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Abstract

Despite the recent advances in high-throughput sequencing, analysis of the metagenome of the whole
microbial population still remains a challenge. In particular, the metagenome-assembled genomes (MAGs)
are often fragmented due to interspecies repeats, uneven coverage and vastly different strain abundance.
MAGs are usually constructed via a dedicated binning process that uses different features of input data
in order to cluster contigs that might belong to the same species. This process has some limitations and
therefore binners usually discard input contigs that are shorter than several kilobases. Therefore, binning
of even simple metagenome assemblies can miss a decent fraction of contigs and resulting MAGs oftentimes
do not contain important conservative sequences that might be of great interest of researcher.

In this work we present BinSPreader — a novel binning refiner tool that exploits the assembly graph
topology and other connectivity information to refine the existing binning, correct binning errors, propagate
binning from longer contigs to shorter contigs and infer contigs belonging to multiple bins. Furthermore,
BinSPreader can split input reads in accordance with the resulting binning, predicting reads potentially
belonging to multiple MAGs. We show that BinSPreader could effectively complete the binning, increasing
the completeness of the bins without sacrificing the purity and could predict contigs belonging to several
MAGs.
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1 Introduction
Amount of microbial organisms which can be easily cultivated is relatively small in proportion to the Earth’s

total diversity [28], therefore most of the Earth’s microbiota proves difficult for analysis. Whole metagenomic
shotgun sequencing, which allows for a comprehensive analysis of microbial DNA from a sample, provides an
alternative method of understanding of the functional potential and genetic composition of different microor-
ganisms that have not been previously cultured. Metagenomic sequencing libraries are then assembled using
metagenomic assemblers, such as metaSPAdes [26] or MEGAHIT [12] for short read libraries, or metaFlye [11]
for long read libraries.

In order to extract useful information from complex metagenomic assemblies, a process called binning is
used. State-of-the-art binners use all different kinds of information including nucleotide content, observed
contig abundance, paired-end read connectivity and other connectivity (e.g. from Hi-C links [5]) to cluster
contigs that might belong to the same species. However, this kind of information could only be considered
reliable for long contigs and therefore the majority of binners discard contigs that are shorter than several
kilobases. Nevertheless, the set of contigs could not be considered as the ultimate result of a metagenomic
assembly. Indeed, the complete information about the assembly is provided via the assembly graph. Usually
the edges of an assembly graph are the maximal non-branching genomic sequences (unitigs) and the resulting
contigs are paths in this assembly graph obtained after the repeat resolution process. Recent development of
such assembly graph-aware alignment tools like SPAligner [7], PathRacer [34], GraphAligner [29] among the
others shows that the proper utilization of the assembly graph could significantly improve the obtained results.

To date, it seems that the connectivity information between the contigs in the assembly graph is ignored
by the majority of the common binning tools like MetaBAT2 [10], MetaWrap [37], and VAMB [25] poten-
tially reducing the overall precision of the results. Recently developed graph-aware binning refining tools such
as METAMVGL [39], MetaCoAG [15] and Binnacle [21] also do not utilize the assembly graph in the usual
sense of the term. Instead they are relying on the so-called scaffold graph that only preserves the connectiv-
ity information between different scaffolds. However, the original assembly graph contains more information
including the multiplicity of edges and the set of edges that comprise a contig. In order to utilize this greater
amount of information we suggest using the original assembly graph instead of scaffold graph. This brings to
us many opportunities such as multiple binning of individual edges, binning correction and more precise bin
label propagation (from edge to edge and not from scaffold to scaffold).

Standard MAG quality assessment tools, such as AMBER [18] and CheckM [27] do not assess MAGs for the
presence of important sequences, such as mobile genetic elements (MGEs), antibiotic resistance genes (AMR)
and CRISPR arrays, that have very high agricultural or clinical importance. As such, MAGs with over 80%
completeness as reported by AMBER or CheckM may contain less than 45% of genomic islands and less than
30% of plasmid sequences [14]. Mobile genetic elements are commonly flanked by direct repeats [30], and are
therefore located on short repetitive edges of the assembly graph and associated with multiple organisms.

Besides MGEs, MAGs often miss contigs containing rRNA genes. Bacterial genomes contain multiple copies
of ribosomal genes forming tangled repeat structures which are often not assembled well. In a metagenome the
situation is further complicated by the presence of conservative parts of rRNA genes shared between different
species. Such sequences form intra- and interspecies repeats and therefore the overall recovery of a decent-
length rRNA genes sequences from a metagenome assembly is quite low [17]. Finally, the contigs containing
rRNA genes have different abundance (due to high copy number) and nucleotide content effectively preventing
the majority of binning attempts. As such, inclusion of short edges of the assembly graph into MAGs is crucial
for detecting MGE and rRNA sequences.

In this work we show that assembly graph representation provides more accurate multiple binning of short
edges that scaffold graph representation. We present a new software tool BinSPreader which can produce
refined MAGs from initial binning by combining metagenomic assembly graph and sequencing data. We show
that BinSPreader can accurately predict contigs belonging to multiple bins and besides improving the usual
completeness / purity metrics of MAGs is able to recover MGE and rRNA sequences more accurately than
state-of-the-art binning refining tools. BinSPreader is available from cab.spbu.ru/software/binspreader.
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2 Results
2.1 Datasets

We used several mock metagenomic datasets, simulated metagenomes as well as real metagenomes for the
refining evaluation. These metagenomes are derived from different communities exhibiting different microbial
composition, abundance profiles, genome characteristics and similarity intended to provide a broader scope of
binning data features.

MBARC26 [36] is composed of 23 bacterial and 3 archaeal strains isolated from heterogeneous soil, aquatic
environments as well as human, bovine and frog microbiota. The genomes of these species span a wide range
of genome sizes (1.8–6.5 Mbp), GC-contents (28.4–72.7%) and repeat contents (0–18.3%).

BMock12 [32] includes DNA from 12 bacterial strains belonging to actinobacterial, flavobacterial and pro-
teobacterial taxa that also display a large spread of genome properties. Apart from this, it includes three
bacteria with genomes of high %GC and average nucleotide identity (ANI) which complicates the assembly and
binning.

ZymoBIOMICS Microbial Community Standard (referred as Zymo) is a mock community consisting of eight
bacterial and two fungal strains. These organisms are lysed in varying degrees and significantly differ in terms
of the completeness of sample DNA extraction, which is a determining factor for sequencing and downstream
analysis.

The benchmarking dataset from [14] (referred as magsim-MGE) contains paired-end Illumina sequencing
data of 30 bacteria with randomly assigned relative abundance. It is designed to display a high diversity of
genetic features, such as plasmids and genomic islands.

We assembled each of these datasets from Illumina shotgun sequencing using metaSPAdes 3.15.3 and used
reference genomes of included bacteria, archaea and yeasts to construct ground truth binning standards for
benchmark studies.

simHC+ simulated dataset [38] was derived out of genome assemblies of 100 bacterial species that mimics
high-complexity communities lacking dominant strains. As no original reads for this dataset was available, we
used metagenomic assembly, abundance profiles and ground truth binning standard as provided in MetaCoAG
paper [15].

IC9 is a real clinical gut metagenome of a chronically critically ill patient collected in a critical care unit.
The dataset contains both paired-end and Hi-C data which was crucial for better resolution of MAGs [8]. The
metagenome is harboring many antibiotic-resistant strains with elevated levels of horizontal gene transfer. The
dataset was assembled as described in [8].

Sharon dataset [33] contains the metagenomic sequencing data of pre-born infant fecal samples collected
across 18 time points. All these sequencing libraries were co-assembled together using metaSPAdes 3.15.3 before
binning and refining.

2.2 Evaluated approaches
We benchmarked BinSPreader against state-of-the-art graph-aware binning refiners METAMVGL [39],

MetaCoAG [15] and Binnacle [21], as well as consensus-based refiner DAS_TOOL [35]. While all five binning
refiners require metagenomic assembly, their requirements for other types of input data differ.

MetaCoAG, Binnacle, and BinSPreader require assembly graph in GFA format as an input. METAMVGL
utilizes assembly graph in obsolete FASTG format which makes it impossible to use on assembly graphs pro-
duced by e.g. metaFlye. METAMVGL, Binnacle, DAS_TOOL and BinSPreader require initial binning
to refine, while MetaCoAG produces initial binning internally using provided coverage profiles. Paired-end
read library is required for both METAMVGL and Binnacle as a source of connectivity information between
scaffolds and for BinSPreader input paired-end library may be provided optionally to supplement assembly
graph links.

Binning refining certainly depends on the quality of the initial binning being refined: no refining procedure
could “invent” new bins. In order to reduce the variation of the results that might depend on the initial binning
we used three state-of-the-art binners MetaBAT2 [10], MetaWrap [37] (which internally bins using MetaBAT2,
CONCOCT and MaxBin2 and produces some sort of consensus binning) and VAMB [25] to produce three
initial binnings for METAMVGL and BinSPreader. Because Binnacle is compatible with a limited number
of binners, we used it with MetaBAT2 only. Unless stated otherwise, input metagenomic assembly graph was
constructed using metaSPAdes 3.15.3 [26].

Resulting binnings of mock and simulated samples were analyzed with AMBER [18]. AMBER assessment
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of bin quality is based on annotation of metagenomic contigs using the reference genomes provided as a “gold
standard binning”. Contig alignment to reference genomes was performed using metaQUAST [19]. Evaluation
of real metagenomes without references were done via CheckM [27]. AMR genes were searched using RGI 5.2.1
with CARD database 3.1.4 [16]. CRISPRs were detected using MinCED 0.4.2 [1]. rRNA were annotated with
Barrnap 0.9 [31].

2.3 Completeness, contamination and F1
In order to benchmark BinSPreader against state-of-the-art binning refining tools, namely METAMVGL,

MetaCoAG, and Binnacle, we analyzed the average (mean) purity, completeness and F1-score of the binning
results calculated by AMBER (at the nucleotide level) for four synthetic datasets. To complement these metrics
we also took into account the number of recovered high-quality genomes with > 90% completeness and < 5%
contamination as reported by AMBER. Individual F1-scores for refined bins across all datasets can be found
in Supplementary Figures (1, 2, 3, 4).

On magsim-MGE dataset MetaBAT2, VAMB and MetaWRAP recovered very pure bins with average purity
taking values from at least 97.2% for MetaBAT2 to 99.9% for VAMB and MetaWRAP (refer to Supplementary
Table 1 for all AMBER metrics of this dataset). Yet these binnings had very low average completeness with
maximum value of 69.2% for MetaBAT2 and minimum of 43.5% for VAMB. This poor trade-off between purity
and completeness is indicated by the moderate values of the mean F1 score. Best-performing binning tool
MetaBAT2 resulted in F1 score of 80.8% and recovered 12 high-quality out of 30 total genomes, the worst-
performing tool was VAMB with an F1 score of only 60.6% and 8 recovered genomes.

Although refining of initial bins with METAMVGL and BinSPreader led to a minor decrease in average bin
purity (no more than 3% for METAMGVL and 1% for BinSPreader across all bins), it significantly reduced
the number of unbinned contigs and increased average bin completeness. Bins refined with METAMGVL and
BinSPreader had average completeness ranging from 50% for VAMB and MetaWRAP to 72% for MetaBAT2.
Refining MetaBAT2 bins using Binnacle did not affect bin purity compared to running MetaBAT2 alone, but
reduced average completeness. MetaCoAG produced bins with average purity of 97.5%, average completeness
of 47.3%, F1 score of 63.7% and 10 high-quality MAGs yielding results somewhat worse than several standalone
binners.

Of all binning and refining approaches MetaBAT2 bins refined using BinSPreader with paired-end reads
showed the best average F1 score of 85.0%, although metaWRAP bins refined using BinSPreader contained
more high-quality MAGs (14 for MetaWRAP + BinSPreader vs 12 for MetaBAT2 + BinSPreader).

Available data of simHC+ dataset allowed benchmarking the performance of BinSPreader against Meta-
CoAG only (refer to Supplementary Table 2 for all AMBER metrics) since no original paired-end reads were
available in MetaCoAG paper and therefore one cannot run METAMVGL or Binnacle using only assembly
graph and provided abundance profiles. For initial binnings we used VAMB bins as well as pre-computed bins
of MaxBin2, MetaBAT2. The initial bins had the average F1 scores 23.0%, 84.5%, and 91.7% for MetaBAT2,
MaxBin2 and VAMB, respectively. Poor value of F1 score for MetaBAT2 binning is a result of 13.0% average
bin completeness which is the lowest among all binners. Refining of MetaBAT2 with BinSPreader overall
increased bin completeness to 88.4% and F1 score to 76.3% but caused a major drop in average purity of bins.
VAMB showed the best balance between precision and sensitivity, although many of the contigs remained un-
labeled by VAMB. Refined with BinSPreader VAMB bins showed the increase of the F1 score value to 94.1%
and the number of high-quality MAGs increased from 56 to 61. MetaCoAG showed somewhat lower F1 score
of 86.7% and captured only 43 high-quality genomes, therefore BinSPreader + VAMB is the best-performing
pair for the simHC+ dataset.

Binning assessment of Zymo mock metagenome showed 100% average purity of MetaBAT2, VAMB, and
MetaWRAP bins (refer to Supplementary Table 3 for more details). Among these VAMB produced bins with
the highest average completeness of 96.5% and the highest value of F1 score of 98.2%. MetaWRAP and
MetaBAT2 recovered bins with poorer completeness of 78.8%, 66.2% and moderate F1 scores of 88.1% and
79.7%, respectively. Refining of MetaBAT2 bins with Binnacle decreased the value of average completeness
down to 60.6%. Refining with METAMGVL led to decrease of the purity of bins down to 88.4% for MetaBAT2
and no visible changes of VAMB and MetaWRAP bins. MetaCoAG showed better trade-off between precision
and sensitivity of binning yielding 85.0% F1 score but labeled fewer contigs than BinSPreader. BinSPreader
significantly increased bin completeness with negligible effect on purity value that is demonstrated by F1 scores
of 87.6% of refined MetaBAT2 bins, 97.5% of MetaWRAP and 99.7% of refined VAMB bins. Supplementing
BinSPreader with paired-end library allowed the increase of F1 score up to 100% on VAMB bins achieving
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the best binning result for Zymo dataset.
Binning results for the MBARC26 mock community are described in Supplementary Table 4. Initial

binnings showed balanced precision and sensitivity with average F1 value of 89.4% for MetaWRAP-produced
bins and 93% for VAMB and MetaBAT2. Refined bins produced by METAMVGL had lower quality than
initial binning of the MetaBAT2, VAMB and MetaWRAP alone. F1 score of bins recovered with Binnacle and
MetaBAT2 dropped from 93.2% down to 89.1%.

MetaCoAG showed better performance with 93.9% average purity, 92.6% average completeness and F1
score of 93.2%. F1 scores of BinSPreader refining of MetaBAT2 and VAMB bins were 94.7% and 94.5%,
respectively. BinSPreader had a major impact on MetaWRAP binning quality, raising average completeness
from 80.0% to 98.9% and decreasing an average purity from 99.8% to 92.3%. This binning approach showed
the highest value of F1 score of 95.5% among all tested tools.

Finally, we benchmarked BinSPreader on BMock12 mock dataset (refer to Supplementary Table 5 for all
AMBER metrics). Bins of initial binning tools had high average purity ranging from 96.5% for MetaWRAP
to 98.1% for VAMB and moderate average completeness taking values from 66.9% for MetaBAT2 to 79.3% for
MetaWRAP. The F1 scores were in the interval from 79.4% (MetaBAT2) to 87.1% (MetaWRAP). MetaCoAG
bins had lower average bin purity of 88.6% and correspondingly lower F1 score of 81.3%. Refining of bins
produced with MetaBAT2, VAMB, and MetaWRAP using METAMVGL and refining of MetaBAT2 with
Binnacle both led to considerable decline of all metrics as compared to the original bins. METAMVGL refining
of VAMB bins resulted in 9% less average purity and 8% less average completeness compared to the initial
VAMB bins. Of all refining tools, only BinSPreader effectively improved the quality of an input binning.
Average F1 scores of MetaBAT2, VAMB and MetaWRAP bins refined using BinSPreader had values of
89.5%, 94.3%, and 94.6%, respectively. MetaWRAP + BinSPreader also retrieved 7 high-quality MAGs out
of 11 total genomes, more than any other of the tools tested.

Summarizing the results on all datasets, graph-aware refiners METAMVGL and Binnacle either yield no no-
ticeable effect (magsim-MGE) or impaired the characteristics of the original binning (MBARC26, BMock12,
Zymo). MetaCoAG showed a decent ratio of precision to sensitivity but left large portions of contigs unbinned.
Exploiting the assembly graph to the fullest extent allowed BinSPreader to augment the bins with unbinned
contigs and improve their F1 score with the best trade-off between completeness and contamination. Moreover,
it also increased the number of complete MAGs represented with minimal contamination.

We need to outline that the performance of any binning refining tool including BinSPreader depends on
the quality of the input bins as the refiner cannot “invent” e.g. a missed bin. This pitfall is demonstrated on
BinSPreader refining of the simHC+ binning by MetaBAT2. Due to the extremely low completeness of the
initial binning BinSPreader failed to accurately perform contig labeling that caused additional contamination
of the bins.

In order to benchmark BinSPreader on real IC9 and Sharon datasets, we used mean purity, completeness,
and F1-score metrics, which were assessed using CheckM [27], as well as total number of bins. Individual F1-
scores for refined bins for IC9 and Sharon can be found in Supplementary Figures 10 and 11, respectively.

As reported in Supplementary tables 7 and 8, MetaWRAP showed the best average F1-score among the
initial binners for both IC9 and Sharon datasets (96.5% for IC9 dataset, 98.3% for Sharon). None of the
graph-based refiners, namely BinSPreader, METAMVGL, and Binnacle, showed any significant improvement
upon initial binnings for both real datasets, with the exceptions of BinSPreader complemented with Hi-
C reads for MetaBAT2 on IC9 dataset (64.7% average F1 score for MetaBAT2 against 69.6% average F1
for BinSPreader), and Binnacle-refined MetaBAT2 binning for Sharon dataset (81.3% for Binnacle against
76.6% for MetaBAT2). DAS_TOOL refining demonstrated the best increase in average F1-score for all initial
binnings. This, however, could be explained by consistent decrease in the number of bins after DAS_TOOL
refining due to filtering out bins with poor CheckM metrics. Specifically, MetaBAT reported 50 bins for IC9
dataset, while DAS_TOOL reported only 23 refined MetaBAT2 bins.

Negligible increase of CheckM purity and completeness metrics after graph-based refining for real datasets
could be explained by limitations in CheckM single-copy gene-based purity and completeness estimation (they
are essentially located on long contigs that are likely properly binned and no shorter contigs contribute to these
metrics) and by segmentation of metagenomic assembly graphs constructed for these datasets. Indeed, for
Sharon and IC9 datasets the mean number of links outgoing from an assembly graph edge is 1.62 and 0.51,
respectively, while for mock Zymo dataset the mean number of outgoing links is 2.71. Also the bins seem not
to cover the whole assembly (30-60% depending on the binner).

Still, even sparse assembly graphs provide BinSPreader with sufficient information to reconstruct different
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functional genes more efficiently compared to initial binning as we show below.

2.4 Conservative genes recovery
Efficient binning of rRNA still remains one of the greatest challenges in metagenomics as rybosomal RNA

gene clusters are hard to assemble due to a high number of intra- and interspecies repeats. Consequently,
contigs containing rRNA genes are usually small and belong to multiple genomes. Most of the binners do not
support assignment of one contig to multiple bins making it nearly impossible to recover sufficiently complete
set of rRNA genes for more than one genome, even if rRNA genes were lucky to be assembled completely.
We show how BinSPreader ability to propagate bin labels to small contigs and repeat regions as well as
multiple bin assignment could help in rRNA recovery. Beyond that, this approach could also help in genomic
islands (GI) recovery that contain regions that are important for clinical applications such as CRISPRs and
antimicrobial resistance (AMR) genes.

CRISPRs (Supplementary Table 9) are not very well assembled in MBARC26 and magsim-MGE datasets,
as 18% and 28% of them, respectively, are missing from the assemblies. Nevertheless, BinSPreader shows
the best performance recovering all repeat clusters for mock datasets regardless of refining mode. All stan-
dalone binners recover nearly equal amount of CRISPRs, but MetaCoAG manages to greatly surpass them on
MBARC26 (42 recovered CRISPRs against 33 for the best initial binner, MetaWRAP).

However, the most interesting dataset in terms of GI recovery is magsim-MGE as it was specifically designed
to showcase this problem [14]. Refining with BinSPreader using assembly graph alone does not significantly
increase the amount of recovered CRISPRs, but the usage of supplementary paired-end connectivity information
gives one of the best results among all binners and BinSPreader runs particularly well (17 recovered CRISPRs
out of 23 total assembled versus 13 without paired-end reads). On this dataset METAMVGL manages to recover
similar number of CRISPRs as BinSPreader.

The results of AMR genes recovery (Supplementary Tables 10, 11) are pretty much consistent with CRISPRs
recovery. BinSPreader and MetaCoAG still show the best performance, recovering every single assembled
AMR gene on mock datasets. In contrast with CRISPRs results, running BinSPreader with paired-end
information on magsim-MGE dataset yields the best result with MetaBAT2 as initial binner (138 recovered
CRISPRs out of 145 assembled), while the number of recovered AMR genes after refining with METAMVGL
was lower compared to initial MetaBAT2 binning (108 recovered genes after refining vs 115 original AMR
genes).

The influence of supplementary connectivity information on the binning refining productivity can be seen
on IC9 dataset, where Hi-C data is available in addition to paired-end reads (Supplementary Table 11).
BinSPreader provided with Hi-C links recovered the maximum amount of AMR genes among all binners
and refiners (191 recovered AMR gene out of 300 assembled). This result could be explained by presence of
Hi-C links between chromosomes and plasmids harboring AMR genes, allowing BinSPreader to propagate
bin labels to plasmidic contigs more accurately.

While the amount of recovered GI and functional elements appears to be an informative benchmark for
metagenomic studies, the final goal of most researches is to get as much high quality MAGs containing all these
elements as possible. In order to make a high-level assessment of MAG recovery, we applied MAG reporting
standards developed by the Genomic Standards Consortium [2]. MIMAG standard uses different levels of
genome completeness and contamination as well as rRNA gene presence. Depending on these metrics MAGs
are divided into several groups including Medium-quality draft (≥ 50% completeness, <10% contamination)
and High-quality draft (>90% completeness, <5% contamination, full set of rRNA genes and at least 18 tRNA).
Since rRNA recovery is primarily limited by its complete assembly, we constructed perfect binning from input
assemblies that comprises MAGs with 100% purity and 100% completeness to use it as reference. We also
added the second type of High-quality MAGs somewhat lowering the standard: we require a complete set of
16S or 18S rRNAs as these particular rRNA genes are of most importance for further taxonomic annotation.

Results obtained for Zymo and BMock12 datasets (Supplementary Figures 12, 13) emphasize that the
assembly quality plays a crucial role in rRNA recovery. Only one High-quality MAG could be obtained from
BMock12 assembly due to the fragmentation of rRNA gene contigs and only 2 High-quality MAGs (including
only 16S rRNA) could be recovered from Zymo (Supplementary Tables 12, 14) in general. Still, BinSPreader
was able to recover these MAGs from VAMB bins with the help of supplementary paired-end connectivity
information. Also BinSPreader refining enriches MetaBAT2-produced bins with medium-quality MAGs
(Supplementary Figure 12) for Zymo dataset.

On MBARC26 and magsim-MGE datasets (Supplementary Figures 14, 15) we can observe a great im-
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provement in High-quality MAG recovery after the refinement with BinSPreader in multiple binning mode.
In comparison with initial bins, BinSPreader refining clearly led to saturation of MAGs with rRNA genes
and other small contigs, rather than increasing a number of medium-quality MAGs. The usage of multiple
binning approach increases a number of high quality MAGs almost down to assembly level.

Particularly, refining of VAMB binning of MBARC26 dataset resulted in recovery of all 4 possible high
quality MAGs. Different variations of BinSPreader modes yield 1 high quality MAG with the full set
of rRNA in the worst case, which is still unattainable for the most binners, moreover all BinSPreader runs
increased a number of high quality MAGs containing only 16S rRNA dramatically, especially when multiple bin
assignment mode was used. Even greater improvements could be observed in refining of binning results obtained
on magsim-MGE dataset. BinSPreader manages to recover all high quality MAGs using metaWRAP and
VAMB bins without losing any medium quality MAGs. In addition, BinSPreader recovers 16S rRNA for
almost for every MAG in VAMB and MetaWRAP-produced bins. Refining MetaBAT2-produced bins using
paired-end connectivity information leads to recovery of five new medium quality MAGs.

On the real IC9 metagenome, BinSPreader retrieved all 16S and 23S rRNA genes present in the assembly
regardless of initial binning and genome fraction (GF) as shown in Supplementary Table 16, while the second-
best refiner-binner combination, bin3C + DAS_TOOL, reconstructed only 4 23S rRNA out of 6 and 2 16S
rRNA out of 3 (for rRNA genes assembled at 90% GF). Overall, BinSPreader recovered 71 rRNA genes out
of 73 (against 36 for the next best refiner, MetaCoAG). On the Sharon dataset BinSPreader supplemented
with paired-end reads retrieved 20 out of 29 of all rRNA genes assembled with at least 50% GF, while second
best refiner, MetaCoAG, recovered only 6 rRNA genes (see Supplementary Table 17).

2.5 Binning refining supplemented with paired-end and Hi-C linkage
To assess the effectiveness of paired-end reads information for binning refining, we used paired-end read

libraries available for Zymo, MBARC, Bmock12, and magsim-MGE datasets. We compared MetaBAT2,
VAMB, and MetaWRAP bins refined with BinSPreader supplemented with paired-end reads (BSP-PE mode)
and bins refined with BinSPreader provided with assembly graph only (BSP mode). We also assessed
Binnacle and METAMVGL refiners which utilize paired-end reads as well. We evaluated binning results using
AMBER [18] and reported F1-score of the initial and refined bins.

For magsim-MGE dataset, Supplementary Table 1 shows that BSP-PE results in higher F1-scores than BSP
for all three initial binners. For Zymo dataset, Supplementary Table 3 shows that BSP-PE resulted in higher
F1-score per sample than BSP for VAMB and MetaBAT2 binnigs (87.6% for BSP-PE versus 86.7% for BSP
for MetaBAT2, 100% for BSP-PE versus 99.8% for BSP for VAMB), and the same F1-scores for MetaWRAP
binning. For BMock12 dataset, BSP resulted in higher F1-score for MetaBAT2 and MetaWRAP datasets
than BSP-PE, but BSP-PE for VAMB binning showed the highest F1-score across all binners and refiners
(94.6% for BSP-PE versus second highest 94.2% for BSP), as shown in Supplementary Table 5. For MBARC
dataset, BSP-PE resulted in lower F1-scores than BSP for all three initial binners (Supplementary Table 4).
The possible reason for this is contamination in paired-end library for MBARC, since applying METAMVGL
and Binnacle to all three initial binnings resulted in lower F1-score (Supplementary Table 4). For all samples
and all initial binners, BSP-PE resulted in higher F1-scores than METAMVGL and Binnacle. F1-scores for
separate bins are reported in Supplementary Figures 1, 2, 3, 4.

The potential of Hi-C technology as a means to cluster metagenomic contigs into bins has been demonstrated
on both synthetic and real microbial communities [5, 6, 8]. We followed two approaches to analyze possible
integration of Hi-C technology and binning refining methods for MAG recovery.

First, we obtained initial binning for Zymo Hi-C library using dedicated Hi-C bin3C [5] binning tool and
refined bin3C binning using BinSPreader (in both BSP and BSP-PE modes). As shown in Supplementary
table 6, F1-scores reported by AMBER were higher for bin3C bins refined by BinSPreader (0.927 for BSP
and BSP-PE against 0.865 for unrefined bin3C bins).

Second, we used Zymo Hi-C links as an additional source of information for BinSPreader (BSP-HiC mode)
and benchmarked the results against BSP-PE and BSP modes for MetaBAT2, MetaWRAP, and VAMB bins.
For MetaBAT2 binning, BSP-PE showed highest F1-score (0.911), followed by BSP-HiC (0.903), and BSP
(0.896). For MetaWRAP and VAMB binnings, BSP, BSP-PE, and BSP-HiC resulted in similar F1-scores.

While BSP-HiC did not show any improvement upon BSP-PE in terms of standard contamination and
completeness metrics for Zymo dataset, AMR gene detection results for plasmid-rich IC9 dataset described
above (see Section 2.4) show that BSP-HiC can be used to reconstruct additional functional elements located
on the unbinned contigs that were not connected to the main genome on the assembly graph.
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2.6 MAG distance estimation using prob Jaccard index
Sometimes binners produce very pure but incomplete bins (results of section 2.3 shows that usually this is the

case of MetaBAT2 and MetaWRAP bins). After refining such bins tend to overlap on an assembly graph and
therefore the size of such overlap could potentially be used to decide whether one need to merge certain bins.
Also, overlapped labeling of the edges of assembly graph could measure possible contamination or otherwise
shared genome content.

Supplementary Figure 16 shows the hierarchical clustering of bin distance information calculated from Zymo
MetaBAT2 bins. One could easily see the bins of different genomes clustered together as well as significant (and
expected) overlap of E. coli and S. enterica bins. Supplementary Figure 17 shows the hierarchical clustering
of bin distance information calculated from BMock12 MetaBAT2 bins. Again one could see several bins of
the same species located together on the graph as well as significant bin overlap between two Micromonospora
strains as well as contamination of Marinobacter bins.

3 Methods
3.1 From scaffold binning to edge binning

Most binners output its results in a form of scaffold binning, i.e., a map B from a set of scaffolds P to a set
of bins C. This representation is not entirely accurate, since long scaffolds in a metagenomic assembly may
contain repetitive regions, which can belong to multiple species in a sample, and therefore in multiple bins. To
alleviate this, BinSPreader transforms the initial scaffold binning to the edge binning using assembly graph.
Let G be an assembly graph in GFA format consisting of a set of edges E(G), links L(G) between them, and
scaffolds P (G) with their corresponding paths in the assembly graph. Given edge ei ∈ E(G), let P (ei) ⊂ P (G)
be the set of scaffolds that contain ei, and C(ei) ⊂ C be the set of bin labels of P (ei). For assembly graph G
and scaffold binning B, BinSPreader transforms scaffold binning B to edge binning matrix Y , where

Yij =

{
1

|C(ei)| , if bin cj ∈ C(ei)

0, otherwise.
(1)

Here each row Yi represents a soft binning of edge ei, which can be interpreted as the containment probability
distribution over the set of bins. Edge binning represents a more fine-grained representation of initial binning
than scaffold binning, as repetitive edges may contain multiple bins if they are traversed by several paths
(Figure 1).

3.2 Link graph
While edges of the assembly graph G are used to store the initial binning and the end results, vertices

of the assembly graph provide minimal required connectivity information for BinSPreader. Connectivity
information is stored in a form of a weighted link graph H, where V (H) = E(G), E(H) = V (G) and the edge
weight Lij represents the weight of a link between assembly graph edges ei and ej . The higher Lij is, the more
likely is that ei and ej belong to the same bin. Initially BinSPreader uses adjacency matrix of an assembly
graph G for weights with Lij = 1 if the edges ei and ej are adjacent in G and zero otherwise.

Besides the adjacency weights, BinSPreader also by default considers the set of scaffold links: if two edges
are joined in a scaffold, but not adjacent in the graph we add the link in H (add edge and set Lij = 1) between
them. Usually such scaffold joins are made by an assembler to jump over coverage gaps or long unresolved
repeats. In both cases adding these links increases the contiguity of link graph and could help the binning
propagation across assembly gaps.

In addition to the assembly graph itself BinSPreader is able to construct links from paired-end and Hi-
C [13] libraries which can be provided optionally. Reads from a paired-end libraries and Hi-C libraries are
aligned using k-mer alignment similar to [3]. First, we index unique k-mers in the assembly graph. Then we
align a Hi-C read pair iff it contains two or more non-overlapping k-mers. We use k = 31 by default as most
31-mers in the metagenomic assembly graph are unique, but that value can be adjusted depending on the size
of the sample. We then increase the link weight Lij by the logarithm of the total number of read-pairs aligned
to ei and ej from all input libraries.

3.3 Binning refinement
Informally speaking, we say that an edge binning is smooth if soft bins associated with a pair of edges joined

by a link with high weight are similar. As such, binning refining problem can be defined as finding smooth edge
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Figure 1: Edge adjacency graph and scaffold graph. (Left) A partially unresolved intergenomic repeat in a
metagenomic assembly graph with initial binning. Three blue edges are assembled into a single contig, while two
red edges belong to different contigs that were assigned into a single bin. (Top) Scaffold graph representation of
the assembly graph, with vertices representing contigs and colors representing bins. Correction procedure might
erroneously reassign blue vertex to a red bin based on graph connectivity. (Bottom) Edge adjacency graph
representation of the assembly graph, with vertices representing assembly graph edges, and edges representing
shared vertices. Repetitive edge can be correctly assigned both to blue and red bins

binning F which is close in some sense to the initial edge binning Y . Given link graph H, we use a quadratic
form of normalized Laplacian of H as a standard spectral graph theory measure of smoothness [4, 23, 24]. Let
D be a degree matrix of H, and L be an adjacency matrix of H. Then we define edge binning smoothness as

S(H,F ) = tr (FTD−1/2(D − L)D−1/2F ).

We define binning refinement problem as

S(H,F ) +
n∑

i=1

µi∥Fi − Yi∥2 → min
F

, (2)

where the second term penalizes the distance between resulting binning F and original binning Y according to
regularization parameters defined separately for every edge.

We use iterative algorithm for optimizing cost function (2), which is similar to one from [22]. Let L̃ be the
normalized weight matrix D−1/2(D − L)D−1/2, where D is a degree matrix of H. Then let P = IαD̃

−1L̃,
where D̃ is a diagonal of L̃, I is an identity matrix of size |V (H)| × |V (H)|, and Iα is a diagonal matrix being
Iii = 1/µi. Initially, we set F (0) = Y . At each iteration, for every assembly edge ei the soft labels from
neighboring links (ei, ej) with weight Hij are added to the soft label of ei with coefficient Hij . At iteration
k + 1 we set

F (k + 1) = PF (k) + (I − Iα)Y (3)

As shown in [22], the obtained sequence F (k) will eventually converge to solution F̃ , which is produced as the
resulting edge binning.

We need to explicitly note that while all the matrices involved are quite large, they are extremely sparse and
there is no need to store and calculate them explicitly. The soft binning for each edge at iteration k (the rows
of F (k)) depends only on soft binnings of adjacent edges (which in ordinary de Bruijn graph case is not more
than 8) as well as normalized link weights. This enables computational and memory efficient way to perform
the iterations.

3.4 Choosing regularization parameters
The choice of per-edge regularization parameters αi = 1/µi is different for different working modes of Bin-

SPreader. Firstly, we always set αi = 1 for all repetitive edges (i.e. the edge that belongs to multiple
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scaffolds). As it could be easily seen from (3), the original binning for such edges will be ignored and soft bin-
ning for such edge is determined entirely via binning propagation. However, the binning from binned repetitive
edges will be propagated down to their neighbors. This ensures proper and fair binning in case of e.g. partially
unresolved repeats (see Figure 1 as an example).

Setting αi = 0 for edge ei would force use of original binning. This is done for all non-repetitive binned
edges in propagation mode of BinSPreader. In such case the original binning is essentially preserved and
only propagated further on to unbinned edges.

Setting 0 < αi < 1 for edge ei allows one to balance between preserving of the initial binning and propagating
the binning from adjacent edges. In correction mode of BinSPreader αi is set to 0.6 by default for all binned
edges longer than 1000 bp, for shorter edges the value of αi is gradually increasing up to αi = 1 for edges
of length 1. The motivation for this is as follows: while short edges might be unique and belong only to the
single scaffold, they likely repetitive and belong to unresolved repeats. The shorter the edge is, the higher its
likelihood of being repetitive and we equally treat all edges longer than 1000 bp. Certainly, the latter still
might be repetitive and this is what the default value of αi = 0.6 tries to accommodate.

3.5 Sparse binning & propagation
Binnings of real metagenomic datasets are typically sparse, since large datasets contain strains with high

enough coverage to contribute to metagenomic assembly, but not high enough to be binned using the abundance
and nucleotide profiles.

BinSPreader uses a special working mode of the binning refining algorithm for sparse binnings, where the
total length of initially binned contigs is significantly lower than the total assembly length. Below we show
why the standard mode of BinSPreader produces highly contaminated bins when refining sparse binnings
and describe the sparse mode of BinSPreader designed to alleviate that problem.

Given assembly graph G with the set of regularization parameters αi, and initial edge binning Y , we say
that edge ei is refinable, if αi ̸= 0. If initially unlabeled edge e is connected to initially labeled edge by a path
of refinable edges, it eventually will be labeled after applying binning refinement algorithm to graph G and
binning Y . Therefore, in the standard correction mode of BinSPreader with αi > 0 every unlabeled edge
residing in the same connected component with labeled edges will become labeled after the refining. As such,
refining of initially sparse (incomplete) binnings that cover only small part of G with n bins via the standard
correction mode of BinSPreader will result in assigning of the majority of contigs in the refined binning to
one or several of these same n initial bins potentially inflating and contaminating them.

To reduce the number of refinable edges while still allowing binning propagation, we adjust regularization
parameters αi for initially unlabeled edges with distance coefficients βi, reflecting assembly graph distance to
the closest initially labeled edge. Given assembly graph G and initial binning Y , let Dist(e, Y ) be the length
of shortest path in assembly graph G from edge e to the closest edge which is labeled in Y . We say that edge e
is distant, if Dist(e, Y ) > D, where D is distance threshold with default value 10000. To ensure that distance
coefficients βi change smoothly from 1 for labeled edges to 0 for distant edges we utilize the same binning
refining algorithm.

We introduce two bins, one for all labeled edges in G and another one for all distant edges. Then we run the
binning refining algorithm as in standard correction mode of BinSPreader and set βi to the obtained weight
of the first (“labelled”) bin. This makes the values of βi to gradually decrease from being 1 in case of initially
binned edge ei down to to 0 when moving out of binning edges on the graph.

For sparse propagation the regularization parameters are then set as α′
i = αiβi, where αi are regularization

parameter values for the standard correction mode of BinSPreader. This allows us to keep the initial binning
intact for the edges located “far away” from the binned ones.

In addition to adjusted regularization parameters, sparse mode of BinSPreader also adds a dedicated bin
for initially unbinned edges. However, while we allow the binning to propagated from binned edges down to
unbinned ones we need to prevent propagation of this special “unbinned” label. In order to do so we modify
the iteration procedure in sparse mode adjusting the weight matrix P .

3.6 Binning strategies: from edges back to scaffolds
After inferring refined edge binning F̃ , BinSPreader uses it to produce the scaffold binning F ′. Bin-

SPreader can output results either in single assignment or multiple assignment mode, and utilizes either
majority length or maximum likelihood strategy (default).

Given a scaffold s containing edges e1, . . . , em, and bin cj the binning strategy defines a score function
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Score(s, cj). For majority length strategy we define c(ei) = argmaxj F̃ij and use Score(s, cj) =
∑

ei:c(ei)=j

length(ei).

For maximum likelihood strategy Score(s, cj) =
∑

ei∈S

length(ei)×F̃ij . In single assignment mode BinSPreader

outputs a single bin label argmax
cj

Score(s, cj) for every scaffold s. In a multiple assignment mode, Bin-

SPreader outputs a set of labels {cj} with maximal Score′s, which cumulatively explain at least 95% of the
total Score. Note that raw Score(s, cj) values are reported by BinSPreader as well, so one could use them
for their own binning assignment procedures.

3.7 Measuring MAG distance using prob Jaccard Index
The typical measure to estimate the overlap of two sets is Jaccard index [9]. However, in case of Bin-

SPreader the sets (bins) are fuzzy as the result of binning refining is a set of weights that represent the bin
labeling probability distribution. In order to estimate possible overlap of bins on the assembly graph from the
soft binning we consider each bin as a probability distribution on graph edges and calculate the prob-Jaccard
index Jp from [20] among all pairs of bins. Jp has several nice features including scale invariance, it is not
lower than ordinary Jaccard index valus for discrete uniform distributions (ordinary sets) and 1−Jp is a proper
metric on probability distributions, meaning that Jp could be used as a similarity index in e.g. hierarchical
clustering and there will be no such effects like tree inversions.

3.8 Read extraction and MAG reassembly
In addition to providing multiple scaffold binning, accurate multiple edge binning provides an opportunity

to improve upon existing metagenomic assembly using read extraction from paired-end library provided to
BinSPreader. For read extraction we utilize an approach adopted from [37] from contigs down to edges.
Let F̃ be a refined multiple edge binning and Ej(F ) be a set of assembly graph edges ei that contain bin cj
with weight F̃ij > t, where t is a reassembly weight threshold with default value 0.1. We then align a set of
reads from paired-end library to edges Ej(F ) separately for every bin cj obtaining set of read-pairs Rj , which
includes all read-pairs where at least one read aligned to Ej(F ). Such set of reads could be further reassembled
or analyzed as necessary.

4 Discussion
Although metagenome-assembled genome binning methods based on TNF distance, coverage profiles, and

single-copy marker genes are useful for untangling complex bacterial communities as a whole, they face chal-
lenges with reconstruction of functional elements located in conservative genomic regions, such as rRNAs,
CRISPRs and AMR genes. This is unfortunate, given the phylogenetic and clinical relevance of these func-
tional elements. Conservative genomic regions are usually associated with short repetitive edges of metagenomic
assembly graph. Therefore, there is a clear need for metagenomic binners or refiners that enrich MAGs with
short and possible repetitive contigs.

BinSPreader is a binning refining tool that effectively utilizes assembly graph connectivity information and
predicts contigs belonging to several MAGs. We show that existing binning refining tools, which utilize scaffold
graphs instead of assembly graphs, are less effective than BinSPreader in terms of functional element recovery
(Supplementary tables 9 – 11) and in terms of rRNA genes recovery for artificial (Supplementary tables 12 – 15)
and real (Supplementary tables 16, 17) metagenomes. While BinSPreader does not show significant increase
in 16S/18S rRNA genes reconstruction compared to initial binning for BMock12 and Zymo datasets, we show
that for these datasets ability for rRNA recovery is limited mostly by assembly quality (Supplementary tables
12, 14). Experimental results on synthetic and simulated datasets show that BinSPreader also outperforms
existing refiners in terms of standard contamination and completeness metrics (Supplementary Figures 1 – 4).

In addition to MAG recovery, BinSPreader provides two additional features. First, the read splitting
feature, that takes into account possible overlap between MAGs and thus enables fuller MAG reconstruction
after reassembly. We also introduced a bin distance measure, that provides an overlap based estimation of
evolutionary distance between MAGs, thus potentially providing a novel source of information for taxonomic
classification as well as detecting possible bin contamination.
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Supplementary Figures

Supplementary Figure 1: F1 score and total length of MAGs for Zymo (top left), MBARC (top right), BMock12
(bottom left), and magsim-MGE (bottom right) datasets, arranged by descending order of F1 (seq) score
reported by AMBER. Initial binning was produced using metaBAT2 (solid line), refined binnings were produced
using DAS_TOOL, Binnacle, and METAMVGL (dotted lines), and three different modes of BinSPreader
(dashed lines).
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Supplementary Figure 2: F1 score and total length of MAGs for Zymo (top left), MBARC (top right), BMock12
(bottom left), and magsim-MGE (bottom right) datasets, arranged by descending order of F1 (seq) score
reported by AMBER. Initial binning was produced using VAMB (solid line), refined binnings were produced
using DAS_TOOL and METAMVGL (dotted lines), and three different modes of BinSPreader (dashed
lines).
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Supplementary Figure 3: F1 score and total length of MAGs for Zymo (top left), MBARC (top right), BMock12
(bottom left), and magsim-MGE (bottom right) datasets, arranged by descending order of F1 (seq) score re-
ported by AMBER. Initial binning was produced using MetaWRAP (solid line), refined binnings were produced
using DAS_TOOL and METAMVGL (dotted lines), and three different modes of BinSPreader (dashed lines).
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Supplementary Figure 4: F1 score and total length of MAGs for simHC+ dataset, arranged by descending order
of F1 (seq) score reported by AMBER. Initial binning was produced using MetaWRAP (top left), MaxBin2
(top right), and VAMB (bottom). Refined binnings were produced using BinSPreader (dashed line) and
MetaCoAG (dotted line).
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Supplementary Figure 5: F1 score distributions of magsim-MGE bins.
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Supplementary Figure 6: F1 score distributions of simHC+ bins.
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Supplementary Figure 7: F1 score distributions of Zymo dataset.

22

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 15, 2022. ; https://doi.org/10.1101/2022.02.14.480326doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.14.480326


Supplementary Figure 8: F1 score distributions of MBARC26 bins.
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Supplementary Figure 9: F1 score distributions of BMock12 bins.
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Supplementary Figure 10: F1 score distributions of IC9 bins.25
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Supplementary Figure 11: F1 score distributions of Sharon bins.
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Supplementary Figure 12: MIMAG for Zymo dataset. BSP denotes refining with BinSPreader in default
mode, BSP_M denotes BinSPreader with multiple binning and BSP_PE denotes BinSPreader with the
usage of supplementary paired-end connectivity information. perfect_binning – MAGs constructed from as-
sembly having 100% purity and completeness. High-quality MAGs are divided into MAGs containing at least
16S/18S (orange bars) and MAGs with complete set of rRNA (green bars). Dashed line indicates number of
reference genomes in dataset.
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Supplementary Figure 13: MIMAG for BMock12 dataset. BSP denotes refining with BinSPreader in
default mode, BSP_M denotes BinSPreader with multiple binning and BSP_PE denotes BinSPreader
with the usage of supplementary paired-end connectivity information. perfect_binning – MAGs constructed
from assembly having 100% purity and completeness. High-quality MAGs are divided into MAGs containing at
least 16S/18S (orange bars) and MAGs with complete set of rRNA (green bars). Dashed line indicates number
of reference genomes in dataset.
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Supplementary Figure 14: MIMAG for MBARC26 dataset. BSP denotes refining with BinSPreader in
default mode, BSP_M denotes BinSPreader with multiple binning and BSP_PE denotes BinSPreader
with the usage of supplementary paired-end connectivity information. perfect_binning – MAGs constructed
from assembly having 100% purity and completeness. High-quality MAGs are divided into MAGs containing at
least 16S/18S (orange bars) and MAGs with complete set of rRNA (green bars). Dashed line indicates number
of reference genomes in dataset.
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Supplementary Figure 15: MIMAG for magsim-MGE dataset. BSP denotes refining with BinSPreader in
default mode, BSP_M denotes BinSPreader with multiple binning and BSP_PE denotes BinSPreader
with the usage of supplementary paired-end connectivity information. perfect_binning – MAGs constructed
from assembly having 100% purity and completeness. High-quality MAGs are divided into MAGs containing at
least 16S/18S (orange bars) and MAGs with complete set of rRNA (green bars). Dashed line indicates number
of reference genomes in dataset.
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Supplementary Figure 16: Hierarchical clustering of Zymo MetaBAT2 refined bins using the prob Jaccard
distance between bin distributions on the assembly graph. The leafs are colored by reference and leaf numbers
are bin labels. E. coli and S. enterica bins have significant overlap on the assembly graph and therefore are
cross-contaminated.
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Supplementary Figure 17: Hierarchical clustering of BMock12 MetaBAT2 refined bins using the prob Jaccard
distance between bin distributions on the assembly graph. The leafs are colored by reference and leaf numbers
are bin labels. Two Micromonospora strains have significant overlap on the assembly graph and one of Mari-
nobacter bins is clearly contaminated.
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Supplementary Tables

Tool AC,
bp, %

AP,
bp, %

F1,
bp, %

% binned,
by length

% binned,
by # seq

# recovered genomes
depending on completeness
>50% >70% >90%

Gold standard 100.0 100.0 100.0 100.0 100.0 30 30 30
DAS Tool + MetaBAT2 +
MetaWRAP + VAMB 47.3 99.8 64.2 59.0 8.6 15 15 12

MetaBAT2 69.2 97.2 80.8 78.5 30.7 18 15 12
MetaBAT2 + BinSPreader 72.0 97.0 82.6 81.0 35.0 17 14 12
MetaBAT2 + BinSPreader-PE 75.8 96.6 85.0 84.1 44.3 23 14 12
MetaBAT2 + Binnacle 66.0 97.7 78.8 78.7 32.5 18 12 9
MetaBAT2 + DAS Tool 47.1 99.8 64.0 58.4 7.9 15 15 12
MetaBAT2 + METAMVGL 71.7 95.9 82.0 77.4 43.9 21 13 9
MetaCoAG 47.3 97.5 63.7 57.5 8.6 12 12 10
MetaWRAP 47.4 99.9 64.3 59.0 8.6 15 15 13
MetaWRAP + BinSPreader 50.9 99.1 67.3 62.4 12.2 14 14 14
MetaWRAP + BinSPreader-PE 53.0 97.7 68.7 63.6 15.2 13 13 13
MetaWRAP + DAS Tool 47.4 99.9 64.3 59.0 8.6 15 15 13
MetaWRAP + METAMVGL 49.6 97.1 65.7 59.5 15.4 11 11 10
VAMB 43.5 99.8 60.6 52.8 4.6 14 13 8
VAMB + BinSPreader 49.6 98.9 66.1 59.8 10.1 14 13 13
VAMB + BinSPreader-PE 52.2 97.4 67.9 62.1 13.9 13 13 12
VAMB + DAS Tool 30.9 99.9 47.1 32.5 2.1 10 10 6
VAMB + METAMVGL 49.6 97.5 65.7 59.3 14.8 13 12 11

Table 1: AMBER results for magsim-MGE dataset. AC denotes average completeness, AP denotes average
purity. The best results for each metrics are highlighted in bold.
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Tool AC,
bp, %

AP,
bp, %

F1,
bp, %

% binned,
bp

% binned,
seq

# recovered genomes
depending on completeness
>50% >70% >90%

Gold standard 100.0 100.0 100.0 100.0 100.0 100 100 100
MaxBin2 79.3 90.4 84.5 84.9 85.3 48 48 43
MaxBin2 + BinSPreader 87.0 84.9 85.9 100.0 99.9 41 41 39
MetaBAT2 13.0 98.3 23.0 14.8 0.8 8 4 4
MetaBat2 + BinSPreader 88.4 67.1 76.3 94.3 89.1 8 7 6
MetaCoAG 82.7 91.1 86.7 92.0 90.0 53 52 43
VAMB 91.4 92.0 91.7 95.2 63.8 66 65 56
VAMB + BinSPreader 97.1 91.3 94.1 99.9 98.9 63 63 61

Table 2: AMBER results for simHC+ dataset. AC denotes average completeness, AP denotes average purity.
The best results for each metrics are highlighted in bold.

Tool AC,
bp, %

AP,
bp, %

F1,
bp, %

% binned,
bp

% binned,
seq

# recovered genomes
depending on completeness
>50% >70% >90%

Gold standard 100.0 100.0 100.0 100.0 100.0 10 10 10
DAS Tool + MetaBAT2 +
MetaWRAP + VAMB 77.9 100.0 87.6 50.6 26.5 8 8 7

MetaBAT2 66.2 100.0 79.7 91.7 44.4 7 4 3
MetaBAT2 + BinSPreader 78.3 99.4 87.6 99.8 99.3 9 6 5
MetaBAT2 + BinSPreader-PE 79.8 100.0 88.8 100.0 100.0 9 6 5
MetaBAT2 + Binnacle 60.6 100.0 75.4 70.7 52.7 6 4 3
MetaBAT2 + DAS Tool 35.8 100.0 52.7 30.4 16.5 3 3 2
MetaBAT2 + METAMVGL 77.9 88.4 82.8 81.2 89.2 4 4 2
MetaCoAG 74.6 98.6 85.0 50.6 31.4 9 6 5
MetaWRAP 78.8 100.0 88.1 42.7 15.9 8 8 8
MetaWRAP + BinSPreader 99.7 95.4 97.5 99.8 99.4 7 7 7
MetaWRAP + BinSPreader-PE 99.9 95.1 97.5 100.0 100.0 7 7 7
MetaWRAP + DAS Tool 59.5 100.0 74.6 29.7 9.0 6 6 6
MetaWRAP + METAMVGL 66.5 94.3 78.0 80.9 93.3 5 3 1
VAMB 96.5 100.0 98.2 95.6 51.2 10 10 10
VAMB + BinSPreader 99.6 99.8 99.7 99.8 99.4 10 10 10
VAMB + BinSPreader-PE 100.0 100.0 100.0 100.0 100.0 10 10 10
VAMB + DAS Tool 49.1 100.0 65.9 23.9 7.7 5 5 5
VAMB + METAMVGL 78.0 94.8 85.6 86.3 94.5 7 5 3

Table 3: AMBER results for mock Zymo dataset. AC denotes average completeness, AP denotes average
purity. The best results for each metrics are highlighted in bold.
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Tool AC,
bp, %

AP,
bp, %

F1,
bp, %

% binned,
bp

% binned,
seq

# recovered genomes
depending on completeness
>50% >70% >90%

Gold standard 100.0 100.0 100.0 100.0 100.0 25 25 25
DAS Tool + MetaBAT2 +
MetaWRAP + VAMB 88.7 99.2 93.6 89.2 50.4 22 22 20

MetaBAT2 88.9 98.0 93.2 96.1 62.2 23 20 15
MetaBAT2 + BinSPreader 92.1 97.3 94.7 99.9 99.3 22 19 17
MetaBAT2 + BinSPreader-PE 91.0 96.2 93.5 100.0 99.7 20 17 14
MetaBAT2 + Binnacle 82.0 97.6 89.1 96.4 71.1 18 15 10
MetaBAT2 + DAS Tool 74.5 99.6 85.2 73.1 39.0 18 18 14
MetaBAT2 + METAMVGL 67.3 86.5 75.7 66.5 84.9 8 8 6
MetaCoAG 92.6 93.9 93.2 96.5 89.4 17 16 15
MetaWRAP 80.9 99.8 89.4 79.7 47.8 21 21 19
MetaWRAP + BinSPreader 98.9 92.3 95.5 99.9 99.3 18 18 17
MetaWRAP + BinSPreader-PE 96.3 92.3 94.2 100.0 99.7 18 18 17
MetaWRAP + DAS Tool 80.9 99.8 89.4 79.7 47.8 21 21 19
MetaWRAP + METAMVGL 69.5 90.1 78.5 69.8 87.4 8 8 5
VAMB 91.2 95.1 93.1 92.6 48.1 20 20 16
VAMB + BinSPreader 96.1 92.9 94.5 99.9 99.3 19 19 18
VAMB + BinSPreader-PE 95.3 92.7 94.0 100.0 99.7 19 19 17
VAMB + DAS Tool 72.8 99.9 84.2 71.9 36.1 19 19 16
VAMB + METAMVGL 65.8 89.4 75.8 67.5 80.4 9 8 6

Table 4: AMBER results for MBARC26 dataset. AC denotes average completeness, AP denotes average
purity. The best results for each metrics are highlighted in bold.

Tool AC,
bp, %

AP,
bp, %

F1,
bp, %

% binned,
bp

% binned,
seq

# recovered genomes
depending on completeness
>50% >70% >90%

Gold standard 100.0 100.0 100.0 100.0 100.0 11 11 11
DAS Tool + MetaBAT2 +
MetaWRAP + VAMB 77.9 98.4 86.9 86.5 37.6 9 9 5

MetaBAT2 66.9 97.7 79.4 91.8 34.5 7 7 2
MetaBAT2 + BinSPreader 84.2 95.5 89.5 99.8 97.1 6 6 2
MetaBAT2 + BinSPreader-PE 83.6 95.2 89.0 100.0 98.8 6 6 2
MetaBAT2 + Binnacle 49.5 94.8 65.1 87.5 53.4 3 2 1
MetaBAT2 + DAS Tool 57.4 96.3 71.9 71.8 21.8 6 6 2
MetaBAT2 + METAMVGL 74.7 85.1 79.5 71.0 87.5 3 2 1
MetaCoAG 75.1 88.6 81.3 94.8 65.8 5 5 4
MetaWRAP 79.3 96.5 87.1 92.0 40.7 8 8 6
MetaWRAP + BinSPreader 96.4 92.7 94.6 99.8 97.1 8 8 7
MetaWRAP + BinSPreader-PE 95.2 91.1 93.1 100.0 98.8 8 8 6
MetaWRAP + DAS Tool 79.3 96.5 87.1 92.0 40.7 8 8 6
MetaWRAP + METAMVGL 75.6 87.9 81.3 71.1 89.8 4 4 2
VAMB 77.9 98.1 86.8 91.0 31.7 8 8 3
VAMB + BinSPreader 95.2 93.4 94.3 99.8 97.1 6 6 5
VAMB + BinSPreader-PE 95.2 93.6 94.4 100.0 98.8 6 6 4
VAMB + DAS Tool 69.9 97.6 81.5 79.4 25.3 7 7 3
VAMB + METAMVGL 70.1 88.9 78.4 65.6 88.9 4 3 2

Table 5: AMBER results for BMock12 dataset. AC denotes average completeness, AP denotes average purity.
The best results for each metrics are highlighted in bold.
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Tool AC,
bp, %

AP,
bp, %

F1,
bp, %

% binned,
bp

% binned,
seq

# recovered genomes
depending on completeness
>50% >70% >90%

Gold standard 100.0 100.0 100.0 100.0 100.0 10 10 10
bin3C 96.1 96.7 96.4 88.3 59.5 7 7 6
bin3C + BinSPreader 99.6 96.5 98.0 100.0 99.7 7 7 7
bin3C + BinSPreader-PE 99.7 96.6 98.2 100.0 100.0 7 7 7

Table 6: AMBER results for Zymo dataset for bin3C binning. AC denotes average completeness, AP denotes
average purity. The best results for each metrics are highlighted in bold.

Tool # bins Average completeness % Average purity % Average F1 %
MetaBAT2 50 58.5 99.0 64.7
MetaBAT2 + BinSPreader 50 59.8 97.3 64.9
MetaBAT2 + BinSPreader-HiC 50 69.1 92.7 69.6
MetaBAT2 + BinSPreader-PE 50 60.1 97.3 65.4
MetaBAT2 + Binnacle 57 51.0 99.2 57.2
MetaBAT2 + DAS Tool 23 87.7 99.4 92.3
MetaBAT2 + METAMVGL 46 46.2 97.1 53.8
MetaCoAG 37 82.5 95.4 86.2
MetaWRAP 31 94.2 99.4 96.5
MetaWRAP + BinSPreader 31 94.7 95.7 94.9
MetaWRAP + BinSPreader-HiC 31 97.3 88.5 91.1
MetaWRAP + BinSPreader-PE 31 94.8 95.0 94.7
MetaWRAP + DAS Tool 28 94.7 99.4 96.8
MetaWRAP + METAMVGL 31 72.1 95.7 80.2
VAMB 25 86.3 99.5 90.7
VAMB + BinSPreader 25 91.3 93.4 90.5
VAMB + BinSPreader-HiC 25 98.9 78.2 84.1
VAMB + BinSPreader-PE 25 91.4 91.4 89.4
VAMB + DAS Tool 19 94.3 99.5 96.5
VAMB + METAMVGL 25 69.2 93.0 75.6
bin3C 168 17.9 99.8 18.6
bin3C + BinSPreader 168 18.3 99.4 18.8
bin3C + BinSPreader-HiC 168 21.9 98.1 22.0
bin3C + BinSPreader-PE 168 18.4 99.4 18.8
bin3C + DAS Tool 29 96.4 99.2 97.7
bin3C + METAMVGL 157 15.1 99.2 17.0

Table 7: CheckM results for IC9 dataset.
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Tool # bins Average completeness % Average purity % Average F1 %
MetaBAT2 12 72.2 97.7 76.6
MetaBAT2 + BinSPreader 12 73.1 95.6 76.3
MetaBAT2 + BinSPreader-PE 12 73.1 95.7 76.4
MetaBAT2 + Binnacle 11 77.4 96.9 81.3
MetaBAT2 + DAS Tool 6 90.5 96.9 93.4
MetaCoAG 9 88.9 94.7 91.3
MetaWRAP 8 97.5 99.2 98.3
MetaWRAP + BinSPreader 8 98.2 98.3 98.3
MetaWRAP + BinSPreader-PE 8 98.3 98.3 98.3
MetaWRAP + DAS Tool 7 97.8 99.1 98.4
VAMB 7 85.7 90.1 83.9
VAMB + BinSPreader 7 90.2 85.5 85.7
VAMB + BinSPreader-PE 7 90.2 85.3 85.6
VAMB + DAS Tool 5 95.6 98.7 97.0

Table 8: CheckM results for Sharon dataset.

Dataset/Binner MBARC BMock Zymo magsim-MGE
MetaBAT2 32 11 11 11

VAMB 31 13 12 8
metaWRAP 33 11 12 12
MetaCoAG 42 12 12 12

MetaBAT2-Binnacle 31 12 12 13
DAS TOOL (MetaBAT2) 26 5 5 11

DAS TOOL (VAMB) 28 8 8 8
DAS TOOL (metaWRAP) 33 11 8 12

DAS TOOL (MetaBAT2, metaWRAP, VAMB) 30 11 10 12
MetaBAT2-METAMVGL 35 12 10 17

VAMB-METAMVGL 36 14 8 14
metaWRAP-METAMVGL 36 14 6 16

MetaBAT2-BinSPreader 44 17 12 13
VAMB-BinSPreader 44 17 12 11

metaWRAP-BinSPreader 44 17 12 14
MetaBAT2-BinSPreader-PE 44 17 12 17

VAMB-BinSPreader-PE 44 17 12 13
metaWRAP-BinSPreader-PE 44 17 12 16

MetaBAT2-BinSPreader-Multiple 44 17 12 13
VAMB-BinSPreader-Multiple 44 17 12 11

metaWRAP-BinSPreader-Multiple 44 17 12 14
Assembly 44 17 12 23

Reference genomes 54 19 12 32

Table 9: Numbers of recovered CRISPRs for mock metagenomes and magsim-MGE dataset. BinSPreader-
PE denotes refining mode of BinSPreader utilizing additional paired-end links, and BinSPreader-Multiple
denotes refining mode with multiple binning of contigs (but without paired-end data). Best results are high-
lighted in bold.
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Dataset/Binner MBARC BMock Zymo magsim-MGE
MetaBAT2 130 8 122 115

VAMB 104 8 129 76
metaWRAP 54 8 130 102
MetaCoAG 138 6 133 106

MetaBAT2-Binnacle 135 7 129 117
DAS TOOL (MetaBAT2) 17 5 29 101

DAS TOOL (VAMB) 22 7 36 20
DAS TOOL (metaWRAP) 54 8 45 102

DAS TOOL (MetaBAT2, metaWRAP, VAMB) 55 8 81 102
MetaBAT2-METAMVGL 103 5 95 108

VAMB-METAMVGL 66 5 111 97
metaWRAP-METAMVGL 121 5 63 92

MetaBAT2-BinSPreader 139 8 133 135
VAMB-BinSPreader 139 8 133 112

metaWRAP-BinSPreader 139 8 133 121
MetaBAT2-BinSPreader-PE 139 8 138 138

VAMB-BinSPreader-PE 139 8 138 124
metaWRAP-BinSPreader-PE 139 8 138 124

MetaBAT2-BinSPreader-Multiple 139 8 133 135
VAMB-BinSPreader-Multiple 139 8 133 112

metaWRAP-BinSPreader-Multiple 139 8 133 121
Assembly 139 8 138 145

Reference genomes 153 11 182 220

Table 10: Numbers of recovered AMR genes for mock metagenomes and magsim-MGE dataset. BinSPreader-
PE denotes refining mode of BinSPreader utilizing paired-end links, and BinSPreader-Multiple denotes
refining mode with multiple binning of contigs (but without paired-end data). Best results are highlighted in
bold.
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Binner Genes recovered
MetaBAT2 70

VAMB 54
metaWRAP 70
MetaCoAG 134

Bin3C 127
MetaBAT2-Binnacle 73

DAS TOOL (MetaBAT2) 51
DAS TOOL (VAMB) 49

DAS TOOL (metaWRAP) 65
DAS TOOL (Bin3C) 115

MetaBAT2-METAMVGL 139
VAMB-METAMVGL 131

metaWRAP-METAMVGL 136
Bin3C-METAMVGL 146

MetaBAT2-BinSPreader 160
VAMB-BinSPreader 145

metaWRAP-BinSPreader 156
Bin3C-BinSPreader 165

MetaBAT2-BinSPreader-PE 161
VAMB-BinSPreader-PE 146

metaWRAP-BinSPreader-PE 157
Bin3C-BinSPreader-PE 166

MetaBAT2-BinSPreader-HiC 191
metaWRAP-BinSPreader-HiC 191

VAMB-BinSPreader-HiC 191
Bin3C-BinSPreader-HiC 191

Assembly 300

Table 11: Numbers of recovered AMR (AntiMicrobial Resistance) genes for IC9 dataset. BinSPreader-PE
denotes refining mode of BinSPreader utilizing paired-end links, and BinSPreader-HiC denotes refining
mode utilizing Hi-C links.
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Zymo
Binner GF >50% GF >90%

MetaBAT2 0 0
VAMB 0 0

metaWRAP 0 0
MetaCoAG 2 1

MetaBAT2-Binnacle 0 0
DAS TOOL (MetaBAT2) 0 0

DAS TOOL (VAMB) 0 0
DAS TOOL (metaWRAP) 0 0

DAS TOOL (MetaBAT2, metaWRAP, VAMB) 0 0
MetaBAT2-METAMVGL 1 1

VAMB-METAMVGL 1 1
metaWRAP-METAMVGL 2 1

MetaBAT2-BinSPreader 4 1
VAMB-BinSPreader 4 1

metaWRAP-BinSPreader 4 1
MetaBAT2-BinSPreader-PE 5 2

VAMB-BinSPreader-PE 5 2
metaWRAP-BinSPreader-PE 5 2

MetaBAT2-BinSPreader-Multiple 4 1
metaWRAP-BinSPreader-Multiple 4 1

VAMB-BinSPreader-Multiple 4 1
Assembly 5 2

Table 12: Number of 16S/18S rRNA genes depending on their genome fraction (GF) threshold on Zymo
dataset. The value of GF indicates the length of the assembled gene in relation to full gene. BinSPreader-PE
denotes refining mode of BinSPreader utilizing paired-end links, and BinSPreader-Multiple denotes refining
mode with multiple binning of contigs.
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magsim-MGE
Binner GF >50% GF >90%

MetaBAT2 1 1
VAMB 1 1

metaWRAP 2 2
MetaCoAG 7 6

MetaBAT2-Binnacle 2 2
DAS TOOL (MetaBAT2) 1 1

DAS TOOL (VAMB) 1 1
DAS TOOL (metaWRAP) 2 2

DAS TOOL (MetaBAT2, metaWRAP, VAMB) 2 2
MetaBAT2-METAMVGL 8 5

VAMB-METAMVGL 8 4
metaWRAP-METAMVGL 8 4

MetaBAT2-BinSPreader 20 17
VAMB-BinSPreader 18 16

metaWRAP-BinSPreader 18 16
MetaBAT2-BinSPreader-PE 20 17

VAMB-BinSPreader-PE 19 17
metaWRAP-BinSPreader-PE 19 17

MetaBAT2-BinSPreader-Multiple 20 17
metaWRAP-BinSPreader-Multiple 18 16

VAMB-BinSPreader-Multiple 18 16
Assembly 23 18

Table 13: Number of 16S/18S rRNA genes depending on their genome fraction (GF) threshold on magsim-
MGE dataset. The value of GF indicates the length of the assembled gene in relation to full gene. BinSPreader-
PE denotes refining mode of BinSPreader utilizing paired-end links, and BinSPreader-Multiple denotes
refining mode with multiple binning of contigs.
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BMock12
Binner GF >50% GF >90%

MetaBAT2 0 0
VAMB 0 0

metaWRAP 0 0
MetaCoAG 3 1

MetaBAT2-Binnacle 2 0
DAS TOOL (MetaBAT2) 0 0

DAS TOOL (VAMB) 0 0
DAS TOOL (metaWRAP) 0 0

DAS TOOL (MetaBAT2, metaWRAP, VAMB) 0 0
MetaBAT2-METAMVGL 0 0

VAMB-METAMVGL 0 0
metaWRAP-METAMVGL 0 0

MetaBAT2-BinSPreader 4 1
VAMB-BinSPreader 4 1

metaWRAP-BinSPreader 4 1
MetaBAT2-BinSPreader-PE 4 1

VAMB-BinSPreader-PE 4 1
metaWRAP-BinSPreader-PE 4 1

MetaBAT2-BinSPreader-Multiple 4 1
metaWRAP-BinSPreader-Multiple 4 1

VAMB-BinSPreader-Multiple 4 1
Assembly 4 1

Table 14: Number of 16S/18S rRNA genes depending on their genome fraction (GF) threshold on BMock12
dataset. The value of GF indicates the length of the assembled gene in relation to full gene. BinSPreader-PE
denotes refining mode of BinSPreader utilizing paired-end links, and BinSPreader-Multiple denotes refining
mode with multiple binning of contigs.
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MBARC26
Binner GF >50% GF >90%

MetaBAT2 2 1
VAMB 3 1

metaWRAP 3 1
MetaCoAG 12 9

MetaBAT2-Binnacle 7 3
DAS TOOL (MetaBAT2) 2 1

DAS TOOL (VAMB) 3 1
DAS TOOL (metaWRAP) 3 1

DAS TOOL (MetaBAT2, metaWRAP, VAMB) 3 1
MetaBAT2-METAMVGL 0 0

VAMB-METAMVGL 0 0
metaWRAP-METAMVGL 0 0

MetaBAT2-BinSPreader 16 9
VAMB-BinSPreader 16 9

metaWRAP-BinSPreader 16 9
MetaBAT2-BinSPreader-PE 16 9

VAMB-BinSPreader-PE 16 9
metaWRAP-BinSPreader-PE 16 9

MetaBAT2-BinSPreader-Multiple 16 9
metaWRAP-BinSPreader-Multiple 16 9

VAMB-BinSPreader-Multiple 16 9
Assembly 16 9

Table 15: Number of 16S/18S rRNA genes depending on their genome fraction (GF) threshold on MBARC26
dataset. The value of GF indicates the length of the assembled gene in relation to full gene. BinSPreader-PE
denotes refining mode of BinSPreader utilizing paired-end links, and BinSPreader-Multiple denotes refining
mode with multiple binning of contigs.
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Tool 16S rRNA 23S rRNA 5S rRNA
>50% >80% >50% >80% >50% >80% Total rRNA

Assembly 7 3 12 6 54 47 73
MetaBAT2 0 0 0 0 7 6 7
MetaBAT2 + BinSPreader 7 3 12 6 49 40 68
MetaBAT2 + BinSPreader-HiC 7 3 12 6 52 44 71
MetaBAT2 + BinSPreader-PE 7 3 12 6 49 40 68
MetaBAT2 + Binnacle 0 0 0 0 7 7 7
MetaBAT2 + DAS Tool 0 0 0 0 5 4 5
MetaBAT2 + METAMVGL 1 0 3 1 28 23 32
MetaCoAG 5 3 10 5 21 19 36
MetaWRAP 0 0 0 0 8 8 8
MetaWRAP + BinSPreader 7 3 12 6 48 40 67
MetaWRAP + BinSPreader-HiC 7 3 12 6 52 44 71
MetaWRAP + BinSPreader-PE 7 3 12 6 48 40 67
MetaWRAP + DAS Tool 0 0 0 0 8 8 8
MetaWRAP + METAMVGL 0 0 3 1 26 21 29
VAMB 1 1 5 3 6 6 12
VAMB + BinSPreader 7 3 11 5 47 39 65
VAMB + BinSPreader-HiC 7 3 12 6 51 44 70
VAMB + BinSPreader-PE 7 3 12 6 47 40 66
VAMB + DAS Tool 1 1 5 3 5 5 11
VAMB + METAMVGL 0 0 3 0 22 18 25
bin3C 6 3 12 6 18 16 36
bin3C + BinSPreader 7 3 12 6 49 40 68
bin3C + BinSPreader-HiC 7 3 12 6 52 44 71
bin3C + BinSPreader-PE 7 3 12 6 49 40 68
bin3C + DAS Tool 5 2 8 4 15 14 28
bin3C + METAMVGL 0 0 3 1 21 17 24

Table 16: Number of rRNA genes in bins of the IC9 dataset depending on their genome fraction. The best
results are highlighted in bold.

Tool 16S rRNA 23S rRNA 5S rRNA Total rRNA>50% >90% >50% >90% >50% >90%
Assembly 7 1 6 4 16 14 29
MetaBAT2 0 0 0 0 1 1 1
MetaBAT2 + BinSPreader 3 1 3 3 12 10 18
MetaBAT2 + BinSPreader-PE 4 1 4 3 12 10 20
MetaBAT2 + Binnacle 1 0 0 0 1 1 2
MetaBAT2 + DAS Tool 0 0 0 0 1 1 1
MetaCoAG 3 0 1 1 2 2 6
MetaWRAP 1 0 0 0 1 1 2
MetaWRAP + BinSPreader 3 1 3 3 8 6 14
MetaWRAP + BinSPreader-PE 4 1 4 3 12 10 20
VAMB 1 1 1 1 2 2 4
VAMB + BinSPreader 3 1 3 3 8 6 14
VAMB + BinSPreader-PE 4 1 4 3 12 10 20
VAMB + DAS Tool 1 1 1 1 2 2 4

Table 17: Number of recovered rRNA genes in bins of the Sharon dataset depending on their genome fraction.
The best results for each metrics are highlighted in bold.
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