated from DH_{31} and $DH_{31} + AedaeCAPA-1$ incubated
269	MTs, and a polyclonal V_1 antibody (13) was used to measure protein abundance. First,
270	membrane and cytosolic protein isolation was verified with specific cytosolic (beta-actin)
271	and membrane (AQP1) markers (Fig. S4). Western blot analysis revealed three protein
272	bands, with calculated molecular masses of 74 kDa, 56 kDa, and 32 kDa (13, 38) (Fig.
273	S5). The V_1 complex is composed of eight subunits (A-H), which includes the A
274	(~74kDa) and B subunit (~56Da) that are arranged in a ring forming the globular
275	headpiece for ATP binding and hydrolysis (31). Additionally, studies have suggested that
276	subunit D (~32kDa) alongside subunit F constitute the central rotational stalk of the V_1
277	complex (17). There was no difference in abundance observed for the A subunit (74 kDa
278	band) in either membrane or cytosolic fractions between saline and DH ₃₁ treatments
279	whereas DH ₃₁ + AedaeCAPA-1 incubated MTs had increased A subunit (74 kDa band)
280	protein abundance in cytosolic fractions compared to saline treatment (Fig. 3A) and

281	decreased abundance in the membrane fraction compared to MTs treated solely with
282	DH_{31} (Fig. 3B). Similarly, the V_1 complex B subunit abundance (56 kDa band) was
283	similar in all treatments within the cytosolic protein fraction (Fig. 3C) whereas DH_{31} +
284	AedaeCAPA-1 incubated MTs had significantly lower abundance in membrane fractions
285	compared to MTs treated with DH_{31} alone (Fig. 3D). Finally, there was no difference in
286	abundance of the V_1 complex subunit D (32 kDa band) between saline and DH ₃₁ treated
287	MTs in neither cytosolic or membrane fractions. However, as observed for the A and B
288	subunit bands (74 and 56 kDa band, respectively) $DH_{31} + AedaeCAPA-1$ incubated MTs
289	showed a significant increase in the D subunit in cytosolic fractions compared to saline
290	treated MTs (Fig. 3E) and a decrease in its abundance in membrane fraction compared to
291	MTs treated with DH_{31} alone (Fig. 3F). In summary, all three of the V1 complex
292	immunoreactive bands corresponding to subunits A, B and D (74, 56 and 32 kDa,
293	respectively) showed significantly higher abundance in cytosolic protein fractions and
294	lower abundance in membrane fractions in $DH_{31} + AedaeCAPA-1$ incubated MTs.
295	To visualize this potential endocrine-mediated reorganization of the VA
296	holoenzyme in this simple epithelium, we immunolocalized the membrane-integrated $V_{\rm o}$
297	and cytosolic V ₁ complex in the female A. aegypti MTs. Transverse sections of saline-
298	incubated (control) MTs demonstrated moderate enrichment of V_o (Fig. 4A, red), and V_1
299	(Fig 4B, green) complexes in the apical membrane of principal cells (Fig. 4C, S6A-D).
300	Comparatively, DH_{31} -incubated MTs revealed intense localization of the V _o (Fig. 4D,
301	red), and V_1 (Fig 4E, green) complexes within principal cells, where V_1 staining was
302	strictly co-localized with V_o staining on the apical membrane (Fig. 4F, Fig. S6E-H).
303	Interestingly, although V_o immunolocalization was restricted to the apical membrane, V_1

304	immunoreactivity was observed in both the apical membrane and cytosolic region in
305	DH ₃₁ + AedaeCAPA-1 co-treated MTs (Fig. 4G-I, Fig. S6I-T). Immunostaining was
306	absent in control preparations probed with only secondary antibodies (not shown)
307	confirming the specific detection of the VA complexes with each primary antibody.
308	To investigate this endocrine-mediated phenomenon in vivo, we immunolocalized
309	the membrane-integrated V_o and cytosolic V_1 complex in blood-fed females at different
310	time points. Whole body sections of non-blood-fed similarly aged females (control)
311	demonstrated moderate enrichment of both V_o (Fig. 5A, red), and V_1 (Fig. 4B, green) in
312	the MTs, with minimal co-localization (Fig. 5C), resembling saline-incubated MTs.
313	Interestingly, blood-fed female MTs revealed strong co-localization of the $V_{\rm o}$ and $V_{\rm 1}$
314	complexes at 10 min (Fig. 5D-F) and 30 min (Fig. 5G-I) post blood-meal, whereas V_1
315	immunoreactivity was more dispersed in both the apical membrane and cytosolic area in
316	MTs 3 hrs post blood-meal (Fig. 5J-L), comparable to non-blood-fed females.
317	
318	Discussion
319	The MTs of the Aedes mosquito are the main organs responsible for the secretion
320	of water and solutes, thereby contributing towards hydromineral homeostasis of the
201	(20) Active ion transport in A ground MTs is accomplished mainly by the V

animal (39). Active ion transport in A. aegypti MTs is accomplished mainly by the V-

322 ATPases (VA) densely localized in the apical brush-border membrane of principal cells,

that energize the apical and basolateral membrane as well as the paracellular pathway,

allowing for transepithelial secretion of NaCl, KCl, and other solutes (40). In animal

325 cells, V-ATPase molecules in the plasma membrane, especially on the apical membrane

326 of epithelial cells, contribute to extracellular acidification or alkalization, intracellular pH

327	homeostasis, or energize the plasma membrane for secondary active transport (41, 42). In
328	insect MTs, the VA plays a major role in fluid secretion, thus serving as a primary target
329	for both diuretic and, as this study demonstrates, anti-diuretic hormonal regulation of the
330	insect 'renal' tubules. Although the structure and function of the VA has been elucidated
331	in some detail (13, 20, 22, 31, 43–45), the regulation of the proton pump remains unclear.
332	Of the various regulatory mechanisms for VA activity, the most studied is the reversible
333	dissociation of the cytosolic V_1 complex from the membrane-integrated V_o complex, first
334	established in the midgut of the tobacco hornworm, Manduca sexta and yeast,
335	Saccharomyces cerevisiae (44, 46). In this study, the activity and regulation of the VA
336	was investigated under both diuretic and anti-diuretic hormone control of the adult female
337	A. aegypti MTs. Notably, the current results advance our knowledge of the anti-diuretic
338	control of the A. aegypti MTs, revealing a cellular mechanism for CAPA inhibition of the
339	MTs by targeting the VA to block fluid secretion stimulated by select diuretic factors.
340	This includes inhibition of the DH ₃₁ -related mosquito natriuretic peptide, which is critical
341	for the post-haematophagy diuresis that eliminates excess water and sodium originating
342	from the bloodmeal-derived plasma.
343	In insects, water excretion is tightly regulated to maintain homeostasis of ions and

344 water (1, 47, 48). Female *A. aegypti* engorge a salt- and water-rich bloodmeal to obtain 345 the necessary nutrients and proteins for their eggs (1), with about 40% of the ingested 346 water eliminated in the first hour post feeding (49). The high rates of water excretion 347 along with the high rates of primary urine production post bloodmeal suggest a highly 348 coordinated and defined hormonal regulation of the signaling processes and downstream 349 cellular targets for ion and water transport (50). In *Aedes* MTs, fluid secretion increases at

350	least three-fold after stimulation with mosquito natriuretic peptide (identified as DH ₃₁),
351	via cAMP as a second messenger (1), activating PKA, which subsequently activates V-
352	ATPase-driven cation transport processes (22, 35, 38). Herein we show that DH_{31} -
353	stimulated secretion is inhibited by bafilomycin, thought to block the proton channel of
354	the VA (32). Moreover, the addition of either bafilomycin or AedaeCAPA-1 caused
355	alkalization of the secreted fluid, indicating inhibition of the VA, which may lead to
356	constrained entry of cations across the apical membrane through a proposed alkali
357	cation/proton antiporter (15, 16). Thus, since bafilomycin inhibits DH ₃₁ -stimulated
358	secretion, this supports the VA as a target in the inhibition of fluid secretion.
359	Consequently, the driving force for ion movement and osmotically-obliged water is
360	reduced, but select Na ⁺ channels and cotransporters remain unaffected in the presence of
361	AedaeCAPA-1, as observed by the unchanged natriuretic effect of DH ₃₁ despite reduced
362	secretion rates in response to AedaeCAPA-1 (4). Similar results were seen in 5HT-
363	stimulated secretion, albeit a partial inhibition. An earlier study demonstrated that Ca ²⁺ -
364	mediated diuresis does not require the assembly and activation of the VA (37, 38). The
365	cAMP effect on the VA is implemented by protein kinase A (PKA), with inhibitors of
366	PKA abolishing hormone-induced assembly and activation of the VA (34). Although the
367	endogenous 5HT receptor expressed within the A. aegypti MTs necessary for diuretic
368	activity remains elusive, in the kissing bug, <i>Rhodnius prolixus</i> , both cAMP and Ca ²⁺ have
369	been shown to initiate diuresis in response to 5HT (51), which could explain the partial
370	inhibitory response of AedaeCAPA-1 inhibition on 5HT-stimulated tubules as Ca ²⁺ -
371	mediated diuresis is independent of the VA (38). Notably, the anticipated 5HT type 2
372	receptor subtype expressed in the principal cells of the MTs is predicted to couple

373	through a Gq/11 signaling mechanism (52) and likely excludes the type 7 Gs-coupled
374	receptor localized to tracheolar cells associated with the MTs (53, 54) as well as the type
375	1 Gi-coupled receptor localized to principal cells in larval stage mosquitoes (55).
376	Interestingly, DH ₄₄ -mediated stimulation was observed to be independent of the
377	VA, as bafilomycin had no effect on the secretion rate or pH of the secreted fluid
378	following application of this CRF-related diuretic peptide. Previous studies have noted
379	that low nanomolar concentrations of a DH_{44} -related peptide were linked to the
380	stimulation of the paracellular pathway only (27), mediating this action through
381	intracellular Ca ²⁺ as a second messenger (56). In contrast, high nanomolar concentrations
382	of a DH ₄₄ -related peptide were shown to influence both paracellular and transcellular
383	transport, increasing intracellular Ca^{2+} and cAMP (56). Although haemolymph
384	concentrations of diuretic peptides have yet to be determined in mosquitoes, DH_{31} is
385	immediately released into circulation post blood meal, stimulating rapid secretion of $\mathrm{Na}^{\scriptscriptstyle+}$
386	and excess water (23, 49). In contrast, DH ₄₄ -stimulated diuresis in A. aegypti involves
387	non-selective transport Na^+ and K^+ cations (4), this supports a delayed release of this
388	diuretic hormone post-feeding to maintain production (albeit reduced) of primary urine
389	whilst conserving Na ⁺ ions.
390	In unstimulated adult female Aedes MTs isolated in vitro, the VA exhibits
391	variable rates of enzyme activity, consistent with highly variable rates of secretion, as
392	found also in various other insect species (26, 57, 58). The VA is the main energizer in
393	MTs as 60% of total ATPase activity can be linked to the VA (13), whereas the NKA,

394 with around 28% of ATPase activity, also plays a role in membrane energization,

denoting a more important role in the function of MTs than was previously assumed (19,

396	38–40). Here we show a significant two-fold increase in VA activity in MTs treated with
397	DH_{31} compared to the unstimulated MTs, with no change in VA activity in 5HT and
398	DH ₄₄ -treated MTs. Notably, AedaeCAPA-1 treatment blocked the DH ₃₁ -driven increase
399	in VA activity, which corroborates the reduced fluid secretion rate and alkalization of the
400	secreted fluid. Additionally, we sought to establish the importance of the
401	NOS/cGMP/PKG pathway in the inhibitory actions of AedaeCAPA-1 on VA association.
402	In stimulated MTs treated with AedaeCAPA-1 along with NOS inhibitor, L-NAME, or
403	PKG inhibitor, KT5823, the inhibitory activity of AedaeCAPA-1 and its second
404	messenger cGMP was abolished, resulting in elevated VA activity as a result of DH_{31}
405	treatment. The present study examined the effects of AedaeCAPA-1 on DH ₃₁ -stimulated
406	VA activation for the first time in insects. Stimulation of DH_{31} causes an increase in
407	cAMP production, which activates Na^+ channels and the $Na^+/K^+/2Cl^-$ cotransporter in the
408	basolateral membrane (59) and up-regulates VA activity (as shown herein and
409	previously) critical for increased fluid secretion (24). The DH ₃₁ receptor
410	(AaegGPRCAL1) is expressed in a distal-proximal gradient in the MTs, with greater
411	expression in principal cells where the VA in the apical membrane is highly expressed
412	(19, 60). The co-localization of the DH_{31} receptor, VA, and cation exchangers (61–63) in
413	the distal segment of the MTs, along with the CAPA receptor (6), collectively supports
414	the major roles DH ₃₁ and CAPA play in post-prandial diuresis and anti-diuresis,
415	respectively. In contrast to the marked changes in VA activity in response to diuretic and
416	anti-diuretic hormones, NKA activity remained unchanged in response to treatments
417	conducted herein. Further studies should examine the potential role of the NKA in
418	diuretic and anti-diuretic processes.

419	The reversible dissociation of the V_1 and V_o complexes is currently thought as a
420	universal regulatory mechanism of V-ATPases, appearing to be widely conserved from
421	yeast to animal cells (13, 22, 35, 64). Although previously shown with cAMP (24), it
422	remained unclear whether other second messengers (eg. Ca ²⁺ , cGMP, and nitric oxide)
423	affect the assembly/disassembly of the V_1V_0 complexes in insect MTs. In this study, VA
424	protein abundance in membrane and cytosolic fractions of MTs was confirmed by
425	western blot analyses. The 56 kDa band represents the B subunit (29), while the 74 kDa
426	and 32 kDa bands are suggested to be the A and D subunits, respectively, of the $V_{\rm 1}$
427	complex (36). The higher abundance of these V_1 complex protein subunits in the
428	cytosolic fraction and lower abundance in membrane fraction in AedaeCAPA-1-treated
429	MTs provides novel evidence of hormonally-regulated V_1 dissociation from the
430	holoenzyme in A. aegypti MTs. This was further confirmed with V1 staining found both
431	in the apical membrane and cytosol of the MTs treated with DH ₃₁ and AedaeCAPA-1 in
432	contrast to the strict co-localization of the V_1 and V_o complex in the apical membrane of
433	MTs treated with DH_{31} alone. In unstimulated A. <i>aegypti</i> MTs, 40-73% of the V ₁ subunits
434	were found to be membrane associated, with reassembly of the $V_{1}V_{\text{o}}$ complex observed
435	upon stimulation with cAMP analogues (38). Although studies have revealed that
436	hormonal regulation can activate the assembly of the holoenzyme, the signaling
437	mechanisms achieving this control are unclear. In this study, the data provides evidence
438	of VA assembly in DH_{31} -treated MTs, with V_1 complex protein subunit enrichment found
439	in the membrane fractions, confirming the crucial role of the VA in DH_{31} -stimulated
440	secretion. Studies in A. aegypti have demonstrated the involvement of PKA in the
441	activation and assembly of the VA upon natriuretic hormone (i.e. DH_{31}) stimulation and

442	indicate the phosphorylation of the VA subunits by PKA in the MTs (38). These studies
443	indicate a regulatory role of PKA in VA assembly and its activation that may be
444	independent or in addition to phosphorylation (38). In line with these earlier observations,
445	the current results indicate PKA is critical for DH ₃₁ -stimulated fluid secretion by MTs
446	whereas DH ₄₄ -stimulated diuresis was found to be PKA-independent.
447	Together, these results indicate that AedaeCAPA-1 binding to its cognate receptor
448	in principal cells of the MTs (6), targets the NOS/cGMP/PKG pathway (4, 6) to inhibit
449	DH_{31} -mediated elevation of cAMP (23, 59), which blocks PKA-activated VA association
450	and prevents protons from being pumped across the apical membrane, resulting in a more
451	alkaline lumen. Our study provides novel evidence that the anti-diuretic activity of CAPA
452	is mediated through the dissociation of the VA holoenzyme involving the removal of the
453	V_1 complex from the apical membrane, hindering luminal flux of protons that in turn
454	starves cation/ H^+ exchange, which ultimately reduces fluid secretion (Fig. 6). In <i>R</i> .
455	prolixus MTs, the physiological roles of cGMP and cAMP were examined (65)
456	suggesting cGMP inhibits fluid secretion by activating a phosphodiesterase (PDE) that
457	degrades cAMP elevated following 5HT and diuretic hormone stimulation of MTs.
458	Indeed, the current results demonstrated the addition of cAMP reversed the inhibitory
459	effects of cGMP, while the addition of cGMP reduced the stimulatory response of cAMP,
460	supporting that these two cyclic nucleotides facilitate two opposing physiological roles in
461	the MTs of adult A. aegypti. The data herein reveals cGMP levels increase in MTs treated
462	with CAPA alone or in combination with DH_{31} while cAMP levels decrease in MTs
463	treated with CAPA in combination with DH_{31} compared to tubules stimulated with DH_{31}
464	alone, which upholds the roles of cAMP and cGMP in diuretic and anti-diuretic signaling

465	pathways, respecitively. Interestingly, mid-nanomolar concentrations of DH ₄₄ also led to
466	increased levels of cAMP, with levels unchanging in response to AedaeCAPA-1, raising
467	doubt regarding the involvement of a PDE. Treatment of a PKA inhibitor, KT5720,
468	abolished DH ₃₁ -stimulated secretion but had no effect on DH ₄₄ -mediated stimulation. It is
469	well established that the effects of cAMP are mediated by activation of cAMP-dependent
470	protein kinase (PKA), a major cAMP target, followed by phosphorylation of target
471	proteins (66). More recently, in D. melanogaster MTs, two distinct cAMP pathways have
472	been elucidated to sustain fluid secretion; a PKA-dependent pathway, shown to regulate
473	basal fluid secretion in principal cells; and a PKA-independent pathway, specifically a
474	stimulatory principal EPAC (exchange proteins directly activated by cAMP) pathway,
475	stimulating fluid secretion above basal levels (67). Future studies should examine the
476	potential DH44-stimulated PKA-independent pathway leading to secretion in A. aegypti
477	MTs.
478	In summary, our study highlights a novel target in the anti-diuretic signaling
479	pathway of adult female A. aegypti MTs, emphasizing the intricate and precise regulatory

480 mechanism of anti-diuresis. Although a plethora studies have investigated the process of

481 hydromineral balance in terrestrial insects from a diuretic perspective (1, 10, 23, 68–70),

482 these current findings advance our understanding of anti-diuretic hormone control while

483 providing further evidence of a previously elusive endocrine regulatory mechanism of the

484 VA in mosquitoes (Fig. 6). Given that many terrestrial insects are recognized as

485 agricultural pests or disease vectors, further investigating the complex regulation of their

486 ionic and osmotic balance may aid in lessening their burden on human health and

- 487 prosperity through development of improved management strategies that, at least in part,
- 488 impede their neuroendocrine control of hydromineral homeostasis.
- 489

490 Materials and Methods

491 Animal rearing

- 492 Eggs of *Aedes aegypti* (Liverpool strain) were collected from an established
- 493 laboratory colony described previously (4, 71). All mosquitoes were raised under a 12:12

494 light:dark cycle. Non-blood fed female insects (three-six days post-eclosion) were used

495 for bioassays, dissected under physiological saline (Aedes saline) adapted from (59) that

496 contained (in mmol⁻¹): 150 NaCl, 25 HEPES, 3.4 KCl, 7.5 NaOH, 1.8 NaHCO₃, 1

497 MgSO₄, 1.7 CaCl₂, and 5 glucose, and titrated to pH 7.1.

498

499 **MT fluid secretion assay**

500 In order to determine fluid secretion rates, modified Ramsay assays were

501 performed as described previously (4, 72). Female adults (3-6 day old) were dissected

502 under physiological *Aedes* saline prepared as described above, and MTs were removed

and placed in a Sylgard-lined Petri dish containing 20 µL bathing droplets (1:1 mixture of

504 Schneider's Insect Medium (Sigma-Aldrich): Aedes saline, immersed in hydrated mineral

505 oil to prevent evaporation. The proximal end of each tubule was wrapped around a

506 Minutien pin to allow for fluid secretion measurements. To investigate the effects of

- second messengers, cAMP and cGMP, on fluid secretion rate, 10^{-4} M 8 bromo-cAMP
- 508 (cAMP) (23, 65) and 10^{-8} M 8 bromo-cGMP (cGMP) (4) (Sigma-Aldrich, Oakville, ON,
- 509 Canada) were used against unstimulated MTs. To test the effects of the pharmacological

510 blocker KT5720 (7) (protein kinase A (PKA) inhibitor), a dosage of 5 μ mol l⁻¹

511 (manufacturer's recommended dose) was used against 25 nmol l^{-1} DH₃₁- and 10 nmol l^{-1}

512 DH₄₄-stimulated MTs.

513

514 **Time course inhibition of bafilomycin**

515 Dosage of bafilomycin A_1 was based on a dose-response analysis of bafilomycin 516 against DH₃₁-stimulated tubules (Fig. S1). In the interest of determining whether

517 bafilomycin inhibits the effects of the diuretic factors, dosages of 25 nmol l^{-1} DromeDH₃₁

518 (~84% identical to *Aedae*DH₃₁) (4, 23, 73), 100 nmol l^{-1} 5HT (4, 69, 74), and 10 nmol l^{-1}

519 *Rhopr*DH (CRF-related diuretic peptide, DH₄₄) (~48% overall identity; ~65% identity

520 and ~92% similarity within the highly-conserved N-terminal region to AedaeDH₄₄) (4,

521 56, 75, 76), were applied to the isolated MTs. Neurohormone receptors, including those

522 for 5HT, and the peptides DH_{31} , DH_{44} , and CAPA, are localized to the basolateral

523 membrane of principal cells (6, 61, 82), while the LK receptor is localized exclusively to

524 stellate cells (5). As a result, the effects of bafilomycin were tested on diuretics known to

525 act on the principal cells of the MTs. After incubating with the individual diuretics for 30

526 min (using the modified Ramsay assay), diuretic peptide was added alone (controls) or in

527 combination with bafilomycin (final concentration 10^{-5} M). The fluid secretion rate was

528 recorded every 10 min for a total of 80 min. In order to determine whether inhibition of

529 the VA was involved in the anti-diuretic activity of CAPA peptides on adult MTs, the

530 effects of 1 fmol l^{-1} AedaeCAPA-1 (4, 6) were investigated in combination with DH₃₁

and bafilomycin.

533 Measurement of pH of secreted fluid

- 534 The pH of secreted fluid was measured by using ion-selective microelectrodes
- 535 (ISME) pulled from glass capillaries (TW-150-4, World Precision Instruments, Sarasota,
- 536 Fl, USA) using a Sutter P-97 Flaming Brown pipette puller (Sutter Instruments, San
- 537 Raffael, CA, USA). Microelectrodes were silanized with N,N-
- 538 dimethyltrimethylsilylamine (Fluka, Buchs, Switzerland) pipetted onto the interior of a
- 539 glass dish inverted over the group of microelectrodes. A 1:2 ratio of number of
- 540 microelectrodes to amount of silanization solution (in µl) was used. The microelectrodes
- 541 were left to silanize for 75 min at 350°C and left to cool before use. The microelectrodes
- 542 were back-filled with a solution containing 100 mmol l^{-1} NaCl and 100 mmol l^{-1} sodium
- 543 citrate that was titrated to pH 6.0 and front-filled using Hydrogen Ionophore I cocktail
- 544 B (Fluka, Buchs, Switzerland). The electrode tips were then coated with \sim 3.5% (w/v)
- 545 polyvinyl chloride (PVC) dissolved in tetrahydrofuran, to avoid displacement of the
- 546 ionophore cocktail when submerged in the paraffin oil (77). The H⁺-selective
- 547 microelectrodes were calibrated in *Aedes* saline titrated to either pH 7.0 or pH 8.0.
- 548 Reference electrodes were prepared from glass capillaries (1B100F-4, World Precision
- 549 Instruments) using a pipette puller described above and were backfilled with 500 mmol l
- 550 ¹ KCl. Secreted droplet pH measurements were done immediately after collection to
- 551 prevent alkalization of the droplet due to carbon dioxide diffusion into the paraffin oil.
- 552 Microelectrodes and reference electrodes were connected to an electrometer through
- silver chloride wires where voltage signals were recorded through a data acquisition
- 554 system (Picolog for Windows, version 5.25.3). In order to measure pH of the secreted

fluid, tubules were set up using the Ramsay assay, and pH measurements were recorded
every 10 min for a total of 60 min.

557

558 NKA and VA activities

559 The Na^+/K^+ -ATPase (NKA) and VA activity in the MTs was determined using a 560 modified 96-well microplate method (78, 79), which relies on the enzymatic coupling of 561 ouabain- or bafilomycin-sensitive hydrolysis of ATP to the oxidation of reduced 562 nicotinamide adenine dinucleotide (NADH). The microplate spectrophotometer is 563 therefore able to directly measure the disappearance of NADH. Adult female MTs (three 564 to six day old) were dissected and incubated for 30 min in Aedes saline, diuretic (DH₃₁, 565 5HT, or DH₄₄) alone or combined with AedaeCAPA-1. Following 30-min incubation, MTs were collected into 1.5 mL microcentrifuge tubes (40-50 sets of MTs per tube = 566 567 200-250 MTs per treatment), flash frozen in liquid nitrogen and stored at -80°C. To 568 investigate the effects of the pharmacological blockers, a nitric oxide synthase (NOS) 569 inhibitor, N_{ω}-Nitro-L-arginine methyl ester hydrochloride (₁-NAME), and protein kinase 570 G (PKG) inhibitor, KT5823, were used against DH₃₁-stimulated MTs treated with AedaeCAPA-1 or 10⁻⁸ M cGMP. Dosages of 2 µmol l⁻¹ L-NAME (manufacturer's 571 recommended dose) and 5 μ mol l⁻¹ KT582336 were applied to the MTs (4, 6, 7). 572 573 Tissues were thawed on ice and 150 µL of homogenizing buffer (four parts of SEI 574 with composition (in mmol 1^{-1}): 150 sucrose, 10 EDTA, and 50 imidazole; pH 7.3 and 575 one part of SEID with composition: 0.5% of sodium deoxycholic acid in SEI) and MTs 576 were then sonicated on ice for 10 sec (two pulses of 5 sec) and subsequently centrifuged

577 at 10,000 x g for 10 min at 4°C. The supernatant was transferred into a fresh

578 microcentrifuge tube and stored on ice.

579	Prior to the assay, three solutions were prepared (Solution A, B, and C) and all
580	stored on ice. Solution A contained 4 units mL ⁻¹ lactate dehydrogenase (LDH), 5 units
581	mL ⁻¹ pyruvate kinase (PK), 50 mmol l ⁻¹ imidazole, 2.8 mmol l ⁻¹ phosphoenolpyruvate
582	(PEP), 0.22 mmol l ⁻¹ ATP, and 50 mmol l ⁻¹ NADH, pH 7.5. The solution was
583	subsequently mixed with a salt solution in a 4:1 ratio (salt solution composition (in mmol
584	l ⁻¹): 189 NaCl, 10.5 MgCl ₂ , 42 KCl, and 50 imidazole, pH 7.5. Working solution B
585	consisted of solution A with 5 mmol l^{-1} ouabain and solution C consisted of solution A
586	with 10 μ mol l ⁻¹ bafilomycin. The concentrations of ouabain and bafilomycin were based
587	on previous studies (78). To ensure the batch of assay mixture (Solution A) was effective,
588	an adenosine diphosphate (ADP) standard curve was run. ADP standards were prepared
589	as follows: 0 nmol $10\mu L^{-1}$ (200 μL of 50mmol l^{-1} imidazole buffer (IB), pH 7.5); 5 nmol
590	$10\mu L^{-1}$ (25µL of 4mmol l ⁻¹ ADP stock and 175µL of IB); 10 nmol 10uL ⁻¹ (50µL of
591	4mmol l ⁻¹ ADP stock/ 150 μ L of IB); 20 nmol 10 μ L ⁻¹ (100 μ L of 4mmol l ⁻¹ ADP
592	stock/100µL of IB); 40 nmol 10 µL ⁻¹ (40 mmol l^{-1} ADP stock). The standards were added
593	to a 96-well polystyrene microplate in duplicates of 10 μ L per well, followed by the
594	addition of 200 μ L of solution A. The plate was placed in a Thermo Multiscan Spectrum
595	microplate spectrophotometer set at 25°C and a linear rate of NADH disappearance was
596	measured at 340 nm. The absorbance spectra were recorded and analyzed using the
597	Multiscan Spectrum data acquisition system with SkanIt version 2.2 software. The ADP
598	standards (0 to 40 nmoles well ⁻¹) should yield an optical density (OD) between 0.9 and
599	0.2 OD units, while the slope of the curve should result in -0.012 to -0.014 OD nmol

600	ADP ⁻¹ . Homogenized MT samples were thawed and added to the microplate (kept on ice)
601	in six replicates of 10 μ L per well. Next, two wells per sample were filled with 200 μ L of
602	working solution A, two wells with 200 μ L of working solution B and two wells with 200
603	μ L of working solution C (Fig. 4B). The microplate was quickly placed in the microplate
604	spectrophotometer and the decrease in NADH absorbance was measured for 30 min at
605	340 nm. NKA and VA activity was calculated using the following equation:
606	NKA or VA activity = (((Δ ATPase/S)/[P]) x 60 (min),
607	where ΔATP as is the difference in ATP hydrolysis in the absence and presence of
608	ouabain or bafilomycin, S is the slope of the ADP standard curve, [P] is the protein
609	concentration of the sample. Protein was quantified using a Bradford assay (Sigma-
610	Aldrich Canada, Ltd.,) according to manufacturer's guidelines with bovine serum
611	albumin (Bioshop Canada Inc., Burlington, ON, Canada) as a standard. Final activity was
612	expressed as micromoles of ADP per milligram of protein per hour.
613	
614	Protein processing and western blot analyses
615	MTs were isolated under physiological saline from 40-50 female A. aegypti for
616	each biological replicate (defined as $n = 1$) and incubated for 60 min in the following
617	three treatments: Aedes saline, 25 nmol l^{-1} DH ₃₁ , or 25 nmol l^{-1} DH ₃₁ + 1 fmol l^{-1}
618	AedaeCAPA-1. Following the incubation, tissues were stored at -80°C until processing.
619	To separate the membrane and cytosolic proteins, a membrane protein extraction kit was

620 used (ThermoFisher Scientific) following recommended guidelines for soft tissue with

621 minor modifications including 200 µL of permeabilization and solubilization buffer and a

622 1:200 protease inhibitor cocktail (Sigma Aldrich) in both buffers. Final protein

623	concentrations were calculated by Bradford assay (Sigma-Aldrich Canada, Ltd.,)
624	according to manufacturer's guidelines with bovine serum albumin (BioRad
625	Laboratories) as a standard and quantified using an Ao Absorbance Microplate Reader
626	(Azure Biosystems) at 595 nm.
627	Protein samples were denatured by heating for 5 min at 100°C with 6X loading
628	buffer (225 mmol l ⁻¹ Tris-HCl pH 6.8, 3.5% (w/v) SDS, 35% glycerol, 12.5% (v/v) β -
629	mercaptoethanol and 0.01% (w/v) Bromophenol blue). Into each lane, 5 μg of protein
630	was loaded onto a 4% stacking and 12% resolving sodium dodecyl sulphate
631	polyacrylamide gel electrophoresis (SDS-PAGE) gel. Protein samples were migrated
632	initially at 80 V for 30 min and subsequently at 110 V for 90 min before being transferred
633	onto a polyvinylidene difluoride (PVDF) membrane using a wet transfer method at 100 V
634	for 60 min in a cold transfer buffer. Following transfer, PVDF membranes were blocked
635	with 5% skim milk powder in Tris-buffered saline (TBS-T; 9.9 mmol l ⁻¹ Tris, 0.15 mmol
636	l^{-1} NaCl, 0.1 mmol l^{-1} Tween-20, 0.1 mmol l^{-1} NP-40 pH 7.4) for 60 min at RT, and
637	incubated on a rocking platform overnight at 4°C with a guinea pig polyclonal anti-VA
638	(Ab 353-2 against the V_1 complex of the VA (13), a kind gift from Profs. Wieczorek and
639	Tiburcy, University of Osnabruck, Germany, used at a 1:2000 dilution in 5% skim milk
640	in TBS-T. The next day, PVDF membranes were washed for 60 min in TBST-T,
641	changing the wash buffer every 15 min. Immunoblots were then incubated with a goat
642	anti-guinea pig HRP conjugated secondary antibody (1:2500 in 5% skim milk in TBS-T)
643	(Life Technologies, Burlington, ON) for 60 min at RT and subsequently washed three
644	times for 15 min with TBS-T. Lastly, blots were incubated with the Clarity Western ECL
645	substrate and images were acquired using a ChemiDoc MP Imaging System (Bio-Rad).

646	Molecular weight measurements were performed using Image Lab 5.0 software (Bio-
647	Rad). PVDF membranes were then probed with Coomassie brilliant blue, since total
648	protein normalization is now considered the benchmark method for quantitative analysis
649	of western blot data (80, 81) and has been used in studies involving A. aegypti protein
650	normalization (82). ImageJ software (NIH, USA) was used to quantify protein
651	abundance. (Fig. 3 and S5 show a saturated blot of the 56kDa band to ensure
652	visualization of the 74kDa and 32kDa band, however protein quantification was
653	measured using a pre-saturated blot).
654	To confirm successful separation of membranes from cytosol using the membrane
655	protein extraction kit, saline-incubated MTs were incubated in either anti-beta-tubulin
656	(cytosolic marker, 1:5000) or -AaAQP1 affinity purified rabbit polyclonal antibody
657	(generous gift from Dr. Andrew Donini, York University, Canada) (83) (membrane
658	marker, 1:1000). Blots were then incubated with a goat anti-mouse (for beta-tubulin) or
659	goat anti-rabbit (for AQP1) HRP-conjugated secondary antibody (1:5000 in 5% skim
660	milk in TBS-T) (Life Technologies, Burlington, ON) for 60 min at RT (beta-tubulin).
661	
662	Immunolocalization of VA complexes in MTs
663	Immunohistochemistry of the MTs localizing the VA complexes was conducted
664	following a previously published protocol (84). Adult female MTs (three to six day old)
665	were dissected out in <i>Aedes</i> saline and incubated following similar conditions described

- 665 were dissected out in *Aedes* saline and incubated following similar conditions described
- 666 in the western blot section above. After the incubation, the MTs were immersed in
- 667 Bouin's solution and fixed for two hours in small glass vials. To test *in vivo* changes of
- the VA complexes, five to six day old females were allowed to blood-feed for 20 min

(71), after which female mosquitoes were isolated at 10 min, 30 min, and 3 hr post blood-

670 meal. Similarly aged, non blood-fed (sucrose-fed) females were isolated as controls.

671 Following the bloodmeal, whole body females were immersed in Bouin's solution and

672 fixed for three hours in small glass vials. Tissues/whole body females were then rinsed

673 three times and stored in 70% ethanol at 4°C until further processing. Fixed samples were

674 dehydrated through a series of ethanol washes: 70% ethanol for 30 min, 95% ethanol for

675 30 min, and 100% ethanol three times for 30 min. The samples were cleared with xylene

676 (ethanol:xylene for 30 min then 100% xylene three times for 30 min), and infiltrated in

677 Paraplast Plus Tissue Embedding Medium (Oxford Worldwide, LLC, Memphis, USA) at

678 xylene:paraffin wax for 60 min at 60°C, then rinsed in pure paraffin wax twice for 1 hour

679 for 60°C. Following the last rinse, the samples were embedded in the paraffin wax and

680 left to solidify at 4°C until further processing. Sections (5 μm) were cut using a Leica RM

681 2125RT manual rotary microtome (Leica Microsystems Inc., Richmond Hill, Canada)

and slides were incubated overnight on a slide warmer at 45°C.

683 The following day, sections were deparaffinized with xylene (two rinses for 5 min 684 each), and rehydrated via a descending series of ethanol washes (100% ethanol twice for 685 2 min, 95% ethanol for 2 min, 70% ethanol for 2 min, 50% ethanol for 2 min) and finally 686 in distilled water for 20 min. Next, sections were subjected to a heat-induced epitope retrieval (HIER) by immersing slides in a sodium citrate buffer (10 nmol l⁻¹, pH 6.0) and 687 688 heating both slides and solution in a microwave oven for 4 min. The solution and slides 689 were allowed to cool for 20 min, reheated for 2 min, and left to stand at room temperature 690 (RT) for 15 min. Slides were then washed three times in phosphate-buffered saline (PBS) 691 pH 7.4, 0.4% Kodak Photo-Flo 200 in PBS (PBS/PF, 10 min), 0.05% Triton X-100 in

692 PBS (PBS/TX, 10 min), and 10% antibody dilution buffer (ADB; 10% goat serum, 3% 693 BSA and 0. 05% Triton X-100 in PBS) in PBS (PBS/ADB, 10 min). Slides were 694 incubated overnight at RT with a guinea pig polyclonal anti-V₁ (Ab 353-2 against the V₁ 695 complex, identical antibody used in western blot analyses, at 1:5000 dilution in ADB) in 696 combination with a 1:100 mouse polyclonal anti-ATP6V0A1 antibody for V_0 (Abnova, 697 Taipei, Taiwan). 698 Following overnight primary antibody incubation, slides were washed briefly in 699 distilled water, with sequential washes with PBS/PF, PBS/TX, and PBS/ADB for 10 min 700 each as described above. A goat anti-guinea pig antibody (for V_1 detection) conjugated to 701 AlexaFluor 488 (1:500 in ADB, Jackson Immunoresearch) and sheep anti-mouse 702 antibody (for V₀ detection) conjugated to AlexaFluor 594 (1:500 in ADB, Jackson 703 Immunoresearch) were applied to visualize the VA complexes. The slides were left to 704 incubate in the secondary antibody for 60 min at RT. For negative controls, slides were 705 processed as described above with primary antibodies omitted. Slides were then washed 706 in distilled water/0.4% PF three times for 1 min each and finally in distilled water for 1 min. Slides were air dried for 30 min and mounted using ProLongTM Gold antifade 707 708 reagent with DAPI (Life Technologies, Burlington, ON, Canada). Fluorescence images 709 were captured using an Olympus IX81 inverted fluorescent microscope (Olympus 710 Canada, Richmond Hill, ON, Canada). 711 712 cGMP and cAMP Measurements

A competitive cGMP ELISA kit (Cell Signaling Technology, #4360) and cAMP
ELISA kit (Cell Signaling Technology, #4339) were used to measure the effect of DH₃₁,

715	DH ₄₄ and AedaeCAPA-1 on cGMP and cAMP levels in the MTs. Adult MTs were
716	isolated under physiological saline from 50 female A. aegypti for each biological
717	replicate (defined as $n = 1$). To prevent cGMP degradation, tubules were incubated first
718	with a phosphodiesterase inhibitor, 0.1 mmol l^{-1} zaprinast, for 10 min (85) or 0.5 mmol l^{-1}
719	3-isobutyl-1-methylxanthine (IBMX) for 10 min (23) before any of the experimental
720	treatments, specifically Aedes saline, 25 nmol ⁻¹ DH ₃₁ , 10 nmol l ⁻¹ DH ₄₄ , 1 fmol ⁻¹
721	AedaeCAPA-1, 25 nmol ⁻¹ DH ₃₁ + 1 fmol ⁻¹ AedaeCAPA-1, or 10 nmol ⁻¹ DH ₄₄ + 1 fmol ⁻¹
722	AedaeCAPA-1 for a further 20 min. After incubation was complete, tissues were stored at
723	-80°C until processing. To measure cGMP and cAMP concentrations, frozen tubule
724	samples were thawed on ice and 125 μ L of 1X cell lysis buffer (CLB, #9803) was added
725	to each tube (1 mmol ⁻¹ phenylmethylsulfonyl fluoride (PMSF) was added to 1X CLB
726	fresh each time). Tissue samples were kept on ice for 10 min, sonicated for 10 s (similar
727	conditions as described for NKA/VA activity assay), centrifuged for 3 min at 10,000 rpm,
728	and the supernatant was isolated and kept on ice. Using a commercial 96-well microtitre
729	plate precoated with either a cGMP or cAMP rabbit monoclonal antibody, the cGMP-
730	HRP (or cAMP-HRP) conjugate was added in triplicate wells with 50 μ L per well. This
731	was followed by the addition of 50 μL of either tubule samples or cGMP (or cAMP)
732	standards ranging from 100 nmol ⁻¹ to 0.25 nmol ⁻¹ . The plate was covered and incubated
733	at RT for 3 h on a horizontal orbital plate shaker. Following incubation, plate contents
734	were discarded, and wells were washed four times with 200 μL /well of 1X wash buffer.
735	Next, 100 μ L of 3,3',5,5'-tetramethylbenzidine (TMB) substrate was added to each well,
736	and the plate was covered and kept for 10 min at RT. The enzymatic reaction was

737	quenched by adding 100 µL of 2 mmol	¹ HCl and absorbance read at 450 nm using a

- 738 Synergy 2 Microplate Reader (Biotek).
- 739

740 Statistical analyses

- 741 Data was compiled using Microsoft Excel and transferred to Graphpad Prism
- software v.7 to create figures and conduct all statistical analyses. Data was analyzed
- accordingly using a one-way or two-way ANOVA and a Bonferroni post-test, or
- Student's t-test, with differences between treatments considered significant if p < 0.05.
- 745

746 Acknowledgments

- 747 The authors sincerely thank Prof. Helmut Wieczorek and Prof. Felix Tiburcy (University
- of Osnabrück, Germany) for providing the V₁ antibody and Prof. Andrew Donini (York
- 749 University, Canada) for providing the A. aegypti AQP1 antibody that were used in this
- study. The authors are also grateful to Prof. Ian Orchard (University of Toronto
- 751 Mississauga, Canada) and Prof. Michael J. O'Donnell (McMaster University, Canada) for
- providing synthetic peptides, *Rhopr*DH and *Drome*DH₃₁ respectively, used in this study.
- 753

754 **Funding**

- 755 This research was funded by: Natural Sciences and Engineering Research Council of
- 756 Canada (NSERC) Discovery Grant (JPP), Ontario Ministry of Research Innovation Early
- 757 Researcher Award (JPP), and NSERC CGS-D (FS) and the Carswell Scholarships in the
- Faculty of Science, York University (FS) along with a MITACS Globalink Research
- 759 Internship (MFV).

760

761 Data and materials availability

All data are available in the main text or the supplementary materials. Additional data

- related to this paper may be requested from the authors.
- 764

765 Figures and Tables

- **Fig. 1.** Effect of bafilomycin on fluid secretion rates and pH along with cyclic nucleotide
- second messengers on adult A. aegypti MTs. Tubules were treated with either (A) DH₃₁
- (B) 5HT or (C) DH₄₄ and secreted droplets were measured at 10-min intervals for 30 min.
- 769 Immediately following measurement of the 30-min point fluid droplet (solid arrow), MTs

770 were treated with (A) DH₃₁ (B) 5HT (C) or DH₄₄ alone or in combination with

- 771 AedaeCAPA-1 or bafilomycin. (D) MTs were treated with DH₃₁ alone or in combination
- with *Aedae*CAPA-1, bafilomycin, or both *Aedae*CAPA-1 and bafilomycin for 60 min.
- 773 Secreted fluid pH was measured in tubules treated with either (E) DH₃₁ (F) 5HT or (G)
- 774 DH₄₄ before and after addition of *Aedae*CAPA-1, bafilomycin, or both *Aedae*CAPA-1
- and bafilomycin along with unstimulated MTs (H). Production of (I) cGMP and (J)
- cAMP in DH₃₁-stimulated MTs treated with AedaeCAPA-1. (A-C) Significant
- differences between bafilomycin-treated and the corresponding time point controls and
- 778 (E-H) significant differences in secreted fluid pH between AedaeCAPA-1- and
- bafilomycin-treated and the corresponding time point controls are denoted by an asterisk,
- as determined by a two-way ANOVA and Bonferroni multiple comparison post-hoc test
- 781 (p<0.05). Data represent the mean \pm standard error (n=12-34), ns denotes no statistical
- significance. (D, I, J) Bars labeled with different letters are significantly different from

783	each other (mean± SEM; one-way ANOVA with Bonferroni multiple comparison,
784	p<0.05, (D) n=7-17) (I, J) n=50 sets of MTs for all treatments (n=3 per treatment)). (K)
785	Fluid secretion rates were measured at 10 min intervals initially over a 30 min interval
786	(unstimulated) and then over a second 30 min interval after the addition (solid arrow) of
787	10^{-4} M cAMP or 10^{-8} M cGMP. Significant differences between cAMP-treated MTs and
788	the corresponding time point controls (or cGMP- treated MTs) are denoted by an asterisk
789	(mean± SEM; two-way ANOVA with Bonferroni multiple comparison, p<0.05, n=5-6).
790	(L) Significant differences between cAMP-treated MTs and corresponding time point
791	after addition at 30 min (downward arrow) of cGMP are denoted by an asterisk (similar
792	with cGMP alone and cAMP added at 30 min, mean \pm SEM; one-way ANOVA with
793	Bonferroni multiple comparison, p<0.05, n=5-9).
794	
795	Fig. 2. Effect of AedaeCAPA-1 and NOS/PKG inhibitors on VA and NKA activity in
796	diuretic stimulated A. aegypti MTs. MTs were incubated in Aedes saline, diuretics (DH ₃₁ ,
797	5HT, and DH ₄₄) alone or in combination with <i>Aedae</i> CAPA-1 for 30 min before collection
798	to measure (A) VA and (B) NKA activity. (C) MTs were treated with pharmacological
799	blockers, NOS inhibitor (L-NAME) and PKG inhibitor (KT5923) in combination with

800 either AedaeCAPA-1 or cGMP. Bars labeled with different letters are significantly

801 different from each other (mean± SEM; one-way ANOVA with Bonferroni multiple

802 comparison, p<0.05). N.S. denotes no statistical significance. For each treatment, 50 sets

803 of MTs were collected with n=3 biological replicates per treatment.

805	Fig. 3. Membrane and cytosolic protein abundance of the V_1 complex in MTs of A.
806	aegypti. The MTs (n=40-50) were incubated in Aedes saline, DH ₃₁ , or DH ₃₁ +
807	AedaeCAPA-1 for one hour before collection. Protein abundance was measured in the
808	(A) 74 kDa band, A subunit (B) 56 kDa band, B subunit and (c) 32 kDa band, D subunit
809	of the V_1 complex. Individual band densities were normalized to total protein using
810	Coomassie staining, and graphed relative to saline-treated controls. Bars labeled with
811	different letters are significantly different from each other (mean± SEM; one-way
812	ANOVA with Bonferroni multiple comparison, p<0.05, n=3-4 replicates).
813	
814	Fig. 4. Immunolocalization of the V_o and V_1 complexes in transverse sections of
815	stimulated A. aegypti MTs. Representative paraffin-embedded sections of A. aegypti MTs
816	incubated in either (A-C) Aedes saline alone, (D-F) DH ₃₁ and (G-I) DH ₃₁ + AedaeCAPA-
817	1 for 30 min. Panels (A,D,G) show V _o staining (red), (B,E,H) show V ₁ staining (green),
818	and panels (C,F,I) show merged images with staining highly colocalized in DH_{31}
819	treatment but less evident in saline and AedaeCAPA-1 added treatments. Solid white
820	arrows denote apical VA staining, and empty arrows indicate cytosolic VA staining.
821	Where visible in sections, DAPI nuclear staining is shown in blue. Scale bar 100 μ m, n =
822	4 biological replicates (SC = stellate cell).
823	
824	Fig. 5. Immunolocalization of the V_0 and V_1 complexes in blood-fed <i>A. aegypti</i> females.

- 825 Representative paraffin-embedded sections of whole-body non-blood-fed females (A-C),
- 826 blood-fed females isolated (D-F) 10 min (G-I) 30 min and (J-L) 3 hr post blood-meal.
- 827 Panels (A,D,G,J) show V_o staining (red), (B,E,H,K) show V₁ staining (green), and panels

828 (C,F,I,L) show merged immunoreactive staining. DAPI nuclear staining is shown in blue.

- 829 Scale bar 100 μ m, n = 4 biological replicates.
- 830

831	Fig. 6. Schematic diagram summarizing the signaling pathway of diuretic and anti-
832	diuretic control of adult A. aegypti MTs. The principal cells in A. aegypti MTs are
833	responsible for the transport of Na^+ and K^+ cations via secondary active transport,
834	energized by the V-type H^+ -ATPase (VA), localized in the brush border of the apical
835	membrane. The movement of protons creates a gradient, driving the exchange of Na^+ and
836	K^+ through cation/ H^+ antiporters (NHA). Neurohormone receptors for DH ₃₁ , 5HT, DH ₄₄ ,
837	and CAPA are localized to the basolateral membrane of the principal cells, while the
838	kinin receptor is localized exclusively in the stellate cells. The current results together
839	with previous data indicates that DH_{31} stimulates divresis through activation and
840	assembly of the VA in the apical membrane, with no effect on the Na^+/K^+ -ATPase
841	(NKA). The anti-diuretic effect of AedaeCAPA-1, facilitated by the NOS/cGMP/PKG
842	pathway, causes V_1 dissociation from the membrane, hindering activity, and thus
843	reducing fluid secretion. The biogenic amine, 5HT, has also been shown to stimulate
844	activation of the VA, however, to a lesser extent. DH ₄₄ -related peptide receptor activation
845	increases Ca^{2+} (as well as cAMP at higher doses) but its action was found to be
846	independent of PKA and VA. Lastly, it was shown earlier that cGMP inhibits kinin-
847	stimulated diuresis, suggesting an additional anti-diuretic factor may exist that acts
848	specifically on stellate cells.
8/0	

850 **References**

851	1.	K. W. Beyenbach, Transport mechanisms of diuresis in Malpighian tubules of
852		insects. J. Exp. Biol. 206, 3845–3856 (2003).
853	2.	T. M. Clark, T. J. Bradley, Malpighian tubules of larval Aedes aegypti are
854		hormonally stimulated by 5-hydroxytryptamine in response to increased salinity.
855		Arch. Insect Biochem. Physiol. 34, 123–141 (1997).
856	3.	G. M. Coast, C. S. Garside, Neuropeptide control of fluid balance in insects, Ann.
857		<i>N.Y. Acad. Sci.</i> 1040 : 1–8 (2005).
858	4.	F. Sajadi, C. Curcuruto, A. Al Dhaheri, JP. V Paluzzi, Anti-diuretic action of a
859		CAPA neuropeptide against a subset of diuretic hormones in the disease vector,
860		Aedes aegypti. J. Exp. Biol. (2018).
861	5.	H. L. Lu, C. Kersch, P. V. Pietrantonio, The kinin receptor is expressed in the
862		Malpighian tubule stellate cells in the mosquito Aedes aegypti (L.): A new model
863		needed to explain ion transport? Insect Biochem. Mol. Biol. 41, 135–140 (2011).
864	6.	F. Sajadi, et al., CAPA neuropeptides and their receptor form an anti-diuretic
865		hormone signaling system in the human disease vector, Aedes aegypti. Sci. Rep. 10
866		(2020).
867	7.	A. Ionescu, A. Donini, AedesCAPA-PVK-1 displays diuretic and dose dependent
868		antidiuretic potential in the larval mosquito Aedes aegypti (Liverpool). J. Insect
869		Physiol. 58, 1299–1306 (2012).
870	8.	R. Jurenka, The PRXamide neuropeptide signalling system. Conserved in animals,

871		Adv. Insect Phys. (Academic Press, 2015), pp. 123-170.
872	9.	S. A. Davies, et al., Signaling by Drosophila capa neuropeptides. Gen. Comp.
873		Endocrinol. 188, 60–66 (2012).
874	10.	S. Terhzaz, et al., Mechanism and function of drosophila capa GPCR: A
875		desiccation stress-responsive receptor with functional homology to human
876		neuromedinu receptor. PLoS One 7 (2012).
877	11.	H. A. MacMillan, et al., Anti-diuretic activity of a CAPA neuropeptide can
878		compromise Drosophila chill tolerance. J. Exp. Biol. 221, jeb185884 (2018).
879	12.	A. R. Rodan, M. Baum, C. L. Huang, The drosophila NKCC Ncc69 is required for
880		normal renal tubule function. Am. J. Physiol Cell Physiol. 303, C883-C894
881		(2012).
882	13.	X. H. Weng, M. Huss, H. Wieczorek, K. W. Beyenbach, The V-type H^+ -ATPase
883		in Malpighian tubules of Aedes aegypti: localization and activity. J. Exp. Biol. 206,
884		2211–2219 (2003).
885	14.	H. Wieczorek, K. W. Beyenbach, M. Huss, O. Vitavska, Vacuolar-type proton
886		pumps in insect epithelia. J. Exp. Biol. 212, 1611–1619 (2009).
887	15.	H. Wieczorek, The insect V-ATPase, a plasma membrane proton pump energizing
888		secondary active transport: molecular analysis of electrogenic potassium transport
889		in the tobacco hornworm midgut. J. Exp. Biol. 172, 335–343 (1992).
890	16.	H. Wieczorek, M. Putzenlechnere, U. Klein, A Vacuolar-type proton pump
891		energizes K ⁺ /H ⁺ antiport in an animal plasma membrane. J. Biol. Chem. 266,

892 15340–15347 (1991).

893	17.	W. R. Harvey, S. H. P. Maddrell, W. H. Telfer, H. Wieczorek, H ⁺ V-ATPases
894		energize animal plasma membranes for secretion and absorption of ions and fluids.
895		<i>Am. Zool.</i> 38 , 426–441 (1998).
896	18.	Y. Li, et al., RNA-Seq comparison of larval and adult malpighian tubules of the
897		yellow fever mosquito Aedes aegypti reveals life stage-specific changes in renal
898		function. Front. Physiol. 8, 1–13 (2017).
899	19.	M. L. Patrick, K. Aimanova, H. R. Sanders, S. S. Gill, P-type Na^+/K^+ -ATPase and
900		V-type H ⁺ -ATPase expression patterns in the osmoregulatory organs of larval and
901		adult mosquito Aedes aegypti. J. Exp. Biol. 209, 4638–4651 (2006).
902	20.	K. W. Beyenbach, T. L. Pannabecker, W. Nagel, Central role of the apical
903		membrane H^+ -ATPase in electrogenesis and epithelial transport in Malpighian
904		tubules. J. Exp. Biol. 203, 1459–1468 (2000).
905	21.	R. M. Hine, et al., The excretion of NaCl and KCl loads in mosquitoes. Am. J.
906		Physiol Regul. Integr. Comp. Physiol. 307, R837–R849 (2014).
907	22.	P. Dames, et al., cAMP regulates plasma membrane vacuolar-type H ⁺ -ATPase
908		assembly and activity in blowfly salivary glands. Proc. Natl. Acad. Sci. U. S. A.
909		103 , 3926–3931 (2006).
910	23.	G. M. Coast, C. S. Garside, S. G. Webster, K. M. Schegg, D. A. Schooley,
911		Mosquito natriuretic peptide identified as a calcitonin-like diuretic hormone in
912		Anopheles gambiae (Giles). J. Exp. Biol. 208, 3281–3291 (2005).

913	24.	K. Karas, P. Brauer, D. Petzel, Actin redistribution in mosquito Malpighian
914		tubules after a blood meal and cyclic AMP stimulation. J. Insect Physiol. 51,
915		1041–1054 (2005).
916	25.	C. Cady, H. H. Hagedorn, Effects of putative diuretic factors on intracellular
917		second messenger levels in the Malpighian tubules of Aedes aegypti. J. Insect
918		<i>Physiol.</i> 45 , 327–337 (1999).
919	26.	D. H. Petzel, P. T. Pirotte, E. Van Kerkhove, Intracellular and luminal pH
920		measurements of malpighian tubules of the mosquito Aedes aegypti: the effects of
921		cAMP. J. Insect Physiol. 45, 973–982 (1999).
922	27.	T. M. Clark, T. K. Hayes, K. W. Beyenbach, Dose-dependent effects of CRF-like
923		diuretic peptide on transcellular and paracellular transport pathways. Am. J.
924		Physiol Ren. Physiol. 274 (1998).
925	28.	K. W. Beyenbach, H. Wieczorek, The V-type H^+ ATPase: molecular structure and
926		function, physiological roles and regulation. J. Exp. Biol. 209, 577–589 (2006).
927	29.	F. J. S. Novak, et al., Primary structure of V-ATPase subunit B from Manduca
928		sexta midgut. BBA - Gene Struct. Expr. 1132, 67–71 (1992).
929	30.	Y. X. Pan, H. H. Gu, J. Xu, G. E. Dean, Saccharomyces cerevisiae expression of
930		exogenous vacuolar ATPase subunits B. BBA - Biomembr. 1151, 175–185 (1993).
931	31.	H. Wieczorek, D. Brown, S. Grinstein, J. Ehrenfeld, W. R. Harvey, Animal plasma
932		membrane energization by proton-motive V-ATPases. BioEssays 21, 637-648
933		(1999).

934	32.	J. Zhang, Y. Feng, M. Forgac, Proton conduction and bafilomycin binding by the
935		V0 domain of the coated vesicle V-ATPase. J. Biol. Chem. 269, 23518-23523
936		(1994).
937	33.	W. J. A. Dschida, B. J. Bowman, The vacuolar ATPase: sulfite stabilization and
938		the mechanism of nitrate inactivation. J. Biol. Chem. 270, 1557–1563 (1995).
939	34.	J. Rein, M. Voss, W. Blenau, B. Walz, O. Baumann, Hormone-induced assembly
940		and activation of V-ATPase in blowfly salivary glands is mediated by protein
941		kinase A. Am. J. Physiol Cell Physiol. 294, C56-C65 (2008).
942	35.	B. Zimmermann, P. Dames, B. Walz, O. Baumann, Distribution and serotonin-
943		induced activation of vacuolar-type H ⁺ -ATPase in the salivary glands of the
944		blowfly Calliphora vicina. J. Exp. Biol. 206, 1867–1876 (2003).
945	36.	H. Wieczorek, G. Grüber, W. R. Harvey, M. Huss, H. Merzendorfer, The plasma
946		membrane H ⁺ -V-ATPase from tobacco hornworm midgut. J. Bioenerg. Biomembr.
947		31 , 67–74 (1999).
948	37.	M. C. Quinlan, N. J. Tublitz, M. J. O'Donnell, Anti-diuresis in the blood-feeding
949		insect Rhodnius prolixus Stal: The peptide CAP(2b) and cyclic GMP inhibit
950		Malpighian tubule fluid secretion. J. Exp. Biol. 200, 2363–2367 (1997).
951	38.	F. Tiburcy, K. W. Beyenbach, H. Wieczorek, Protein kinase A-dependent and -
952		independent activation of the V-ATPase in Malpighian tubules of Aedes aegypti. J.
953		<i>Exp. Biol.</i> 216 , 881–891 (2013).
954	39.	K. W. Beyenbach, P. M. Piermarini, Transcellular and paracellular pathways of

	955	transepithelial fluid	1 secretion in	Malpighian ((renal)) tubules of	the vellow fe	ver
--	-----	-----------------------	----------------	--------------	---------	--------------	---------------	-----

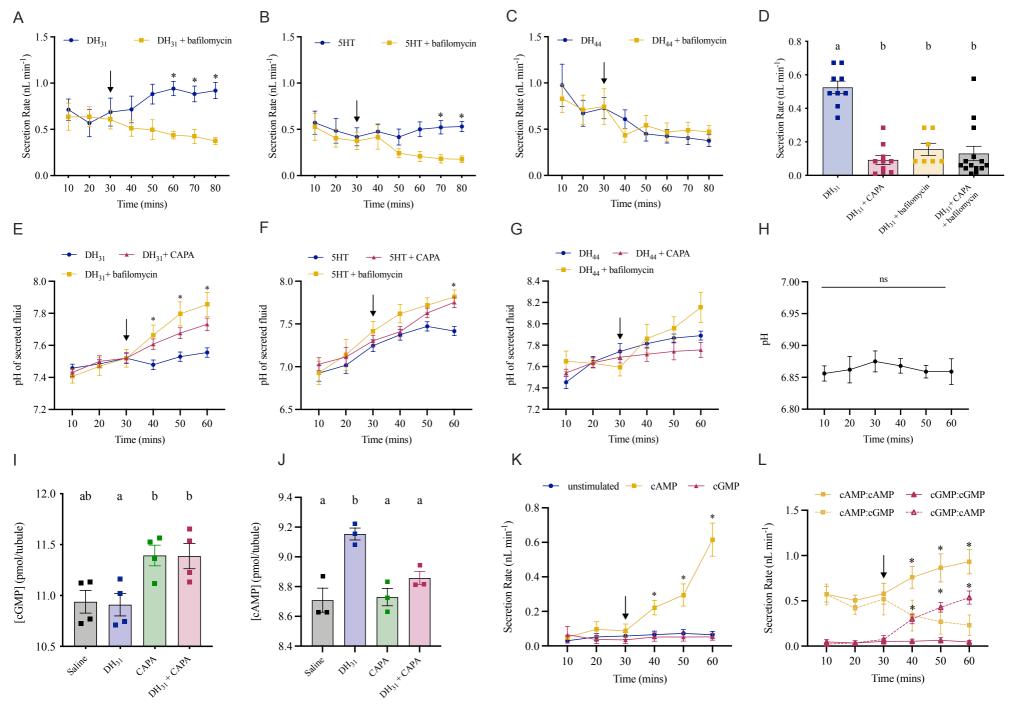
- 956 mosquito Aedes aegypti. Acta Physiol. (Oxf). 202, 387–407 (2011).
- 957 40. K. W. Beyenbach, Energizing epithelial transport with the vacuolar H⁺-ATPase.
- 958 News Physiol. Sci. 16, 145–151 (2001).
- 959 41. T. Nishi, M. Forgac, The vacuolar (H⁺)-ATPases nature's most versatile proton
 960 pumps. *Nat. Rev. Mol. Cell Biol.* 3, 94–103 (2002).
- 961 42. N. Nelson, W. R. Harvey, Vacuolar and plasma membrane proton-
- adenosinetriphosphatases. *Physiol. Rev.* **79**, 361–385 (1999).
- 43. K. W. Beyenbach, H. Skaer, J. A. T. Dow, The developmental, molecular, and
- transport biology of malpighian tubules. *Annu. Rev. Entomol.* **55**, 351–374 (2010).
- 965 44. P. M. Kane, Disassembly and reassembly of the yeast vacuolar H⁺-ATPase in vivo.
 966 *J. Biol. Chem.* 270, 17025–17032 (1995).
- 967 45. M. Voss, O. Vitavska, B. Walz, H. Wieczorek, O. Baumann, Stimulus-induced
- 968 phosphorylation of vacuolar H⁺-ATPase by protein kinase A. J. Biol. Chem. **282**,
- 969 33735–33742 (2007).
- 970 46. J. P. Sumner, et al., Regulation of plasma membrane V-ATPase activity by
- dissociation of peripheral subunits. J. Biol. Chem. 270, 5649–5653 (1995).
- 972 47. G. Coast, The endocrine control of salt balance in insects. *Gen. Comp. Endocrinol.*973 152, 332–338 (2007).
- 48. M. J. O'Donnell, J. H. Spring, Modes of control of insect Malpighian tubules:

975		synergism, antagonism, cooperation and autonomous regulation. J. Insect Physiol.
976		46 , 107–117 (2000).
977	49.	J. C. Williams, H. H. Hagedorn, K. W. Beyenbach, Dynamic changes in flow rate
978		and composition of urine during the post-bloodmeal diuresis in Aedes aegypti (L.).
979		J. Comp. Physiol. 153, 257–265 (1983).
980	50.	C. L. Jagge, P. V. Pietrantonio, Diuretic hormone 44 receptor in Malpighian
981		tubules of the mosquito Aedes aegypti: evidence for transcriptional regulation
982		paralleling urination. Insect Mol. Biol. 17, 413-426 (2008).
983	51.	P. Gioino, B. G. Murray, J. P. Ianowski, Serotonin triggers cAMP and PKA-
984		mediated intracellular calcium waves in Malpighian tubules of Rhodnius prolixus.
985		Am. J. Physiol Regul. Integr. Comp. Physiol. 307, R828–R836 (2014).
986	52.	F. Sajadi, J. P. V. Paluzzi, Hormonal regulation and functional role of the 'renal'
987		tubules in the disease vector, Aedes aegypti. Vitamins and Hormones, (Academic
988		Press, 2021), pp. 189–225.
989	53.	P. V. Pietrantonio, C. Jagge, C. McDowell, Cloning and expression analysis of a
990		5HT7-like serotonin receptor cDNA from mosquito Aedes aegypti female
991		excretory and respiratory systems. Insect Mol. Biol. 10, 357–369 (2001).
992	54.	D. W. Lee, P. V. Pietrantonio, In vitro expression and pharmacology of the 5-HT7-
993		like receptor present in the mosquito Aedes aegypti tracheolar cells and hindgut-
994		associated nerves. Insect Mol. Biol. 12, 561–569 (2003).
995	55.	A. Petrova, D. F. Moffett, Comprehensive immunolocalization studies of a

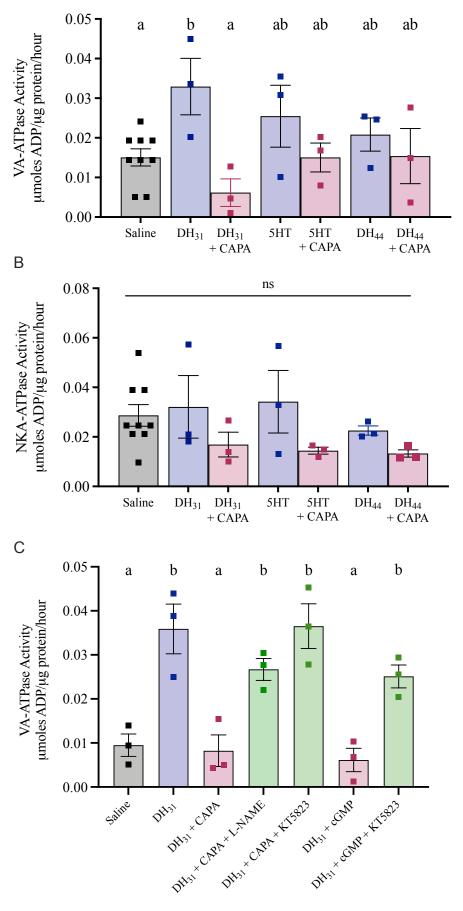
996		putative serotonin receptor from the alimentary canal of Aedes aegypti larvae
997		suggest its diverse roles in digestion and homeostasis. PLoS One 11, e0146587
998		(2016).
999	56.	K Clark, T M, Hayes, T K., Holman, G.M., Beyenbach, The concentration-
1000		dependence of CRF-like diuretic peptide: mechanisms of action. J. Exp. Biol. 201,
1001		1753–1762 (1998).
1002	57.	D. H. Petzel, H. H. Hagedorn, K. W. Beyenbach, Preliminary isolation of
1003		mosquito natriuretic factor. Am. J. Physiol Regul. Integr. Comp. Physiol. 18
1004		(1985).
1005	58.	J. A. Dow, et al., The malpighian tubules of Drosophila melanogaster: a novel
1006		phenotype for studies of fluid secretion and its control. J. Exp. Biol. 197, 421-428
1007		(1994).
1008	59.	D. H. Petzel, M. M. Berg, K. W. Beyenbach, Hormone-controlled cAMP-mediated
1009		fluid secretion in yellow-fever mosquito. Am. J. Physiol Regul. Integr. Comp.
1010		<i>Physiol.</i> 253 (1987).
1011	60.	H. Kwon, H. L. Lu, M. T. Longnecker, P. V. Pietrantonio, Role in diuresis of a
1012		calcitonin receptor (GPRCAL1) expressed in a distal-proximal gradient in renal
1013		organs of the mosquito Aedes aegypti (L.). PLoS One 7, e50374 (2012).
1014	61.	W. Kang'ethe, K. G. Aimanova, A. K. Pullikuth, S. S. Gill, NHE8 mediates
1015		amiloride-sensitive Na^+/H^+ exchange across mosquito Malpighian tubules and
1016		catalyzes Na^+ and K^+ transport in reconstituted proteoliposomes. Am. J. Physiol

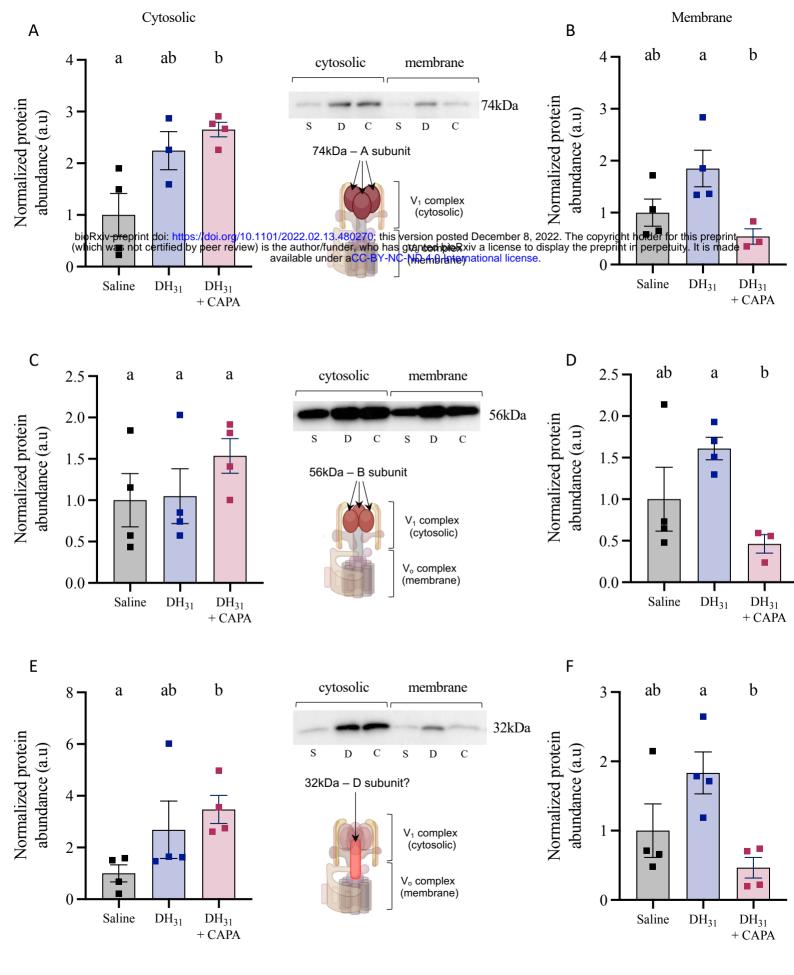
1017 Ren. Physiol. 292, 1501–1512 (2007).

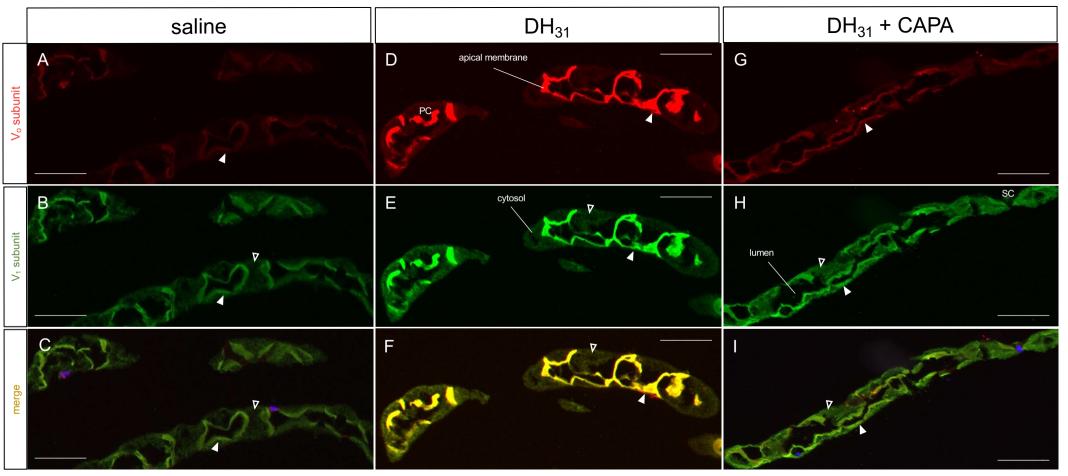
1018	62.	A. K. Pullikuth, K. Aimanova, W. Kang'ethe, H. R. Sanders, S. S. Gill, Molecular
1019		characterization of sodium/proton exchanger 3 (NHE3) from the yellow fever
1020		vector, Aedes aegypti. J. Exp. Biol. 209, 3529–3544 (2006).
1021	63.	P. M. Piermarini, D. Weihrauch, H. Meyer, M. Huss, K. W. Beyenbach, NHE8 is
1022		an intracellular cation/ H^+ exchanger in renal tubules of the yellow fever mosquito
1023		Aedes aegypti. Am. J. Physiol Ren. Physiol. 296, 730–750 (2009).
1024	64.	H. Merzendorfer, M. Huss, R. Schmid, W. R. Harvey, H. Wieczorek, A novel
1025		insect V-ATPase subunit M9.7 is glycosylated extensively. J. Biol. Chem. 274,
1026		17372–17378 (1999).
1027	65.	M. C. Quinlan, M. J. O'Donnell, Anti-diuresis in the blood-feeding insect
1028		Rhodnius prolixus Stal: antagonistic actions of cAMP and cGMP and the role of
1029		organic acid transport. J. Insect Physiol. 44, 561–568 (1998).
1030	66.	S. Seino, T. Shibasaki, PKA-dependent and PKA-independent pathways for
1031		cAMP-regulated exocytosis. Physiol. Rev. 85, 1303–1342 (2005).
1032	67.	M. Efetova, et al., Separate roles of PKA and EPAC in renal function unraveled by
1033		the optogenetic control of cAMP levels in vivo. J. Cell Sci. 126, 778–788 (2013).
1034	68.	K. W. Beyenbach, A. Oviedo, D. J. Aneshansley, Malpighian tubules of Aedes
1035		aegypti: five tubules, one function. J. Insect Physiol. 39, 639-648 (1993).
1036	69.	J. A. Veenstra, Effects of 5-hydroxytryptamine on the Malpighian tubules of Aedes
1037		aegypti. J. Insect Physiol. 34 , 299–304 (1988).


1038	70.	J. P. V. Paluzzi, W. Naikkhwah, M. J. O'Donnell, Natriuresis and diuretic
1039		hormone synergism in <i>R. prolixus</i> upper Malpighian tubules is inhibited by the
1040		anti-diuretic hormone, <i>Rhopr</i> CAPA-α2. J. Insect Physiol. 58, 534–542 (2012).
1041	71.	D. A. Rocco, D. H. Kim, J. P. V. Paluzzi, Immunohistochemical mapping and
1042		transcript expression of the GPA2/GPB5 receptor in tissues of the adult mosquito,
1043		Aedes aegypti. Cell Tissue Res. 369 , 313–330 (2017).
1044	72.	A. Lajevardi, F. Sajadi, A. Donini, J. P. V. Paluzzi, Studying the activity of
1045		neuropeptides and other regulators of the excretory system in the adult mosquito.
1046		J. Vis. Exp. 2021 (2021).
1047	73.	M. Vanderveken, M. J. O'Donnell, Effects of diuretic hormone 31, drosokinin, and
1048		allatostatin A on transepithelial K^+ transport and contraction frequency in the
1049		midgut and hindgut of larval Drosophila melanogaster. Arch. Insect Biochem.
1050		<i>Physiol.</i> 85 , 76–93 (2014).
1051	74.	T. M. Clark, T. J. Bradley, Additive effects of 5-HT and diuretic peptide on Aedes
1052		malpighian tubule fluid secretion. Comp. Biochem. Physiol A Mol. Integr.
1053		<i>Physiol.</i> 119 , 599–605 (1998).
1054	75.	V. Te Brugge, J. P. Paluzzi, D. A. Schooley, I. Orchard, Identification of the
1055		elusive peptidergic diuretic hormone in the blood-feeding bug Rhodnius prolixus: a
1056		CRF-related peptide. J. Exp. Biol. 214, 371-381 (2011).
1057	76.	H. R. Lee, M. Zandawala, A. B. Lange, I. Orchard, Isolation and characterization
1058		of the corticotropin-releasing factor-related diuretic hormone receptor in Rhodnius

1059 prolixus. Cell. Signal. 28, 1152–1162 (2016).


1060	77.	M. R. Rheault, M. J. O'Donnell, Organic cation transport by Malpighian tubules of
1061		Drosophila melanogaster: application of two novel electrophysiological methods.
1062		J. Exp. Biol. 207, 2173–2184 (2004).
1063	78.	S. Jonusaite, S. P. Kelly, A. Donini, The physiological response of larval
1064		Chironomus riparius (Meigen) to abrupt brackish water exposure. J. Comp.
1065		Physiol. B Biochem. Syst. Environ. Physiol. 181, 343–352 (2011).
1066	79.	S. D. McCormick, Methods for nonlethal gill biopsy and measurement of Na^+ , K^+ -
1067		ATPase activity. Can. J. Fish. Aquat. Sci. 50, 656–658 (1993).
1068	80.	A. J. Fosang, R. J. Colbran, Transparency is the key to quality. J. Biol. Chem. 290,
1069		29692–29694 (2015).
1070	81.	T. A. J. Butler, J. W. Paul, E. C. Chan, R. Smith, J. M. Tolosa, Misleading
1071		westerns: common quantification mistakes in western blot densitometry and
1072		proposed corrective measures. Biomed Res. Int. 2019 (2019).
1073	82.	A. C. Durant, A. Donini, Ammonium transporter expression in sperm of the
1074		disease vector Aedes aegypti mosquito influences male fertility. Proc. Natl. Acad.
1075		Sci. U. S. A. 117, 29712–29719 (2020).
1076	83.	L. Misyura, E. G. Guardian, A. C. Durant, A. Donini, A comparison of aquaporin
1077		expression in mosquito larvae (Aedes aegypti) that develop in hypo-osmotic
1078		freshwater and iso-osmotic brackish water. <i>PLoS One</i> 15 , e0234892 (2020).


1080 goldfish. J. Exp. Biol. 211, 1524–1534 (2008).


- 1081 85. L. Kean, et al., Two nitridergic peptides are encoded by the gene capability in
- 1082 Drosophila melanogaster. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282
- 1083 (2002).

