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ABSTRACT 
Single-cell genomics are enabling technologies, but their broad clinical application remains 
challenging. We report an easily adaptable approach for single-cell transcriptome and T cell 
receptor (TCR)-sequencing, and matched whole-genome sequencing from tiny, frozen clinical 
specimens. We achieve similar quality and biological outputs while reducing artifactual signals 
compared to data from matched fresh tissue samples. Profiling sequentially collected melanoma 
samples from the KEYNOTE-001 trial, we resolve cellular, genomic, and clonotype dynamics that 
encapsulate molecular patterns of tumor evolution during anti-PD-1 therapy. To demonstrate 
applicability to banked biospecimens of rare diseases, we generate a large uveal melanoma liver 
metastasis single-cell and matched WGS atlas, which revealed niche-specific impairment of 
clonal T cell expansion. This study provides a foundational framework for propelling single-cell 
genomics to the clinical arena. 
 
MAIN 
Single-cell genomics, namely single-cell RNA-sequencing (scRNA-seq), has enabled significant 
discoveries in virtually all fields of biomedical research, including in several solid tumors, providing 
unique insights into tumor ecosystems1–4, metastasis5,6, and drug resistance2,7. Matched 
scRNA/TCR-seq is particularly informative for studies investigating the effect of transformative 
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immunotherapies, such as PD-1-targeting monoclonal antibodies8. While these methods have the 
potential to inform clinical studies, their broad application has been hampered by several 
challenges. In particular, the need for relatively large (milligrams to grams), fresh tissue 
specimens and their immediate processing is incompatible with clinical workflows and prohibits 
streamlined multi-institutional analysis efforts. Consequently, single-cell studies to date have 
been conducted in relatively small, heterogeneous patient populations (e.g. variable treatment 
exposures), which introduce challenging biases in their interpretation. Building on recent 
developments that enable single-nucleus transcriptome sequencing (snRNA-seq) from frozen 
tissues9,10, we have evolved an approach to perform rapid, scalable, and high-quality single-cell 
transcriptome and matched TCR-seq of very small (nanograms to micrograms) clinical biopsy 
specimens, as well as population-matched ultra low pass whole-genome sequencing (ulp-WGS) 
(Methods). 
 
We first performed head-to-head comparisons of scRNA/snRNA-seq of matched fresh and frozen 
tissues from patients with non-small cell lung cancer (NSCLC), metastatic cutaneous melanoma, 
and uveal melanoma using different 10X Genomics chemistries (3’, 5’v1, or 5’v2), cell sorting and 
RNase inhibitor protocols (Methods; Extended Data Table 1). 
 
Overall, in snRNA-seq using 5’ chemistries, the data quality (median number of genes detected 
per cell) was comparable to that of tissue-matched scRNA-seq and was consistently superior 
compared to 3’ chemistries (Fig. 1a-c), while snRNA-seq protocols had a lower rate of 
mitochondrial reads (which increases in cells with impending death) (Extended Data Fig. 1). In 
the NSCLC comparison, for example, we recovered a median of 3,117 genes/cell using 5’v1 (with 
addition of RNase inhibitor) compared to 2,521 in fresh scRNA-seq (Wilcoxon rank-sum p-value 
1.67e-29) and 1,392 in the best 3’ condition (Wilcoxon rank-sum p-value 0), respectively. The 
median fraction of mitochondrial reads accounted for 0.97% of reads in the 5’v1 snRNA-seq 
NSCLC specimen, compared to the matched fresh specimen with 3.94% (Wilcoxon rank-sum p-
value 4.91e-280). Similar results were observed in cutaneous and uveal melanoma tissue 
comparisons (Extended Data Table 2). 
 
Importantly, we noted substantial expression of an artifactual program associated with tissue 
processing in scRNA-seq11 in all three tissue comparisons, while this artifact was more lowly 
expressed or absent in matched snRNA-seq data (Fig. 1d-f). This artifactual expression 
manifested particularly strongly in the NSCLC comparison, was increased by fluorescence-
activated cell sorting (FACS), and was more prominent in immune cells. Notably, this stress 
signature captures inflammatory pathways11, among others, and may bias the interpretation of 
these pathways in scRNA-seq. 
 
In the cutaneous melanoma sample, which is rich in large chromosomal aberrations, we next 
inferred copy-number alterations (CNAs) and found strong agreement in average arm-level CNA 
(Spearman R2=0.69) between scRNA-seq and snRNA-seq protocols (Fig. 1g).  Lastly, in 5’ 
chemistry sc/snRNA-seq, we were able to robustly recover TCRs matched to single-cell 
transcriptomes. We assessed the degree of overlap of TCR’s from frozen tissues with those 
recovered from the matching fresh tissue using a hypergeometric test (Methods). This overlap 
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was statistically significant in all cases (cutaneous melanoma CD45+ fresh vs. 5’v1 frozen: 
p=1.55e-62, uveal melanoma fresh unsorted vs frozen with inhibitor: p=0.00052, uveal melanoma 
fresh CD45+ vs 5’v1 frozen: p=0.0018). Fractional clonotype sizes (Fig. 1h,i) and TCR diversity, 
as assessed by the Gini coefficient (Extended Data Table 3), were also comparable between 
fresh and frozen samples, as well as in the sequential samples from an anti-PD1 therapy patient 
(Extended Data Fig. 2). 

 
Figure 1. a-c, Violin plots of genes detected per cell in (a) non-small cell lung cancer, (b) 
cutaneous melanoma and (c) uveal melanoma samples. Blue plots indicate scRNA-seq from fresh 
tissue, and red indicates snRNA-seq from frozen tissue. 10X chemistry type and 
presence/absence of RNAse inhibitor is indicated on labels beneath each violin. d-f, Violin plots 
of relative expression of an artifactual stress-associated gene expression signature. Samples and 
experimental settings corresponding to panels (a-c) above. g,h, Circos plots of T cell receptor 
clonotypes in (g) cutaneous and (h) uveal melanoma, respectively. Connections indicate overlap 
of identical TCRs found in both fresh scRNA-seq and frozen snRNA-seq samples. i, Correlation 
of average cutaneous melanoma cell arm-level CNAs predicted by inferCNV, in a fresh CD45- 
scRNA-seq sample (x-axis) vs. two frozen 5p snRNA-seq protocols (y-axis).  
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2022. ; https://doi.org/10.1101/2022.02.13.480272doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.13.480272
http://creativecommons.org/licenses/by-nd/4.0/


 
 

 

Despite procedural and technical differences, matched sc/snRNA-seq showed good mixing of cell 
types (determined using the LISI score12, Methods) following batch correction (Methods) 
indicating preservation of global transcriptional outputs (Extended Data Fig. 3,4). Accordingly, 
we identify comparable cell type diversity (estimated using the Shannon index, Extended Data 
Fig. 5a,b) across comparisons. Notably, cell type composition was highly consistent among 
different snRNA-seq runs within the same specimen, indicating that these methods are highly 
robust (Extended Data Fig. 5a). Comparing sc/snRNA-seq, we noted one important outlier in 
cellular composition: there was low recovery of cancer cells in the NSCLC sample profiled using 
scRNA-seq (23% of all cells), while snRNA-seq robustly detected this population (87.9-92.8% of 
all cells) (Extended Data Fig. 5c). This is consistent with prior studies of NSCLC using scRNA-
seq that showed disproportionally low recovery of malignant cells6, suggesting that these cells 
are vulnerable to sample processing, and emphasizes another potential advantage of snRNA-
seq. 
 
To test the feasibility and strengths of these methods, we chose two application cases. First, we 
obtained sequentially collected (before, and two on-treatment) biopsy specimens from a patient 
(who a achieved a partial response) treated on the first clinical trial (KEYNOTE-001)13 using anti-
PD-1 antibody MK-3475 (now known as pembrolizumab) (Extended Data Fig. 6a). Although 
these samples were >10 years old, we achieved excellent technical quality (Extended Data Fig 
6b) with minimal artifactual gene expression (Extended Data Fig 6c), while revealing cellular 
(Fig. 2a, Extended Data Fig. 7a,b) and TCR clonotype diversity. We inferred CNAs and identified 
distinct clones using k-means clustering (Fig. 2b, Methods). Among malignant cells, we noted 
evolving aneuploidy patterns pre- and on-treatment, suggesting underlying chromosomal 
instability (Fig. 2b), with evidence for immune editing (clones 0 and 3) and immune evasion 
(clones 1 and 2) of different clones (Fig. 2c,d) over time. Interestingly, immune resistant clones 
1 and 2 in fact emerged from a small sub-population of pre-existing cancer cells (prior to receiving 
therapy) and had a temporally conserved cell state strongly enriched for expression of cancer cell 
intrinsic signatures of immunotherapy resistance (Fig. 2e) and de-differentiation (Fid. 2f). 
Importantly, despite the expression of antigen-presentation and IFNg-pathway genes in clone 2 
(Extended Data Fig. 7c), these cells were strongly enriched for pathways of (de-)differentiation 
and motility (Extended Data Fig. 7c,d), and had increased expression of putative mechanisms 
of immune evasion, such as GPX4 (central regulator of ferroptosis)14 and MIF (Extended Data 
Fig. 7c), and strongly reduced expression of CD58 (Fig. 2g), which was recently identified as an 
orthogonal mechanism of cancer immune evasion15. Among non-malignant cells, we observed 
increased infiltration with T cells and macrophages (Fig. 2a, Extended Data Fig. 7a,b). Integrated 
analysis of CD8+ T cells revealed infiltration of both stem-like, precursor exhausted, and 
terminally differentiated cells16 (Fig. 2h) with corresponding diversification of clonotypes and 
contraction of pre-existing T cell clones over time (Fig. 2i). Together, these findings suggest that, 
similar to pre-existing resistance mutations which may emerge under the pressure of oncogene-
targeted therapies17, pre-existing cancer cell clones defined by their underlying CNAs have 
variable responses to immunotherapies and expand in response to such therapy, despite 
adequate T cell responses.  
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Figure 2. a, Merged, unintegrated UMAP and annotation of clusters of cells from sequentially 
collected specimens during anti-PD-1 therapy. b, Inferred copy number alterations across the 
chromosomal landscape for melanoma cells, in pre- and sequential on-treatment biopsies (from 
left to right). Genomic location is indicated across the x axis, with chromosomes delineated by 
vertical lines. Individual cells are plotted along the y axis, with each row representing the CNA 
profile of one cell, and amplifications in red and deletions in blue. Colored bar to the left indicates 
clones identified by k-means clustering. c, Merged, unintegrated UMAP embedding of cancer 
cells from three time points indicated by different colors. d, (left) Same projection as in (c) 
indicating cancer clones defined by aneuploidy patterns in (b) and their proportion (right) across 
pre- and sequential on-treatment biopsies. e,f, Same projection as in (c) showing expression of 
(e) immunotherapy resistance program7 and (f) AXL-signature from2. g, Violin plots of expression 
of CD58 in emerging clone 2 compared to other cancer clones based on aneuploidy patterns. h, 
Diffusion component (DC) analysis of CD8+ T cells with projections of cells in first 3 DCs colored 
by indicated genes, signatures and clonotypes. i, Circos plots of T cell receptor clonotypes across 
different time points (indicated on different aspects of the circle). Connections indicate overlap of 
identical TCRs between time points.  
 
Second, to demonstrate the scalability of performing such studies in larger cohorts from a multi-
institutional clinical trial, we performed snRNA/TCR-seq of 169,015 cells from 20 core needle 
biopsies collected from 7 patients with liver-metastatic uveal melanoma treated with MEK-inhibitor 
selumetinib18 (Extended Data Fig. 8a). Liver metastases occur in most patients with uveal 
melanoma and are associated with immunotherapy resistance in different cancers, although the 
underlying mechanisms remain poorly understood19. We achieved excellent technical quality 
(Extended Data Fig. 8b) and recovered diverse cell types (Fig. 3a), thereby providing a 
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foundational metastatic-niche specific atlas. Among cancer cells, we find that in some patients, 
rapid changes in aneuploidy patterns (Fig. 3b) and distinct transcriptional outputs associated with 
emerging sub-clones occurred within days of targeted therapy.  
 
Given the apparent importance of aneuploidy patterns in both cohorts presented here, we next 
established methods to perform simultaneous ulta low pass whole-genome sequencing (ulp-
WGS) of the same cell pool on which we performed snRNA-seq (Extended Data Fig. 9a). We 
predicted CNAs in single cell sequencing data using the program inferCNV2 (Extended Data Fig. 
9b), and in the ulp-WGS data using ichorCNA19 (Extended Data Fig. 9c,d). After integrating the 
CNA predictions from both sources, we observed a strong correlation between average CNA 
levels at the chromosome arm level (R2=0.66) (Fig. 3c) (Methods). This result suggests that 
single-cell sequencing data is sufficient for robust assessment of single-cell chromosomal 
instability profiles, and can be used to explore how specific CNAs may impact the corresponding 
gene expression profiles. 
 
Unlike the tumor microenvironment in other cancer types and metastatic niches, we find that T 
cells in liver metastases showed very limited clonal expansion (Fig. 3d) and were largely 
composed of dysfunctional T cells with low proliferative capacity (Fig. 3e). These results suggest 
that such cells become progressively dysfunctional or are eliminated within the liver-metastatic 
milieu and may explain why patients with uveal melanoma have a dramatically lower response 
rate to ICI compared to cutaneous melanoma.   

 
Figure 3. a, Merged, unintegrated UMAP and annotated clusters of snRNA-seq transcriptomes 
across 20 uveal melanoma liver metastasis samples colored by specimen of origin (left) and cell 
type (right). b, Exemplary representation of inferred copy number alterations across the 
chromosomal landscape of an uveal melanoma liver metastasis specimen (left; color bar on left 
delineating CNA clones identified by k-means clustering), and corresponding UMAP embedding 
and clustering (right) colored by respective CNA clones, demonstrating impact of CNA 
heterogeneity on transcriptional output. c, Correlation of chromosome arm copy number 
alterations predicted by inferCNV from uveal melanoma liver metastases snRNA-seq data vs. 
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population-matched low-pass whole-genome sequencing of the same samples. d, UMAP 
embedding of CD8+ T cells across all uveal melanoma liver metastases with projection of TCR 
clonotypes. e, UMAP embedding (same as in d) of CD8+ T cells across all uveal melanoma liver 
metastases with projection of selected marker genes of proliferation (TOP2A, MKI67) and T cell 
dysfunction and stemness (TOX, TCF7). 
 
There are important considerations for future implementation of the approaches outlined here. 
snRNA-seq performs an unselected detection of cells of the tumor-ecosystem, including capture 
of cells that are poorly represented in scRNA-seq (e.g. lung cancer cells). Representation of TCRs 
will be dictated by the in-situ fraction of T cell abundances (or lack thereof). However, in frozen 
tissues, sorting of cell nuclei based on size and scatter patterns may be used to enrich T cells 
and enhance recovery of matching TCRs. Furthermore, reference atlases are increasingly 
becoming more helpful in identifying cell types and cell states, such as progenitor-like or 
exhausted T cells. As snRNA-seq is being more systematically implemented in clinical studies, it 
will be critical to build such references from frozen tissue specimens to enable rapid definition of 
cell types and cell states relevant to specific therapies. Lastly, we expect that capabilities for 
incorporating additional single-cell measurements from frozen tissue (e.g., chromatin 
accessibility, metabolomics, spatial profiling) will be feasible, and help determine which analytes 
are best suited to guide clinical application.  
 
In summary, we show that high-quality single-cell transcriptome/TCR profiling and WGS is 
possible from small, routinely collected clinical specimens. This enables application of these 
methods to multi-institutional efforts through harmonized and scalable pre-analytical processes 
while reducing pre-analytical biases, thus representing an important step towards implementing 
these technologies in clinical care.  
 
EXTENDED DATA FIGURES AND LEGENDS 

 
Extended Data Fig. 1. a-c, Violin plots indicating percent of mitochondrial reads across samples 
and different experimental settings in (a) NSCLC, (b) cutaneous melanoma and (c) uveal 
melanoma. Blue violins indicate scRNA-seq and red violins indicate snRNA-seq.  
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Extended Data Fig. 2. a, UMAP clustering of T cells, with projected clonality (top), cell cycle 
markers and T cell dysfunction and stemness markers (bottom) in primary uveal melanoma. b, 
same as (a) for cutaneous melanoma.  
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Extended Data Fig. 3. Application of three integration methods in NSCLC.  
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Extended Data Fig. 4. Application of three integration methods across cutaneous and uveal 
melanoma.  
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Extended Data Fig. 5. a, Stacked bar plots indicating proportions of all cell types in NSCLC, 
cutaneous and uveal melanoma across different methods. b, Simpson diversity index for immune 
cells in the same samples as (a). c, Stacked bar plots of malignant and non-malignant cell 
fractions in the same samples as (a).   

 
Extended Data Fig. 6. a, Timing of sequentially collected specimens in a patient on anti-PD1 
therapy. b,c, Violin plots of (b) genes per cell detected (left) and percent of mitochondrial reads 
(right), and (c) expression of artifactual signature across samples collected over different time 
points. d,e, UMAP representation of CD8+ T cells across all time points and with projected TCR 
clonality, and (e) cell cycle markers (top) and T cell dysfunction and stemness markers (bottom). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2022. ; https://doi.org/10.1101/2022.02.13.480272doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.13.480272
http://creativecommons.org/licenses/by-nd/4.0/


 
 

 

 
Extended Data Fig. 7. a,b, Stacked bar plots indicating proportion of (a) all cell types across 
sequentially collected anti-PD1 therapy tissue specimens and (b) malignant and non-malignant 
fractions. c, Heatmap of selected genes (rows) and their gene expression (normalized 
expression) in individual cells (column). Indicated on the bottom are time points of sample 
collection (pre, on, on_later) and clones (0-3) as defined in Fig. 2. d, Selected Pathways 
significantly enriched in Clone 2.  
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Extended Data Fig. 8. a, Schematic of tissue collection and indicated number of specimens per 
time point. MEKi, MEK-inhibitor (Selumetinib). b, Violin plots indicating number of genes detected 
per cell (top lane), percent of mitochondrial reads (middle lane) and expression of a stress 
signature (bottom lane) across 20 uveal melanoma specimens. Yellow color indicates a specimen 
sequenced with 10X 3’ chemistry, with lower quality, while data for the remainder of samples 
(indicated in red) were generated with 5’ chemistry.  
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Extended Data Fig. 9. a, Schematic design of generation of (low-pass) whole-genome 
sequencing from the same cell/nucleus pool that was also used for single-nucleus RNA and TCR 
sequencing. b, Inferred CNAs (columns) across samples (indicated by bar on the left) in the uveal 
melanoma cohort. c, Exemplary whole-genome sequencing result (top) showing copy number 
alterations (y axis, log2 ratio) with amplifications in red, deletions in green and unaltered 
chromosome regions in blue. Inference of CNAs of the using snRNA-seq that was generated from 
the same starting cell/nucleus pool as WGS.  
METHODS 
 
Patient tissue collections  
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Fresh and frozen tissue specimens were collected under IRB approved protocols at New York 
Presbyterian Hospital/Columbia University Medical Center (AAAT7416, AAAT2278), Dana Farber 
Cancer Institute, and University of California, Los Angeles. Surgical specimens (Melanoma brain 
metastasis, non-small cell lung cancer brain metastasis and primary uveal melanoma specimens) 
were allocated by qualified pathologists according to institutional guidelines and immediately 
placed in ice-cold RPMI 1640 (Thermo Fisher, #21875034) without supplements and transported 
to the laboratory space for immediate processing using single-cell RNA-sequencing and parallel 
collection of matched flash frozen specimens. Frozen uveal melanoma liver metastases were 
collected as fine-needle aspiration biopsies during a trial of targeted MEK inhibition18. Frozen 
sequential biopsies of cutaneous melanoma prior and during treatment with anti-PD-1 therapy 
were collected during the KEYNOTE-001 trial13. All procedures performed on patient samples 
were in accordance with the ethical standards of the IRB and the Helsinki Declaration and its later 
amendments. 
  
Fresh tissue specimen processing 
All steps but the digestion were carried out on wet ice with pre-cooled buffers. Tissue specimens 
were weighted and split in half, and pieces of ~5-8 mm edge length were placed in cryovials and 
snap frozen in liquid nitrogen before storage at -80°C. The remaining tissue was kept in ice cold 
RPMI in a petri dish and cut into 1 mm3 cubes using two scalpels. The cubes and RPMI were 
transferred to a 50 ml Falcon tube (Corning) using a 10 ml serological pipette and collected by 5 
min centrifugation at 300 x g at 4°C. The tissue was then digested using human tumor dissociation 
enzymes (Miltenyi Human Tumor Dissociation Kit, #30-095-929) according to manufacturer 
instructions based on the tissue weight. Briefly, tissue was resuspended in pre-warmed RPMI and 
human tumor dissociation enzymes were added. The sample was then placed in a 37°C water 
bath and agitated every 2 minutes. Every 5 minutes the tissue was further mechanically 
dissociated by pipetting using pipettes of decreasing orifice. This process was continued until 
most of the tissue had dissociated. After 10 minutes (Melanoma) or 15 minutes (Lung cancer) the 
samples were filtered through a pre-wetted 70 µm cell strainer (Corning) into a new 50 ml Falcon 
tube, collected by centrifugation for 5 min at 400 x g and 4°C, and the supernatant was decanted. 
The cell pellet was resuspended in 3 ml ACK buffer (Thermo Fisher; #A1049201) to lyse red blood 
cells. After 1 min incubation the reaction was terminated by dilution with 30 ml ice cold sorting 
buffer (2% Fetal bovine serum/1mM EDTA in PBS). The cells were collected by centrifugation for 
5 min at 400 x g and 4°C, resuspended in 1 ml ice cold sorting buffer and cell count and viability 
was assessed using trypan blue and disposable Neubauer counting chambers (Bulldog Bio, Inc. 
Portsmouth, NH). Cells were then allocated for direct loading (non-small cell lung cancer and 
primary uveal melanoma), or further processed for fluorescence-activated cell sorting (Cutaneous 
melanoma and primary uveal melanoma). 
 
Fluorescence-activated cell sorting 
To enrich viable immune cells (primary uveal melanoma sample) or sort viable immune and non-
immune cells (cutaneous melanoma) the samples were sorted using a FACS Aria II (BD 
Biosciences). First, cells were stained for viability (Zombie NIR, 1:500 in PBS; Biolegend, San 
Diego, Ca; #423106) for 10 min at room temperature in the dark. Thereafter, cells were washed 
once with sorting buffer, collected by centrifugation and surface antigens were stained for 15 
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minutes on ice in the dark. The primary uveal melanoma sample was stained with Pacific-Blue-
aCD45 (Biolegend, #304022). The cutaneous melanoma sample was stained with the following 
(all Biolegened): Human TruStain FcX (#422302), Pacific-Blue-aCD45 (#304022), PE-Dazzle594-
aCD3 (#300450), PE-CY7-aCD66b (#305116), APC-aCD15 (#301908). After staining, the 
samples were washed twice with ice-cold sorting buffer and 1.5x103 cells per population of interest 
were sorted and immediately processed for scRNA-sequencing.  
 
Single cell RNA library preparation  
Sorted and unsorted single cell suspensions (1.2-1.5x103 cells) were transferred into low-binding 
1.5 ml Eppendorf tubes (Eppendorf, Hamburg, Germany), centrifuged and washed twice with 1 
ml loading buffer (PBS with 0.05% RNase-free BSA; Thermo Fisher, #AM2616) using a swinging 
bucket centrifuge at 4°C with 400 x g for 5 min. After the final spin all but 31 µl buffer were removed 
and the samples were loaded on a Chromium controller with Chromium Single Cell V(D)J 
Reagents (10x genomics, Pleasanton, CA; #1000006) for 5’ RNA capture. Gene expression 
libraries were then generated using Chromium Single Cell 5’ Library construction kit (#1000020) 
according to manufacturer instructions. 
  
Single-nuclei extraction from tiny frozen specimens 
We adopted the previously described salt-tris (ST) based extraction method9 and implemented 
critical changes to enable tissue sparing extraction of nuclei for single-nuclei RNA-sequencing 
from clinical-grade frozen tissue specimens and leverage minute specimens such as fine-needle 
aspiration biopsies (FNAs). To this end, we used a Leica CM1950 cryostat (Leica, Wetzlar, 
Germany) for initial tissue processing and additional washing steps for OCT removal. Frozen 
tissue specimens with 2-10 mm edge length were embedded in optimal cutting temperature (OCT) 
compound (Tissue-Tek, Sankura) on dry ice. Samples were then mounted on sample holders and 
excess OCT was trimmed away using a blade leaving ~5 mm OCT around each side of the tissue. 
Fine needle aspiration biopsies were directly mounted on sample holders of the cryostat using a 
small amount of OCT. Multiple 20µm tissue curls were cut per tissue and collected in pre-cooled 
5 ml tubes (Eppendorf, Hamburg, Germany) ensuring no thawing while transferring and stored on 
dry ice until processing. The number of curls required depends on the tissue size and ranges from 
3-4 curls for large specimens (1 cm2) to 10-15 for FNA’s. All subsequent steps were performed 
on wet ice and all centrifuges were equipped with swinging buckets and cooled to 4°C.  For 
extraction of nuclei, the tubes were moved from dry ice to wet ice and left to equilibrate briefly. 
After 30 seconds, 4 ml of ice-cold PBS without calcium or magnesium (Thermo Fisher) were 
added and the tubes were inverted until all OCT had dissolved and the clean tissue could be 
collected by centrifugation at 300 x g for 2 min. The tissue was then resuspended in 1 ml ST buffer 
[146 mM NaCl, 10 mM Tris-HCL pH7.5, 1mM CaCl2, and 21 mM MgCl2 in ultrapure water] with 
0.03% Tween-20 Sigma Aldrich, p-7949), 0.1% BSA (New England Biolabs, B9000S) (TST buffer) 
and supplemented with or without 40 U/ml RNAse inhibitor (RNAse OUT, Thermo Fisher) 
(Extended Data Table 1). The suspension was thoroughly pipetted 15 x using a 1 ml pipette to 
mechanically dissociate the tissue and left to incubate for 5 min on ice. After 5 min the pipetting 
step was repeated, and the reaction was quenched using 4 ml ST buffer with or without 40 U/ml 
RNAse inhibitor (RNAse OUT, Thermo Fisher) (Extended Data Table 1). The sample was filtered 
through a pre-wetted 70 µm nylon mesh filter (Fisher Scientific) into a 50 ml conical tube and the 
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filter was washed with 5 ml ST buffer. The tube was then centrifuged at 500 x g for 5 min to collect 
the dissociated nuclei. After carefully decanting the supernatant, the nuclei were resuspended in 
100-400 µl ST buffer without RNAse inhibitor and filtered with a 40 µm mesh filter attached to a 
FACS tube (Fisher Scientific). The nuclei concentration and dissociation quality was then 
determined in a 5 µl aliquot using Neubauer counting chambers (Bulldog Bio, Inc. Portsmouth, 
NH) and a fluorescent microscope (EVOS FL, Thermo Fisher) after staining nuclear DNA with 
50µg/ml Hoechst 33342 (Thermo Fisher).  
 
Single nuclei RNA library preparation 
0.9-1.5x103  nuclei were loaded in ST buffer without RNAse inhibitor using a Chromium controller 
and chromium reagents (10x genomics) for 3’ or 5’ capture as indicated (Extended Data Table 
1). After reverse transcription and cleanup, cDNA libraries were generated according to 
manufacturer instructions with one additional cycle of cDNA amplification to account for the 
relatively lower amount of RNA in nuclei compared to whole cells.  
 
Single cell and nuclei TCR library preparation 
Single cell and single nuclei TCR libraries were prepared from amplified cDNA libraries according 
to manufacturer instructions using the following reagents (all 10x genomics): Chromium Single 
Cell V(D)J Enrichment Kit for human T cells (#1000005) was used for cDNA generated with 
Chromium Single Cell V(D)J reagents (#1000006), and final sequencing libraries were prepared 
using Chromium i7 multiplexing kit (#120262) 
Single Cell Human TCR Amplification Kit (#1000252) was used for cDNA generated with 
Chromium Next GEM Single Cell 5’ v2 reagents (#1000263), and final sequencing libraries were 
prepared using Library construction kit (#1000190) and Dual Index Kit TT set A (#1000215). 
 
Sequencing of single cell and single nuclei libraries  
Final sequencing libraries were quantified using Tapestation D1000 and D5000 reagents (Agilent) 
and a 2200 TapeStation system. Samples were then mixed and sequenced to target >20,000 
reads per cell for gene expression libraries and >5,000 reads per cell for TCR libraries using 
NovaSeq S4 or HiSeq 4000 (Illumina. San Diego, CA) with at least 2x100 BP coverage (Extended 
Data Table 1).  

Genomic DNA extraction for low-pass whole genome sequencing 
Excess nuclei (>1x105) from the sample preparations for sn-RNAseq were collected by 
centrifugation (500 x g, 5 min) and snap frozen after removing all but ~10 µL ST buffer and stored 
until further processing at -20°C. If insufficient numbers of nuclei were available after loading, 
additional curls were processed using the same methods as described above for single nuclei 
extraction. To extract genomic DNA from nuclei the nuclei were briefly thawed on wet ice and 
genomic DNA was extracted using DNAeasy Blood and Tissue kit (Qiagen, Hilden, Germany) 
according to manufacturer instructions and eluted in RNAse and DNAse free water at 37°C for 5 
minutes. The DNA concentration was then quantified using a Nanodrop.  

Library construction for ultra low pass whole genome sequencing 
20-50 ng genomic DNA served as input for ultra low pass whole genome sequencing (ulp-WGS) 
library preparation with the Lotus DNA Library Prep Kit (Integrated DNA Technologies - IDT, 
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Coralville, IA) using xGen™ Stubby Adapter (IDT) and UDI Primer Pairs (IDT) according to 
manufacturer institutions with the following specifications: In the enzymatic preparation program, 
samples were held at 32°C for 9 minutes. Adapters were not diluted in the ligation step and the 
optional PCR (5 cycles) and cleanup step were performed so the stubby adapters could be 
amplified with primers to incorporate the index sequences and P5 and P7 sequences. After library 
cleanup with AMPure beads (Beckman Coulter, Brea, CA), the libraries were quantified with Qubit 
1X dsDNA HS Assay Kit (ThermoFisher) and Tapestation D5000 HS tapes (Agilent) and stored 
at -20°C until sequencing.  

ulp-WGS sequencing and copy number assignment 
Indexed WGS-libraries were mixed equimolarly and sequenced on an Illumina MiSeq instrument 
with 0.1X coverage using the V2-300 cycle kit (Illumina). Using Illumina pipelines, .bam and .bai 
files were generated from .fastq files which served as input for ichorCNA20 generating .seg files 
for visualization. Finally, GISTIC 2.021 was used to assign a copy number to each gene. 

 

Processing FASTQ files into gene expression matrices  
Demultiplexed FASTQ files from raw single-cell RNA sequencing reads were aligned to the 
human GRCh38 genome, and gene counts were quantified using Cell Ranger ‘count’ (v5.1 for 
uveal melanoma liver metastasis and sequential anti-PD1 therapy samples; v6.1 for all other 
datasets; 10x Genomics). Reads mapping to introns and exons were counted in order to increase 
the number of genes detected per nucleus and number of nuclei passing quality control, leading 
later on to improved cell -type identification. To include introns during read mapping, we followed 
the instructions provided by 10x Genomics (https://support.10xgenomics.com/single-cell-gene-
expression/software/pipelines/latest/advanced/references), and created a ‘pre-mRNA’ human 
GRCh38 reference genome, using the Cell Ranger command ‘mkref’ with a customized gene 
transfer format (GTF) file, in which all transcripts were labelled as exons.  

Removal of background noise in gene expression matrices  
We used the ‘remove-background’ function of CellBender (v0.2.0) on CellRanger-generated 
‘raw_feature_bc_matrix.h5’ files, in order to remove technical ambient-RNA counts and empty 
droplets from the gene expression matrices22. The parameter ‘expected-cells’ was obtained 
from the Cell Ranger metric ‘Estimated Number of Cells’, while the parameter ‘total-droplets-
included’ was set to the midpoint of a plateau in the barcode-rank plot, based on visual 
inspection.  

Quality control and filtering  
After processing by CellBender, expression matrices were processed individually in R (v4.0.2) 
using Seurat23 (v4.0.1). For sequentially collected specimens from the patient on anti-PD1 
therapy, we applied filters to keep only cells with 300-10000 genes, 400-30000 UMIs, and <10% 
of mitochondrial reads. For uveal melanoma liver metastasis samples, we kept cells with at least 
200 genes, 100 UMIs, and <10% of mitochondrial reads. Additionally, we removed cells with 
gene or UMI counts that were above a sample-specific maximum limit, based on the observed 
saturation curve between gene and UMI counts for each sample. Specifically, we visually 
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inspected each of these curves, and observed the point at which outlier cells, in terms of very 
large gene and/or UMI counts, started to appear. We set the maximum limits so as to exclude 
these outliers for each sample, and the list of these limits is given in Extended Data Table 4. 
Finally, for all other datasets, we kept cells with at least 300 genes and <20% of mitochondrial 
reads. Additionally, Scrublet24 expected doublet rate of 9.6%.  

Filtered gene-barcode matrices were then normalized with the ‘NormalizeData’ function using the 
‘LogNormalize’ method. The top 2,000 variable genes were identified using the ‘vst’ method in 
the ‘FindVariableFeatures’ function. Gene expression matrices were scaled and centered using 
‘ScaleData’. We performed principal component analysis (PCA) as well as uniform manifold 
approximation and projection (UMAP) dimension reduction using the top 30 principal components. 
We also used the AddModuleScore function of Seurat to calculate the expression of a stress-
associated gene signature (Extended Data Table 5). 

Manual cell-type annotation  
We integrated and clustered samples within each dataset using Seurat, and identified differential 
gene expression (DGE) between clusters using the FindAllMarkers function. We then manually 
annotated cell type clusters using the following list of marker genes (Extended Data Table 5), 
except for B-cells/Plasma cells, which were annotated on the basis of IG genes being differentially 
upregulated in them. This initial labeling resulted in the identification of major cell types such as 
melanoma cells, lung cancer cells, hepatocytes, T cells/NK cells, and others (Extended Data 
Table 5). Next, to annotate subtypes of T cells/NK cells only, we created a Seurat object 
containing only these cells, and reran scaling, PCA, UMAP dimension reduction, clustering and 
DGE analysis. The resulting clusters were again annotated manually as CD4+ T-cells, CD8+ cells, 
T-regs and others (Extended Data Table 5).  

Copy Number Alteration (CNA) Inference Using InferCNV 
Chromosomal CNA profiles of individual cells were inferred from transcriptional data using 
inferCNV2 (v1.6.0). For each sample, we used cells that were identified as immune cells by 
SingleR25 as a diploid reference to estimate CNAs in the non-immune cells. We applied a cutoff 
of 0.1 for the minimum average read counts per gene among reference cells/nuclei, set the 
clustering to ‘subcluster’, denoised the output using the default ‘sd_amplifier’ of 1.5, and ran 
Hidden Markov Models (HMM) to predict the CNA level. 

Arm-level inferred CNA comparison between snRNA and scRNA samples 
To measure correlation of cancer cell inferCNV profiles between snRNA and scRNA-seq samples 
(Fig. 1i), for datasets that included both types of samples, we calculated average inferCNV scores 
for each chromosome arm for the cancer cells in each individual sample. To exclude chromosome 
arms that did not exhibit any large-scale amplifications or deletions, we filtered out arms that had 
an average inferCNV score between -.01 and .01. We also did not consider the CD45+ sample 
from our melanoma brain metastasis dataset, as it mostly contained immune cells, or the NSCLC 
3’ sequencing protocols, as these appeared to be of lower quality in terms of gene counts and 
stress signature expression than the 5’ protocols (Fig. 1d). For every possible pair of one fresh 
vs. one frozen sample in each of our datasets, we then calculated the Spearman correlation 
between average chromosome arm inferCNV scores in each of the two samples.  
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TCR data processing and integration  
TCR FASTQ files were aligned using Cell Ranger ‘vdj’ (v6.1.1; 10x Genomics). We then used the 
combineTCR function the package scRepertoire to process filtered contig annotation files from 
the Cell Ranger output. Clonotypes which were annotated as having the same clonotype gene by 
combineTCR, and occurred in two or more samples within a dataset, were considered as shared 
within those samples. 

Comparison of TCR clonotype composition between fresh and frozen samples 
For our primary uveal melanoma and cutaneous melanoma brain metastasis TCR datasets (Fig. 
1g,h), we used a hypergeometric test to compare clonotype compositions between every pair of 
fresh vs. frozen samples. We used the clonotype composition of the fresh sample as a reference, 
and compared it with the composition of the frozen sample. Specifically, we used the clonotypes 
that were shared between the fresh sample and frozen sample as input to the x argument of the 
dhyper function in R, the clonotypes found in the fresh sample as the m argument, clonotypes 
found in the frozen sample but not the fresh sample as the n argument, and the total number of 
clonotypes in the frozen sample as the k argument. 

For each sample, we also calculated the Gini coefficient of the distribution of TCR 
clonotype frequencies, using the gini function downloaded from 
https://github.com/oliviaguest/gini/blob/master/gini.py  
 
Comparison of arm-level CNAs between single-cell inferCNV predictions and ulp-WGS 
measurements in uveal melanoma liver metastases 
Using Illumina pipelines (automatic on miSeq machine), .bam and .bai files were generated from 
each sample from .fastq. ichorCNA20 analysis of these files generated .seg files for visualization. 
GISTIC 2.021 was used to assign a copy number to each gene. We calculated average inferCNV 
scores for each chromosome arm for the cancer cells in each sample of our uveal melanoma liver 
metastases dataset. We then compared this with the median log relative copy number measured 
for each chromosome arm using ulp-WGS (Fig. 3c). We calculated the Spearman correlation 
between these two values using two settings. First, we included all chromosome arms, and 
second, to exclude chromosome arms that did not exhibit any large-scale amplifications or 
deletions, we filtered out arms that had a ulp-WGS median log relative copy number between -.1 
and .1.   
 
Diffusion component (DC) analysis 
For CD8+ T-cells in our three sequential anti-PD1 therapy samples (Fig. 2h), we computed DCs 
using the ‘DiffusionMap’ function of the Destiny R-package26. The ‘AddModuleScore’ function in 
Seurat was applied to calculate average expression levels of several T-cell gene signatures on a 
single-cell level (Extended Data Table 5). We plotted expression of several of these signatures, 
as well as expression of the TOX and TCF7 genes, and TCR clonotype expansion, on the first 
three diffusion components. 
 
Evaluation of batch correction methods on fresh and frozen samples 
To determine the extent of integration achievable between samples of fresh and frozen origin, we 
applied the following set of batch correction methods: STACAS27, scVI28 and Seurat (Extended 
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Data Fig. 3,4). For integration methods, genes were filtered using scanpy by selecting only the 
top 8000 highly variable genes29. Integration results were visualized using UMAP. For scVI, 
nearest neighbors were computed in the reconstructed gene space (with PCA preprocessing); for 
STACAS and Seurat, UMAP was computed in the integrated space with PCA preprocessing. The 
degree of integration achieved by each method was evaluated by computing the LISI score12. For 
all methods, LISI scores were computed on 20 principal components and visualized using UMAP. 
The mean LISI score was also computed for each method.  
 
Identification of Differentially Expressed Genes 
We applied Scanpy’s function for ranking genes to identify differentially expressed genes. For 
each cluster (defined by K-means clustering), we compare the genes contained within the cluster 
to genes not contained in the cluster using a t-test with Benjamini-Hochberg correction. Genes 
are then ranked by scores, and the top 300 genes for each cluster are returned (excluding 
mitochondrial and ribosomal genes).  
 
Analysis of inferCNV clonal dynamics in the KEYNOTE-001 patient 
Preprocessing 
Cells from all treatment time-points were normalized by library size together and log transformed 
using scanpy.pp.normalize_per_cell and scanpy.pp.log1p29 (Fig. 2a). Batch correction was not 
performed, due to the observation that immune cells across samples showed more overlap than 
tumor cells. We then selected tumor cells from the normalized anndata object from the 
KEYNOTE-001 patient only. For our data, we verified tumor cell identification using both inference 
of copy number alterations that were expected to be present in malignant cells using inferCNV2 
(v1.6.0) (Fig. 2b), as well as known lineage marker genes, including MITF, MLANA, as well as 
the MITF-high and AXL-high signature gene sets2 (Fig. 2e,f). 
 
Clustering of inferCNV clones 
We utilized K-means clustering on copy number data generated from inferCNV to group cells into 
clones defined by shared patterns in copy number alterations across genes (Fig. 2b). We found 
through visual inspection of inferCNV results that, across all treatment time points, there appeared 
to be four distinct groups of cells, each having a unique inferCNV footprint. Thus, K-means 
clustering was performed with k=4. Visualization via UMAP was utilized to analyze clonal 
dynamics with treatment. Temporal analysis was performed by plotting the proportion of cells 
belonging to each clone at each treatment time-point. Expanding clones were then defined as 
those that showed an increase in proportion at the “on_later” time point compared to the “pre” 
time point (Fig. 2d).  
 
Characterization of differentially expressed genes in expanding clones 
We selected 300 differentially expressed genes for each clone, via the procedures outlined above. 
The differentially expressed genes for expanding Clone 2 were analyzed using the preranked 
option in GSEA30 and the c5.goBP curated set of genes. The normalized enrichment score and 
false discovery rate for the top 25 enriched genesets was visualized (Extended Data Fig. 7d).  
 
Analysis of patterns exhibited by known genes/gene signatures 
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Characterization of clonal and treatment-induced dynamics was performed by analyzing the 
expression of genes belonging to previously defined geneset signatures, including immune 
checkpoint inhibitor resistance (ICR) signature7 and the AXL-high signature2. Normalized 
expression was averaged across all genes belonging to the signature set, and plotted using the 
UMAP representation (Fig. 2e,f). Individual genes of interest were manually selected and 
visualized using a heatmap, where cells were grouped on the x-axis according to treatment 
groups and clones within each (Extended Data Fig. 7c). For each gene, z-scoring was performed 
across all cells to normalize the data and show variability across all cells. Analysis of CD58 
expression (Fig. 2g) was performed by partitioning data into two groups: cancer cells belonging 
to Clone 2 and all other cancer cells. Normalized expression of CD58 was summarized across 
cells in each group, and significance was assessed using a Mann-Whitney U test31. 
 
Data and code availability statement 
Processed data is available on GEO accession number: GSE192402. Raw data will be available 
on dbGAP: accession number pending. Code will be made publicly available via: 
https://github.com/IzarLab/sc_sn_RNA_seq  
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