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Summary
The budding yeast, Saccharomyces cerevisiae, has emerged as
a model system for studying the aging processes in eukaryotic
cells. However, the full complement of tools available in this
organism has not been fully applied, in part because of limita-
tions in throughput that restrict the ability to carry out detailed
analyses. Recent advances in microfluidics have provided di-
rect longitudinal observation of entire yeast lifespans, but have
not yet achieved the normal scale of operation possible in this
model system. Here we present a microfluidic platform, called
the Yeast Lifespan Machine, where we combine improvements
in microfluidics, image acquisition, and image analysis tools to
increase robustness and throughput of lifespan measurements
in aging yeast cells. We demonstrate the platform’s ability to
measure the lifespan of large populations of cells and distinguish
long- and short-lived mutants, all with minimal involvement of
the experimenter. We also show that environmental pH is capa-
ble of significantly modulating lifespan depending on the growth
media, highlighting how microfluidic technologies reveal deter-
minants of lifespan that are otherwise difficult to ascertain.
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Introduction
The budding yeast, Saccharomyces cerevisiae, is a model
system for developing fundamental understanding of eukary-
otic cell biology, including cellular aging. These cells divide
asymmetrically, where during each division a mother cell
"buds" to produce a daughter cell. The number of daughter
cells that each mother cell can produce is limited and defines
the cell’s Replicative Lifespan (RLS) (1). As a mother cell
produces more and more daughter cells, cellular processes
and functions begin to deteriorate, which ultimately results
in the cell’s death (reviewed by Denoth et al. (2)). Com-
parative studies of aging processes across model organisms
have identified shared molecular pathways that decline dur-
ing aging, providing evidence that aspects of the mechanisms
of aging are conserved across eukaryotes(3).
Aging is recognized to be the complex interaction between
genetic variation and environment. Genetic and environ-
mental perturbations have been identified that modulate the
RLS of yeast cells. However, a full exploration of the in-
terplay between growth environment and the importance cel-
lular pathways have on RLS has been hampered by techni-
cal challenges. Specifically, the traditional RLS assay re-
quires manual separation of daughter cells from the mother
cell after every division, an incredibly tedious process (4).
Despite these challenges, McCormick et al., performed a cur-
sory RLS screen of the entire Yeast Non-essential Gene Dele-

tion Collection by micromanipulation (5, 6). This study re-
vealed many important genetic modulators of RLS, but due
to the thousands of hours needed to obtain sufficient mea-
surements, this screen suffered from a lack of discriminatory
power to identify a comprehensive list of genes impacting ag-
ing. Furthermore, the effort involved in this approach makes
it unlikely that it can be practically used to explore additional
genetic backgrounds or environmental conditions.

Several technologies have been developed to overcome the
challenges of studying yeast aging by micromanipulation.
Some approaches allow purification of aged cells from a large
population and have enabled biochemical and cell-biological
experiments in aging yeast cells (7–10). However, direct
and longitudinal observation of phenotypes in a significant
number of cells remained impossible until microfluidic de-
signs were introduced to automatically separate daughter
cells from mother cells (11, 12). This technique alleviates the
need for constant human intervention and permits the use of
high-resolution microscopy techniques to monitor the aging
process. Despite many research groups developing different
devices and employing several distinct strategies, no single
device has been universally adopted by the field (comprehen-
sively reviewed by Jo et al. and Chen et al.; experimentally
explored by Gao et al. (13–15)).

An emerging challenge of using microfluidic devices coupled
with high-resolution microscopy techniques is the develop-
ment of automated techniques to determine the RLS from the
large volume of raw data. While some devices employ chem-
ical/genetic methods to determine lifespan by counting the
number of arrested daughter cells at the end of the experiment
(16), most systems require constant longitudinal imaging to
generate time-lapse movies of the entire lifespan of each cell.
Traditional image analysis techniques are inadequate to auto-
mate RLS quantification from these movies due to the hetero-
geneity of budding patterns, cellular morphologies and tem-
porary cell crowding observed in microfluidic devices. Incor-
porating fluorescent markers to facilitate mother-cell tracking
or to mark the completion of each cell division has been used
to facilitate human annotation or even automate some analy-
ses (17, 18). However, these strategies are difficult to scale
because of the strain engineering, sample preparation, or ad-
ditional imaging modalities needed. Another significant hur-
dle is the annotation and analysis of the longitudinal lifespan
movies. Simply, these devices already produce more data
than any researcher could hope to look at, let alone annotate.
Fortunately, this problem of having too much data to effec-
tively analyze by traditional methods is well suited for auto-
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mated approaches using computer-vision/machine-learning.
Here, we describe the development of a microfluidics plat-
form, called the Yeast Lifespan Machine, that overcomes
the challenges of previously described methods to accurately
quantify RLS in yeast. The Yeast Lifespan Machine lever-
ages microfluidics to robustly collect lifespan data of high
temporal resolution from large populations of aging cells (ap-
proximately 800 per channel) in a system with 24 indepen-
dent channels, which can contain distinct genetic or environ-
mental conditions. We developed a novel computer-vision
strategy for extracting RLS data from longitudinal images of
aging cells in the Yeast Lifespan Machine. We demonstrate
our system’s ability to recapitulate the effects of known long-
and short-lived mutants, and identify an environmental con-
dition capable of modulating lifespan.

Results
Yeast Lifespan Machine Microfluidic Device. The Yeast
Lifespan Machine is based upon a multi-layer PDMS mi-
crofluidic device with 24 discrete channels. Each channel
contains an array of PDMS features specifically designed to
retain aging mother cells while daughter cells are washed
away (Fig.1A). Consequently, it is capable of measuring the
replicative lifespan for a particular genotype in a specific en-
vironmental condition. Each channel has three access ports
– one used as media input, one for cell input, and one for
output of waste and daughter cells (Fig.1B). While other de-
vices have been able to simplify experimental setup by shar-
ing one or more of these ports between multiple microfluidic
channels, the Yeast Lifespan Machine provides greater over-
all experimental robustness (19). By keeping each microflu-
idic channel separate, any one failure (a clog, contamination,
etc.) is isolated, and thus does not compromise data collected
from the other, separate, microfluidic channels.
Precise control of fluid flow throughout the device is con-
trolled by a series of microfluidic valves, operated by pres-
surizing a separate layer of the device, reversibly collapsing
the microfluidic channel below (Fig.1B,C) (20). These valves
allow for a relatively simple layout of microfluidic flow chan-
nels, yet completely isolate media input ports from cell load-
ing ports. This configuration greatly reduces the risk of cells
accumulating in any part of the microfluidic device, which
could negatively impact the experiment. While other devices
have achieved suitable control with creatively designed chan-
nel layouts, we have found that the increased robustness pro-
vided by the sealed valves is worth the additional steps of
design and fabrication (12, 19).
Each channel has a large array of approximately 850 PDMS
features designed to retain aging yeast cells. These cell
"catchers" or "traps" were inspired by a previously described
device (the HYAA chip) and are designed to allow budding of
the mother cell in multiple directions without the cell being
lost from the trap (“washing out”), while daughter cells are
removed by a constant media flow (Fig.1D)(19). While orig-
inal cells are preferentially retained by these catchers and of-
ten retained until death, some cells escape or are crowded by
other cells at various times during the experiment and must be

censored (Fig.S1). Within each channel, cell catchers are in
a 29x30 array, which measures approximately 1mm x 1mm,
and can be tiled with 9 fields-of-view on our microscope sys-
tems.

Image Acquisition, Processing and Computer Vision.
The overall design of our image analysis pipeline is illus-
trated in Figure 2 and specific aspects of this pipeline are de-
scribed in the following sections.

Image Acquisition. Time-lapse images are acquired using
several instances of a custom-assembled, automated micro-
scope (Fig.S2). Acquisition is controlled by a custom python
application, allowing synchronization with microfluidic and
environmental control hardware. These custom applications
simplify experimental setup, handling of image data, col-
lection of metadata, acquisition monitoring, and a number
of other tasks that would have been difficult to automate
with existing microscope control software (see materials and
methods, supplemental material).

Image Processing. The raw images/data of each experiment
can be considered as a six-dimensional array - in ’PTZCYX’
order. ’P’ for position or field-of-view, ’T’ for time, ’Z’ for
z-slice, ’C’ for imaging channel, and the ’Y’ and ’X’ di-
mensions of each image. A typical experiment to measure
replicative yeast lifespan contains:

• 216 positions – 24 microfluidic channels, 9 fields-of-
view per channel.

• 396 time points – taken at 15 minute intervals for 96
hours

• 5 z-slices – spanning 4µm (1µm spacing)
• 1 imaging channel – brightfield or DIC image
• 2048 Y and 2048 X pixels – the standard dimension of

our sCMOS chip

Each field-of-view in a typical experiment represents about
16 GB of images (396T x 5Z x 1C x 2048Y x 2048X x 2
bytes/pixel = 16.6 gigabytes). Even when lossless compres-
sion is applied, the total data for all fields-of-view in a typi-
cal experiment can still total 0.5 - 1.5 TB of data. Given this
large size, we process each field-of-view into smaller image
patches that each contain a single cell-catcher. Each field-of-
view is first processed by registering the ’ZCYX’ data along
the ’T’ dimension, correcting for any thermal drift or impre-
cise stage movements during the experiment. A single ’ZC’
slice (shape: [396, 1, 1, 2048, 2048]) is used as a reference,
and these corrections are applied to all other channels and z-
slices. Next, the coordinates of each cell catcher are found
by cross-correlating a template image of a catcher against
the full image. Then a 256x256 window is selected around
each cell-catcher. This process creates a 5D stack, typically
with the dimensions [396, 5, 1, 256, 256], in ’TZCYX’ or-
der. While the resulting images are a more manageable 260
MB each, we often reduce the depth of the images to 8bit
to cut the file size in half. Additionally, we compress these
images in a tiled-jpg format that reduces the file size by 95-
99%. While there is considerable loss of information at this
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Fig. 1. Yeast Lifespan Machine microfluidic device A)
The Yeast Lifespan Machine microfluidic device is a PDMS
device with 24 discrete channels, each with an array of 850
cell "catchers". B) Each channel has 3 ports. One used to
input cell cultures. One used to provide fresh media for the
duration of the experiment. One used to remove waste from
the microfluidic channel. These 3 ports are connected by
the fluidic channels (red). Flow in these fluidic channels are
controlled by a series of microfluidic valves (black boxes),
actuated by overlapping control channels in the valve layer
(black). C) Microfluidic valves are actuated by pressurizing
the control channel above the fluidics channel, completely
collapsing and sealing the channel below. In this example
image, both valves are closed, blocking media flow in the
channel. D) Dimensions of catcher features.

compression step, the resulting images still preserve the in-
formation required for human or computer vision extraction
of relevant lifespan information.

Computer Vision. To determine the replicative lifespan of
each cell, three pieces of information are needed: i) which
frames define the start and end of the cell’s lifespan, ii)
whether the observation ended with a cell dying or washing
out of the field-of-view, and iii) how many budding events
occurred during the time the cell was observed.
Collecting data from a single microfluidic device can produce
approximately 20,000 time-lapse images of individual lifes-
pans. Even if an annotation task was relatively simple and
took a human 15 seconds to annotate each image, it would
still take nearly 87 person-hours of labor to annotate all of the
images from the 24 channels in a single experiment. To take
full advantage of all the data this system produces, we devel-
oped a high-throughput automated image analysis pipeline.
We opted to train two separate models, the results of which
can be combined to determine the lifespan of any given cell
(Fig.2 inset). This allowed us to frame each as a relatively
easy-to-annotate task and clearly define the problem that each
model was trying to solve.

Division Detection Model. The first model was trained to
predict the cumulative number of buds that have been pro-
duced by aging mother cells during the course of a time-
lapse movie. The input of this model was a 3D TXY stack
of images, representing the full time-lapse movie of a single
catcher. The first module of this model was a ResNet-like
model to extract image features from each 2D slice of the
timeseries (21). The output was flattened into 1D image fea-
tures. Each set of 1D image features was then fed into the
1D convolutional neural network (CNN) Module, composed
of a series of gated dilated convolution layers with residual
connections (22), which is capable of using information from
surrounding time points to determine if a division was likely
to have occurred at each time point. The dilated convolution
increases the receptive field size and allows a larger number
of surrounding time points to be included.

This model was trained using approximately 10,000 anno-
tated time-lapse series, optimizing for predicting the cumula-
tive number of divisions that had occurred in each time series
at each time point. To avoid the model learning the average
budding rate of our cells and predicting bud counts by simply
counting frames, we took two steps. First, we included train-
ing data from multiple growth conditions and genotypes that
varied growth rate by 100-200%. Second, as a data augmen-
tation step, we created artificial lifespan movies with random
time points removed.
Overall, this model was able to predict the total number
of divisions that had occurred in a movie with good accu-
racy (R2=0.89; Fig.3A). While not a perfect reproduction
of the annotations, this error is similar to that we observed
when comparing the annotations of two different annotators
(R2=0.74; Fig.S3). In examining the difference between the
predicted age and the annotated age at each frame of the
movie (Fig.3B), the majority of events deviate from the an-
notated age by a small amount and are not biased to occur
at any particular point in the time-lapse. There also does not
seem to be a systematic over/under prediction of age by the
model; the mean error is very near zero over all frames.

End-Event Detection Model. The second model was trained
to detect the end of each lifespan, replicating the annotations
of when a cell died or was censored (e.g. cell washed out of
the trap). The goal of the model was to recreate the specific
type of annotated end-event near the frame in which it was
annotated.
The model was an ensemble consisting of two models with
very similar architectures, only slightly varying in their ob-
jective function. Again, the input of this model was a 3D
TXY stack of images, representing the full time-lapse movie
of a single catcher. The first module in each model was again
an image feature extraction layer, this time utilizing a modi-
fied Unet architecture, which we found performs slightly bet-
ter than a ResNet backbone (23). These image features were
flattened, then fed into another 1D CNN module, similarly
composed of a series of gated dilated convolution layers, to

Thayer et al. | Yeast Lifespan Machine bioRχiv | 3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2022. ; https://doi.org/10.1101/2022.02.14.480146doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.14.480146
http://creativecommons.org/licenses/by/4.0/


Fig. 2. Image processing and computer vision pipeline. The raw images of each field-of-view are corrected for drift, then processed into smaller image patches, each
containing a single catcher. The time series of each catcher are then analyzed by two computer vision models. One model detects the number of cell divisions that occur
in the time series and one model determines when aging mother cells have died or escaped the catcher (censored). The output of each model is combined into lifespan
observations. Insets: The architecture of each model can both be summarized by a 2D image feature extraction layer and a 1D dilated convolutional layer, capable of using
information from surrounding frames to make predictions on i) division events or ii) end-events (i.e. mother cell escape from, or death within the catcher).

use information from surrounding time points to predict the
likelihood of an event at each frame (22). The model was
constructed to output a score for each frame related to the
likelihood that an aging mother cell either died or censored
at that frame. A threshold was established that if either score
reached a value > 0.2, this event was predicted to have oc-
curred, although the threshold is a tunable parameter. To ac-
count for the uncertainty of each annotation, we smoothed
the probability of annotated frames to the surrounding frames
using a gaussian kernel.

Overall, this model was able to accurately predict both the

type and timing of the end-event for a majority of time-lapse
movies of catchers. When comparing the annotated and pre-
dicted events in a confusion matrix (Fig.3C), the majority of
events are plotted in either the upper-left or lower-right quad-
rant, indicating that the model accurately predicted the same
type of event that was annotated. Furthermore, a majority of
the events were predicted to occur on, or near, the same frame
in which it was annotated to occur; this was especially so for
death events that were both annotated and predicted. After
manual inspections of the mis-predicted events, they appear
to fall into a few categories. There were a small number of
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Fig. 3. Computer vision validation. A) The performance of the model at predicting the final age of a cell, visualized as a scatter plot against ages measured by hand-
annotation. B) The performance of the model throughout the lifespan of a cell, visualized as the difference between the predicted and annotated age. Each blue trace
represents a unique lifespan. The median, mean and quartile ranges are also plotted. C) The performance of the event detection model visualized on a confusion-matrix /
scatter plot. The placement of each point onto each quadrant of the confusion-matrix is determined by the annotated and predicted type of event. Each scatter plot indicates
agreement on the frame at which the annotation or prediction is made. D) Kaplan-Meier survival estimates made from a set of time-lapse images that were both human
annotated (blue) and predicted from computer vision pipelines (orange), or predictions made from all time-lapse images from the same experimental conditions (not just those
that had been annotated).
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lifespans in which a censor event was predicted early in the
movie, but a death event was annotated to occur later in the
movie. Conversely, there were instances of the opposite cat-
egory. While some of the predictions are incorrect, a major-
ity can be explained by “crowded” catchers, where there are
two aging cells near the center of the catcher for a significant
number of frames of the time-lapse. Because the annotations
contained no information indicating a “cell-of-interest”, the
computer vision model and the human annotator could have
tracked different cells in the same time-lapse. Therefore it
is possible that both the predicted and annotated events are
correct and are valid lifespan data.

Lifespan Analysis. In order to construct meaningful lifespan
data from these two models, their outputs were combined
to reconstruct the beginning, the end, the outcome, and the
number of divisions each cell was predicted to have been
observed. The Kaplan-Meier survival curve generated from
these predictions was nearly identical to that generated by
human annotation (Fig.3D)(24).

Lifespan Observations.

Microdissection Validation of Yeast Lifespan Machine. To
validate the Yeast Lifespan Machine platform (both the mi-
crofluidic device and automated image analysis pipeline),
lifespans generated using this platform and those collected
by the traditional micromanipulation assay were compared
(4). The Yeast Lifespan Machine was able to produce similar
Kaplan-Meier curves to those generated by microdissection
for two strains with distinct lifespans (Fig.4A). While the
relative lifespan differences between the two strains is very
obvious with either of the two methods, there are modest dif-
ferences between the two types of measurements. The vari-
ance between the results could be attributed to differences in
the protocols or conditions that the aging cells experience be-
tween the two protocols.

Previously Known Long- and Short-lived Mutants. As a fur-
ther evaluation of the Yeast Lifespan Machine’s performance,
the RLS of two canonical yeast lifespan modulating muta-
tions was examined: fob1∆ and sir2∆. While these two mu-
tations provide a robust increase and decrease, respectively,
in lifespan (25, 26), and therefore should be easy for any sys-
tem to detect, they also present unique tests to our microflu-
idic strategy and computer-vision pipelines. In addition to al-
tering cell cycle times, sir2∆ cells are known to dramatically
increase the frequency of elongated daughter morphologies
(17), resulting in decreased retention of the sir2∆ cells in our
device. Nevertheless, the Yeast Lifespan Machine was able
to observe a clear reduction in lifespan (Fig.4B). Addition-
ally, a clear increase in the lifespan estimate of fob1∆ cells
was also observed.

Environmental Effects. The environment has long been im-
plicated in modulating the aging process of yeast and other
organisms. Microfluidic devices provide a critical tool for in-
vestigating these effects because they permit precise control
of the cell’s environment throughout the aging process. The

constant flow of medium required to prevent the accumula-
tion of daughter cells also blocks the cells’ ability to modify
their local environment like they would in batch culture or on
an agar plate.
We sought to specifically test the lifespan of cells grown in
two nutritional contexts and two environmental pHs. In min-
imal media (YNB), cells are provided essential vitamins and
minerals, a carbon source (glucose) and a nitrogen source
(ammonium), and therefore must synthesize all of their own
amino acids. In complete media (SC), YNB is supplemented
with amino acids and some nucleotides. Due to these dif-
ferences, there is also a difference in pH. Typically, YNB is
pH 5.3 and SC is pH 4.3. However, they are both relatively
unbuffered, so their final pH is easily perturbed.
In this experiment, we aged a wildtype prototrophic strain
in 4 different environments: i) SC at its unadjusted pH of
4.3 ii) YNB at its unadjusted pH of 5.3 iii) SC adjusted to
the pH of YNB (pH 5.3) iv) YNB adjusted to the pH of SC
(pH 4.3). Interestingly, while the lifespans of cells aged in
SC media were unaffected by changing the pH, the lifespan
in YNB was significantly shorter at pH 5.3 (Fig.4C). These
results indicate, depending on the environmental context, pH
is potentially a significant modulator of lifespan.

Discussion
In this report, we described both a novel microfluidic device
and an automated image analysis pipeline capable of deter-
mining a large number of replicative lifespans of budding
yeast cells. Our platform represents a significant advance
over previously described systems in that it leverages a ro-
bust multi-layer valve design to provide a significant increase
in the throughput. Combined with the improvements to im-
age analysis, these advances allow us to measure the lifespan
under multiple genetic and environmental conditions, all with
minimal human setup, intervention, or annotation of the re-
sulting raw data.
We note that a number of other advances in microfluidic tech-
nologies and automated image analysis have been applied to
this problem and reported by other groups (17, 27, 28). While
it is difficult to directly compare these methods, various im-
provements in microfluidic layout, cell retention features, im-
age collection, and imaging analysis could be combined to
create more robust and accessible tools for measuring the
lifespan of yeast cells.
While the quantification of RLS using the Yeast Lifespan Ma-
chine pipelines is robust within the constraints of the genetic
and environmental conditions we tested here, we note that
considerable care should be taken when using these or simi-
lar microfluidic devices and computer vision models in other
contexts. Genetic or environmental conditions that severely
perturb the growth rate, morphology, or budding pattern of
cells could alter the performance of these systems. It is im-
portant that the training data takes into account such features
of the data to ensure accurate results. Additionally, the mi-
crofluidic catcher features may perform differently in condi-
tions with significantly altered cell morphologies. Perturba-
tions that alter retention rates, especially as cells approach
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Fig. 4. Lifespan observations made with Yeast Lifespan Machine platform. A) Comparison to observations made with traditional micromanipulation assay. Data collected
by microdissection is represented by dotted lines; data collected using the Yeast Lifespan Machine (YLM) platform are solid lines. Strains with two different lifespans were
measured (blue and orange lines). B) Recapitulation of previously known long- and short-lived mutant strains. The lifespans of fob1∆ (long-lived), sir2∆ (short-lived) and WT
strains were measured with the Yeast Lifespan Machine platform. C) Environmental effects on lifespan. The lifespans of a single strain were measured in multiple different
environments (SC: rich synthetic media, YNB: minimal synthetic media; adjusted to pH specified in legend).

death, could dramatically skew the estimate of the survival
function (24).
An exciting aspect of the high-resolution information that
we capture using the Yeast Lifespan Machine pipeline is the
depth of the time-lapse data, capturing fundamental aspects
of yeast aging beyond RLS. Considerable information about
the aging process and various aging trajectories are available
in these images. Information like cell morphologies, cell di-
vision times, and more, could provide significant insights into
the mechanisms of aging in this organism (17, 29, 30). Con-
tinued development of microfluidic technologies and image
analysis pipelines will gain access to this information and
improve our understanding of the various aging processes oc-
curring in yeast and ways of modulating them.
In this report, we showed that the Yeast Lifespan Machine
platform was able to detect previously reported lifespan mod-
ulating effects of four different genetic alterations (all with-
out any further human annotation of the data). In addition,
we identified a seemingly subtle environmental change (me-
dia pH) that has a strong effect on lifespan. This detail re-
inforces the importance of controlling quantifiable aspects of
the growth environment between experiments and different
batches/lots of media in other lifespan studies. Microflu-
idics provides a valuable tool to investigate relatively subtle
changes in the environment, which is simply not possible in
batch cultures or cells aging on a plate.
We have only explored a small subset of the possible ranges
of physiological tolerable pH ranges and their interactions
with different media recipes (31, 32). It is possible that
there are pHs that yeast cells are thought to tolerate that may
shorten the lifespan in SC or in other environmental contexts.
However, we have shown that pH can have a large effect on
lifespan, greater than that of many of the genetic perturba-
tions we are investigating. And while the exact mechanism
of this effect is not known, at a minimum, the pH of the envi-
ronment must be considered as a possible source of lifespan
variation between conditions, experiments and labs. As these
high-throughput lifespan technologies become more widely

accessible to the field, we expect that it will be easier to iden-
tify and study the sources of variability, potentially reconcil-
ing differences in reported lifespan effects of various genetic
and environmental perturbations.

Materials and Methods
Microfluidic Device.

Microfluidics Design. Each set of Yeast Lifespan Machine
molds were created with four photomasks (Supplemental
Material) . One mask is used to pattern positive photore-
sist (SPR 220-7) onto the fluidics mold to form collapsi-
ble channel sections (see below) . Two masks are used to
pattern negative photoresist (SU-8) onto the fluidics mold
and create channels and catcher features. The last mask is
used to pattern negative photoresist onto the control layer
mold. All masks containing low resolution features (chan-
nels, valves) were printed on transparency masks (Fineline
Imaging). Masks with catcher features were printed onto a
chrome mask (Compugraphics). Generally we followed the
design rules presented by the Stanford Microfluidics Foundry
(33). All design work was done in AutoCAD (AutoDesk).

Microfluidic Mold Fabrication. The two molds for the Yeast
Lifespan Machine device were made using standard multi-
layer photo-lithography on blank silicon wafers (University
Wafer). The fluidics layer mold consists of features cre-
ated with two types of photoresist: positive and negative.
First, the wafer is treated with hexamethyldisilazane vapor
for at least 10 minutes. Approximately 2mL of SPR 220-
7 (Dow) is spun onto the wafer (500rpm, 1200rpm/s accel-
eration, 30 seconds; 3000rpm, 1200rpm/s acceleration, 60
seconds) using a spin coater (WS-400-6NPP-LITE, Laurell
Technologies, North Wales, PA) and then placed on a hot-
plate set at 90° C (Torry Pines HP40A, Torrey Pines, Carls-
bad, CA) for 90 seconds. The valve pattern is then transferred
to the wafer using a contact aligner (Karl Suss Ma6, Suss Mi-
croTec, Garching Germany) with LED illumination in 37%
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i-line only mode using Proximity Exposure at 30 µm and an
exposure of 380 mJ/cm2. The wafer is then developed man-
ually in MF26A developer (Dow) and then hard-baked on a
hotplate to melt and reflow the photoresist starting at room
temperature and then ramping up to 190° C at 15° per hour
for a total of 20 hours. After hard baking the valves are mea-
sured using a KLA D-600 profilometer (KLA, Milpitas, CA)
and the rounded features are around 4.5 µm tall. A 6.5 µm
layer of SU-8 2005 (Kayaku Advanced Materials, Westbough
MA) is spun on the wafer (500rpm, 1200rpm/s acceleration,
30 seconds; 1050rpm, 1200rpm/s acceleration, 30 seconds).
Then the wafer is baked on a hotplate at 65° C for 3 minutes
and then at 95° C for 5 minutes. The catcher pattern is trans-
ferred to the wafer using a contact aligner and an exposure of
130-140 mJ/cm2. Then the mask is changed to expose the re-
maining channel features in the fluidics layer, using Proxim-
ity Exposure at 30 µm and an exposure of 300 mJ/cm2. Then
the wafer is baked on a hotplate at 65° C for 3 minutes then at
95° C for 5 or 6 minutes. After baking the wafer it is dipped
in Su8 developer (Kayaku Advanced Materials, Westbough
MA) and agitated for 20-40 seconds until the non-crosslinked
Su8 is removed. The wafer is then sprayed with isopropyl al-
cohol and air dried with a nitrogen gun. After drying the
wafer is inspected for signs of residual uncrosslinked SU-
8 such as white streaks on the wafer or scumming around
the features. If needed, the wafer is dipped in the developer
for another 5-10 seconds, sprayed with isopropanol, and air
dried. The control layer mold was made with negative pho-
toresist using a similar protocol as outlined above with the
following modifications: Feature height ∼25µm; SU-8 2025
spun on at 2100 rpm; exposure 150 mJ/cm2; Post Exposure
Bake 1 65° C for 1 minute then at 95° C for 3 minutes. Spe-
cific spin, bake and exposure parameters may require addi-
tional optimization on other equipment.

Microfluidic Device Fabrication. All mixing, spinning, and
room temperature incubations are carried out in a humid-
ity controlled chamber, held at 15% RH. This is critical for
reliable operation of the microfluidic valves. First, PDMS
(Momentive #RT615; 5 part A: 1 part B) is poured onto con-
trol layer mold, degassed under vacuum for 40 minutes, then
baked at 80° C for 60 minutes. Second, a thin layer of PDMS
(20 part A : 1 part B) is spun coat onto fluidic layer mold
(1.25 minutes at 900 RPM) and baked at 80C for 40 minutes.
The control layer is then removed from mold, cut to size, and
holes are punched to access valve lines. This PDMS block
is then aligned to the fluidics layer under a microscope. The
aligned device is then baked at 80° C for an additional >4
hours. Devices are then removed from fluidic layer mold, ac-
cess ports punched, and then plasma bonded to a large glass
coverslip.

Experiment Acquisition/Set-Up.

Strains, Media, Culturing. All strains presented in this study
and used for the optimization of the Yeast Lifespan Machine
chip are haploid strains derived from the BY strain back-
ground. See Table 1.

Note, CGY2.66 has a Ty element inserted into PTR3. While
the function of PTR3 in this strain has not been investigated,
other experiments in our lab have shown that this polymor-
phism is not responsible for lifespan differences in media of
different pH.
Experiments were conducted in either i) YPD – 1% w/v Yeast
extract, 2% w/v Bacto peptone and 2% glucose ii) Synthetic
Complete (SC) media – 1x SC mix and 1x YNB with Am-
monium Sulfate (Sunrise Science), 2% glucose iii) Minimal
media (YNB) – 1x YNB with Ammonium Sulfate (Sunrise
Science), 2% glucose. pH was adjusted as noted using Potas-
sium Hydroxide.
Experiment presented in machine learning validation (Fig. 3)
was conducted in SC. Experiment presented in comparison
to micro-dissection was conducted in YPD (Fig.4A). Exper-
iment measuring the lifespans of sir2∆ and fob1∆ strains
was conducted in SC (4B). Experiment exploring the effect
of pH in different nutrient conditions (4C) was conducted as
described. Rhodamine labeling of original cells was achieved
by incubating cells in NHS-Rhodamine (1ug/ml; Fisher Sci-
entific) for 5 minutes before loading into the microfluidics
device (34).
To begin a lifespan experiment, cells were grown to satura-
tion in 24-deep-well plates, then diluted in fresh media and
grown for 24 hrs below an OD of 0.05. Cells were then
loaded into the microfluidics device by pneumatic pressure
using a custom machined manifold (supplemental materials).
All experiments were conducted at 30° C.
Microdissection RLS measurements were performed similar
to previously described (4). Cells were grown in liquid YPD
before being spotted onto YPD agar plate. Cells were then
moved using a microdissection needle (Singer Instruments)
to a unique position on the plate. After these cells completed
their first division, the newly born cell was kept to begin the
lifespan measurement. After each division, daughter cells
were removed until the mother cell stopped dividing or the
experiment was terminated. Any mother cell that was still di-
viding at the end of the experiment was considered censored
(see Lifespan Analysis methods section).

Image Acquisition Hardware. A parts list of our custom
assembled microscope is available in the supplemental ma-
terial (2. A majority of our data were collected on an
ASI RAMM system equipped with an ASI MS-2000 au-
tomated XY-stage, pco.panda 4.2 sCMOS camera, bright-
field transillumination kit, and 40x air objective (Nikon NA
.95; MRD00405). Illumination and camera triggering were
achieved through an analog out card (National Instruments).
Environmental control (temperature) was achieved by a cus-
tom designed and assembled chamber (supplemental mate-
rial) and commercially available temperature controller (Oko
Labs). Visualization of rhodamine labeled original cells was
a Leica DMI8 microscope (Leica Microsystems) equipped
with a 40x air objective, pco.Edge 4.2, and a spectraX LED
lightsource (Lumencore).

Microfluidics Hardware. Microfluidic valves were controlled
by computer operated pneumatic solenoid valves (Elveflow
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or custom assembled controller (35)). Media was driven from
50ml conical tubes (1 per channel) into the device by con-
stant pneumatic pressure provided through custom manifolds
(supplemental materials). Pressure was regulated by com-
puter controlled regulators, and optimized to deliver approx-
imately 5µl/minute (Elveflow or custom assembled). PTFE
tubing connected media reservoirs to microfluidic devices.
Bent metal pins/tubes connected PTFE tubing into PDMS
microfluidics devices. Longer metal pins/tubes served as a
"spear" to access media in each reservoir.

Experiment Acquisition Software. Almost all hardware was
controlled with python using custom device adapters (avail-
able here: https://github.com/AndrewGYork/tools). Le-
ica instrument was controlled with python through micro-
manager and the python bindings for MMCore (micro-
manager/pymmcore - Python bindings for MMCore, (36)).
Experiment schedule (image frequency/timing) and meta-
data were stored in a centralized database. Experiment
progress was monitored through communication to the cen-
tral database and monitoring scripts running on a central
server. User notifications of progress, alerts, failures were
accomplished with the Google Chat API.

Analysis Pipeline.

Image Processing. All image processing steps were com-
pleted in python. Raw image time series were aligned with
code available in https://github.com/AndrewGYork/tools.
Each catcher location was identified by convolving an im-
age with an image of a template catcher and finding local
maxima. 256x256 pixel patches were cropped around each
identified catcher location. The image patches were used as
inputs for subsequent computer vision steps.

Computer Vision Models.

Training Data Collection. Most human annotations were col-
lected using a custom written annotation software built from
the napari python package (37). Specific images to annotate
were randomly selected and presented to users (blinded to
environment and genetic metadata).

Division Detection Model and End-Event Detection Model.
The models were trained using a Pytorch framework (38).
Adam optimizer (39) was used with beta1=0.9 and beta2=0.8,
and a step learning rate schedule as follows:

Epochs Learning Rate Weight Decay
1-15 0.0001 0.0001
16-25 0.00003 0.00001
26-30 0.00001 0
31-35 0.000003 0
36-40 0.000001 0
41-80 0.0000001 0

Lifespan Analysis. Lifespans were constructed by summing
the number of division events that were predicted prior to
each predicted-end event. Any divisions that were predicted
after an end-event were attributed to a new cell/lifespan. Any
lifespan that began after frame 50 (12 hours) was excluded
from future analysis. Survival functions were estimated us-
ing the Kaplan-Meier estimator, implemented in the lifelines
python package (40). Cells that were predicted to be cen-
sored by the computer vision model were “right-censored” in
Kaplain-Meier fitter (‘end-event=False‘).

Code Availability. Computer vision models are avail-
able at https://github.com/calico/ylmcv. Code used to
control microscope hardware and steps in image pro-
cessing steps in https://github.com/AndrewGYork/tools.
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Supplementary Note 1: Supplemental Figures and Tables

Supplementary Figure 1. Aging Cell Retention. Original cells were permanently labeled with NHS-Rhodamine prior to loading into
the microfluidic device. Any daughter cells produced in the device are unlabeled. The inset highlights a catcher that performs as
designed (e.g. retention of original cell until death, washing away of daughter cells, minimal crowding). However, there are a number of
other catchers that highlight other situations: i) washout/escape of original cell ii) prolonged retention of multiple cells before they are
washed away iii) dramatically altered cell morphologies iv) crowding/clogging of regions of the device.

Supplementary Figure 2. Yeast Lifespan Machine instrument. A) CAD rendering of instrument. Layout of instrument, incubation
chamber, and associated microfluidics peripherals (reservoirs, etc) was optimized to reduce footprint and lengths of tubing. B) Image of
assembled Yeast Lifespan Machine instrument and accessories. Boxes highlight various components: 1 - microscope and incubation
chamber. 2 - media reservoirs and manifolds. 3 - 24-well plate manifold used for cell loading. 4 - computer controlled regulator for
managing flow-rates. 5 - the stage controller. 6 - microfluidic valve controller. 7 - the computer used to control each instrument.
8 - uninterruptible power supply, capable of powering the entire instrument during intermittent power outages. C) Image of several
instances of Yeast Lifespan Machine Instrument. Optimizations of cost and reliability of the hardware allow us to have up to five
instruments running simultaneously (four pictured).
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Supplementary Figure 3. Comparing Annotations From Multiple Annotators. Comparing the total number of annotated divisions
from lifespans in catcher time-lapses that had been annotated by two different annotators.

Name Genotype Source Figure
CGY20.46 MATa can1∆::STE2pr-spHIS5 his3∆1 lyp1∆0 Hotz et al. 2022 / This Study 2
CGY20.50 MATa can1∆::STE2pr-spHIS5 his3∆1 lyp1∆0 Hotz et al. 2022 / This Study 2
CGY20.55 MATa can1∆::STE2pr-spHIS5 his3∆1 lyp1∆0 Hotz et al. 2022 / This Study 2
CGY24.09 MATa can1∆::STE2pr-spHIS5 his3∆1 lyp1∆0 Hotz et al. 2022 / This Study 2
CGY24.16 MATa can1∆::STE2pr-spHIS5 his3∆1 lyp1∆0 Hotz et al. 2022 / This Study 2
CGY24.17 MATa can1∆::STE2pr-spHIS5 his3∆1 lyp1∆0 Hotz et al. 2022 / This Study 2
CGY24.21 MATa can1∆::STE2pr-spHIS5 his3∆1 lyp1∆0 Hotz et al. 2022 / This Study 2
CGY28.49 MATa can1∆::STE2pr-spHIS5 his3∆1 lyp1∆0 Hotz et al. 2022 / This Study 2
CGY28.50 MATa can1∆::STE2pr-spHIS5 his3∆1 lyp1∆0 Hotz et al. 2022 / This Study 2
CGY28.52 MATa can1∆::STE2pr-spHIS5 his3∆1 lyp1∆0 Hotz et al. 2022 / This Study 2
CGY28.53 MATa can1∆::STE2pr-spHIS5 his3∆1 lyp1∆0 Hotz et al. 2022 / This Study 2
CGY29.01 MATa can1∆::STE2pr-spHIS5 his3∆1 lyp1∆0 Hotz et al. 2022 / This Study 2
CGY24.09 MATa can1∆::STE2pr-spHIS5 his3∆1 lyp1∆0 Hotz et al. 2022 / This Study 4A
CGY24.17 MATa can1∆::STE2pr-spHIS5 his3∆1 lyp1∆0 Hotz et al. 2022 / This Study 4A
CGY20.74 MATa This Study 4B
CGY19.41 MATa fob1∆::NatMX This Study 4B
CGY20.67 MATa sir2∆::KanMX This Study 4B
CGY2.66 MATa ptr3::Ty This Study 4C

Table 1. Strain Table
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Part Name Supplier

Microscope Stand

RAMM system equipped with MS-2000 automated XY-stage Applied Scientific Instrumentation
Transillumination kit based Applied Scientific Instrumentation
pco.panda 4.2 sCMOS camera PCO
CFI60 Plan Apo Lambda 40x Objective Lens, .95NA Nikon Instruments Inc.
Incubator assembled from laser-cut acrylic and optomechanical components Custom (supp. mat., Thorlabs
Multiwell microplate insert Applied Scientific Instrumentation

Microfluidic Controls/Accessories

Device holder Custom-machined (supp. mat.)
Microfluidic valve controller Elveflow or Custom-built
Pressure regulating flow controller Elveflow or Custom-built
Compression fittings - Tuohy Borst 1032, 1/32"-1/16", 3fr-5fr Microgroup Inc.
Custom manifold for 24-well plate Custom-machined (supp. mat.)
Custom manifolds for media reservoirs Custom-machined (supp. mat.)
Pressure regulator flow controller Elveflow or Custom-built

Consumables
Fluidic tubing - PTFE tubing ID:0.022±0.002" OD:0.034" Component Supply
Device adapter pins - 304/306 SS Tubing OD:0.025"xID:0.013"xL:0.75" New England Small Tube Corp.
Reservoir "spear" pin - 304/306 SS Tubing OD:0.025"xID:0.013"xL:6" New England Small Tube Corp.

Table 2. Parts List. Key materials to assemble acquisition hardware and microfluidic devices.
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