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Abstract. Enzymatic deficiencies cause the accumulation of toxic levels of substrates in a cell and

are associated with life-threatening pathologies. Restoring physiological enzymes levels by injecting

a recombinant version of the defective enzyme could provide a viable therapeutic option. However,

these enzyme replacement therapies have had limited success, as the recombinant enzymes are

less catalytically active, cause immune response and are difficult to manufacture. Moreover, the

vast sequence design space makes finding enzymes with desired therapeutic properties extremely

challenging.

Here, we present a new enzyme engineering framework, which builds on recent advances in deep

learning, variational calculus and natural language processing, to design variants of human enzymes

with biochemical features comparable to the wild type protein as a way to rapidly build targeted li-

braries for downstream screening. We applied our method to design variants of human Sphyngosine-

1-phosphate lyase (HsS1PL) as potential therapeutic treatments for nephrotic syndrome type 14

(NPHS14), and characterized their biochemical properties through extensive sequence and molecu-

lar dynamics analyses.

Introduction

Sphingolipids (SL), and their N-acylated derivatives, ceramides, are ubiquitous components of eu-

karyotic cell membranes where they play essential structural roles [1]. However, in recent years

evidence continues to grow that they are also important players in various other pathways, such as

cell signalling, survival and regulation [1, 2]. Moreover, studies of wide-ranging diseases, such as

Type II Diabetes (T2D), Alzheimer’s, inflammatory diseases [3], Parkinson’s [4] and early onset Amy-

otrophic lateral sclerosis (ALS, [5]) are beginning to link sphingolipid and ceramides in numerous
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pathologies [6].

Within the complex lipidomic inventory, sphingosine 1-phosphate (S1P) is a key molecule whose

metabolism is closely regulated [7]. An important enzyme that degrades S1P is the pyridoxal 5’-

phosphate (PLP)-dependent S1P lyase (S1PL) [8, 9]. It was shown that S1PL catalyses the con-

version of S1P to phospho-ethanolamine and (2E)-hexadecenal and both these products can be

recycled through various metabolic pathways. Therefore, S1PL is a key regulatory node to control

cellular S1P levels and metabolic flux through the pathway. S1PL has also been linked to many dis-

eases, including rare S1PL insufficiency syndromes [10]; in particular, autosomal recessive loss of

function mutations at the SGPL1 locus encoding the S1PL is associated with nephrotic syndrome

type 14 (NPHS14), which causes progressive renal dysfunction and leads to kidney failure [11, 12,

13]. Currently, no treatment is available for NPHS14, but S1P metabolism has been proposed as a

potential therapeutic target; in particular, restoring S1PL function by injecting a recombinant version

of the defective enzyme could prove useful, similar to existing enzyme replacement therapies for

sphingolipid related pathologies such as Gaucher’s and Fabry’s disease [14].

However, designing effective therapeutic enzymes has been challenging; in particular, synthetic

enzymes have had limited success [15], as they have poor catalytic activity, they are unstable in

blood, can cause immune response, and are difficult to deliver at a sustainable cost at the point of

care [16].

Identifying effective therapeutic enzymes could be possible by efficiently building targeted libraries

of variants that can be characterized downstream to select those with the desired therapeutic prop-

erties [17]. Variants of wild type enzymes can be identified using molecular approaches, such as Di-

rected Evolution (DE) [18], but they are usually expensive and low throughput, as they are limited by

the ability to rapidly build and screen variants at scale [19]. Computational approaches, instead, have

been instrumental in streamlining protein design by several orders of magnitude [20]. However, cur-

rent methods are usually limited by the number of homolog sequences and the corresponding quality

of multiple sequence alignments, along with the availability of known tertiary structures. Recently,

instead, deep generative learning has proven to be a viable solution to generate new, unobserved

functional proteins [21], either by learning evolutionary constraints from highly curated multiple se-

quence alignments [22] or directly from protein sequences [23, 24]. However, these methods require

a large number of sequences to be effectively trained and extensive computational resources.

Here we addressed these problems by developing a deep generative model, called Temporal

Dirichlet Variational Autoencoder (TDVAE), which allows to encapsulate enzyme features extracted

directly from their primary structure found across species into a low dimensional discrete-like, mul-
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timodal statistical space, that can be efficiently explored to generate variant enzymes with wild type

like biochemical properties.

We then used TDVAE to design a library of variants of the human Sphyngosine-1-phosphate

lyase (HsS1PL) and showed, through extensive sequence and molecular dynamics analyses, that

they retain wild type biochemical properties and are viable candidates for downstream experimental

testing.

Methods

A deep generative learning framework for enzyme engineering

Enzyme engineering requires learning how to sample the protein design space to identify amino acid

sequences associated with a desired catalytic function. Here we hypothesize that the design space

has a statistical structure, whose functional form and corresponding parameters are unknown but can

be learned from known enzyme sequences.

We hereby assume that the probability of observing an enzyme sequence x depends on a latent

random variable z, such that pθ(x, z) = pθ(x|z)pθ(z), with pθ(x|z) and pθ(z) being parametric distri-

butions. Thus, an enzyme sequence can be considered the result of a generative process, which

involves sampling a random variable ẑ from pθ(z), and then building a sequence x̂ by sampling from

the conditional probability pθ(x|ẑ); in our case, ẑ can be thought as a random variable encoding

properties associated with enzymes catalyzing a certain reaction.

However, learning the parameters θ of this class of models is usually intractable, since we cannot

evaluate or differentiate the marginal likelihood
∫
pθ(x|z)pθ(z) and the posterior probability

pθ(x|z)pθ(z)/pθ(x). Here we addressed these issues by using a Variational Autoencoder (VAE) archi-

tecture, where Neural Networks (NNs) are used to approximate pθ(x|z) and pθ(z|x), and Stochastic

Variational Inference (SVI) to learn the corresponding parameters [25]. Specifically, in a VAE frame-

work, pθ(z|x) is approximated by a parametric recognition model, qφ(z|x), which act as a probabilistic

encoder taking in input a sequence x and returning a distribution over the possible value of z. Con-

versely, in this framework, pθ(x|z) act as a probabilistic parametric decoder, which takes in input a

sample z and returns a distribution over the possible values of x.

Hereby, we introduce the parametric distributions used to model the latent space, the NNs used for

encoding and decoding biological sequences, and the optimization procedure used to fit our models.
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Parametric distributions for latent space sequence modelling

We argued that the ability of VAEs to effectively sample the protein design space and generate new

functional variant depends on the parametric family used to model the latent space.

VAEs have traditionally used a multi-variate Gaussian distribution, which has desireable mathe-

matical properties (e.g closed analytical forms for the gradient), which in turns makes parameters’

estimation efficient. However, protein sequences are mostly characterized by discrete properties

(e.g. family membership, species specificity), and sequences themselves are discrete mathematical

entities.

Thus, here we explored the use of the Dirichlet distribution as an alternative parametric distribution

to model the enzyme design space; this distribution has been routinely used in statistical sequence

analysis for many applications, including sequence clustering [26]. From a sequence design per-

spective, a Dirichlet distribution has the desirable property to efficiently capture data multi-modalities,

which is unfeasible with a Gaussian distribution [27], and thus theoretically superior to model the

vast multi modal enzyme design space. To test experimentally this hypothesis, we contrasted and

compared sequences generated by VAEs using both the classical multi-variate Gaussian and the

Dirichlet distribution.

Efficient encoding and decoding of biological sequences

A plethora of NNs have been proposed to model sequence data, including Recurrent Neural Network

(RNN)[28], Long Short Term Memory (LSTM)[29] and Gated Recurrent Unit (GRU)[30]; however,

as the length of the sequences increases, their ability to learn long-range relationships between

amino acids decreases [31], a drawback that makes them them unsuitable to handle long amino acid

sequences. Moreover, these architectures are computationally expensive to train [32], as they cannot

be readily parallelized, and thus unsuitable to scale over large sequence datasets.

Therefore, we used an alternative architecture for both the encoder and decoder, called Temporal

Convolutional Network (TCN), which overcomes these limitations and can be efficiently trained [33].

TCNs take sequences in input and return new ones of the same length, which are obtained by sam-

pling from a learned language model. Sequences of the same length are easily obtained by using a

standard 1-dimensional convolutional (1D-CONV) layer, using zero-padding to keep the output of the

subsequent layers equal to the input length. To condition the probability of a residue on the previously

observed ones, TCNs use causal convolution, where the residue at position t is obtained by apply-

ing convolution only with elements at positions t, ..., 0 in the previous layers. However, obtaining an

effective memory usually requires stacking multiple convolutional layers, thus making vanilla TCNs
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inefficient to train. The problem has been recently address by using dilated convolution. Let x be a

sequence of length n and f a kernel of size k, the dilated convolution F is computed as:

F (s) = (x ∗d f)(s) =
k−1∑
i=0

f(i) ∗ xs−di (1)

where d is the dilation factor, and represent the distance between two elements of the input that

are used to produce one element of the output. Stacking multiple temporal convolution layers with

exponentially increased dilation factors, allows to obtain full sequence coverage while keeping the

number of layers logarithmic in sequence length.

Variational inference of model parameters

In a Variational Autoencoder framework, NNs are used to compute the variational parameters φ for

a fixed family of probability distributions qφ(z|x) and model parameters θ for conditional likelihood

pθ(x|z). Here, we use SVI to find an approximate solution to the problem of maximizing the marginal

likelihood
∫
pθ(x|z)pθ(z) by maximizing the Evidence Lower BOund (ELBO) w.r.t both model param-

eters θ and variational parameters φ as follows:

L(φ, θ) = Eqφ(z|x)[log pθ(x|z)]−KL(qφ(z|x)||pθ(z))→ max
θ,φ

(2)

where KL is the Kullback-Liebler divergence, and the expected conditional likelihood Eqφ(z|x)[log pθ(x|z)]

is optimized with respect to maximum log-likelihood, as the probability distribution pθ(x|z) over the

amino acid space is categorical.

Depending on the choice of parametric families for qφ(z|x) and pθ(x|z) computing the expected

conditional likelihood can be challenging, is often intractable and requiring Monte Carlo (MC) ap-

proximation, whereas KL divergence can be computed analytically. Ultimately, we need to compute

a gradient of expected conditional likelihood w.r.t parameters φ: ∇φEqφ(z|x)[log pθ(x|z)]. However, in

this case, the gradient computation cannot be moved under the expectation operator because the

expectation is done w.r.t qφ(z|x), so we revert to the so called reparametization trick [25] to overcome

this problem, as follows:

∇φEqφ(z)[f(z)] = ∇φEp(ε)[f(gφ(ε))] ≈
1

L

L∑
l=1

∇φf(gφ(εl)) (3)

where εl ∼ p(ε)

where p(ε) is a distribution with no parameters to optimize and gφ(·) is a deterministic transforma-
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tion of the ε random variable into another z.

For many distributions, the re-parametrization trick is not applicable because no differentiable

function gφ(·) is available and other approaches, often involving numerical methods, are required.

The implicit reparametrization gradient, which can handle the vast majority of distributions and can

be applied to any distribution with numerically tractable Cumulative Density Function (CDF), can be

introduced as follows:

∇φEqφ(z)[f(z)] = Eqφ(z)[∇zf(z)∇φz] ≈
1

L

L∑
l=1

∇zf(zl)∇φzl (4)

where zl ∼ qφ(z)

where the gradient ∇φz = −(∇zSφ(z))−1(∇φSφ(z)), and Sφ(z) is called a standardization func-

tion, that is a function that transforms a sample from qφ(z) into a parameter-free sample. A CDF can

serve as a standardization function because it transforms samples from any distribution into stan-

dard uniform samples. Thus, in a univariate case, we can write ∇φz = −∇φF (z|φ)/pφ(z), where

F (·) and p(·) are CDF and Probability Density Function (PDF) of a distribution. However, the two

approaches differ in the multivariate case, where either a multivariate distributional transform is used

[34] or reparametrization gradients are viewed as solutions to a differential equation [35].

Implementation

Our VAE architecture uses TCNs both as encoder and decoder, and consisting of stacked residual

blocks with exponentially increased dilations. Each residual block consists of a pair of temporal

convolutional layers followed by weight normalization and dropout and a residual connection [33].

For temporal convolutions, we use intermediate layers of 256 hidden units, dilation factor d = 2,

kernel size k = 32, and subject to 20% dropout during training. The total number of stacked layers

was determined automatically as follows:

n =

⌈
log2

[
(L− 1)

2(k − 1)
+ 1

]⌉
(5)

where L is the length of the longest sequence. For representing amino acids and special tokens

denoting the start and the end of a sequence, we used a 32-dimensional embedding for amino acids

subject to a 20% dropout during training.

We tested this architecture using both a Gaussian and Dirichlet latent distribution, which will

be hereby denoted as Temporal Gaussian Variational Autoencoder (TGVAE) and Temporal Dirichlet
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Variational Autoencoder (TDVAE), respectively.

Results

We tested and evaluated our TGVAE and TDVAE models by designing a new set of human Sphyngosine-

1-phosphate lyase (HsS1PL) enzymes, a 568 residues enzyme critical for the physiological function

of the sphingolipid pathway. To do that, we first built a dataset of S1PL enzyme and corresponding

orthologous sequences in eukaryota from EggNog (v5.0.0, download date: 26/10/2021, [36]). We

then removed duplicates, sequences with non-canonical amino acids, and those shorter than 200

and longer than 600 residues. Taken together, our dataset consists of 1,147 sequences with an aver-

age length of 493 amino acids. We then performed sequence clustering using MMSEQS2 [37], with

minimum sequence identity set to 0.7, using cluster representatives as sequences for the validation

dataset and the remaining one as sequences for the training set, ensuring a 90/10 ratio of sequences

between training and validation sets by reallocating randomly selected sequences.

We then tested our models by using a 64 and 128 dimensional latent space, while using the same

TCN configuration for both the encoder and decoder layers. For each configuration, we performed

10 independent runs, consisting of 99,000 batch updates each, and selected the model parameters

associated with the best validation ELBO.

We found that TGVAE achieved the best ELBO on average compared to TDVAE (see Tab. 1),

whereas a 64 dimensional latent space always led to lower ELBO regardless of the model used.

We then inspected the contribution of the reconstruction error and KL divergence term; we found

that TGVAE achieved a lower reconstruction error compared to TDVAE, albeit this result was also

associated with higher performance variability. When we looked at the KL divergence, we found the

term to be significantly greater than zero for all models, confirming that our models effectively uses

the latent space to encode sequence information [38].

Taken together, we found that TGVAE leads to slightly better training performances. However,

generative models should be primarily evaluated based on the ability to produce new sequences

that resemble the primary and tertiary structure properties on a given enzyme class. Thus, we

proceeded to perform a sequence and structural analysis of the variants generated by our models,

albeit restricting our experiments to a 64-dimensional space as it was shown to achieve the best

performances for both models.
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Sequence analysis of new sphyngosine-1-phosphate lyase enzymes

We then evaluated the ability of our models to design new putatively functional S1PL variants, using

an extensive set of sequence similarity metrics and by analyzing their biochemical properties.

To do that, we used two different design strategies, which differ in whether z is sampled from the

prior distribution (N(0, I) for TGVAE and Dir(α = 1) for TDVAE) or a posterior distribution, whose

parameters where obtained by processing an input seed sequence through the encoder; in our case,

sampling from the prior is somewhat similar to generating S1PL enzymes de-novo, whereas sampling

from the posterior is similar to designing variants of a known enzyme.

First, we trained a 64-dimensional TGVAE and TDVAE and selected the parameters leading to the

best validation ELBO. We then generated 100, 000 sequences from the respective prior distributions,

and from the posterior distributions obtained by seeding the model with the human Sphyngosine-1-

phosphate lyase (HsS1PL) sequence (Uniprot id: O95470). We then computed the number of unique

samples generated, the average identity, similarity and bit score of the sequence ensemble as well

as 90% empirical confidence interval; specifically, we compared sequences sampled from the prior

against the entire S1PL training set and S1PL seeded sequences against HsS1PL, using BLASTP

and considering only sequences with E-value < 10−4.

We first analysed sequences generated from the respective prior distributions for TGVAE and

TDVAE (see Tab. 2); here, we found that TDVAE generated a larger set of unique samples (98.81%)

compared to TGVAE (95.55%). When we analysed the sequence similarity metrics, we found the

Dirichlet model to generate sequences that are significantly more similar on average to known S1PL

enzymes compared to those generated when using a Gaussian model (see Tab. 2). Nonetheless,

the low average identity and similarity scores suggests that sequences sampled from the prior are

consistently different from known S1PL sequences; while this is a desireable property, as it increases

variants diversity, it obviously comes at the expense of an higher rate of putative non-functional en-

zymes.

We then looked at the sequences obtained by sampling from posterior distribution of HsS1PL.

Here, both models generated sequences that are significantly more conserved than those generated

by sampling from the prior distributions, with the TDVAE achieving the best results on average (see

Tab. 3). Surprisingly, despite all models producing sequences with similarity and identity > 90%, they

still provided a set of almost 100% unique sequences, suggesting that the model is learning to sample

unseen variants in the neighborhood of the HsS1PL sequence space.

As TDVAE generated the largest number of distinct near wild type HsS1PL variants, we further

analysed these sequences by comparing their biochemical properties with those of HsS1PL; here,
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we focused on the protein grand average of hydropathicity index (GRAVY) [39], instability index [40]

and isoelectric point [41]. The GRAVY metric allows us to estimate whether a protein is hydropho-

bic (positive scores) or hydrophilic (negative scores). The instability index, instead, predicts protein

instability as a function of the occurrence of destabilizing dipeptides in the sequence, where values

greater than 40 are usually indicative of unstable proteins. Finally, as a proxy to estimate protein

solubility, we calculated the isoelectric point of each sequence. Here we found that sequences gen-

erated from the posterior distribution for HsS1PL have biochemical properties comparable to the wild

type enzyme (see Fig. 1), including same hydrophilic propensity, with an average GRAVY of −0.10

compared to −0.11 in wild type, and same isoelectric point, with an average index of 9.24 compared

to 9.28 for the wild type. Importantly, sequences from the posterior are predicted to be highly stable

with an average index of 32.31, compared to 32.00 of HsS1PL. Notably, when we carried out the same

analysis for sequences generated from the prior distribution, we observed a large fraction of proteins

being predicted as unstable and hydrophobic.

Finally, we looked whether variants generated by TDVAE retained the active site K353 (see Fig.

1). Here we found the activate site to be conserved across all variants but 5, where it was substituted

by a threonine (4 variants) and a valine(1 variant).

Taken together, we found that TDVAE generated a large and diverse set of sequences with chem-

ical properties similar to HsS1PL, thus providing a potentially large set of functional HsS1PL variants.

Structural analysis of human Sphyngosine-1-phosphate lyase variants

We have shown that TDVAE can generate HsS1PL variants that retain the biochemical properties of

the wild type sequence, while adding up to 50 mutations across the sequence. However, sequence-

based assessment of enzyme function provides only limited insights on the designed variants, and

prioritization strategies based on sequence alone would neglect structural properties, such as ligand

docking, that cannot be captured by sequence-based assessment methods. Thus, we set up an

extensive structural analysis protocol to: i) understand where mutations are located with respect to

the wild type structure, and ii) assess the stability and structural integrity of the HsS1PL variants.

To investigate sequence variability across variants, we selected the top 200 sequences ranked by

log-likelihood, performed multiple sequence alignment using Clustal Omega and calculated entropy-

based conservation scores at each position using AL2CO [42]. These conservation scores were then

mapped onto the wild type structure of HsS1PL (PDB id: 4Q6R) for ease of visualization (see Fig. 2).

Here, we found that amino acid changes are mostly located on or nearby coiled regions; importantly,

we found the regions defining the PLP binding site – including the critical K353 and pocket residues
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G210, T211, H242, C317, L318, G394, Y387, G394 – to be completely conserved, which suggests that

TDVAE can preserve the critical functional elements of the enzyme.

Then, to estimate the impact of the mutations on protein structure and stability, we randomly

selected 7 variants sufficiently different from the set of sequences with identity between 90%− 100%

from the wild type, and which were predicted to be stable but still carrying a significant number

of mutations. For each sequence, we then predicted their structure using COLABFOLD [43, 44],

configured to build multiple sequence alignments (MSA) using MMSEQS2, to perform homomeric

prediction without templating, and allowing 3 rounds of structural recycling; we then selected the best

model ranked by pTM for downstream molecular dynamic (MD) simulations (see Tab. 4). Importantly,

the accurate prediction of the dimer interface is critical for the proper definition of the active site,

as it requires residue contributions from both monomeric chains. Finally, as a positive control, the

structure of the wild type sequence was also predicted using the aforementioned parameters.

We obtained high-confidence predictions for all variants with pLDDT> 90% and pTM> 0.9. All

models, including the wild type, exhibit strong similarity to the solved wild type structure (global

RMSD vs. 4Q6R < 0.6Å), despite the absence of template modelling. An assessment of the ho-

modimeric interface was performed using DOCKQ[45], which evaluates the quality of a predicted

interface against a specified native structure (typically an experimentally-solved structure). DOCKQ

computes three metrics proposed and standardized by the Critical Assessment of PRedicted Interac-

tions (CAPRI) community, namely the fraction of preserved native contacts (Fnat), the interface Root

Means Square Deviation (iRMS) and the Ligand Root Means Square Deviation (LRMS) [46]. DOCKQ

combines these metrics into a single score in the [0, 1] range; a DOCKQ score > 0.8 suggests that

the predicted interface is highly accurate. Using the native structure reference (PDB id: 4Q6R), we

found that variants preserved almost all the native interfacial contacts (Fnat > 0.92), with all com-

plexes returning a DOCKQ score > 0.9. Together with the pTM score, which provides a measure of

confidence in the relative orientations of the subunits in a multimeric model, we concluded that the

predicted complexes were of excellent quality and suitable for subsequent molecular dynamics (MD)

simulation.

We then performed MD simulations to study protein stability over time, using GROMACS 2021.4

[47] with the CHARMM36 all-atom force field [48]. Protein models were solvated in TIP3P water

in a cubic box and the net protein charge was counterbalanced using chloride ions. The system

underwent potential energy minimization by gradient descent and equilibrated to 300K and 1 bar

using V-Rescale thermostat/Berendsen barostat. Following a 10 ns (5 × 106 time steps) production

MD, trajectories were re-centered around the catalytic lysine residues (K353) with additional rotational
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and translational fitting. PDB: 4Q6R was also simulated as a positive control. Three attributes were

evaluated for each trajectory, namely the average radius of gyration, the pairwise RMSD (2D RMSD)

and the inter-chain hydrogen bonding (see Tab. 5).

The average Rg for the simulated HsS1PL complexes ranges from 2.80−2.82nm, while the differ-

ence between the maximum and minimum gyrational radii (Rg max-min) averages less than 0.1nm.

Furthermore, each variant model is stabilized by a similar number of inter-chain hydrogen bonds to

the wild type structure, with a notable exception being D47945 which exhibits an average 44 inter-

chain hydrogen bonds over the course of the trajectory. D47945 also returns one of the smallest

average Rg (2.799 ± 5.49−3nm) and the narrowest Rg max-min (0.0592nm), suggesting that this

complex is particularly compact. Across all variant models, the distance distribution of inter-chain H-

bonds is remarkably similar to the simulated wild type structure, with the majority (52.7%) of H-bonds

occurring within a distance of 2.725− 2.925Å. Taken altogether, our analysis suggests that the variant

S1PL sequences form highly stable homodimeric complexes that maintain their integrity.

To obtain a more qualitative assessment of structure stability over time, we computed pair-wise

RMSD in UCSF Chimera [49] between structures at each time step (see Fig. 3). Surprisingly, we ob-

served significant differences between variants, despite sequence identity being greater than 90% for

all sequences. In particular, variant D4 exhibits the largest Cα deviations despite bearing the highest

sequence identity to the wild type (99.65%). In contrast, sequences D47945 (97.54%) and D90903

(96.30%) remain comparatively rigid (self-similar) over the course of their respective trajectories. It is

interesting to note, however, that all sequences display some degree of heightened flexibility com-

pared to the 4Q6R control. To identify the source of this observed structural mobility, per-residue

B-factors were calculated for each trajectory and mapped onto their respective energy-minimized

structures for ease of visualization (see Fig. 4). In all instances, the most mobile regions are located

on the periphery of the structure, situated on or around coils. Importantly, the core of the proteins

remain resilient to fluctuation, as evidenced by the comparatively smaller B-factors of structured and

solvent-buried regions.

It is not yet possible to predict how these fluctuations will impact biochemical fitness; however, our

results suggest that the functional landscape of HsS1PL is expected to be rugged, and even single

mutations in critical point could lead to non-functional variants, regardless of their sequence similarity

with respect to wild type.
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Discussion

Enzyme replacement therapies are the standard of care to treat rare enzymatic deficiencies, which

consist in the injection of a recombinant enzyme to restore physiological metabolic activity and im-

prove patients’ symptoms. However, engineering recombinant enzymes with desirable therapeutic

properties has been challenging.

Here we showed how deep generative models can be exploited to design variants of human en-

zymes with structural and biochemical properties similar to known functional wild type molecules, thus

providing a tool to expand the enzyme repertoire available for downstream therapeutic applications.

Specifically, we developed a new Variational Autoencoder (VAE), called Temporal Dirichlet Variational

Autoencoder (TDVAE), which combines a highly efficient Temporal Convolutional Networks (TCNs)

for encoding and decoding sequences with Stochastic Variational Inference (SVI) for fast parameters

learning, while using a Dirichlet distribution to model the enzyme design space.

As a proof of concept, we used TDVAE to design variants of the human Sphyngosine-1-phosphate

lyase (HsS1PL) enzyme, as potential therapeutic enzymes to treat nephrotic syndrome type 14

(NPHS14). Experimental results showed that TDVAE generated a large ensemble of HsS1PL vari-

ants with preserved functional features, including the presence of the key catalytic lysine residue.

Surprisingly, obtaining these variants did not require training on large sequence datasets or multiple

sequence alignment information [21], which are usually difficult to obtain when sequences are highly

divergent as S1PL. We then further validated our results by predicting the structure of a subset of

variants and performing molecular dynamics simulations to assess enzyme structural stability and

integrity; here we found HsS1PL variants to maintain favorable inter-chain contacts to form stable,

compact and largely invariant homodimeric complexes. Taken together, our generative design strat-

egy identified high-confidence HsS1PL variants for downstream experimental validation.

While we have shown the effectiveness of TDVAE, we also recognize its limitations. TDVAE can

generate a large number of wild type like variants, but our design step is only conditioned on the pri-

mary structure, which might not be sufficient to capture structural properties. In fact, we have shown,

through MD simulations, that selecting candidates based only on the similarity with the wild type se-

quence might not be sufficient to identify functional enzymes. Thus, it is important to develop models

that can capture biological constraints, while allowing sufficient flexibility to build diverse variants li-

braries for downstream experimental testing. From a mathematical point of view, we also recognize

that is still unclear how the latent encoding can be exploited beyond constraining the search space

to the local neighborhood of observed enzyme sequences, and provide general design principles to

guide enzyme engineering.
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Nonetheless, with the increasing number of available protein sequences and structures across the

kingdom of life, we expect VAEs to be well powered to provide effective and accessible sequence-to-

function models to drive the engineering of the next generation of therapeutic enzymes.
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Tables

Model Latent ELBO Reconstruction Error KL divergencespace size

TGVAE 64 1136.682± 43.046 1084.688± 46.162 51.994± 4.945
128 1174.723± 42.669 1119.788± 41.939 54.935± 3.318

TDVAE 64 1249.697± 29.939 1213.705± 30.248 35.992± 2.457
128 1255.285± 33.834 1218.323± 35.903 36.961± 4.625

Table 1: Evaluation of training results for the Temporal Gaussian Variational Autoencoder (TG-

VAE) and the Temporal Dirichlet Variational Autoencoder (TDVAE). For each model, we report

the size of the latent space, the mean and standard deviation of the ELBO over 10 runs, along with

the mean and standard deviation of the reconstruction error and KL divergence. In bold, we report

the best value for each metric.

Model % unique Identity Similarity Bitscore
sequences mean 5% 95% mean 5% 95% mean 5% 95%

TGVAE 95.55 41.54 28.17 72.11 54.29 42.01 79.81 183.93 50.1 537.00
TDVAE 98.81 60.72 38.16 85.90 68.92 50.11 90.91 256.33 81.30 511.00

Table 2: Sequence analysis of variants generated by sampling from the respective prior dis-

tributions for TGVAE and TDVAE. For each model, we report the percentage of unique variants

from an ensemble of 105 generated sequences, and the corresponding average and 90% empirical

confidence interval of identity, similarity and bitscore with respect to S1PL sequences in the training

set. In bold, we report the best value for each metric.

Model % unique Identity Similarity Bitscore
sequences mean 5% 95% mean 5% 95% mean 5% 95%

TGVAE 99.68 94.61 91.72 96.65 96.93 95.07 98.24 1124.31 1089.00 1150.00
TDVAE 99.54 98.31 97.01 99.12 98.97 98.24 99.64 1165.42 1152.00 1176.00

Table 3: Sequence analysis of variants generated by sampling from the respective posterior

distributions for TGVAE and TDVAE. For each model, we report the percentage of unique variants

from an ensemble of 105 generated sequences, and the corresponding average and 90% empirical

confidence interval of identity, similarity and bitscore with respect to the HsS1PL sequence. In bold,

we report the best value for each metric.
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SID Identity pLDDT pTM RMSD RMSD
Fnat iRMS LRMS DockQ(Pruned) (Global)

O95470 - 96.170 0.949 0.439 0.545 0.930 0.589 0.788 0.929
D4 99.648 96.040 0.950 0.467 0.565 0.924 0.607 0.846 0.925
D1008 99.472 96.020 0.950 0.471 0.565 0.943 0.598 0.837 0.932
D39595 97.887 96.020 0.949 0.491 0.573 0.926 0.602 0.827 0.926
D47945 97.535 96.020 0.949 0.480 0.573 0.945 0.611 0.828 0.931
D90903 96.303 95.940 0.949 0.451 0.544 0.922 0.590 0.798 0.927
D96413 95.070 95.910 0.949 0.427 0.534 0.939 0.569 0.758 0.935
D97533 93.662 95.700 0.946 0.482 0.575 0.935 0.612 0.781 0.928

Table 4: Structural analysis of HsS1PL. For each variant, we report a mnemonic sequence iden-

tifier (SID), the percent identity with respect to HsS1PL, the ALPHAFOLD2 model confidence score

(pLDDT) and structural alignment metric (pTM), along with the RMSD with respect to the core region

of the enzyme (E111-D553). We also evaluated the quality of the predicted interface against HsS1PL

by reporting the Fnat, iRMS, LRMS and DOCKQ metrics. For comparison, we also report the metrics

computed on the predicted structure for the wild type HsS1PL sequence (O95470). In bold, we report

the best value of each metric.

Radius of Gyration (Rg) RMSD Inter-chain bonds
SID Identity mean sd max-min mean sd max-min mean max min
O95470 - 2.806 6.02E-03 0.0597 1.286 0.103 1.592 36 55 22
D4 99.648 2.809 8.96E-03 0.0747 1.697 0.162 2.177 36 52 23
D1008 99.472 2.799 6.79E-03 0.0636 1.459 0.166 1.807 35 49 20
D39595 97.887 2.808 6.36E-03 0.0716 1.560 0.165 1.943 36 54 23
D47945 97.535 2.799 5.49E-03 0.0592 1.192 0.109 1.464 44 61 27
D90903 96.303 2.806 6.55E-03 0.0671 1.188 0.127 1.557 35 54 20
D96413 95.070 2.815 8.51E-03 0.0786 1.479 0.150 1.804 33 50 19
D97533 93.662 2.818 9.09E-03 0.0928 1.316 0.145 1.703 31 50 23

Table 5: Molecular dynamics analysis of HsS1PL variants. For each structure, we report the as-

sociated mnemonic sequence identifier (SID), the percent identity respect to the wild type sequence,

the Radius of Gyration (Rg), the RMSD of the structures at each time with respect to the structure

at time t = 0ns, and the number of inter-chain hydrogen-bond contacts between the chains in the

HsS1PL homodimer. For comparison, we also report the metrics computed on the predicted struc-

ture for the wild type HsS1PL sequence (O95470). In bold, we report the best value of each metric.
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Figure 1: Biochemical properties of HsS1PL variants generated by TDVAE. A) Distribution of

the flexibility, instability and isoelectric point of the sequences generated from the variational poste-

rior distribution identified by HsS1PL and the prior distribution. While variants generated from the

posterior strongly retain wild type properties (dashed line), sequences generated from the prior dis-

tribution are considerably more unstable and less soluble. B) Number of variants mutating the K353

active site in HsS1PL; only 5 variants introduced mutations by replacing lysine with either a threonine

or a valine (left side zoom plot).
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Figure 2: Structural analysis of mutations in HsS1PL variants. A visualization of sequence con-

servation using the HsS1PL crystal structure (PDB id: 4Q6R) derived from the multiple sequence

alignment of the top 200 variants generated by TDVAE. A) Entropy-based conservation scores

mapped onto chain B of the HsS1PL, highlighting positions mutated by the TDVAE model. Chain

A is coloured in grey. B) A magnified view of some highly conserved pocket residues that bind and

stabilise the internal aldamine formed between the PLP cofactor and the catalytic lysine (K353).
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Figure 3: 2D RMSD analysis of HsS1PL variants. For each variant, we report a heatmap of the

pairwise RMSD of the structures obtained at each time step of the corresponding 10ns molecular

dynamics simulation.
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Figure 4: B-factors analysis of HsS1PL variants. Visualization of per-residue B-factors computed

for models 4Q6R, D4, D47945 and D90903, computed from their respective trajectories. Larger

B-factors are indicative of greater mobility.
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