Abstract
When cells encounter stressful situations, they activate the integrated stress response (ISR), which limits total protein synthesis and redirects translation to proteins that help the cells to cope. The ISR has also been implicated in cancers, but redundancies in the stress-sensing kinases that trigger the ISR have posed hurdles to dissecting physiological relevance. To overcome this challenge, we targeted the regulatory node of these kinases, namely the S51 phosphorylation site of eukaryotic translation initiation factor eIF2α and genetically replaced eIF2α with eIF2α-S51A in squamous cell carcinoma (SCC) stem cells. While inconsequential under normal growth conditions, the vulnerability of this ISR-null state was unveiled when SCC stem cells experienced proteotoxic stress. Seeking mechanistic insights into the protective roles of the ISR, we combined ribosome profiling and functional approaches to identify and probe the functional importance of translational differences between ISR-competent and ISR-null SCC stem cells when exposed to proteotoxic stress. In doing so, we learned that the ISR redirects translation to centrosomal proteins that orchestrate the microtubule dynamics needed to efficiently concentrate unfolded proteins at the microtubule organizing center so that they can be cleared by the perinuclear degradation machinery. Thus, rather than merely maintaining survival during stress, the ISR also functions in promoting cellular recovery once the stress has subsided. This finding exposes a vulnerability to SCC stem cells that could be exploited therapeutically.
Competing Interest Statement
The authors have declared no competing interest.